• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 PDFium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Original code by Matt McCutchen, see the LICENSE file.
6 
7 #include "BigInteger.hh"
8 
operator =(const BigInteger & x)9 BigInteger& BigInteger::operator =(const BigInteger &x) {
10 	// Calls like a = a have no effect
11 	if (this == &x)
12 		return *this;
13 	// Copy sign
14 	sign = x.sign;
15 	// Copy the rest
16 	mag = x.mag;
17 	return *this;
18 }
19 
BigInteger(const Blk * b,Index blen,Sign s)20 BigInteger::BigInteger(const Blk *b, Index blen, Sign s) : mag(b, blen) {
21 	switch (s) {
22 	case zero:
23 		if (!mag.isZero())
24             abort();
25 		sign = zero;
26 		break;
27 	case positive:
28 	case negative:
29 		// If the magnitude is zero, force the sign to zero.
30 		sign = mag.isZero() ? zero : s;
31 		break;
32 	default:
33 		/* g++ seems to be optimizing out this case on the assumption
34 		 * that the sign is a valid member of the enumeration.  Oh well. */
35         abort();
36 	}
37 }
38 
BigInteger(const BigUnsigned & x,Sign s)39 BigInteger::BigInteger(const BigUnsigned &x, Sign s) : mag(x) {
40 	switch (s) {
41 	case zero:
42 		if (!mag.isZero())
43             abort();
44 		sign = zero;
45 		break;
46 	case positive:
47 	case negative:
48 		// If the magnitude is zero, force the sign to zero.
49 		sign = mag.isZero() ? zero : s;
50 		break;
51 	default:
52 		/* g++ seems to be optimizing out this case on the assumption
53 		 * that the sign is a valid member of the enumeration.  Oh well. */
54         abort();
55 	}
56 }
57 
58 /* CONSTRUCTION FROM PRIMITIVE INTEGERS
59  * Same idea as in BigUnsigned.cc, except that negative input results in a
60  * negative BigInteger instead of an exception. */
61 
62 // Done longhand to let us use initialization.
BigInteger(unsigned long x)63 BigInteger::BigInteger(unsigned long  x) : mag(x) { sign = mag.isZero() ? zero : positive; }
BigInteger(unsigned int x)64 BigInteger::BigInteger(unsigned int   x) : mag(x) { sign = mag.isZero() ? zero : positive; }
BigInteger(unsigned short x)65 BigInteger::BigInteger(unsigned short x) : mag(x) { sign = mag.isZero() ? zero : positive; }
66 
67 // For signed input, determine the desired magnitude and sign separately.
68 
69 namespace {
70 	template <class X, class UX>
magOf(X x)71 	BigInteger::Blk magOf(X x) {
72 		/* UX(...) cast needed to stop short(-2^15), which negates to
73 		 * itself, from sign-extending in the conversion to Blk. */
74 		return BigInteger::Blk(x < 0 ? UX(-x) : x);
75 	}
76 	template <class X>
signOf(X x)77 	BigInteger::Sign signOf(X x) {
78 		return (x == 0) ? BigInteger::zero
79 			: (x > 0) ? BigInteger::positive
80 			: BigInteger::negative;
81 	}
82 }
83 
BigInteger(long x)84 BigInteger::BigInteger(long  x) : sign(signOf(x)), mag(magOf<long , unsigned long >(x)) {}
BigInteger(int x)85 BigInteger::BigInteger(int   x) : sign(signOf(x)), mag(magOf<int  , unsigned int  >(x)) {}
BigInteger(short x)86 BigInteger::BigInteger(short x) : sign(signOf(x)), mag(magOf<short, unsigned short>(x)) {}
87 
88 // CONVERSION TO PRIMITIVE INTEGERS
89 
90 /* Reuse BigUnsigned's conversion to an unsigned primitive integer.
91  * The friend is a separate function rather than
92  * BigInteger::convertToUnsignedPrimitive to avoid requiring BigUnsigned to
93  * declare BigInteger. */
94 template <class X>
convertBigUnsignedToPrimitiveAccess(const BigUnsigned & a)95 inline X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a) {
96 	return a.convertToPrimitive<X>();
97 }
98 
99 template <class X>
convertToUnsignedPrimitive() const100 X BigInteger::convertToUnsignedPrimitive() const {
101 	if (sign == negative)
102         abort();
103 	else
104 		return convertBigUnsignedToPrimitiveAccess<X>(mag);
105 }
106 
107 /* Similar to BigUnsigned::convertToPrimitive, but split into two cases for
108  * nonnegative and negative numbers. */
109 template <class X, class UX>
convertToSignedPrimitive() const110 X BigInteger::convertToSignedPrimitive() const {
111 	if (sign == zero)
112 		return 0;
113 	else if (mag.getLength() == 1) {
114 		// The single block might fit in an X.  Try the conversion.
115 		Blk b = mag.getBlock(0);
116 		if (sign == positive) {
117 			X x = X(b);
118 			if (x >= 0 && Blk(x) == b)
119 				return x;
120 		} else {
121 			X x = -X(b);
122 			/* UX(...) needed to avoid rejecting conversion of
123 			 * -2^15 to a short. */
124 			if (x < 0 && Blk(UX(-x)) == b)
125 				return x;
126 		}
127 		// Otherwise fall through.
128 	}
129     abort();
130 }
131 
toUnsignedLong() const132 unsigned long  BigInteger::toUnsignedLong () const { return convertToUnsignedPrimitive<unsigned long >       (); }
toUnsignedInt() const133 unsigned int   BigInteger::toUnsignedInt  () const { return convertToUnsignedPrimitive<unsigned int  >       (); }
toUnsignedShort() const134 unsigned short BigInteger::toUnsignedShort() const { return convertToUnsignedPrimitive<unsigned short>       (); }
toLong() const135 long           BigInteger::toLong         () const { return convertToSignedPrimitive  <long , unsigned long> (); }
toInt() const136 int            BigInteger::toInt          () const { return convertToSignedPrimitive  <int  , unsigned int>  (); }
toShort() const137 short          BigInteger::toShort        () const { return convertToSignedPrimitive  <short, unsigned short>(); }
138 
139 // COMPARISON
compareTo(const BigInteger & x) const140 BigInteger::CmpRes BigInteger::compareTo(const BigInteger &x) const {
141 	// A greater sign implies a greater number
142 	if (sign < x.sign)
143 		return less;
144 	else if (sign > x.sign)
145 		return greater;
146 	else switch (sign) {
147 		// If the signs are the same...
148 	case zero:
149 		return equal; // Two zeros are equal
150 	case positive:
151 		// Compare the magnitudes
152 		return mag.compareTo(x.mag);
153 	case negative:
154 		// Compare the magnitudes, but return the opposite result
155 		return CmpRes(-mag.compareTo(x.mag));
156 	default:
157         abort();
158 	}
159 }
160 
161 /* COPY-LESS OPERATIONS
162  * These do some messing around to determine the sign of the result,
163  * then call one of BigUnsigned's copy-less operations. */
164 
165 // See remarks about aliased calls in BigUnsigned.cc .
166 #define DTRT_ALIASED(cond, op) \
167 	if (cond) { \
168 		BigInteger tmpThis; \
169 		tmpThis.op; \
170 		*this = tmpThis; \
171 		return; \
172 	}
173 
add(const BigInteger & a,const BigInteger & b)174 void BigInteger::add(const BigInteger &a, const BigInteger &b) {
175 	DTRT_ALIASED(this == &a || this == &b, add(a, b));
176 	// If one argument is zero, copy the other.
177 	if (a.sign == zero)
178 		operator =(b);
179 	else if (b.sign == zero)
180 		operator =(a);
181 	// If the arguments have the same sign, take the
182 	// common sign and add their magnitudes.
183 	else if (a.sign == b.sign) {
184 		sign = a.sign;
185 		mag.add(a.mag, b.mag);
186 	} else {
187 		// Otherwise, their magnitudes must be compared.
188 		switch (a.mag.compareTo(b.mag)) {
189 		case equal:
190 			// If their magnitudes are the same, copy zero.
191 			mag = 0;
192 			sign = zero;
193 			break;
194 			// Otherwise, take the sign of the greater, and subtract
195 			// the lesser magnitude from the greater magnitude.
196 		case greater:
197 			sign = a.sign;
198 			mag.subtract(a.mag, b.mag);
199 			break;
200 		case less:
201 			sign = b.sign;
202 			mag.subtract(b.mag, a.mag);
203 			break;
204 		}
205 	}
206 }
207 
subtract(const BigInteger & a,const BigInteger & b)208 void BigInteger::subtract(const BigInteger &a, const BigInteger &b) {
209 	// Notice that this routine is identical to BigInteger::add,
210 	// if one replaces b.sign by its opposite.
211 	DTRT_ALIASED(this == &a || this == &b, subtract(a, b));
212 	// If a is zero, copy b and flip its sign.  If b is zero, copy a.
213 	if (a.sign == zero) {
214 		mag = b.mag;
215 		// Take the negative of _b_'s, sign, not ours.
216 		// Bug pointed out by Sam Larkin on 2005.03.30.
217 		sign = Sign(-b.sign);
218 	} else if (b.sign == zero)
219 		operator =(a);
220 	// If their signs differ, take a.sign and add the magnitudes.
221 	else if (a.sign != b.sign) {
222 		sign = a.sign;
223 		mag.add(a.mag, b.mag);
224 	} else {
225 		// Otherwise, their magnitudes must be compared.
226 		switch (a.mag.compareTo(b.mag)) {
227 			// If their magnitudes are the same, copy zero.
228 		case equal:
229 			mag = 0;
230 			sign = zero;
231 			break;
232 			// If a's magnitude is greater, take a.sign and
233 			// subtract a from b.
234 		case greater:
235 			sign = a.sign;
236 			mag.subtract(a.mag, b.mag);
237 			break;
238 			// If b's magnitude is greater, take the opposite
239 			// of b.sign and subtract b from a.
240 		case less:
241 			sign = Sign(-b.sign);
242 			mag.subtract(b.mag, a.mag);
243 			break;
244 		}
245 	}
246 }
247 
multiply(const BigInteger & a,const BigInteger & b)248 void BigInteger::multiply(const BigInteger &a, const BigInteger &b) {
249 	DTRT_ALIASED(this == &a || this == &b, multiply(a, b));
250 	// If one object is zero, copy zero and return.
251 	if (a.sign == zero || b.sign == zero) {
252 		sign = zero;
253 		mag = 0;
254 		return;
255 	}
256 	// If the signs of the arguments are the same, the result
257 	// is positive, otherwise it is negative.
258 	sign = (a.sign == b.sign) ? positive : negative;
259 	// Multiply the magnitudes.
260 	mag.multiply(a.mag, b.mag);
261 }
262 
263 /*
264  * DIVISION WITH REMAINDER
265  * Please read the comments before the definition of
266  * `BigUnsigned::divideWithRemainder' in `BigUnsigned.cc' for lots of
267  * information you should know before reading this function.
268  *
269  * Following Knuth, I decree that x / y is to be
270  * 0 if y==0 and floor(real-number x / y) if y!=0.
271  * Then x % y shall be x - y*(integer x / y).
272  *
273  * Note that x = y * (x / y) + (x % y) always holds.
274  * In addition, (x % y) is from 0 to y - 1 if y > 0,
275  * and from -(|y| - 1) to 0 if y < 0.  (x % y) = x if y = 0.
276  *
277  * Examples: (q = a / b, r = a % b)
278  *	a	b	q	r
279  *	===	===	===	===
280  *	4	3	1	1
281  *	-4	3	-2	2
282  *	4	-3	-2	-2
283  *	-4	-3	1	-1
284  */
divideWithRemainder(const BigInteger & b,BigInteger & q)285 void BigInteger::divideWithRemainder(const BigInteger &b, BigInteger &q) {
286 	// Defend against aliased calls;
287 	// same idea as in BigUnsigned::divideWithRemainder .
288 	if (this == &q)
289         abort();
290 	if (this == &b || &q == &b) {
291 		BigInteger tmpB(b);
292 		divideWithRemainder(tmpB, q);
293 		return;
294 	}
295 
296 	// Division by zero gives quotient 0 and remainder *this
297 	if (b.sign == zero) {
298 		q.mag = 0;
299 		q.sign = zero;
300 		return;
301 	}
302 	// 0 / b gives quotient 0 and remainder 0
303 	if (sign == zero) {
304 		q.mag = 0;
305 		q.sign = zero;
306 		return;
307 	}
308 
309 	// Here *this != 0, b != 0.
310 
311 	// Do the operands have the same sign?
312 	if (sign == b.sign) {
313 		// Yes: easy case.  Quotient is zero or positive.
314 		q.sign = positive;
315 	} else {
316 		// No: harder case.  Quotient is negative.
317 		q.sign = negative;
318 		// Decrease the magnitude of the dividend by one.
319 		mag--;
320 		/*
321 		 * We tinker with the dividend before and with the
322 		 * quotient and remainder after so that the result
323 		 * comes out right.  To see why it works, consider the following
324 		 * list of examples, where A is the magnitude-decreased
325 		 * a, Q and R are the results of BigUnsigned division
326 		 * with remainder on A and |b|, and q and r are the
327 		 * final results we want:
328 		 *
329 		 *	a	A	b	Q	R	q	r
330 		 *	-3	-2	3	0	2	-1	0
331 		 *	-4	-3	3	1	0	-2	2
332 		 *	-5	-4	3	1	1	-2	1
333 		 *	-6	-5	3	1	2	-2	0
334 		 *
335 		 * It appears that we need a total of 3 corrections:
336 		 * Decrease the magnitude of a to get A.  Increase the
337 		 * magnitude of Q to get q (and make it negative).
338 		 * Find r = (b - 1) - R and give it the desired sign.
339 		 */
340 	}
341 
342 	// Divide the magnitudes.
343 	mag.divideWithRemainder(b.mag, q.mag);
344 
345 	if (sign != b.sign) {
346 		// More for the harder case (as described):
347 		// Increase the magnitude of the quotient by one.
348 		q.mag++;
349 		// Modify the remainder.
350 		mag.subtract(b.mag, mag);
351 		mag--;
352 	}
353 
354 	// Sign of the remainder is always the sign of the divisor b.
355 	sign = b.sign;
356 
357 	// Set signs to zero as necessary.  (Thanks David Allen!)
358 	if (mag.isZero())
359 		sign = zero;
360 	if (q.mag.isZero())
361 		q.sign = zero;
362 
363 	// WHEW!!!
364 }
365 
366 // Negation
negate(const BigInteger & a)367 void BigInteger::negate(const BigInteger &a) {
368 	DTRT_ALIASED(this == &a, negate(a));
369 	// Copy a's magnitude
370 	mag = a.mag;
371 	// Copy the opposite of a.sign
372 	sign = Sign(-a.sign);
373 }
374 
375 // INCREMENT/DECREMENT OPERATORS
376 
377 // Prefix increment
operator ++()378 BigInteger& BigInteger::operator ++() {
379 	if (sign == negative) {
380 		mag--;
381 		if (mag == 0)
382 			sign = zero;
383 	} else {
384 		mag++;
385 		sign = positive; // if not already
386 	}
387 	return *this;
388 }
389 
390 // Postfix increment
operator ++(int)391 BigInteger BigInteger::operator ++(int) {
392 	BigInteger temp(*this);
393 	operator ++();
394 	return temp;
395 }
396 
397 // Prefix decrement
operator --()398 BigInteger& BigInteger::operator --() {
399 	if (sign == positive) {
400 		mag--;
401 		if (mag == 0)
402 			sign = zero;
403 	} else {
404 		mag++;
405 		sign = negative;
406 	}
407 	return *this;
408 }
409 
410 // Postfix decrement
operator --(int)411 BigInteger BigInteger::operator --(int) {
412 	BigInteger temp(*this);
413 	operator --();
414 	return temp;
415 }
416 
417