1 /*
2 * Copyright 2020 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/GrAATriangulator.h"
9
10 #include "src/gpu/GrEagerVertexAllocator.h"
11 #include <queue>
12 #include <vector>
13 #include <unordered_map>
14
15 #if TRIANGULATOR_LOGGING
16 #define TESS_LOG SkDebugf
17 #define DUMP_MESH(MESH) (MESH).dump()
18 #else
19 #define TESS_LOG(...)
20 #define DUMP_MESH(MESH)
21 #endif
22
23 constexpr static float kCosMiterAngle = 0.97f; // Corresponds to an angle of ~14 degrees.
24
25 using EdgeType = GrTriangulator::EdgeType;
26 using Vertex = GrTriangulator::Vertex;
27 using VertexList = GrTriangulator::VertexList;
28 using Line = GrTriangulator::Line;
29 using Edge = GrTriangulator::Edge;
30 using EdgeList = GrTriangulator::EdgeList;
31 using Poly = GrTriangulator::Poly;
32 using Comparator = GrTriangulator::Comparator;
33 using SSEdge = GrAATriangulator::SSEdge;
34 using EventList = GrAATriangulator::EventList;
35 using Event = GrAATriangulator::Event;
36 using EventComparator = GrAATriangulator::EventComparator;
37
38 struct SSVertex {
SSVertexSSVertex39 SSVertex(Vertex* v) : fVertex(v), fPrev(nullptr), fNext(nullptr) {}
40 Vertex* fVertex;
41 SSEdge* fPrev;
42 SSEdge* fNext;
43 };
44
45 struct GrAATriangulator::SSEdge {
SSEdgeGrAATriangulator::SSEdge46 SSEdge(Edge* edge, SSVertex* prev, SSVertex* next)
47 : fEdge(edge), fEvent(nullptr), fPrev(prev), fNext(next) {
48 }
49 Edge* fEdge;
50 Event* fEvent;
51 SSVertex* fPrev;
52 SSVertex* fNext;
53 };
54
55 typedef std::unordered_map<Vertex*, SSVertex*> SSVertexMap;
56 typedef std::vector<SSEdge*> SSEdgeList;
57 typedef std::priority_queue<Event*, std::vector<Event*>, EventComparator> EventPQ;
58
59 struct GrAATriangulator::EventList : EventPQ {
EventListGrAATriangulator::EventList60 EventList(EventComparator comparison) : EventPQ(comparison) {
61 }
62 };
63
makeEvent(SSEdge * e,EventList * events) const64 void GrAATriangulator::makeEvent(SSEdge* e, EventList* events) const {
65 Vertex* prev = e->fPrev->fVertex;
66 Vertex* next = e->fNext->fVertex;
67 if (prev == next || !prev->fPartner || !next->fPartner) {
68 return;
69 }
70 Edge bisector1(prev, prev->fPartner, 1, EdgeType::kConnector);
71 Edge bisector2(next, next->fPartner, 1, EdgeType::kConnector);
72 SkPoint p;
73 uint8_t alpha;
74 if (bisector1.intersect(bisector2, &p, &alpha)) {
75 TESS_LOG("found edge event for %g, %g (original %g -> %g), "
76 "will collapse to %g,%g alpha %d\n",
77 prev->fID, next->fID, e->fEdge->fTop->fID, e->fEdge->fBottom->fID, p.fX, p.fY,
78 alpha);
79 e->fEvent = fAlloc->make<Event>(e, p, alpha);
80 events->push(e->fEvent);
81 }
82 }
83
makeEvent(SSEdge * edge,Vertex * v,SSEdge * other,Vertex * dest,EventList * events,const Comparator & c) const84 void GrAATriangulator::makeEvent(SSEdge* edge, Vertex* v, SSEdge* other, Vertex* dest,
85 EventList* events, const Comparator& c) const {
86 if (!v->fPartner) {
87 return;
88 }
89 Vertex* top = edge->fEdge->fTop;
90 Vertex* bottom = edge->fEdge->fBottom;
91 if (!top || !bottom ) {
92 return;
93 }
94 Line line = edge->fEdge->fLine;
95 line.fC = -(dest->fPoint.fX * line.fA + dest->fPoint.fY * line.fB);
96 Edge bisector(v, v->fPartner, 1, EdgeType::kConnector);
97 SkPoint p;
98 uint8_t alpha = dest->fAlpha;
99 if (line.intersect(bisector.fLine, &p) && !c.sweep_lt(p, top->fPoint) &&
100 c.sweep_lt(p, bottom->fPoint)) {
101 TESS_LOG("found p edge event for %g, %g (original %g -> %g), "
102 "will collapse to %g,%g alpha %d\n",
103 dest->fID, v->fID, top->fID, bottom->fID, p.fX, p.fY, alpha);
104 edge->fEvent = fAlloc->make<Event>(edge, p, alpha);
105 events->push(edge->fEvent);
106 }
107 }
108
connectPartners(VertexList * mesh,const Comparator & c) const109 void GrAATriangulator::connectPartners(VertexList* mesh, const Comparator& c) const {
110 for (Vertex* outer = mesh->fHead; outer; outer = outer->fNext) {
111 if (Vertex* inner = outer->fPartner) {
112 if ((inner->fPrev || inner->fNext) && (outer->fPrev || outer->fNext)) {
113 // Connector edges get zero winding, since they're only structural (i.e., to ensure
114 // no 0-0-0 alpha triangles are produced), and shouldn't affect the poly winding
115 // number.
116 this->makeConnectingEdge(outer, inner, EdgeType::kConnector, c, 0);
117 inner->fPartner = outer->fPartner = nullptr;
118 }
119 }
120 }
121 }
122
dump_skel(const SSEdgeList & ssEdges)123 static void dump_skel(const SSEdgeList& ssEdges) {
124 #if TRIANGULATOR_LOGGING
125 for (SSEdge* edge : ssEdges) {
126 if (edge->fEdge) {
127 TESS_LOG("skel edge %g -> %g",
128 edge->fPrev->fVertex->fID,
129 edge->fNext->fVertex->fID);
130 if (edge->fEdge->fTop && edge->fEdge->fBottom) {
131 TESS_LOG(" (original %g -> %g)\n",
132 edge->fEdge->fTop->fID,
133 edge->fEdge->fBottom->fID);
134 } else {
135 TESS_LOG("\n");
136 }
137 }
138 }
139 #endif
140 }
141
removeNonBoundaryEdges(const VertexList & mesh) const142 void GrAATriangulator::removeNonBoundaryEdges(const VertexList& mesh) const {
143 TESS_LOG("removing non-boundary edges\n");
144 EdgeList activeEdges;
145 for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) {
146 if (!v->isConnected()) {
147 continue;
148 }
149 Edge* leftEnclosingEdge;
150 Edge* rightEnclosingEdge;
151 FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
152 bool prevFilled = leftEnclosingEdge && this->applyFillType(leftEnclosingEdge->fWinding);
153 for (Edge* e = v->fFirstEdgeAbove; e;) {
154 Edge* next = e->fNextEdgeAbove;
155 activeEdges.remove(e);
156 bool filled = this->applyFillType(e->fWinding);
157 if (filled == prevFilled) {
158 e->disconnect();
159 }
160 prevFilled = filled;
161 e = next;
162 }
163 Edge* prev = leftEnclosingEdge;
164 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
165 if (prev) {
166 e->fWinding += prev->fWinding;
167 }
168 activeEdges.insert(e, prev);
169 prev = e;
170 }
171 }
172 }
173
174 // Note: this is the normal to the edge, but not necessarily unit length.
get_edge_normal(const Edge * e,SkVector * normal)175 static void get_edge_normal(const Edge* e, SkVector* normal) {
176 normal->set(SkDoubleToScalar(e->fLine.fA),
177 SkDoubleToScalar(e->fLine.fB));
178 }
179
180 // Stage 5c: detect and remove "pointy" vertices whose edge normals point in opposite directions
181 // and whose adjacent vertices are less than a quarter pixel from an edge. These are guaranteed to
182 // invert on stroking.
183
simplifyBoundary(EdgeList * boundary,const Comparator & c) const184 void GrAATriangulator::simplifyBoundary(EdgeList* boundary, const Comparator& c) const {
185 Edge* prevEdge = boundary->fTail;
186 SkVector prevNormal;
187 get_edge_normal(prevEdge, &prevNormal);
188 for (Edge* e = boundary->fHead; e != nullptr;) {
189 Vertex* prev = prevEdge->fWinding == 1 ? prevEdge->fTop : prevEdge->fBottom;
190 Vertex* next = e->fWinding == 1 ? e->fBottom : e->fTop;
191 double distPrev = e->dist(prev->fPoint);
192 double distNext = prevEdge->dist(next->fPoint);
193 SkVector normal;
194 get_edge_normal(e, &normal);
195 constexpr double kQuarterPixelSq = 0.25f * 0.25f;
196 if (prev == next) {
197 boundary->remove(prevEdge);
198 boundary->remove(e);
199 prevEdge = boundary->fTail;
200 e = boundary->fHead;
201 if (prevEdge) {
202 get_edge_normal(prevEdge, &prevNormal);
203 }
204 } else if (prevNormal.dot(normal) < 0.0 &&
205 (distPrev * distPrev <= kQuarterPixelSq || distNext * distNext <= kQuarterPixelSq)) {
206 Edge* join = this->makeEdge(prev, next, EdgeType::kInner, c);
207 if (prev->fPoint != next->fPoint) {
208 join->fLine.normalize();
209 join->fLine = join->fLine * join->fWinding;
210 }
211 boundary->insert(join, e);
212 boundary->remove(prevEdge);
213 boundary->remove(e);
214 if (join->fLeft && join->fRight) {
215 prevEdge = join->fLeft;
216 e = join;
217 } else {
218 prevEdge = boundary->fTail;
219 e = boundary->fHead; // join->fLeft ? join->fLeft : join;
220 }
221 get_edge_normal(prevEdge, &prevNormal);
222 } else {
223 prevEdge = e;
224 prevNormal = normal;
225 e = e->fRight;
226 }
227 }
228 }
229
connectSSEdge(Vertex * v,Vertex * dest,const Comparator & c) const230 void GrAATriangulator::connectSSEdge(Vertex* v, Vertex* dest, const Comparator& c) const {
231 if (v == dest) {
232 return;
233 }
234 TESS_LOG("ss_connecting vertex %g to vertex %g\n", v->fID, dest->fID);
235 if (v->fSynthetic) {
236 this->makeConnectingEdge(v, dest, EdgeType::kConnector, c, 0);
237 } else if (v->fPartner) {
238 TESS_LOG("setting %g's partner to %g ", v->fPartner->fID, dest->fID);
239 TESS_LOG("and %g's partner to null\n", v->fID);
240 v->fPartner->fPartner = dest;
241 v->fPartner = nullptr;
242 }
243 }
244
apply(VertexList * mesh,const Comparator & c,EventList * events,const GrAATriangulator * triangulator)245 void GrAATriangulator::Event::apply(VertexList* mesh, const Comparator& c, EventList* events,
246 const GrAATriangulator* triangulator) {
247 if (!fEdge) {
248 return;
249 }
250 Vertex* prev = fEdge->fPrev->fVertex;
251 Vertex* next = fEdge->fNext->fVertex;
252 SSEdge* prevEdge = fEdge->fPrev->fPrev;
253 SSEdge* nextEdge = fEdge->fNext->fNext;
254 if (!prevEdge || !nextEdge || !prevEdge->fEdge || !nextEdge->fEdge) {
255 return;
256 }
257 Vertex* dest = triangulator->makeSortedVertex(fPoint, fAlpha, mesh, prev, c);
258 dest->fSynthetic = true;
259 SSVertex* ssv = triangulator->fAlloc->make<SSVertex>(dest);
260 TESS_LOG("collapsing %g, %g (original edge %g -> %g) to %g (%g, %g) alpha %d\n",
261 prev->fID, next->fID, fEdge->fEdge->fTop->fID, fEdge->fEdge->fBottom->fID, dest->fID,
262 fPoint.fX, fPoint.fY, fAlpha);
263 fEdge->fEdge = nullptr;
264
265 triangulator->connectSSEdge(prev, dest, c);
266 triangulator->connectSSEdge(next, dest, c);
267
268 prevEdge->fNext = nextEdge->fPrev = ssv;
269 ssv->fPrev = prevEdge;
270 ssv->fNext = nextEdge;
271 if (!prevEdge->fEdge || !nextEdge->fEdge) {
272 return;
273 }
274 if (prevEdge->fEvent) {
275 prevEdge->fEvent->fEdge = nullptr;
276 }
277 if (nextEdge->fEvent) {
278 nextEdge->fEvent->fEdge = nullptr;
279 }
280 if (prevEdge->fPrev == nextEdge->fNext) {
281 triangulator->connectSSEdge(prevEdge->fPrev->fVertex, dest, c);
282 prevEdge->fEdge = nextEdge->fEdge = nullptr;
283 } else {
284 triangulator->computeBisector(prevEdge->fEdge, nextEdge->fEdge, dest);
285 SkASSERT(prevEdge != fEdge && nextEdge != fEdge);
286 if (dest->fPartner) {
287 triangulator->makeEvent(prevEdge, events);
288 triangulator->makeEvent(nextEdge, events);
289 } else {
290 triangulator->makeEvent(prevEdge, prevEdge->fPrev->fVertex, nextEdge, dest, events, c);
291 triangulator->makeEvent(nextEdge, nextEdge->fNext->fVertex, prevEdge, dest, events, c);
292 }
293 }
294 }
295
is_overlap_edge(Edge * e)296 static bool is_overlap_edge(Edge* e) {
297 if (e->fType == EdgeType::kOuter) {
298 return e->fWinding != 0 && e->fWinding != 1;
299 } else if (e->fType == EdgeType::kInner) {
300 return e->fWinding != 0 && e->fWinding != -2;
301 } else {
302 return false;
303 }
304 }
305
306 // This is a stripped-down version of tessellate() which computes edges which
307 // join two filled regions, which represent overlap regions, and collapses them.
collapseOverlapRegions(VertexList * mesh,const Comparator & c,EventComparator comp) const308 bool GrAATriangulator::collapseOverlapRegions(VertexList* mesh, const Comparator& c,
309 EventComparator comp) const {
310 TESS_LOG("\nfinding overlap regions\n");
311 EdgeList activeEdges;
312 EventList events(comp);
313 SSVertexMap ssVertices;
314 SSEdgeList ssEdges;
315 for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
316 if (!v->isConnected()) {
317 continue;
318 }
319 Edge* leftEnclosingEdge;
320 Edge* rightEnclosingEdge;
321 FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
322 for (Edge* e = v->fLastEdgeAbove; e && e != leftEnclosingEdge;) {
323 Edge* prev = e->fPrevEdgeAbove ? e->fPrevEdgeAbove : leftEnclosingEdge;
324 activeEdges.remove(e);
325 bool leftOverlap = prev && is_overlap_edge(prev);
326 bool rightOverlap = is_overlap_edge(e);
327 bool isOuterBoundary = e->fType == EdgeType::kOuter &&
328 (!prev || prev->fWinding == 0 || e->fWinding == 0);
329 if (prev) {
330 e->fWinding -= prev->fWinding;
331 }
332 if (leftOverlap && rightOverlap) {
333 TESS_LOG("found interior overlap edge %g -> %g, disconnecting\n",
334 e->fTop->fID, e->fBottom->fID);
335 e->disconnect();
336 } else if (leftOverlap || rightOverlap) {
337 TESS_LOG("found overlap edge %g -> %g%s\n",
338 e->fTop->fID, e->fBottom->fID,
339 isOuterBoundary ? ", is outer boundary" : "");
340 Vertex* prevVertex = e->fWinding < 0 ? e->fBottom : e->fTop;
341 Vertex* nextVertex = e->fWinding < 0 ? e->fTop : e->fBottom;
342 SSVertex* ssPrev = ssVertices[prevVertex];
343 if (!ssPrev) {
344 ssPrev = ssVertices[prevVertex] = fAlloc->make<SSVertex>(prevVertex);
345 }
346 SSVertex* ssNext = ssVertices[nextVertex];
347 if (!ssNext) {
348 ssNext = ssVertices[nextVertex] = fAlloc->make<SSVertex>(nextVertex);
349 }
350 SSEdge* ssEdge = fAlloc->make<SSEdge>(e, ssPrev, ssNext);
351 ssEdges.push_back(ssEdge);
352 // SkASSERT(!ssPrev->fNext && !ssNext->fPrev);
353 ssPrev->fNext = ssNext->fPrev = ssEdge;
354 this->makeEvent(ssEdge, &events);
355 if (!isOuterBoundary) {
356 e->disconnect();
357 } else {
358 SkASSERT(e->fType != EdgeType::kConnector);
359 // Ensure winding values match expected scale for the edge type. During merging of
360 // collinear edges in overlap regions, windings are summed and so could exceed the
361 // expected +/-1 for outer and +/-2 for inner that is used to fill properly during
362 // subsequent polygon generation.
363 e->fWinding = SkScalarCopySign(e->fType == EdgeType::kInner ? 2 : 1,
364 e->fWinding);
365 }
366 }
367 e = prev;
368 }
369 Edge* prev = leftEnclosingEdge;
370 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
371 if (prev) {
372 e->fWinding += prev->fWinding;
373 }
374 activeEdges.insert(e, prev);
375 prev = e;
376 }
377 }
378 bool complex = events.size() > 0;
379
380 TESS_LOG("\ncollapsing overlap regions\n");
381 TESS_LOG("skeleton before:\n");
382 dump_skel(ssEdges);
383 while (events.size() > 0) {
384 Event* event = events.top();
385 events.pop();
386 event->apply(mesh, c, &events, this);
387 }
388 TESS_LOG("skeleton after:\n");
389 dump_skel(ssEdges);
390 for (SSEdge* edge : ssEdges) {
391 if (Edge* e = edge->fEdge) {
392 this->makeConnectingEdge(edge->fPrev->fVertex, edge->fNext->fVertex, e->fType, c, 0);
393 }
394 }
395 return complex;
396 }
397
inversion(Vertex * prev,Vertex * next,Edge * origEdge,const Comparator & c)398 static bool inversion(Vertex* prev, Vertex* next, Edge* origEdge, const Comparator& c) {
399 if (!prev || !next) {
400 return true;
401 }
402 int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
403 return winding != origEdge->fWinding;
404 }
405
406 // Stage 5d: Displace edges by half a pixel inward and outward along their normals. Intersect to
407 // find new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a
408 // new antialiased mesh from those vertices.
409
strokeBoundary(EdgeList * boundary,VertexList * innerMesh,const Comparator & c) const410 void GrAATriangulator::strokeBoundary(EdgeList* boundary, VertexList* innerMesh,
411 const Comparator& c) const {
412 TESS_LOG("\nstroking boundary\n");
413 // A boundary with fewer than 3 edges is degenerate.
414 if (!boundary->fHead || !boundary->fHead->fRight || !boundary->fHead->fRight->fRight) {
415 return;
416 }
417 Edge* prevEdge = boundary->fTail;
418 Vertex* prevV = prevEdge->fWinding > 0 ? prevEdge->fTop : prevEdge->fBottom;
419 SkVector prevNormal;
420 get_edge_normal(prevEdge, &prevNormal);
421 double radius = 0.5;
422 Line prevInner(prevEdge->fLine);
423 prevInner.fC -= radius;
424 Line prevOuter(prevEdge->fLine);
425 prevOuter.fC += radius;
426 VertexList innerVertices;
427 VertexList outerVertices;
428 bool innerInversion = true;
429 bool outerInversion = true;
430 for (Edge* e = boundary->fHead; e != nullptr; e = e->fRight) {
431 Vertex* v = e->fWinding > 0 ? e->fTop : e->fBottom;
432 SkVector normal;
433 get_edge_normal(e, &normal);
434 Line inner(e->fLine);
435 inner.fC -= radius;
436 Line outer(e->fLine);
437 outer.fC += radius;
438 SkPoint innerPoint, outerPoint;
439 TESS_LOG("stroking vertex %g (%g, %g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
440 if (!prevEdge->fLine.nearParallel(e->fLine) && prevInner.intersect(inner, &innerPoint) &&
441 prevOuter.intersect(outer, &outerPoint)) {
442 float cosAngle = normal.dot(prevNormal);
443 if (cosAngle < -kCosMiterAngle) {
444 Vertex* nextV = e->fWinding > 0 ? e->fBottom : e->fTop;
445
446 // This is a pointy vertex whose angle is smaller than the threshold; miter it.
447 Line bisector(innerPoint, outerPoint);
448 Line tangent(v->fPoint, v->fPoint + SkPoint::Make(bisector.fA, bisector.fB));
449 if (tangent.fA == 0 && tangent.fB == 0) {
450 continue;
451 }
452 tangent.normalize();
453 Line innerTangent(tangent);
454 Line outerTangent(tangent);
455 innerTangent.fC -= 0.5;
456 outerTangent.fC += 0.5;
457 SkPoint innerPoint1, innerPoint2, outerPoint1, outerPoint2;
458 if (prevNormal.cross(normal) > 0) {
459 // Miter inner points
460 if (!innerTangent.intersect(prevInner, &innerPoint1) ||
461 !innerTangent.intersect(inner, &innerPoint2) ||
462 !outerTangent.intersect(bisector, &outerPoint)) {
463 continue;
464 }
465 Line prevTangent(prevV->fPoint,
466 prevV->fPoint + SkVector::Make(prevOuter.fA, prevOuter.fB));
467 Line nextTangent(nextV->fPoint,
468 nextV->fPoint + SkVector::Make(outer.fA, outer.fB));
469 if (prevTangent.dist(outerPoint) > 0) {
470 bisector.intersect(prevTangent, &outerPoint);
471 }
472 if (nextTangent.dist(outerPoint) < 0) {
473 bisector.intersect(nextTangent, &outerPoint);
474 }
475 outerPoint1 = outerPoint2 = outerPoint;
476 } else {
477 // Miter outer points
478 if (!outerTangent.intersect(prevOuter, &outerPoint1) ||
479 !outerTangent.intersect(outer, &outerPoint2)) {
480 continue;
481 }
482 Line prevTangent(prevV->fPoint,
483 prevV->fPoint + SkVector::Make(prevInner.fA, prevInner.fB));
484 Line nextTangent(nextV->fPoint,
485 nextV->fPoint + SkVector::Make(inner.fA, inner.fB));
486 if (prevTangent.dist(innerPoint) > 0) {
487 bisector.intersect(prevTangent, &innerPoint);
488 }
489 if (nextTangent.dist(innerPoint) < 0) {
490 bisector.intersect(nextTangent, &innerPoint);
491 }
492 innerPoint1 = innerPoint2 = innerPoint;
493 }
494 if (!innerPoint1.isFinite() || !innerPoint2.isFinite() ||
495 !outerPoint1.isFinite() || !outerPoint2.isFinite()) {
496 continue;
497 }
498 TESS_LOG("inner (%g, %g), (%g, %g), ",
499 innerPoint1.fX, innerPoint1.fY, innerPoint2.fX, innerPoint2.fY);
500 TESS_LOG("outer (%g, %g), (%g, %g)\n",
501 outerPoint1.fX, outerPoint1.fY, outerPoint2.fX, outerPoint2.fY);
502 Vertex* innerVertex1 = fAlloc->make<Vertex>(innerPoint1, 255);
503 Vertex* innerVertex2 = fAlloc->make<Vertex>(innerPoint2, 255);
504 Vertex* outerVertex1 = fAlloc->make<Vertex>(outerPoint1, 0);
505 Vertex* outerVertex2 = fAlloc->make<Vertex>(outerPoint2, 0);
506 innerVertex1->fPartner = outerVertex1;
507 innerVertex2->fPartner = outerVertex2;
508 outerVertex1->fPartner = innerVertex1;
509 outerVertex2->fPartner = innerVertex2;
510 if (!inversion(innerVertices.fTail, innerVertex1, prevEdge, c)) {
511 innerInversion = false;
512 }
513 if (!inversion(outerVertices.fTail, outerVertex1, prevEdge, c)) {
514 outerInversion = false;
515 }
516 innerVertices.append(innerVertex1);
517 innerVertices.append(innerVertex2);
518 outerVertices.append(outerVertex1);
519 outerVertices.append(outerVertex2);
520 } else {
521 TESS_LOG("inner (%g, %g), ", innerPoint.fX, innerPoint.fY);
522 TESS_LOG("outer (%g, %g)\n", outerPoint.fX, outerPoint.fY);
523 Vertex* innerVertex = fAlloc->make<Vertex>(innerPoint, 255);
524 Vertex* outerVertex = fAlloc->make<Vertex>(outerPoint, 0);
525 innerVertex->fPartner = outerVertex;
526 outerVertex->fPartner = innerVertex;
527 if (!inversion(innerVertices.fTail, innerVertex, prevEdge, c)) {
528 innerInversion = false;
529 }
530 if (!inversion(outerVertices.fTail, outerVertex, prevEdge, c)) {
531 outerInversion = false;
532 }
533 innerVertices.append(innerVertex);
534 outerVertices.append(outerVertex);
535 }
536 }
537 prevInner = inner;
538 prevOuter = outer;
539 prevV = v;
540 prevEdge = e;
541 prevNormal = normal;
542 }
543 if (!inversion(innerVertices.fTail, innerVertices.fHead, prevEdge, c)) {
544 innerInversion = false;
545 }
546 if (!inversion(outerVertices.fTail, outerVertices.fHead, prevEdge, c)) {
547 outerInversion = false;
548 }
549 // Outer edges get 1 winding, and inner edges get -2 winding. This ensures that the interior
550 // is always filled (1 + -2 = -1 for normal cases, 1 + 2 = 3 for thin features where the
551 // interior inverts).
552 // For total inversion cases, the shape has now reversed handedness, so invert the winding
553 // so it will be detected during collapseOverlapRegions().
554 int innerWinding = innerInversion ? 2 : -2;
555 int outerWinding = outerInversion ? -1 : 1;
556 for (Vertex* v = innerVertices.fHead; v && v->fNext; v = v->fNext) {
557 this->makeConnectingEdge(v, v->fNext, EdgeType::kInner, c, innerWinding);
558 }
559 this->makeConnectingEdge(innerVertices.fTail, innerVertices.fHead, EdgeType::kInner, c,
560 innerWinding);
561 for (Vertex* v = outerVertices.fHead; v && v->fNext; v = v->fNext) {
562 this->makeConnectingEdge(v, v->fNext, EdgeType::kOuter, c, outerWinding);
563 }
564 this->makeConnectingEdge(outerVertices.fTail, outerVertices.fHead, EdgeType::kOuter, c,
565 outerWinding);
566 innerMesh->append(innerVertices);
567 fOuterMesh.append(outerVertices);
568 }
569
extractBoundary(EdgeList * boundary,Edge * e) const570 void GrAATriangulator::extractBoundary(EdgeList* boundary, Edge* e) const {
571 TESS_LOG("\nextracting boundary\n");
572 bool down = this->applyFillType(e->fWinding);
573 Vertex* start = down ? e->fTop : e->fBottom;
574 do {
575 e->fWinding = down ? 1 : -1;
576 Edge* next;
577 e->fLine.normalize();
578 e->fLine = e->fLine * e->fWinding;
579 boundary->append(e);
580 if (down) {
581 // Find outgoing edge, in clockwise order.
582 if ((next = e->fNextEdgeAbove)) {
583 down = false;
584 } else if ((next = e->fBottom->fLastEdgeBelow)) {
585 down = true;
586 } else if ((next = e->fPrevEdgeAbove)) {
587 down = false;
588 }
589 } else {
590 // Find outgoing edge, in counter-clockwise order.
591 if ((next = e->fPrevEdgeBelow)) {
592 down = true;
593 } else if ((next = e->fTop->fFirstEdgeAbove)) {
594 down = false;
595 } else if ((next = e->fNextEdgeBelow)) {
596 down = true;
597 }
598 }
599 e->disconnect();
600 e = next;
601 } while (e && (down ? e->fTop : e->fBottom) != start);
602 }
603
604 // Stage 5b: Extract boundaries from mesh, simplify and stroke them into a new mesh.
605
extractBoundaries(const VertexList & inMesh,VertexList * innerVertices,const Comparator & c) const606 void GrAATriangulator::extractBoundaries(const VertexList& inMesh, VertexList* innerVertices,
607 const Comparator& c) const {
608 this->removeNonBoundaryEdges(inMesh);
609 for (Vertex* v = inMesh.fHead; v; v = v->fNext) {
610 while (v->fFirstEdgeBelow) {
611 EdgeList boundary;
612 this->extractBoundary(&boundary, v->fFirstEdgeBelow);
613 this->simplifyBoundary(&boundary, c);
614 this->strokeBoundary(&boundary, innerVertices, c);
615 }
616 }
617 }
618
tessellate(const VertexList & mesh,const Comparator & c) const619 Poly* GrAATriangulator::tessellate(const VertexList& mesh, const Comparator& c) const {
620 VertexList innerMesh;
621 this->extractBoundaries(mesh, &innerMesh, c);
622 SortMesh(&innerMesh, c);
623 SortMesh(&fOuterMesh, c);
624 this->mergeCoincidentVertices(&innerMesh, c);
625 bool was_complex = this->mergeCoincidentVertices(&fOuterMesh, c);
626 auto result = this->simplify(&innerMesh, c);
627 was_complex = (SimplifyResult::kFoundSelfIntersection == result) || was_complex;
628 result = this->simplify(&fOuterMesh, c);
629 was_complex = (SimplifyResult::kFoundSelfIntersection == result) || was_complex;
630 TESS_LOG("\ninner mesh before:\n");
631 DUMP_MESH(innerMesh);
632 TESS_LOG("\nouter mesh before:\n");
633 DUMP_MESH(fOuterMesh);
634 EventComparator eventLT(EventComparator::Op::kLessThan);
635 EventComparator eventGT(EventComparator::Op::kGreaterThan);
636 was_complex = this->collapseOverlapRegions(&innerMesh, c, eventLT) || was_complex;
637 was_complex = this->collapseOverlapRegions(&fOuterMesh, c, eventGT) || was_complex;
638 if (was_complex) {
639 TESS_LOG("found complex mesh; taking slow path\n");
640 VertexList aaMesh;
641 TESS_LOG("\ninner mesh after:\n");
642 DUMP_MESH(innerMesh);
643 TESS_LOG("\nouter mesh after:\n");
644 DUMP_MESH(fOuterMesh);
645 this->connectPartners(&fOuterMesh, c);
646 this->connectPartners(&innerMesh, c);
647 SortedMerge(&innerMesh, &fOuterMesh, &aaMesh, c);
648 TESS_LOG("\nmerged mesh:\n");
649 DUMP_MESH(aaMesh);
650 this->mergeCoincidentVertices(&aaMesh, c);
651 result = this->simplify(&aaMesh, c);
652 TESS_LOG("combined and simplified mesh:\n");
653 DUMP_MESH(aaMesh);
654 fOuterMesh.fHead = fOuterMesh.fTail = nullptr;
655 return this->GrTriangulator::tessellate(aaMesh, c);
656 } else {
657 TESS_LOG("no complex polygons; taking fast path\n");
658 return this->GrTriangulator::tessellate(innerMesh, c);
659 }
660 }
661
polysToAATriangles(Poly * polys,GrEagerVertexAllocator * vertexAllocator) const662 int GrAATriangulator::polysToAATriangles(Poly* polys,
663 GrEagerVertexAllocator* vertexAllocator) const {
664 int64_t count64 = CountPoints(polys, SkPathFillType::kWinding);
665 // Count the points from the outer mesh.
666 for (Vertex* v = fOuterMesh.fHead; v; v = v->fNext) {
667 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
668 count64 += TRIANGULATOR_WIREFRAME ? 12 : 6;
669 }
670 }
671 if (0 == count64 || count64 > SK_MaxS32) {
672 return 0;
673 }
674 int count = count64;
675
676 size_t vertexStride = sizeof(SkPoint) + sizeof(float);
677 void* verts = vertexAllocator->lock(vertexStride, count);
678 if (!verts) {
679 SkDebugf("Could not allocate vertices\n");
680 return 0;
681 }
682
683 TESS_LOG("emitting %d verts\n", count);
684 void* end = this->polysToTriangles(polys, verts, SkPathFillType::kWinding);
685 // Emit the triangles from the outer mesh.
686 for (Vertex* v = fOuterMesh.fHead; v; v = v->fNext) {
687 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
688 Vertex* v0 = e->fTop;
689 Vertex* v1 = e->fBottom;
690 Vertex* v2 = e->fBottom->fPartner;
691 Vertex* v3 = e->fTop->fPartner;
692 end = this->emitTriangle(v0, v1, v2, 0/*winding*/, end);
693 end = this->emitTriangle(v0, v2, v3, 0/*winding*/, end);
694 }
695 }
696
697 int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
698 / vertexStride);
699 SkASSERT(actualCount <= count);
700 vertexAllocator->unlock(actualCount);
701 return actualCount;
702 }
703