• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- DFAEmitter.cpp - Finite state automaton emitter --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class can produce a generic deterministic finite state automaton (DFA),
10 // given a set of possible states and transitions.
11 //
12 // The input transitions can be nondeterministic - this class will produce the
13 // deterministic equivalent state machine.
14 //
15 // The generated code can run the DFA and produce an accepted / not accepted
16 // state and also produce, given a sequence of transitions that results in an
17 // accepted state, the sequence of intermediate states. This is useful if the
18 // initial automaton was nondeterministic - it allows mapping back from the DFA
19 // to the NFA.
20 //
21 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "dfa-emitter"
23 
24 #include "DFAEmitter.h"
25 #include "CodeGenTarget.h"
26 #include "SequenceToOffsetTable.h"
27 #include "TableGenBackends.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/UniqueVector.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/TableGen/Record.h"
34 #include "llvm/TableGen/TableGenBackend.h"
35 #include <cassert>
36 #include <cstdint>
37 #include <map>
38 #include <set>
39 #include <string>
40 #include <vector>
41 
42 using namespace llvm;
43 
44 //===----------------------------------------------------------------------===//
45 // DfaEmitter implementation. This is independent of the GenAutomaton backend.
46 //===----------------------------------------------------------------------===//
47 
addTransition(state_type From,state_type To,action_type A)48 void DfaEmitter::addTransition(state_type From, state_type To, action_type A) {
49   Actions.insert(A);
50   NfaStates.insert(From);
51   NfaStates.insert(To);
52   NfaTransitions[{From, A}].push_back(To);
53   ++NumNfaTransitions;
54 }
55 
visitDfaState(const DfaState & DS)56 void DfaEmitter::visitDfaState(const DfaState &DS) {
57   // For every possible action...
58   auto FromId = DfaStates.idFor(DS);
59   for (action_type A : Actions) {
60     DfaState NewStates;
61     DfaTransitionInfo TI;
62     // For every represented state, word pair in the original NFA...
63     for (state_type FromState : DS) {
64       // If this action is possible from this state add the transitioned-to
65       // states to NewStates.
66       auto I = NfaTransitions.find({FromState, A});
67       if (I == NfaTransitions.end())
68         continue;
69       for (state_type &ToState : I->second) {
70         NewStates.push_back(ToState);
71         TI.emplace_back(FromState, ToState);
72       }
73     }
74     if (NewStates.empty())
75       continue;
76     // Sort and unique.
77     sort(NewStates);
78     NewStates.erase(std::unique(NewStates.begin(), NewStates.end()),
79                     NewStates.end());
80     sort(TI);
81     TI.erase(std::unique(TI.begin(), TI.end()), TI.end());
82     unsigned ToId = DfaStates.insert(NewStates);
83     DfaTransitions.emplace(std::make_pair(FromId, A), std::make_pair(ToId, TI));
84   }
85 }
86 
constructDfa()87 void DfaEmitter::constructDfa() {
88   DfaState Initial(1, /*NFA initial state=*/0);
89   DfaStates.insert(Initial);
90 
91   // Note that UniqueVector starts indices at 1, not zero.
92   unsigned DfaStateId = 1;
93   while (DfaStateId <= DfaStates.size()) {
94     DfaState S = DfaStates[DfaStateId];
95     visitDfaState(S);
96     DfaStateId++;
97   }
98 }
99 
emit(StringRef Name,raw_ostream & OS)100 void DfaEmitter::emit(StringRef Name, raw_ostream &OS) {
101   constructDfa();
102 
103   OS << "// Input NFA has " << NfaStates.size() << " states with "
104      << NumNfaTransitions << " transitions.\n";
105   OS << "// Generated DFA has " << DfaStates.size() << " states with "
106      << DfaTransitions.size() << " transitions.\n\n";
107 
108   // Implementation note: We don't bake a simple std::pair<> here as it requires
109   // significantly more effort to parse. A simple test with a large array of
110   // struct-pairs (N=100000) took clang-10 6s to parse. The same array of
111   // std::pair<uint64_t, uint64_t> took 242s. Instead we allow the user to
112   // define the pair type.
113   //
114   // FIXME: It may make sense to emit these as ULEB sequences instead of
115   // pairs of uint64_t.
116   OS << "// A zero-terminated sequence of NFA state transitions. Every DFA\n";
117   OS << "// transition implies a set of NFA transitions. These are referred\n";
118   OS << "// to by index in " << Name << "Transitions[].\n";
119 
120   SequenceToOffsetTable<DfaTransitionInfo> Table;
121   std::map<DfaTransitionInfo, unsigned> EmittedIndices;
122   for (auto &T : DfaTransitions)
123     Table.add(T.second.second);
124   Table.layout();
125   OS << "const std::array<NfaStatePair, " << Table.size() << "> " << Name
126      << "TransitionInfo = {{\n";
127   Table.emit(
128       OS,
129       [](raw_ostream &OS, std::pair<uint64_t, uint64_t> P) {
130         OS << "{" << P.first << ", " << P.second << "}";
131       },
132       "{0ULL, 0ULL}");
133 
134   OS << "}};\n\n";
135 
136   OS << "// A transition in the generated " << Name << " DFA.\n";
137   OS << "struct " << Name << "Transition {\n";
138   OS << "  unsigned FromDfaState; // The transitioned-from DFA state.\n";
139   OS << "  ";
140   printActionType(OS);
141   OS << " Action;       // The input symbol that causes this transition.\n";
142   OS << "  unsigned ToDfaState;   // The transitioned-to DFA state.\n";
143   OS << "  unsigned InfoIdx;      // Start index into " << Name
144      << "TransitionInfo.\n";
145   OS << "};\n\n";
146 
147   OS << "// A table of DFA transitions, ordered by {FromDfaState, Action}.\n";
148   OS << "// The initial state is 1, not zero.\n";
149   OS << "const std::array<" << Name << "Transition, "
150      << DfaTransitions.size() << "> " << Name << "Transitions = {{\n";
151   for (auto &KV : DfaTransitions) {
152     dfa_state_type From = KV.first.first;
153     dfa_state_type To = KV.second.first;
154     action_type A = KV.first.second;
155     unsigned InfoIdx = Table.get(KV.second.second);
156     OS << "  {" << From << ", ";
157     printActionValue(A, OS);
158     OS << ", " << To << ", " << InfoIdx << "},\n";
159   }
160   OS << "\n}};\n\n";
161 }
162 
printActionType(raw_ostream & OS)163 void DfaEmitter::printActionType(raw_ostream &OS) { OS << "uint64_t"; }
164 
printActionValue(action_type A,raw_ostream & OS)165 void DfaEmitter::printActionValue(action_type A, raw_ostream &OS) { OS << A; }
166 
167 //===----------------------------------------------------------------------===//
168 // AutomatonEmitter implementation
169 //===----------------------------------------------------------------------===//
170 
171 namespace {
172 // FIXME: This entire discriminated union could be removed with c++17:
173 //   using Action = std::variant<Record *, unsigned, std::string>;
174 struct Action {
175   Record *R = nullptr;
176   unsigned I = 0;
177   std::string S;
178 
179   Action() = default;
Action__anon24fc4d370211::Action180   Action(Record *R, unsigned I, std::string S) : R(R), I(I), S(S) {}
181 
print__anon24fc4d370211::Action182   void print(raw_ostream &OS) const {
183     if (R)
184       OS << R->getName();
185     else if (!S.empty())
186       OS << '"' << S << '"';
187     else
188       OS << I;
189   }
operator <__anon24fc4d370211::Action190   bool operator<(const Action &Other) const {
191     return std::make_tuple(R, I, S) <
192            std::make_tuple(Other.R, Other.I, Other.S);
193   }
194 };
195 
196 using ActionTuple = std::vector<Action>;
197 class Automaton;
198 
199 class Transition {
200   uint64_t NewState;
201   // The tuple of actions that causes this transition.
202   ActionTuple Actions;
203   // The types of the actions; this is the same across all transitions.
204   SmallVector<std::string, 4> Types;
205 
206 public:
207   Transition(Record *R, Automaton *Parent);
getActions()208   const ActionTuple &getActions() { return Actions; }
getTypes()209   SmallVector<std::string, 4> getTypes() { return Types; }
210 
211   bool canTransitionFrom(uint64_t State);
212   uint64_t transitionFrom(uint64_t State);
213 };
214 
215 class Automaton {
216   RecordKeeper &Records;
217   Record *R;
218   std::vector<Transition> Transitions;
219   /// All possible action tuples, uniqued.
220   UniqueVector<ActionTuple> Actions;
221   /// The fields within each Transition object to find the action symbols.
222   std::vector<StringRef> ActionSymbolFields;
223 
224 public:
225   Automaton(RecordKeeper &Records, Record *R);
226   void emit(raw_ostream &OS);
227 
getActionSymbolFields()228   ArrayRef<StringRef> getActionSymbolFields() { return ActionSymbolFields; }
229   /// If the type of action A has been overridden (there exists a field
230   /// "TypeOf_A") return that, otherwise return the empty string.
231   StringRef getActionSymbolType(StringRef A);
232 };
233 
234 class AutomatonEmitter {
235   RecordKeeper &Records;
236 
237 public:
AutomatonEmitter(RecordKeeper & R)238   AutomatonEmitter(RecordKeeper &R) : Records(R) {}
239   void run(raw_ostream &OS);
240 };
241 
242 /// A DfaEmitter implementation that can print our variant action type.
243 class CustomDfaEmitter : public DfaEmitter {
244   const UniqueVector<ActionTuple> &Actions;
245   std::string TypeName;
246 
247 public:
CustomDfaEmitter(const UniqueVector<ActionTuple> & Actions,StringRef TypeName)248   CustomDfaEmitter(const UniqueVector<ActionTuple> &Actions, StringRef TypeName)
249       : Actions(Actions), TypeName(TypeName) {}
250 
251   void printActionType(raw_ostream &OS) override;
252   void printActionValue(action_type A, raw_ostream &OS) override;
253 };
254 } // namespace
255 
run(raw_ostream & OS)256 void AutomatonEmitter::run(raw_ostream &OS) {
257   for (Record *R : Records.getAllDerivedDefinitions("GenericAutomaton")) {
258     Automaton A(Records, R);
259     OS << "#ifdef GET_" << R->getName() << "_DECL\n";
260     A.emit(OS);
261     OS << "#endif  // GET_" << R->getName() << "_DECL\n";
262   }
263 }
264 
Automaton(RecordKeeper & Records,Record * R)265 Automaton::Automaton(RecordKeeper &Records, Record *R)
266     : Records(Records), R(R) {
267   LLVM_DEBUG(dbgs() << "Emitting automaton for " << R->getName() << "\n");
268   ActionSymbolFields = R->getValueAsListOfStrings("SymbolFields");
269 }
270 
emit(raw_ostream & OS)271 void Automaton::emit(raw_ostream &OS) {
272   StringRef TransitionClass = R->getValueAsString("TransitionClass");
273   for (Record *T : Records.getAllDerivedDefinitions(TransitionClass)) {
274     assert(T->isSubClassOf("Transition"));
275     Transitions.emplace_back(T, this);
276     Actions.insert(Transitions.back().getActions());
277   }
278 
279   LLVM_DEBUG(dbgs() << "  Action alphabet cardinality: " << Actions.size()
280                     << "\n");
281   LLVM_DEBUG(dbgs() << "  Each state has " << Transitions.size()
282                     << " potential transitions.\n");
283 
284   StringRef Name = R->getName();
285 
286   CustomDfaEmitter Emitter(Actions, std::string(Name) + "Action");
287   // Starting from the initial state, build up a list of possible states and
288   // transitions.
289   std::deque<uint64_t> Worklist(1, 0);
290   std::set<uint64_t> SeenStates;
291   unsigned NumTransitions = 0;
292   SeenStates.insert(Worklist.front());
293   while (!Worklist.empty()) {
294     uint64_t State = Worklist.front();
295     Worklist.pop_front();
296     for (Transition &T : Transitions) {
297       if (!T.canTransitionFrom(State))
298         continue;
299       uint64_t NewState = T.transitionFrom(State);
300       if (SeenStates.emplace(NewState).second)
301         Worklist.emplace_back(NewState);
302       ++NumTransitions;
303       Emitter.addTransition(State, NewState, Actions.idFor(T.getActions()));
304     }
305   }
306   LLVM_DEBUG(dbgs() << "  NFA automaton has " << SeenStates.size()
307                     << " states with " << NumTransitions << " transitions.\n");
308 
309   const auto &ActionTypes = Transitions.back().getTypes();
310   OS << "// The type of an action in the " << Name << " automaton.\n";
311   if (ActionTypes.size() == 1) {
312     OS << "using " << Name << "Action = " << ActionTypes[0] << ";\n";
313   } else {
314     OS << "using " << Name << "Action = std::tuple<" << join(ActionTypes, ", ")
315        << ">;\n";
316   }
317   OS << "\n";
318 
319   Emitter.emit(Name, OS);
320 }
321 
getActionSymbolType(StringRef A)322 StringRef Automaton::getActionSymbolType(StringRef A) {
323   Twine Ty = "TypeOf_" + A;
324   if (!R->getValue(Ty.str()))
325     return "";
326   return R->getValueAsString(Ty.str());
327 }
328 
Transition(Record * R,Automaton * Parent)329 Transition::Transition(Record *R, Automaton *Parent) {
330   BitsInit *NewStateInit = R->getValueAsBitsInit("NewState");
331   NewState = 0;
332   assert(NewStateInit->getNumBits() <= sizeof(uint64_t) * 8 &&
333          "State cannot be represented in 64 bits!");
334   for (unsigned I = 0; I < NewStateInit->getNumBits(); ++I) {
335     if (auto *Bit = dyn_cast<BitInit>(NewStateInit->getBit(I))) {
336       if (Bit->getValue())
337         NewState |= 1ULL << I;
338     }
339   }
340 
341   for (StringRef A : Parent->getActionSymbolFields()) {
342     RecordVal *SymbolV = R->getValue(A);
343     if (auto *Ty = dyn_cast<RecordRecTy>(SymbolV->getType())) {
344       Actions.emplace_back(R->getValueAsDef(A), 0, "");
345       Types.emplace_back(Ty->getAsString());
346     } else if (isa<IntRecTy>(SymbolV->getType())) {
347       Actions.emplace_back(nullptr, R->getValueAsInt(A), "");
348       Types.emplace_back("unsigned");
349     } else if (isa<StringRecTy>(SymbolV->getType())) {
350       Actions.emplace_back(nullptr, 0, std::string(R->getValueAsString(A)));
351       Types.emplace_back("std::string");
352     } else {
353       report_fatal_error("Unhandled symbol type!");
354     }
355 
356     StringRef TypeOverride = Parent->getActionSymbolType(A);
357     if (!TypeOverride.empty())
358       Types.back() = std::string(TypeOverride);
359   }
360 }
361 
canTransitionFrom(uint64_t State)362 bool Transition::canTransitionFrom(uint64_t State) {
363   if ((State & NewState) == 0)
364     // The bits we want to set are not set;
365     return true;
366   return false;
367 }
368 
transitionFrom(uint64_t State)369 uint64_t Transition::transitionFrom(uint64_t State) {
370   return State | NewState;
371 }
372 
printActionType(raw_ostream & OS)373 void CustomDfaEmitter::printActionType(raw_ostream &OS) { OS << TypeName; }
374 
printActionValue(action_type A,raw_ostream & OS)375 void CustomDfaEmitter::printActionValue(action_type A, raw_ostream &OS) {
376   const ActionTuple &AT = Actions[A];
377   if (AT.size() > 1)
378     OS << "std::make_tuple(";
379   bool First = true;
380   for (const auto &SingleAction : AT) {
381     if (!First)
382       OS << ", ";
383     First = false;
384     SingleAction.print(OS);
385   }
386   if (AT.size() > 1)
387     OS << ")";
388 }
389 
390 namespace llvm {
391 
EmitAutomata(RecordKeeper & RK,raw_ostream & OS)392 void EmitAutomata(RecordKeeper &RK, raw_ostream &OS) {
393   AutomatonEmitter(RK).run(OS);
394 }
395 
396 } // namespace llvm
397