1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "LinkerScript.h"
15 #include "MapFile.h"
16 #include "OutputSections.h"
17 #include "Relocations.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "lld/Common/Filesystem.h"
23 #include "lld/Common/Memory.h"
24 #include "lld/Common/Strings.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/Parallel.h"
28 #include "llvm/Support/RandomNumberGenerator.h"
29 #include "llvm/Support/SHA1.h"
30 #include "llvm/Support/TimeProfiler.h"
31 #include "llvm/Support/xxhash.h"
32 #include <climits>
33
34 #define DEBUG_TYPE "lld"
35
36 using namespace llvm;
37 using namespace llvm::ELF;
38 using namespace llvm::object;
39 using namespace llvm::support;
40 using namespace llvm::support::endian;
41 using namespace lld;
42 using namespace lld::elf;
43
44 namespace {
45 // The writer writes a SymbolTable result to a file.
46 template <class ELFT> class Writer {
47 public:
Writer()48 Writer() : buffer(errorHandler().outputBuffer) {}
49 using Elf_Shdr = typename ELFT::Shdr;
50 using Elf_Ehdr = typename ELFT::Ehdr;
51 using Elf_Phdr = typename ELFT::Phdr;
52
53 void run();
54
55 private:
56 void copyLocalSymbols();
57 void addSectionSymbols();
58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
59 void sortSections();
60 void resolveShfLinkOrder();
61 void finalizeAddressDependentContent();
62 void optimizeBasicBlockJumps();
63 void sortInputSections();
64 void finalizeSections();
65 void checkExecuteOnly();
66 void setReservedSymbolSections();
67
68 std::vector<PhdrEntry *> createPhdrs(Partition &part);
69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
70 unsigned pFlags);
71 void assignFileOffsets();
72 void assignFileOffsetsBinary();
73 void setPhdrs(Partition &part);
74 void checkSections();
75 void fixSectionAlignments();
76 void openFile();
77 void writeTrapInstr();
78 void writeHeader();
79 void writeSections();
80 void writeSectionsBinary();
81 void writeBuildId();
82
83 std::unique_ptr<FileOutputBuffer> &buffer;
84
85 void addRelIpltSymbols();
86 void addStartEndSymbols();
87 void addStartStopSymbols(OutputSection *sec);
88
89 uint64_t fileSize;
90 uint64_t sectionHeaderOff;
91 };
92 } // anonymous namespace
93
isSectionPrefix(StringRef prefix,StringRef name)94 static bool isSectionPrefix(StringRef prefix, StringRef name) {
95 return name.startswith(prefix) || name == prefix.drop_back();
96 }
97
getOutputSectionName(const InputSectionBase * s)98 StringRef elf::getOutputSectionName(const InputSectionBase *s) {
99 if (config->relocatable)
100 return s->name;
101
102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
104 // technically required, but not doing it is odd). This code guarantees that.
105 if (auto *isec = dyn_cast<InputSection>(s)) {
106 if (InputSectionBase *rel = isec->getRelocatedSection()) {
107 OutputSection *out = rel->getOutputSection();
108 if (s->type == SHT_RELA)
109 return saver.save(".rela" + out->name);
110 return saver.save(".rel" + out->name);
111 }
112 }
113
114 // A BssSection created for a common symbol is identified as "COMMON" in
115 // linker scripts. It should go to .bss section.
116 if (s->name == "COMMON")
117 return ".bss";
118
119 if (script->hasSectionsCommand)
120 return s->name;
121
122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts
123 // by grouping sections with certain prefixes.
124
125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others.
127 // We provide an option -z keep-text-section-prefix to group such sections
128 // into separate output sections. This is more flexible. See also
129 // sortISDBySectionOrder().
130 // ".text.unknown" means the hotness of the section is unknown. When
131 // SampleFDO is used, if a function doesn't have sample, it could be very
132 // cold or it could be a new function never being sampled. Those functions
133 // will be kept in the ".text.unknown" section.
134 // ".text.split." holds symbols which are split out from functions in other
135 // input sections. For example, with -fsplit-machine-functions, placing the
136 // cold parts in .text.split instead of .text.unlikely mitigates against poor
137 // profile inaccuracy. Techniques such as hugepage remapping can make
138 // conservative decisions at the section granularity.
139 if (config->zKeepTextSectionPrefix)
140 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.",
141 ".text.startup.", ".text.exit.", ".text.split."})
142 if (isSectionPrefix(v, s->name))
143 return v.drop_back();
144
145 for (StringRef v :
146 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
147 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
148 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
149 if (isSectionPrefix(v, s->name))
150 return v.drop_back();
151
152 return s->name;
153 }
154
needsInterpSection()155 static bool needsInterpSection() {
156 return !config->relocatable && !config->shared &&
157 !config->dynamicLinker.empty() && script->needsInterpSection();
158 }
159
writeResult()160 template <class ELFT> void elf::writeResult() {
161 Writer<ELFT>().run();
162 }
163
removeEmptyPTLoad(std::vector<PhdrEntry * > & phdrs)164 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
165 auto it = std::stable_partition(
166 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
167 if (p->p_type != PT_LOAD)
168 return true;
169 if (!p->firstSec)
170 return false;
171 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
172 return size != 0;
173 });
174
175 // Clear OutputSection::ptLoad for sections contained in removed
176 // segments.
177 DenseSet<PhdrEntry *> removed(it, phdrs.end());
178 for (OutputSection *sec : outputSections)
179 if (removed.count(sec->ptLoad))
180 sec->ptLoad = nullptr;
181 phdrs.erase(it, phdrs.end());
182 }
183
copySectionsIntoPartitions()184 void elf::copySectionsIntoPartitions() {
185 std::vector<InputSectionBase *> newSections;
186 for (unsigned part = 2; part != partitions.size() + 1; ++part) {
187 for (InputSectionBase *s : inputSections) {
188 if (!(s->flags & SHF_ALLOC) || !s->isLive())
189 continue;
190 InputSectionBase *copy;
191 if (s->type == SHT_NOTE)
192 copy = make<InputSection>(cast<InputSection>(*s));
193 else if (auto *es = dyn_cast<EhInputSection>(s))
194 copy = make<EhInputSection>(*es);
195 else
196 continue;
197 copy->partition = part;
198 newSections.push_back(copy);
199 }
200 }
201
202 inputSections.insert(inputSections.end(), newSections.begin(),
203 newSections.end());
204 }
205
combineEhSections()206 void elf::combineEhSections() {
207 llvm::TimeTraceScope timeScope("Combine EH sections");
208 for (InputSectionBase *&s : inputSections) {
209 // Ignore dead sections and the partition end marker (.part.end),
210 // whose partition number is out of bounds.
211 if (!s->isLive() || s->partition == 255)
212 continue;
213
214 Partition &part = s->getPartition();
215 if (auto *es = dyn_cast<EhInputSection>(s)) {
216 part.ehFrame->addSection(es);
217 s = nullptr;
218 } else if (s->kind() == SectionBase::Regular && part.armExidx &&
219 part.armExidx->addSection(cast<InputSection>(s))) {
220 s = nullptr;
221 }
222 }
223
224 std::vector<InputSectionBase *> &v = inputSections;
225 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
226 }
227
addOptionalRegular(StringRef name,SectionBase * sec,uint64_t val,uint8_t stOther=STV_HIDDEN,uint8_t binding=STB_GLOBAL)228 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
229 uint64_t val, uint8_t stOther = STV_HIDDEN,
230 uint8_t binding = STB_GLOBAL) {
231 Symbol *s = symtab->find(name);
232 if (!s || s->isDefined())
233 return nullptr;
234
235 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
236 /*size=*/0, sec});
237 return cast<Defined>(s);
238 }
239
addAbsolute(StringRef name)240 static Defined *addAbsolute(StringRef name) {
241 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
242 STT_NOTYPE, 0, 0, nullptr});
243 return cast<Defined>(sym);
244 }
245
246 // The linker is expected to define some symbols depending on
247 // the linking result. This function defines such symbols.
addReservedSymbols()248 void elf::addReservedSymbols() {
249 if (config->emachine == EM_MIPS) {
250 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
251 // so that it points to an absolute address which by default is relative
252 // to GOT. Default offset is 0x7ff0.
253 // See "Global Data Symbols" in Chapter 6 in the following document:
254 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
255 ElfSym::mipsGp = addAbsolute("_gp");
256
257 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
258 // start of function and 'gp' pointer into GOT.
259 if (symtab->find("_gp_disp"))
260 ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
261
262 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
263 // pointer. This symbol is used in the code generated by .cpload pseudo-op
264 // in case of using -mno-shared option.
265 // https://sourceware.org/ml/binutils/2004-12/msg00094.html
266 if (symtab->find("__gnu_local_gp"))
267 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
268 } else if (config->emachine == EM_PPC) {
269 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
270 // support Small Data Area, define it arbitrarily as 0.
271 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
272 } else if (config->emachine == EM_PPC64) {
273 addPPC64SaveRestore();
274 }
275
276 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
277 // combines the typical ELF GOT with the small data sections. It commonly
278 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
279 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
280 // represent the TOC base which is offset by 0x8000 bytes from the start of
281 // the .got section.
282 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
283 // correctness of some relocations depends on its value.
284 StringRef gotSymName =
285 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
286
287 if (Symbol *s = symtab->find(gotSymName)) {
288 if (s->isDefined()) {
289 error(toString(s->file) + " cannot redefine linker defined symbol '" +
290 gotSymName + "'");
291 return;
292 }
293
294 uint64_t gotOff = 0;
295 if (config->emachine == EM_PPC64)
296 gotOff = 0x8000;
297
298 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
299 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
300 ElfSym::globalOffsetTable = cast<Defined>(s);
301 }
302
303 // __ehdr_start is the location of ELF file headers. Note that we define
304 // this symbol unconditionally even when using a linker script, which
305 // differs from the behavior implemented by GNU linker which only define
306 // this symbol if ELF headers are in the memory mapped segment.
307 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
308
309 // __executable_start is not documented, but the expectation of at
310 // least the Android libc is that it points to the ELF header.
311 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
312
313 // __dso_handle symbol is passed to cxa_finalize as a marker to identify
314 // each DSO. The address of the symbol doesn't matter as long as they are
315 // different in different DSOs, so we chose the start address of the DSO.
316 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
317
318 // If linker script do layout we do not need to create any standard symbols.
319 if (script->hasSectionsCommand)
320 return;
321
322 auto add = [](StringRef s, int64_t pos) {
323 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
324 };
325
326 ElfSym::bss = add("__bss_start", 0);
327 ElfSym::end1 = add("end", -1);
328 ElfSym::end2 = add("_end", -1);
329 ElfSym::etext1 = add("etext", -1);
330 ElfSym::etext2 = add("_etext", -1);
331 ElfSym::edata1 = add("edata", -1);
332 ElfSym::edata2 = add("_edata", -1);
333 }
334
findSection(StringRef name,unsigned partition=1)335 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
336 for (BaseCommand *base : script->sectionCommands)
337 if (auto *sec = dyn_cast<OutputSection>(base))
338 if (sec->name == name && sec->partition == partition)
339 return sec;
340 return nullptr;
341 }
342
createSyntheticSections()343 template <class ELFT> void elf::createSyntheticSections() {
344 // Initialize all pointers with NULL. This is needed because
345 // you can call lld::elf::main more than once as a library.
346 memset(&Out::first, 0, sizeof(Out));
347
348 // Add the .interp section first because it is not a SyntheticSection.
349 // The removeUnusedSyntheticSections() function relies on the
350 // SyntheticSections coming last.
351 if (needsInterpSection()) {
352 for (size_t i = 1; i <= partitions.size(); ++i) {
353 InputSection *sec = createInterpSection();
354 sec->partition = i;
355 inputSections.push_back(sec);
356 }
357 }
358
359 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };
360
361 in.shStrTab = make<StringTableSection>(".shstrtab", false);
362
363 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
364 Out::programHeaders->alignment = config->wordsize;
365
366 if (config->strip != StripPolicy::All) {
367 in.strTab = make<StringTableSection>(".strtab", false);
368 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
369 in.symTabShndx = make<SymtabShndxSection>();
370 }
371
372 in.bss = make<BssSection>(".bss", 0, 1);
373 add(in.bss);
374
375 // If there is a SECTIONS command and a .data.rel.ro section name use name
376 // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
377 // This makes sure our relro is contiguous.
378 bool hasDataRelRo =
379 script->hasSectionsCommand && findSection(".data.rel.ro", 0);
380 in.bssRelRo =
381 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
382 add(in.bssRelRo);
383
384 // Add MIPS-specific sections.
385 if (config->emachine == EM_MIPS) {
386 if (!config->shared && config->hasDynSymTab) {
387 in.mipsRldMap = make<MipsRldMapSection>();
388 add(in.mipsRldMap);
389 }
390 if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
391 add(sec);
392 if (auto *sec = MipsOptionsSection<ELFT>::create())
393 add(sec);
394 if (auto *sec = MipsReginfoSection<ELFT>::create())
395 add(sec);
396 }
397
398 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
399
400 for (Partition &part : partitions) {
401 auto add = [&](SyntheticSection *sec) {
402 sec->partition = part.getNumber();
403 inputSections.push_back(sec);
404 };
405
406 if (!part.name.empty()) {
407 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
408 part.elfHeader->name = part.name;
409 add(part.elfHeader);
410
411 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
412 add(part.programHeaders);
413 }
414
415 if (config->buildId != BuildIdKind::None) {
416 part.buildId = make<BuildIdSection>();
417 add(part.buildId);
418 }
419
420 part.dynStrTab = make<StringTableSection>(".dynstr", true);
421 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
422 part.dynamic = make<DynamicSection<ELFT>>();
423 if (config->androidPackDynRelocs)
424 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
425 else
426 part.relaDyn =
427 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);
428
429 if (config->hasDynSymTab) {
430 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
431 add(part.dynSymTab);
432
433 part.verSym = make<VersionTableSection>();
434 add(part.verSym);
435
436 if (!namedVersionDefs().empty()) {
437 part.verDef = make<VersionDefinitionSection>();
438 add(part.verDef);
439 }
440
441 part.verNeed = make<VersionNeedSection<ELFT>>();
442 add(part.verNeed);
443
444 if (config->gnuHash) {
445 part.gnuHashTab = make<GnuHashTableSection>();
446 add(part.gnuHashTab);
447 }
448
449 if (config->sysvHash) {
450 part.hashTab = make<HashTableSection>();
451 add(part.hashTab);
452 }
453
454 add(part.dynamic);
455 add(part.dynStrTab);
456 add(part.relaDyn);
457 }
458
459 if (config->relrPackDynRelocs) {
460 part.relrDyn = make<RelrSection<ELFT>>();
461 add(part.relrDyn);
462 }
463
464 if (!config->relocatable) {
465 if (config->ehFrameHdr) {
466 part.ehFrameHdr = make<EhFrameHeader>();
467 add(part.ehFrameHdr);
468 }
469 part.ehFrame = make<EhFrameSection>();
470 add(part.ehFrame);
471 }
472
473 if (config->emachine == EM_ARM && !config->relocatable) {
474 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
475 // InputSections.
476 part.armExidx = make<ARMExidxSyntheticSection>();
477 add(part.armExidx);
478 }
479 }
480
481 if (partitions.size() != 1) {
482 // Create the partition end marker. This needs to be in partition number 255
483 // so that it is sorted after all other partitions. It also has other
484 // special handling (see createPhdrs() and combineEhSections()).
485 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
486 in.partEnd->partition = 255;
487 add(in.partEnd);
488
489 in.partIndex = make<PartitionIndexSection>();
490 addOptionalRegular("__part_index_begin", in.partIndex, 0);
491 addOptionalRegular("__part_index_end", in.partIndex,
492 in.partIndex->getSize());
493 add(in.partIndex);
494 }
495
496 // Add .got. MIPS' .got is so different from the other archs,
497 // it has its own class.
498 if (config->emachine == EM_MIPS) {
499 in.mipsGot = make<MipsGotSection>();
500 add(in.mipsGot);
501 } else {
502 in.got = make<GotSection>();
503 add(in.got);
504 }
505
506 if (config->emachine == EM_PPC) {
507 in.ppc32Got2 = make<PPC32Got2Section>();
508 add(in.ppc32Got2);
509 }
510
511 if (config->emachine == EM_PPC64) {
512 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
513 add(in.ppc64LongBranchTarget);
514 }
515
516 in.gotPlt = make<GotPltSection>();
517 add(in.gotPlt);
518 in.igotPlt = make<IgotPltSection>();
519 add(in.igotPlt);
520
521 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
522 // it as a relocation and ensure the referenced section is created.
523 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
524 if (target->gotBaseSymInGotPlt)
525 in.gotPlt->hasGotPltOffRel = true;
526 else
527 in.got->hasGotOffRel = true;
528 }
529
530 if (config->gdbIndex)
531 add(GdbIndexSection::create<ELFT>());
532
533 // We always need to add rel[a].plt to output if it has entries.
534 // Even for static linking it can contain R_[*]_IRELATIVE relocations.
535 in.relaPlt = make<RelocationSection<ELFT>>(
536 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
537 add(in.relaPlt);
538
539 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
540 // relocations are processed last by the dynamic loader. We cannot place the
541 // iplt section in .rel.dyn when Android relocation packing is enabled because
542 // that would cause a section type mismatch. However, because the Android
543 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
544 // behaviour by placing the iplt section in .rel.plt.
545 in.relaIplt = make<RelocationSection<ELFT>>(
546 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
547 /*sort=*/false);
548 add(in.relaIplt);
549
550 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
551 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
552 in.ibtPlt = make<IBTPltSection>();
553 add(in.ibtPlt);
554 }
555
556 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>()
557 : make<PltSection>();
558 add(in.plt);
559 in.iplt = make<IpltSection>();
560 add(in.iplt);
561
562 if (config->andFeatures)
563 add(make<GnuPropertySection>());
564
565 // .note.GNU-stack is always added when we are creating a re-linkable
566 // object file. Other linkers are using the presence of this marker
567 // section to control the executable-ness of the stack area, but that
568 // is irrelevant these days. Stack area should always be non-executable
569 // by default. So we emit this section unconditionally.
570 if (config->relocatable)
571 add(make<GnuStackSection>());
572
573 if (in.symTab)
574 add(in.symTab);
575 if (in.symTabShndx)
576 add(in.symTabShndx);
577 add(in.shStrTab);
578 if (in.strTab)
579 add(in.strTab);
580 }
581
582 // The main function of the writer.
run()583 template <class ELFT> void Writer<ELFT>::run() {
584 copyLocalSymbols();
585
586 if (config->copyRelocs)
587 addSectionSymbols();
588
589 // Now that we have a complete set of output sections. This function
590 // completes section contents. For example, we need to add strings
591 // to the string table, and add entries to .got and .plt.
592 // finalizeSections does that.
593 finalizeSections();
594 checkExecuteOnly();
595 if (errorCount())
596 return;
597
598 // If -compressed-debug-sections is specified, we need to compress
599 // .debug_* sections. Do it right now because it changes the size of
600 // output sections.
601 for (OutputSection *sec : outputSections)
602 sec->maybeCompress<ELFT>();
603
604 if (script->hasSectionsCommand)
605 script->allocateHeaders(mainPart->phdrs);
606
607 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
608 // 0 sized region. This has to be done late since only after assignAddresses
609 // we know the size of the sections.
610 for (Partition &part : partitions)
611 removeEmptyPTLoad(part.phdrs);
612
613 if (!config->oFormatBinary)
614 assignFileOffsets();
615 else
616 assignFileOffsetsBinary();
617
618 for (Partition &part : partitions)
619 setPhdrs(part);
620
621 if (config->relocatable)
622 for (OutputSection *sec : outputSections)
623 sec->addr = 0;
624
625 // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them
626 // before checkSections() because the files may be useful in case
627 // checkSections() or openFile() fails, for example, due to an erroneous file
628 // size.
629 writeMapFile();
630 writeCrossReferenceTable();
631 writeArchiveStats();
632
633 if (config->checkSections)
634 checkSections();
635
636 // It does not make sense try to open the file if we have error already.
637 if (errorCount())
638 return;
639
640 {
641 llvm::TimeTraceScope timeScope("Write output file");
642 // Write the result down to a file.
643 openFile();
644 if (errorCount())
645 return;
646
647 if (!config->oFormatBinary) {
648 if (config->zSeparate != SeparateSegmentKind::None)
649 writeTrapInstr();
650 writeHeader();
651 writeSections();
652 } else {
653 writeSectionsBinary();
654 }
655
656 // Backfill .note.gnu.build-id section content. This is done at last
657 // because the content is usually a hash value of the entire output file.
658 writeBuildId();
659 if (errorCount())
660 return;
661
662 if (auto e = buffer->commit())
663 error("failed to write to the output file: " + toString(std::move(e)));
664 }
665 }
666
667 template <class ELFT, class RelTy>
markUsedLocalSymbolsImpl(ObjFile<ELFT> * file,llvm::ArrayRef<RelTy> rels)668 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
669 llvm::ArrayRef<RelTy> rels) {
670 for (const RelTy &rel : rels) {
671 Symbol &sym = file->getRelocTargetSym(rel);
672 if (sym.isLocal())
673 sym.used = true;
674 }
675 }
676
677 // The function ensures that the "used" field of local symbols reflects the fact
678 // that the symbol is used in a relocation from a live section.
markUsedLocalSymbols()679 template <class ELFT> static void markUsedLocalSymbols() {
680 // With --gc-sections, the field is already filled.
681 // See MarkLive<ELFT>::resolveReloc().
682 if (config->gcSections)
683 return;
684 // Without --gc-sections, the field is initialized with "true".
685 // Drop the flag first and then rise for symbols referenced in relocations.
686 for (InputFile *file : objectFiles) {
687 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
688 for (Symbol *b : f->getLocalSymbols())
689 b->used = false;
690 for (InputSectionBase *s : f->getSections()) {
691 InputSection *isec = dyn_cast_or_null<InputSection>(s);
692 if (!isec)
693 continue;
694 if (isec->type == SHT_REL)
695 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
696 else if (isec->type == SHT_RELA)
697 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
698 }
699 }
700 }
701
shouldKeepInSymtab(const Defined & sym)702 static bool shouldKeepInSymtab(const Defined &sym) {
703 if (sym.isSection())
704 return false;
705
706 // If --emit-reloc or -r is given, preserve symbols referenced by relocations
707 // from live sections.
708 if (config->copyRelocs && sym.used)
709 return true;
710
711 // Exclude local symbols pointing to .ARM.exidx sections.
712 // They are probably mapping symbols "$d", which are optional for these
713 // sections. After merging the .ARM.exidx sections, some of these symbols
714 // may become dangling. The easiest way to avoid the issue is not to add
715 // them to the symbol table from the beginning.
716 if (config->emachine == EM_ARM && sym.section &&
717 sym.section->type == SHT_ARM_EXIDX)
718 return false;
719
720 if (config->discard == DiscardPolicy::None)
721 return true;
722 if (config->discard == DiscardPolicy::All)
723 return false;
724
725 // In ELF assembly .L symbols are normally discarded by the assembler.
726 // If the assembler fails to do so, the linker discards them if
727 // * --discard-locals is used.
728 // * The symbol is in a SHF_MERGE section, which is normally the reason for
729 // the assembler keeping the .L symbol.
730 StringRef name = sym.getName();
731 bool isLocal = name.startswith(".L") || name.empty();
732 if (!isLocal)
733 return true;
734
735 if (config->discard == DiscardPolicy::Locals)
736 return false;
737
738 SectionBase *sec = sym.section;
739 return !sec || !(sec->flags & SHF_MERGE);
740 }
741
includeInSymtab(const Symbol & b)742 static bool includeInSymtab(const Symbol &b) {
743 if (!b.isLocal() && !b.isUsedInRegularObj)
744 return false;
745
746 if (auto *d = dyn_cast<Defined>(&b)) {
747 // Always include absolute symbols.
748 SectionBase *sec = d->section;
749 if (!sec)
750 return true;
751 sec = sec->repl;
752
753 // Exclude symbols pointing to garbage-collected sections.
754 if (isa<InputSectionBase>(sec) && !sec->isLive())
755 return false;
756
757 if (auto *s = dyn_cast<MergeInputSection>(sec))
758 if (!s->getSectionPiece(d->value)->live)
759 return false;
760 return true;
761 }
762 return b.used;
763 }
764
765 // Local symbols are not in the linker's symbol table. This function scans
766 // each object file's symbol table to copy local symbols to the output.
copyLocalSymbols()767 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
768 if (!in.symTab)
769 return;
770 llvm::TimeTraceScope timeScope("Add local symbols");
771 if (config->copyRelocs && config->discard != DiscardPolicy::None)
772 markUsedLocalSymbols<ELFT>();
773 for (InputFile *file : objectFiles) {
774 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
775 for (Symbol *b : f->getLocalSymbols()) {
776 assert(b->isLocal() && "should have been caught in initializeSymbols()");
777 auto *dr = dyn_cast<Defined>(b);
778
779 // No reason to keep local undefined symbol in symtab.
780 if (!dr)
781 continue;
782 if (!includeInSymtab(*b))
783 continue;
784 if (!shouldKeepInSymtab(*dr))
785 continue;
786 in.symTab->addSymbol(b);
787 }
788 }
789 }
790
791 // Create a section symbol for each output section so that we can represent
792 // relocations that point to the section. If we know that no relocation is
793 // referring to a section (that happens if the section is a synthetic one), we
794 // don't create a section symbol for that section.
addSectionSymbols()795 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
796 for (BaseCommand *base : script->sectionCommands) {
797 auto *sec = dyn_cast<OutputSection>(base);
798 if (!sec)
799 continue;
800 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
801 if (auto *isd = dyn_cast<InputSectionDescription>(base))
802 return !isd->sections.empty();
803 return false;
804 });
805 if (i == sec->sectionCommands.end())
806 continue;
807 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];
808
809 // Relocations are not using REL[A] section symbols.
810 if (isec->type == SHT_REL || isec->type == SHT_RELA)
811 continue;
812
813 // Unlike other synthetic sections, mergeable output sections contain data
814 // copied from input sections, and there may be a relocation pointing to its
815 // contents if -r or -emit-reloc are given.
816 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
817 continue;
818
819 // Set the symbol to be relative to the output section so that its st_value
820 // equals the output section address. Note, there may be a gap between the
821 // start of the output section and isec.
822 auto *sym =
823 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
824 /*value=*/0, /*size=*/0, isec->getOutputSection());
825 in.symTab->addSymbol(sym);
826 }
827 }
828
829 // Today's loaders have a feature to make segments read-only after
830 // processing dynamic relocations to enhance security. PT_GNU_RELRO
831 // is defined for that.
832 //
833 // This function returns true if a section needs to be put into a
834 // PT_GNU_RELRO segment.
isRelroSection(const OutputSection * sec)835 static bool isRelroSection(const OutputSection *sec) {
836 if (!config->zRelro)
837 return false;
838
839 uint64_t flags = sec->flags;
840
841 // Non-allocatable or non-writable sections don't need RELRO because
842 // they are not writable or not even mapped to memory in the first place.
843 // RELRO is for sections that are essentially read-only but need to
844 // be writable only at process startup to allow dynamic linker to
845 // apply relocations.
846 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
847 return false;
848
849 // Once initialized, TLS data segments are used as data templates
850 // for a thread-local storage. For each new thread, runtime
851 // allocates memory for a TLS and copy templates there. No thread
852 // are supposed to use templates directly. Thus, it can be in RELRO.
853 if (flags & SHF_TLS)
854 return true;
855
856 // .init_array, .preinit_array and .fini_array contain pointers to
857 // functions that are executed on process startup or exit. These
858 // pointers are set by the static linker, and they are not expected
859 // to change at runtime. But if you are an attacker, you could do
860 // interesting things by manipulating pointers in .fini_array, for
861 // example. So they are put into RELRO.
862 uint32_t type = sec->type;
863 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
864 type == SHT_PREINIT_ARRAY)
865 return true;
866
867 // .got contains pointers to external symbols. They are resolved by
868 // the dynamic linker when a module is loaded into memory, and after
869 // that they are not expected to change. So, it can be in RELRO.
870 if (in.got && sec == in.got->getParent())
871 return true;
872
873 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
874 // through r2 register, which is reserved for that purpose. Since r2 is used
875 // for accessing .got as well, .got and .toc need to be close enough in the
876 // virtual address space. Usually, .toc comes just after .got. Since we place
877 // .got into RELRO, .toc needs to be placed into RELRO too.
878 if (sec->name.equals(".toc"))
879 return true;
880
881 // .got.plt contains pointers to external function symbols. They are
882 // by default resolved lazily, so we usually cannot put it into RELRO.
883 // However, if "-z now" is given, the lazy symbol resolution is
884 // disabled, which enables us to put it into RELRO.
885 if (sec == in.gotPlt->getParent())
886 return config->zNow;
887
888 // .dynamic section contains data for the dynamic linker, and
889 // there's no need to write to it at runtime, so it's better to put
890 // it into RELRO.
891 if (sec->name == ".dynamic")
892 return true;
893
894 // Sections with some special names are put into RELRO. This is a
895 // bit unfortunate because section names shouldn't be significant in
896 // ELF in spirit. But in reality many linker features depend on
897 // magic section names.
898 StringRef s = sec->name;
899 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
900 s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
901 s == ".fini_array" || s == ".init_array" ||
902 s == ".openbsd.randomdata" || s == ".preinit_array";
903 }
904
905 // We compute a rank for each section. The rank indicates where the
906 // section should be placed in the file. Instead of using simple
907 // numbers (0,1,2...), we use a series of flags. One for each decision
908 // point when placing the section.
909 // Using flags has two key properties:
910 // * It is easy to check if a give branch was taken.
911 // * It is easy two see how similar two ranks are (see getRankProximity).
912 enum RankFlags {
913 RF_NOT_ADDR_SET = 1 << 27,
914 RF_NOT_ALLOC = 1 << 26,
915 RF_PARTITION = 1 << 18, // Partition number (8 bits)
916 RF_NOT_PART_EHDR = 1 << 17,
917 RF_NOT_PART_PHDR = 1 << 16,
918 RF_NOT_INTERP = 1 << 15,
919 RF_NOT_NOTE = 1 << 14,
920 RF_WRITE = 1 << 13,
921 RF_EXEC_WRITE = 1 << 12,
922 RF_EXEC = 1 << 11,
923 RF_RODATA = 1 << 10,
924 RF_NOT_RELRO = 1 << 9,
925 RF_NOT_TLS = 1 << 8,
926 RF_BSS = 1 << 7,
927 RF_PPC_NOT_TOCBSS = 1 << 6,
928 RF_PPC_TOCL = 1 << 5,
929 RF_PPC_TOC = 1 << 4,
930 RF_PPC_GOT = 1 << 3,
931 RF_PPC_BRANCH_LT = 1 << 2,
932 RF_MIPS_GPREL = 1 << 1,
933 RF_MIPS_NOT_GOT = 1 << 0
934 };
935
getSectionRank(const OutputSection * sec)936 static unsigned getSectionRank(const OutputSection *sec) {
937 unsigned rank = sec->partition * RF_PARTITION;
938
939 // We want to put section specified by -T option first, so we
940 // can start assigning VA starting from them later.
941 if (config->sectionStartMap.count(sec->name))
942 return rank;
943 rank |= RF_NOT_ADDR_SET;
944
945 // Allocatable sections go first to reduce the total PT_LOAD size and
946 // so debug info doesn't change addresses in actual code.
947 if (!(sec->flags & SHF_ALLOC))
948 return rank | RF_NOT_ALLOC;
949
950 if (sec->type == SHT_LLVM_PART_EHDR)
951 return rank;
952 rank |= RF_NOT_PART_EHDR;
953
954 if (sec->type == SHT_LLVM_PART_PHDR)
955 return rank;
956 rank |= RF_NOT_PART_PHDR;
957
958 // Put .interp first because some loaders want to see that section
959 // on the first page of the executable file when loaded into memory.
960 if (sec->name == ".interp")
961 return rank;
962 rank |= RF_NOT_INTERP;
963
964 // Put .note sections (which make up one PT_NOTE) at the beginning so that
965 // they are likely to be included in a core file even if core file size is
966 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
967 // included in a core to match core files with executables.
968 if (sec->type == SHT_NOTE)
969 return rank;
970 rank |= RF_NOT_NOTE;
971
972 // Sort sections based on their access permission in the following
973 // order: R, RX, RWX, RW. This order is based on the following
974 // considerations:
975 // * Read-only sections come first such that they go in the
976 // PT_LOAD covering the program headers at the start of the file.
977 // * Read-only, executable sections come next.
978 // * Writable, executable sections follow such that .plt on
979 // architectures where it needs to be writable will be placed
980 // between .text and .data.
981 // * Writable sections come last, such that .bss lands at the very
982 // end of the last PT_LOAD.
983 bool isExec = sec->flags & SHF_EXECINSTR;
984 bool isWrite = sec->flags & SHF_WRITE;
985
986 if (isExec) {
987 if (isWrite)
988 rank |= RF_EXEC_WRITE;
989 else
990 rank |= RF_EXEC;
991 } else if (isWrite) {
992 rank |= RF_WRITE;
993 } else if (sec->type == SHT_PROGBITS) {
994 // Make non-executable and non-writable PROGBITS sections (e.g .rodata
995 // .eh_frame) closer to .text. They likely contain PC or GOT relative
996 // relocations and there could be relocation overflow if other huge sections
997 // (.dynstr .dynsym) were placed in between.
998 rank |= RF_RODATA;
999 }
1000
1001 // Place RelRo sections first. After considering SHT_NOBITS below, the
1002 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
1003 // where | marks where page alignment happens. An alternative ordering is
1004 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
1005 // waste more bytes due to 2 alignment places.
1006 if (!isRelroSection(sec))
1007 rank |= RF_NOT_RELRO;
1008
1009 // If we got here we know that both A and B are in the same PT_LOAD.
1010
1011 // The TLS initialization block needs to be a single contiguous block in a R/W
1012 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
1013 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
1014 // after PROGBITS.
1015 if (!(sec->flags & SHF_TLS))
1016 rank |= RF_NOT_TLS;
1017
1018 // Within TLS sections, or within other RelRo sections, or within non-RelRo
1019 // sections, place non-NOBITS sections first.
1020 if (sec->type == SHT_NOBITS)
1021 rank |= RF_BSS;
1022
1023 // Some architectures have additional ordering restrictions for sections
1024 // within the same PT_LOAD.
1025 if (config->emachine == EM_PPC64) {
1026 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
1027 // that we would like to make sure appear is a specific order to maximize
1028 // their coverage by a single signed 16-bit offset from the TOC base
1029 // pointer. Conversely, the special .tocbss section should be first among
1030 // all SHT_NOBITS sections. This will put it next to the loaded special
1031 // PPC64 sections (and, thus, within reach of the TOC base pointer).
1032 StringRef name = sec->name;
1033 if (name != ".tocbss")
1034 rank |= RF_PPC_NOT_TOCBSS;
1035
1036 if (name == ".toc1")
1037 rank |= RF_PPC_TOCL;
1038
1039 if (name == ".toc")
1040 rank |= RF_PPC_TOC;
1041
1042 if (name == ".got")
1043 rank |= RF_PPC_GOT;
1044
1045 if (name == ".branch_lt")
1046 rank |= RF_PPC_BRANCH_LT;
1047 }
1048
1049 if (config->emachine == EM_MIPS) {
1050 // All sections with SHF_MIPS_GPREL flag should be grouped together
1051 // because data in these sections is addressable with a gp relative address.
1052 if (sec->flags & SHF_MIPS_GPREL)
1053 rank |= RF_MIPS_GPREL;
1054
1055 if (sec->name != ".got")
1056 rank |= RF_MIPS_NOT_GOT;
1057 }
1058
1059 return rank;
1060 }
1061
compareSections(const BaseCommand * aCmd,const BaseCommand * bCmd)1062 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
1063 const OutputSection *a = cast<OutputSection>(aCmd);
1064 const OutputSection *b = cast<OutputSection>(bCmd);
1065
1066 if (a->sortRank != b->sortRank)
1067 return a->sortRank < b->sortRank;
1068
1069 if (!(a->sortRank & RF_NOT_ADDR_SET))
1070 return config->sectionStartMap.lookup(a->name) <
1071 config->sectionStartMap.lookup(b->name);
1072 return false;
1073 }
1074
add(OutputSection * sec)1075 void PhdrEntry::add(OutputSection *sec) {
1076 lastSec = sec;
1077 if (!firstSec)
1078 firstSec = sec;
1079 p_align = std::max(p_align, sec->alignment);
1080 if (p_type == PT_LOAD)
1081 sec->ptLoad = this;
1082 }
1083
1084 // The beginning and the ending of .rel[a].plt section are marked
1085 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1086 // executable. The runtime needs these symbols in order to resolve
1087 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1088 // need these symbols, since IRELATIVE relocs are resolved through GOT
1089 // and PLT. For details, see http://www.airs.com/blog/archives/403.
addRelIpltSymbols()1090 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1091 if (config->relocatable || needsInterpSection())
1092 return;
1093
1094 // By default, __rela_iplt_{start,end} belong to a dummy section 0
1095 // because .rela.plt might be empty and thus removed from output.
1096 // We'll override Out::elfHeader with In.relaIplt later when we are
1097 // sure that .rela.plt exists in output.
1098 ElfSym::relaIpltStart = addOptionalRegular(
1099 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1100 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1101
1102 ElfSym::relaIpltEnd = addOptionalRegular(
1103 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1104 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1105 }
1106
1107 template <class ELFT>
forEachRelSec(llvm::function_ref<void (InputSectionBase &)> fn)1108 void Writer<ELFT>::forEachRelSec(
1109 llvm::function_ref<void(InputSectionBase &)> fn) {
1110 // Scan all relocations. Each relocation goes through a series
1111 // of tests to determine if it needs special treatment, such as
1112 // creating GOT, PLT, copy relocations, etc.
1113 // Note that relocations for non-alloc sections are directly
1114 // processed by InputSection::relocateNonAlloc.
1115 for (InputSectionBase *isec : inputSections)
1116 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
1117 fn(*isec);
1118 for (Partition &part : partitions) {
1119 for (EhInputSection *es : part.ehFrame->sections)
1120 fn(*es);
1121 if (part.armExidx && part.armExidx->isLive())
1122 for (InputSection *ex : part.armExidx->exidxSections)
1123 fn(*ex);
1124 }
1125 }
1126
1127 // This function generates assignments for predefined symbols (e.g. _end or
1128 // _etext) and inserts them into the commands sequence to be processed at the
1129 // appropriate time. This ensures that the value is going to be correct by the
1130 // time any references to these symbols are processed and is equivalent to
1131 // defining these symbols explicitly in the linker script.
setReservedSymbolSections()1132 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1133 if (ElfSym::globalOffsetTable) {
1134 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1135 // to the start of the .got or .got.plt section.
1136 InputSection *gotSection = in.gotPlt;
1137 if (!target->gotBaseSymInGotPlt)
1138 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
1139 : cast<InputSection>(in.got);
1140 ElfSym::globalOffsetTable->section = gotSection;
1141 }
1142
1143 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1144 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1145 ElfSym::relaIpltStart->section = in.relaIplt;
1146 ElfSym::relaIpltEnd->section = in.relaIplt;
1147 ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1148 }
1149
1150 PhdrEntry *last = nullptr;
1151 PhdrEntry *lastRO = nullptr;
1152
1153 for (Partition &part : partitions) {
1154 for (PhdrEntry *p : part.phdrs) {
1155 if (p->p_type != PT_LOAD)
1156 continue;
1157 last = p;
1158 if (!(p->p_flags & PF_W))
1159 lastRO = p;
1160 }
1161 }
1162
1163 if (lastRO) {
1164 // _etext is the first location after the last read-only loadable segment.
1165 if (ElfSym::etext1)
1166 ElfSym::etext1->section = lastRO->lastSec;
1167 if (ElfSym::etext2)
1168 ElfSym::etext2->section = lastRO->lastSec;
1169 }
1170
1171 if (last) {
1172 // _edata points to the end of the last mapped initialized section.
1173 OutputSection *edata = nullptr;
1174 for (OutputSection *os : outputSections) {
1175 if (os->type != SHT_NOBITS)
1176 edata = os;
1177 if (os == last->lastSec)
1178 break;
1179 }
1180
1181 if (ElfSym::edata1)
1182 ElfSym::edata1->section = edata;
1183 if (ElfSym::edata2)
1184 ElfSym::edata2->section = edata;
1185
1186 // _end is the first location after the uninitialized data region.
1187 if (ElfSym::end1)
1188 ElfSym::end1->section = last->lastSec;
1189 if (ElfSym::end2)
1190 ElfSym::end2->section = last->lastSec;
1191 }
1192
1193 if (ElfSym::bss)
1194 ElfSym::bss->section = findSection(".bss");
1195
1196 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1197 // be equal to the _gp symbol's value.
1198 if (ElfSym::mipsGp) {
1199 // Find GP-relative section with the lowest address
1200 // and use this address to calculate default _gp value.
1201 for (OutputSection *os : outputSections) {
1202 if (os->flags & SHF_MIPS_GPREL) {
1203 ElfSym::mipsGp->section = os;
1204 ElfSym::mipsGp->value = 0x7ff0;
1205 break;
1206 }
1207 }
1208 }
1209 }
1210
1211 // We want to find how similar two ranks are.
1212 // The more branches in getSectionRank that match, the more similar they are.
1213 // Since each branch corresponds to a bit flag, we can just use
1214 // countLeadingZeros.
getRankProximityAux(OutputSection * a,OutputSection * b)1215 static int getRankProximityAux(OutputSection *a, OutputSection *b) {
1216 return countLeadingZeros(a->sortRank ^ b->sortRank);
1217 }
1218
getRankProximity(OutputSection * a,BaseCommand * b)1219 static int getRankProximity(OutputSection *a, BaseCommand *b) {
1220 auto *sec = dyn_cast<OutputSection>(b);
1221 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
1222 }
1223
1224 // When placing orphan sections, we want to place them after symbol assignments
1225 // so that an orphan after
1226 // begin_foo = .;
1227 // foo : { *(foo) }
1228 // end_foo = .;
1229 // doesn't break the intended meaning of the begin/end symbols.
1230 // We don't want to go over sections since findOrphanPos is the
1231 // one in charge of deciding the order of the sections.
1232 // We don't want to go over changes to '.', since doing so in
1233 // rx_sec : { *(rx_sec) }
1234 // . = ALIGN(0x1000);
1235 // /* The RW PT_LOAD starts here*/
1236 // rw_sec : { *(rw_sec) }
1237 // would mean that the RW PT_LOAD would become unaligned.
shouldSkip(BaseCommand * cmd)1238 static bool shouldSkip(BaseCommand *cmd) {
1239 if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1240 return assign->name != ".";
1241 return false;
1242 }
1243
1244 // We want to place orphan sections so that they share as much
1245 // characteristics with their neighbors as possible. For example, if
1246 // both are rw, or both are tls.
1247 static std::vector<BaseCommand *>::iterator
findOrphanPos(std::vector<BaseCommand * >::iterator b,std::vector<BaseCommand * >::iterator e)1248 findOrphanPos(std::vector<BaseCommand *>::iterator b,
1249 std::vector<BaseCommand *>::iterator e) {
1250 OutputSection *sec = cast<OutputSection>(*e);
1251
1252 // Find the first element that has as close a rank as possible.
1253 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
1254 return getRankProximity(sec, a) < getRankProximity(sec, b);
1255 });
1256 if (i == e)
1257 return e;
1258
1259 // Consider all existing sections with the same proximity.
1260 int proximity = getRankProximity(sec, *i);
1261 for (; i != e; ++i) {
1262 auto *curSec = dyn_cast<OutputSection>(*i);
1263 if (!curSec || !curSec->hasInputSections)
1264 continue;
1265 if (getRankProximity(sec, curSec) != proximity ||
1266 sec->sortRank < curSec->sortRank)
1267 break;
1268 }
1269
1270 auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
1271 auto *os = dyn_cast<OutputSection>(cmd);
1272 return os && os->hasInputSections;
1273 };
1274 auto j = std::find_if(llvm::make_reverse_iterator(i),
1275 llvm::make_reverse_iterator(b),
1276 isOutputSecWithInputSections);
1277 i = j.base();
1278
1279 // As a special case, if the orphan section is the last section, put
1280 // it at the very end, past any other commands.
1281 // This matches bfd's behavior and is convenient when the linker script fully
1282 // specifies the start of the file, but doesn't care about the end (the non
1283 // alloc sections for example).
1284 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1285 if (nextSec == e)
1286 return e;
1287
1288 while (i != e && shouldSkip(*i))
1289 ++i;
1290 return i;
1291 }
1292
1293 // Adds random priorities to sections not already in the map.
maybeShuffle(DenseMap<const InputSectionBase *,int> & order)1294 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1295 if (!config->shuffleSectionSeed)
1296 return;
1297
1298 std::vector<int> priorities(inputSections.size() - order.size());
1299 // Existing priorities are < 0, so use priorities >= 0 for the missing
1300 // sections.
1301 int curPrio = 0;
1302 for (int &prio : priorities)
1303 prio = curPrio++;
1304 uint32_t seed = *config->shuffleSectionSeed;
1305 std::mt19937 g(seed ? seed : std::random_device()());
1306 llvm::shuffle(priorities.begin(), priorities.end(), g);
1307 int prioIndex = 0;
1308 for (InputSectionBase *sec : inputSections) {
1309 if (order.try_emplace(sec, priorities[prioIndex]).second)
1310 ++prioIndex;
1311 }
1312 }
1313
1314 // Builds section order for handling --symbol-ordering-file.
buildSectionOrder()1315 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1316 DenseMap<const InputSectionBase *, int> sectionOrder;
1317 // Use the rarely used option -call-graph-ordering-file to sort sections.
1318 if (!config->callGraphProfile.empty())
1319 return computeCallGraphProfileOrder();
1320
1321 if (config->symbolOrderingFile.empty())
1322 return sectionOrder;
1323
1324 struct SymbolOrderEntry {
1325 int priority;
1326 bool present;
1327 };
1328
1329 // Build a map from symbols to their priorities. Symbols that didn't
1330 // appear in the symbol ordering file have the lowest priority 0.
1331 // All explicitly mentioned symbols have negative (higher) priorities.
1332 DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
1333 int priority = -config->symbolOrderingFile.size();
1334 for (StringRef s : config->symbolOrderingFile)
1335 symbolOrder.insert({s, {priority++, false}});
1336
1337 // Build a map from sections to their priorities.
1338 auto addSym = [&](Symbol &sym) {
1339 auto it = symbolOrder.find(sym.getName());
1340 if (it == symbolOrder.end())
1341 return;
1342 SymbolOrderEntry &ent = it->second;
1343 ent.present = true;
1344
1345 maybeWarnUnorderableSymbol(&sym);
1346
1347 if (auto *d = dyn_cast<Defined>(&sym)) {
1348 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1349 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
1350 priority = std::min(priority, ent.priority);
1351 }
1352 }
1353 };
1354
1355 // We want both global and local symbols. We get the global ones from the
1356 // symbol table and iterate the object files for the local ones.
1357 for (Symbol *sym : symtab->symbols())
1358 if (!sym->isLazy())
1359 addSym(*sym);
1360
1361 for (InputFile *file : objectFiles)
1362 for (Symbol *sym : file->getSymbols()) {
1363 if (!sym->isLocal())
1364 break;
1365 addSym(*sym);
1366 }
1367
1368 if (config->warnSymbolOrdering)
1369 for (auto orderEntry : symbolOrder)
1370 if (!orderEntry.second.present)
1371 warn("symbol ordering file: no such symbol: " + orderEntry.first);
1372
1373 return sectionOrder;
1374 }
1375
1376 // Sorts the sections in ISD according to the provided section order.
1377 static void
sortISDBySectionOrder(InputSectionDescription * isd,const DenseMap<const InputSectionBase *,int> & order)1378 sortISDBySectionOrder(InputSectionDescription *isd,
1379 const DenseMap<const InputSectionBase *, int> &order) {
1380 std::vector<InputSection *> unorderedSections;
1381 std::vector<std::pair<InputSection *, int>> orderedSections;
1382 uint64_t unorderedSize = 0;
1383
1384 for (InputSection *isec : isd->sections) {
1385 auto i = order.find(isec);
1386 if (i == order.end()) {
1387 unorderedSections.push_back(isec);
1388 unorderedSize += isec->getSize();
1389 continue;
1390 }
1391 orderedSections.push_back({isec, i->second});
1392 }
1393 llvm::sort(orderedSections, llvm::less_second());
1394
1395 // Find an insertion point for the ordered section list in the unordered
1396 // section list. On targets with limited-range branches, this is the mid-point
1397 // of the unordered section list. This decreases the likelihood that a range
1398 // extension thunk will be needed to enter or exit the ordered region. If the
1399 // ordered section list is a list of hot functions, we can generally expect
1400 // the ordered functions to be called more often than the unordered functions,
1401 // making it more likely that any particular call will be within range, and
1402 // therefore reducing the number of thunks required.
1403 //
1404 // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1405 // If the layout is:
1406 //
1407 // 8MB hot
1408 // 32MB cold
1409 //
1410 // only the first 8-16MB of the cold code (depending on which hot function it
1411 // is actually calling) can call the hot code without a range extension thunk.
1412 // However, if we use this layout:
1413 //
1414 // 16MB cold
1415 // 8MB hot
1416 // 16MB cold
1417 //
1418 // both the last 8-16MB of the first block of cold code and the first 8-16MB
1419 // of the second block of cold code can call the hot code without a thunk. So
1420 // we effectively double the amount of code that could potentially call into
1421 // the hot code without a thunk.
1422 size_t insPt = 0;
1423 if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
1424 uint64_t unorderedPos = 0;
1425 for (; insPt != unorderedSections.size(); ++insPt) {
1426 unorderedPos += unorderedSections[insPt]->getSize();
1427 if (unorderedPos > unorderedSize / 2)
1428 break;
1429 }
1430 }
1431
1432 isd->sections.clear();
1433 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
1434 isd->sections.push_back(isec);
1435 for (std::pair<InputSection *, int> p : orderedSections)
1436 isd->sections.push_back(p.first);
1437 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
1438 isd->sections.push_back(isec);
1439 }
1440
sortSection(OutputSection * sec,const DenseMap<const InputSectionBase *,int> & order)1441 static void sortSection(OutputSection *sec,
1442 const DenseMap<const InputSectionBase *, int> &order) {
1443 StringRef name = sec->name;
1444
1445 // Never sort these.
1446 if (name == ".init" || name == ".fini")
1447 return;
1448
1449 // IRelative relocations that usually live in the .rel[a].dyn section should
1450 // be proccessed last by the dynamic loader. To achieve that we add synthetic
1451 // sections in the required order from the begining so that the in.relaIplt
1452 // section is placed last in an output section. Here we just do not apply
1453 // sorting for an output section which holds the in.relaIplt section.
1454 if (in.relaIplt->getParent() == sec)
1455 return;
1456
1457 // Sort input sections by priority using the list provided by
1458 // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1459 // digit radix sort. The sections may be sorted stably again by a more
1460 // significant key.
1461 if (!order.empty())
1462 for (BaseCommand *b : sec->sectionCommands)
1463 if (auto *isd = dyn_cast<InputSectionDescription>(b))
1464 sortISDBySectionOrder(isd, order);
1465
1466 // Sort input sections by section name suffixes for
1467 // __attribute__((init_priority(N))).
1468 if (name == ".init_array" || name == ".fini_array") {
1469 if (!script->hasSectionsCommand)
1470 sec->sortInitFini();
1471 return;
1472 }
1473
1474 // Sort input sections by the special rule for .ctors and .dtors.
1475 if (name == ".ctors" || name == ".dtors") {
1476 if (!script->hasSectionsCommand)
1477 sec->sortCtorsDtors();
1478 return;
1479 }
1480
1481 // .toc is allocated just after .got and is accessed using GOT-relative
1482 // relocations. Object files compiled with small code model have an
1483 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1484 // To reduce the risk of relocation overflow, .toc contents are sorted so that
1485 // sections having smaller relocation offsets are at beginning of .toc
1486 if (config->emachine == EM_PPC64 && name == ".toc") {
1487 if (script->hasSectionsCommand)
1488 return;
1489 assert(sec->sectionCommands.size() == 1);
1490 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
1491 llvm::stable_sort(isd->sections,
1492 [](const InputSection *a, const InputSection *b) -> bool {
1493 return a->file->ppc64SmallCodeModelTocRelocs &&
1494 !b->file->ppc64SmallCodeModelTocRelocs;
1495 });
1496 return;
1497 }
1498 }
1499
1500 // If no layout was provided by linker script, we want to apply default
1501 // sorting for special input sections. This also handles --symbol-ordering-file.
sortInputSections()1502 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1503 // Build the order once since it is expensive.
1504 DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1505 maybeShuffle(order);
1506 for (BaseCommand *base : script->sectionCommands)
1507 if (auto *sec = dyn_cast<OutputSection>(base))
1508 sortSection(sec, order);
1509 }
1510
sortSections()1511 template <class ELFT> void Writer<ELFT>::sortSections() {
1512 llvm::TimeTraceScope timeScope("Sort sections");
1513 script->adjustSectionsBeforeSorting();
1514
1515 // Don't sort if using -r. It is not necessary and we want to preserve the
1516 // relative order for SHF_LINK_ORDER sections.
1517 if (config->relocatable)
1518 return;
1519
1520 sortInputSections();
1521
1522 for (BaseCommand *base : script->sectionCommands) {
1523 auto *os = dyn_cast<OutputSection>(base);
1524 if (!os)
1525 continue;
1526 os->sortRank = getSectionRank(os);
1527
1528 // We want to assign rude approximation values to outSecOff fields
1529 // to know the relative order of the input sections. We use it for
1530 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1531 uint64_t i = 0;
1532 for (InputSection *sec : getInputSections(os))
1533 sec->outSecOff = i++;
1534 }
1535
1536 if (!script->hasSectionsCommand) {
1537 // We know that all the OutputSections are contiguous in this case.
1538 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
1539 std::stable_sort(
1540 llvm::find_if(script->sectionCommands, isSection),
1541 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1542 compareSections);
1543
1544 // Process INSERT commands. From this point onwards the order of
1545 // script->sectionCommands is fixed.
1546 script->processInsertCommands();
1547 return;
1548 }
1549
1550 script->processInsertCommands();
1551
1552 // Orphan sections are sections present in the input files which are
1553 // not explicitly placed into the output file by the linker script.
1554 //
1555 // The sections in the linker script are already in the correct
1556 // order. We have to figuere out where to insert the orphan
1557 // sections.
1558 //
1559 // The order of the sections in the script is arbitrary and may not agree with
1560 // compareSections. This means that we cannot easily define a strict weak
1561 // ordering. To see why, consider a comparison of a section in the script and
1562 // one not in the script. We have a two simple options:
1563 // * Make them equivalent (a is not less than b, and b is not less than a).
1564 // The problem is then that equivalence has to be transitive and we can
1565 // have sections a, b and c with only b in a script and a less than c
1566 // which breaks this property.
1567 // * Use compareSectionsNonScript. Given that the script order doesn't have
1568 // to match, we can end up with sections a, b, c, d where b and c are in the
1569 // script and c is compareSectionsNonScript less than b. In which case d
1570 // can be equivalent to c, a to b and d < a. As a concrete example:
1571 // .a (rx) # not in script
1572 // .b (rx) # in script
1573 // .c (ro) # in script
1574 // .d (ro) # not in script
1575 //
1576 // The way we define an order then is:
1577 // * Sort only the orphan sections. They are in the end right now.
1578 // * Move each orphan section to its preferred position. We try
1579 // to put each section in the last position where it can share
1580 // a PT_LOAD.
1581 //
1582 // There is some ambiguity as to where exactly a new entry should be
1583 // inserted, because Commands contains not only output section
1584 // commands but also other types of commands such as symbol assignment
1585 // expressions. There's no correct answer here due to the lack of the
1586 // formal specification of the linker script. We use heuristics to
1587 // determine whether a new output command should be added before or
1588 // after another commands. For the details, look at shouldSkip
1589 // function.
1590
1591 auto i = script->sectionCommands.begin();
1592 auto e = script->sectionCommands.end();
1593 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
1594 if (auto *sec = dyn_cast<OutputSection>(base))
1595 return sec->sectionIndex == UINT32_MAX;
1596 return false;
1597 });
1598
1599 // Sort the orphan sections.
1600 std::stable_sort(nonScriptI, e, compareSections);
1601
1602 // As a horrible special case, skip the first . assignment if it is before any
1603 // section. We do this because it is common to set a load address by starting
1604 // the script with ". = 0xabcd" and the expectation is that every section is
1605 // after that.
1606 auto firstSectionOrDotAssignment =
1607 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
1608 if (firstSectionOrDotAssignment != e &&
1609 isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1610 ++firstSectionOrDotAssignment;
1611 i = firstSectionOrDotAssignment;
1612
1613 while (nonScriptI != e) {
1614 auto pos = findOrphanPos(i, nonScriptI);
1615 OutputSection *orphan = cast<OutputSection>(*nonScriptI);
1616
1617 // As an optimization, find all sections with the same sort rank
1618 // and insert them with one rotate.
1619 unsigned rank = orphan->sortRank;
1620 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
1621 return cast<OutputSection>(cmd)->sortRank != rank;
1622 });
1623 std::rotate(pos, nonScriptI, end);
1624 nonScriptI = end;
1625 }
1626
1627 script->adjustSectionsAfterSorting();
1628 }
1629
compareByFilePosition(InputSection * a,InputSection * b)1630 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1631 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
1632 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
1633 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1634 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1635 if (!la || !lb)
1636 return la && !lb;
1637 OutputSection *aOut = la->getParent();
1638 OutputSection *bOut = lb->getParent();
1639
1640 if (aOut != bOut)
1641 return aOut->addr < bOut->addr;
1642 return la->outSecOff < lb->outSecOff;
1643 }
1644
resolveShfLinkOrder()1645 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1646 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
1647 for (OutputSection *sec : outputSections) {
1648 if (!(sec->flags & SHF_LINK_ORDER))
1649 continue;
1650
1651 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1652 // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1653 if (!config->relocatable && config->emachine == EM_ARM &&
1654 sec->type == SHT_ARM_EXIDX)
1655 continue;
1656
1657 // Link order may be distributed across several InputSectionDescriptions.
1658 // Sorting is performed separately.
1659 std::vector<InputSection **> scriptSections;
1660 std::vector<InputSection *> sections;
1661 for (BaseCommand *base : sec->sectionCommands) {
1662 auto *isd = dyn_cast<InputSectionDescription>(base);
1663 if (!isd)
1664 continue;
1665 bool hasLinkOrder = false;
1666 scriptSections.clear();
1667 sections.clear();
1668 for (InputSection *&isec : isd->sections) {
1669 if (isec->flags & SHF_LINK_ORDER) {
1670 InputSection *link = isec->getLinkOrderDep();
1671 if (link && !link->getParent())
1672 error(toString(isec) + ": sh_link points to discarded section " +
1673 toString(link));
1674 hasLinkOrder = true;
1675 }
1676 scriptSections.push_back(&isec);
1677 sections.push_back(isec);
1678 }
1679 if (hasLinkOrder && errorCount() == 0) {
1680 llvm::stable_sort(sections, compareByFilePosition);
1681 for (int i = 0, n = sections.size(); i != n; ++i)
1682 *scriptSections[i] = sections[i];
1683 }
1684 }
1685 }
1686 }
1687
finalizeSynthetic(SyntheticSection * sec)1688 static void finalizeSynthetic(SyntheticSection *sec) {
1689 if (sec && sec->isNeeded() && sec->getParent()) {
1690 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
1691 sec->finalizeContents();
1692 }
1693 }
1694
1695 // We need to generate and finalize the content that depends on the address of
1696 // InputSections. As the generation of the content may also alter InputSection
1697 // addresses we must converge to a fixed point. We do that here. See the comment
1698 // in Writer<ELFT>::finalizeSections().
finalizeAddressDependentContent()1699 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1700 llvm::TimeTraceScope timeScope("Finalize address dependent content");
1701 ThunkCreator tc;
1702 AArch64Err843419Patcher a64p;
1703 ARMErr657417Patcher a32p;
1704 script->assignAddresses();
1705 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1706 // do require the relative addresses of OutputSections because linker scripts
1707 // can assign Virtual Addresses to OutputSections that are not monotonically
1708 // increasing.
1709 for (Partition &part : partitions)
1710 finalizeSynthetic(part.armExidx);
1711 resolveShfLinkOrder();
1712
1713 // Converts call x@GDPLT to call __tls_get_addr
1714 if (config->emachine == EM_HEXAGON)
1715 hexagonTLSSymbolUpdate(outputSections);
1716
1717 int assignPasses = 0;
1718 for (;;) {
1719 bool changed = target->needsThunks && tc.createThunks(outputSections);
1720
1721 // With Thunk Size much smaller than branch range we expect to
1722 // converge quickly; if we get to 15 something has gone wrong.
1723 if (changed && tc.pass >= 15) {
1724 error("thunk creation not converged");
1725 break;
1726 }
1727
1728 if (config->fixCortexA53Errata843419) {
1729 if (changed)
1730 script->assignAddresses();
1731 changed |= a64p.createFixes();
1732 }
1733 if (config->fixCortexA8) {
1734 if (changed)
1735 script->assignAddresses();
1736 changed |= a32p.createFixes();
1737 }
1738
1739 if (in.mipsGot)
1740 in.mipsGot->updateAllocSize();
1741
1742 for (Partition &part : partitions) {
1743 changed |= part.relaDyn->updateAllocSize();
1744 if (part.relrDyn)
1745 changed |= part.relrDyn->updateAllocSize();
1746 }
1747
1748 const Defined *changedSym = script->assignAddresses();
1749 if (!changed) {
1750 // Some symbols may be dependent on section addresses. When we break the
1751 // loop, the symbol values are finalized because a previous
1752 // assignAddresses() finalized section addresses.
1753 if (!changedSym)
1754 break;
1755 if (++assignPasses == 5) {
1756 errorOrWarn("assignment to symbol " + toString(*changedSym) +
1757 " does not converge");
1758 break;
1759 }
1760 }
1761 }
1762
1763 // If addrExpr is set, the address may not be a multiple of the alignment.
1764 // Warn because this is error-prone.
1765 for (BaseCommand *cmd : script->sectionCommands)
1766 if (auto *os = dyn_cast<OutputSection>(cmd))
1767 if (os->addr % os->alignment != 0)
1768 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " +
1769 os->name + " is not a multiple of alignment (" +
1770 Twine(os->alignment) + ")");
1771 }
1772
1773 // If Input Sections have been shrinked (basic block sections) then
1774 // update symbol values and sizes associated with these sections. With basic
1775 // block sections, input sections can shrink when the jump instructions at
1776 // the end of the section are relaxed.
fixSymbolsAfterShrinking()1777 static void fixSymbolsAfterShrinking() {
1778 for (InputFile *File : objectFiles) {
1779 parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1780 auto *def = dyn_cast<Defined>(Sym);
1781 if (!def)
1782 return;
1783
1784 const SectionBase *sec = def->section;
1785 if (!sec)
1786 return;
1787
1788 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl);
1789 if (!inputSec || !inputSec->bytesDropped)
1790 return;
1791
1792 const size_t OldSize = inputSec->data().size();
1793 const size_t NewSize = OldSize - inputSec->bytesDropped;
1794
1795 if (def->value > NewSize && def->value <= OldSize) {
1796 LLVM_DEBUG(llvm::dbgs()
1797 << "Moving symbol " << Sym->getName() << " from "
1798 << def->value << " to "
1799 << def->value - inputSec->bytesDropped << " bytes\n");
1800 def->value -= inputSec->bytesDropped;
1801 return;
1802 }
1803
1804 if (def->value + def->size > NewSize && def->value <= OldSize &&
1805 def->value + def->size <= OldSize) {
1806 LLVM_DEBUG(llvm::dbgs()
1807 << "Shrinking symbol " << Sym->getName() << " from "
1808 << def->size << " to " << def->size - inputSec->bytesDropped
1809 << " bytes\n");
1810 def->size -= inputSec->bytesDropped;
1811 }
1812 });
1813 }
1814 }
1815
1816 // If basic block sections exist, there are opportunities to delete fall thru
1817 // jumps and shrink jump instructions after basic block reordering. This
1818 // relaxation pass does that. It is only enabled when --optimize-bb-jumps
1819 // option is used.
optimizeBasicBlockJumps()1820 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1821 assert(config->optimizeBBJumps);
1822
1823 script->assignAddresses();
1824 // For every output section that has executable input sections, this
1825 // does the following:
1826 // 1. Deletes all direct jump instructions in input sections that
1827 // jump to the following section as it is not required.
1828 // 2. If there are two consecutive jump instructions, it checks
1829 // if they can be flipped and one can be deleted.
1830 for (OutputSection *os : outputSections) {
1831 if (!(os->flags & SHF_EXECINSTR))
1832 continue;
1833 std::vector<InputSection *> sections = getInputSections(os);
1834 std::vector<unsigned> result(sections.size());
1835 // Delete all fall through jump instructions. Also, check if two
1836 // consecutive jump instructions can be flipped so that a fall
1837 // through jmp instruction can be deleted.
1838 parallelForEachN(0, sections.size(), [&](size_t i) {
1839 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1840 InputSection &is = *sections[i];
1841 result[i] =
1842 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0;
1843 });
1844 size_t numDeleted = std::count(result.begin(), result.end(), 1);
1845 if (numDeleted > 0) {
1846 script->assignAddresses();
1847 LLVM_DEBUG(llvm::dbgs()
1848 << "Removing " << numDeleted << " fall through jumps\n");
1849 }
1850 }
1851
1852 fixSymbolsAfterShrinking();
1853
1854 for (OutputSection *os : outputSections) {
1855 std::vector<InputSection *> sections = getInputSections(os);
1856 for (InputSection *is : sections)
1857 is->trim();
1858 }
1859 }
1860
1861 // In order to allow users to manipulate linker-synthesized sections,
1862 // we had to add synthetic sections to the input section list early,
1863 // even before we make decisions whether they are needed. This allows
1864 // users to write scripts like this: ".mygot : { .got }".
1865 //
1866 // Doing it has an unintended side effects. If it turns out that we
1867 // don't need a .got (for example) at all because there's no
1868 // relocation that needs a .got, we don't want to emit .got.
1869 //
1870 // To deal with the above problem, this function is called after
1871 // scanRelocations is called to remove synthetic sections that turn
1872 // out to be empty.
removeUnusedSyntheticSections()1873 static void removeUnusedSyntheticSections() {
1874 // All input synthetic sections that can be empty are placed after
1875 // all regular ones. We iterate over them all and exit at first
1876 // non-synthetic.
1877 for (InputSectionBase *s : llvm::reverse(inputSections)) {
1878 SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
1879 if (!ss)
1880 return;
1881 OutputSection *os = ss->getParent();
1882 if (!os || ss->isNeeded())
1883 continue;
1884
1885 // If we reach here, then ss is an unused synthetic section and we want to
1886 // remove it from the corresponding input section description, and
1887 // orphanSections.
1888 for (BaseCommand *b : os->sectionCommands)
1889 if (auto *isd = dyn_cast<InputSectionDescription>(b))
1890 llvm::erase_if(isd->sections,
1891 [=](InputSection *isec) { return isec == ss; });
1892 llvm::erase_if(script->orphanSections,
1893 [=](const InputSectionBase *isec) { return isec == ss; });
1894 }
1895 }
1896
1897 // Create output section objects and add them to OutputSections.
finalizeSections()1898 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1899 Out::preinitArray = findSection(".preinit_array");
1900 Out::initArray = findSection(".init_array");
1901 Out::finiArray = findSection(".fini_array");
1902
1903 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1904 // symbols for sections, so that the runtime can get the start and end
1905 // addresses of each section by section name. Add such symbols.
1906 if (!config->relocatable) {
1907 addStartEndSymbols();
1908 for (BaseCommand *base : script->sectionCommands)
1909 if (auto *sec = dyn_cast<OutputSection>(base))
1910 addStartStopSymbols(sec);
1911 }
1912
1913 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1914 // It should be okay as no one seems to care about the type.
1915 // Even the author of gold doesn't remember why gold behaves that way.
1916 // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1917 if (mainPart->dynamic->parent)
1918 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
1919 STV_HIDDEN, STT_NOTYPE,
1920 /*value=*/0, /*size=*/0, mainPart->dynamic});
1921
1922 // Define __rel[a]_iplt_{start,end} symbols if needed.
1923 addRelIpltSymbols();
1924
1925 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1926 // should only be defined in an executable. If .sdata does not exist, its
1927 // value/section does not matter but it has to be relative, so set its
1928 // st_shndx arbitrarily to 1 (Out::elfHeader).
1929 if (config->emachine == EM_RISCV && !config->shared) {
1930 OutputSection *sec = findSection(".sdata");
1931 ElfSym::riscvGlobalPointer =
1932 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
1933 0x800, STV_DEFAULT, STB_GLOBAL);
1934 }
1935
1936 if (config->emachine == EM_X86_64) {
1937 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1938 // way that:
1939 //
1940 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1941 // computes 0.
1942 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
1943 // the TLS block).
1944 //
1945 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
1946 // an absolute symbol of zero. This is different from GNU linkers which
1947 // define _TLS_MODULE_BASE_ relative to the first TLS section.
1948 Symbol *s = symtab->find("_TLS_MODULE_BASE_");
1949 if (s && s->isUndefined()) {
1950 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
1951 STT_TLS, /*value=*/0, 0,
1952 /*section=*/nullptr});
1953 ElfSym::tlsModuleBase = cast<Defined>(s);
1954 }
1955 }
1956
1957 {
1958 llvm::TimeTraceScope timeScope("Finalize .eh_frame");
1959 // This responsible for splitting up .eh_frame section into
1960 // pieces. The relocation scan uses those pieces, so this has to be
1961 // earlier.
1962 for (Partition &part : partitions)
1963 finalizeSynthetic(part.ehFrame);
1964 }
1965
1966 for (Symbol *sym : symtab->symbols())
1967 sym->isPreemptible = computeIsPreemptible(*sym);
1968
1969 // Change values of linker-script-defined symbols from placeholders (assigned
1970 // by declareSymbols) to actual definitions.
1971 script->processSymbolAssignments();
1972
1973 {
1974 llvm::TimeTraceScope timeScope("Scan relocations");
1975 // Scan relocations. This must be done after every symbol is declared so
1976 // that we can correctly decide if a dynamic relocation is needed. This is
1977 // called after processSymbolAssignments() because it needs to know whether
1978 // a linker-script-defined symbol is absolute.
1979 ppc64noTocRelax.clear();
1980 if (!config->relocatable) {
1981 forEachRelSec(scanRelocations<ELFT>);
1982 reportUndefinedSymbols<ELFT>();
1983 }
1984 }
1985
1986 if (in.plt && in.plt->isNeeded())
1987 in.plt->addSymbols();
1988 if (in.iplt && in.iplt->isNeeded())
1989 in.iplt->addSymbols();
1990
1991 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
1992 // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1993 // entries are seen. These cases would otherwise lead to runtime errors
1994 // reported by the dynamic linker.
1995 //
1996 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
1997 // catch more cases. That is too much for us. Our approach resembles the one
1998 // used in ld.gold, achieves a good balance to be useful but not too smart.
1999 for (SharedFile *file : sharedFiles)
2000 file->allNeededIsKnown =
2001 llvm::all_of(file->dtNeeded, [&](StringRef needed) {
2002 return symtab->soNames.count(needed);
2003 });
2004
2005 for (Symbol *sym : symtab->symbols())
2006 if (sym->isUndefined() && !sym->isWeak())
2007 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
2008 if (f->allNeededIsKnown) {
2009 auto diagnose = config->unresolvedSymbolsInShlib ==
2010 UnresolvedPolicy::ReportError
2011 ? errorOrWarn
2012 : warn;
2013 diagnose(toString(f) + ": undefined reference to " +
2014 toString(*sym) + " [--no-allow-shlib-undefined]");
2015 }
2016 }
2017
2018 {
2019 llvm::TimeTraceScope timeScope("Add symbols to symtabs");
2020 // Now that we have defined all possible global symbols including linker-
2021 // synthesized ones. Visit all symbols to give the finishing touches.
2022 for (Symbol *sym : symtab->symbols()) {
2023 if (!includeInSymtab(*sym))
2024 continue;
2025 if (in.symTab)
2026 in.symTab->addSymbol(sym);
2027
2028 if (sym->includeInDynsym()) {
2029 partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
2030 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
2031 if (file->isNeeded && !sym->isUndefined())
2032 addVerneed(sym);
2033 }
2034 }
2035
2036 // We also need to scan the dynamic relocation tables of the other
2037 // partitions and add any referenced symbols to the partition's dynsym.
2038 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
2039 DenseSet<Symbol *> syms;
2040 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
2041 syms.insert(e.sym);
2042 for (DynamicReloc &reloc : part.relaDyn->relocs)
2043 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
2044 part.dynSymTab->addSymbol(reloc.sym);
2045 }
2046 }
2047
2048 // Do not proceed if there was an undefined symbol.
2049 if (errorCount())
2050 return;
2051
2052 if (in.mipsGot)
2053 in.mipsGot->build();
2054
2055 removeUnusedSyntheticSections();
2056 script->diagnoseOrphanHandling();
2057
2058 sortSections();
2059
2060 // Now that we have the final list, create a list of all the
2061 // OutputSections for convenience.
2062 for (BaseCommand *base : script->sectionCommands)
2063 if (auto *sec = dyn_cast<OutputSection>(base))
2064 outputSections.push_back(sec);
2065
2066 // Prefer command line supplied address over other constraints.
2067 for (OutputSection *sec : outputSections) {
2068 auto i = config->sectionStartMap.find(sec->name);
2069 if (i != config->sectionStartMap.end())
2070 sec->addrExpr = [=] { return i->second; };
2071 }
2072
2073 // With the outputSections available check for GDPLT relocations
2074 // and add __tls_get_addr symbol if needed.
2075 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2076 Symbol *sym = symtab->addSymbol(Undefined{
2077 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2078 sym->isPreemptible = true;
2079 partitions[0].dynSymTab->addSymbol(sym);
2080 }
2081
2082 // This is a bit of a hack. A value of 0 means undef, so we set it
2083 // to 1 to make __ehdr_start defined. The section number is not
2084 // particularly relevant.
2085 Out::elfHeader->sectionIndex = 1;
2086
2087 for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
2088 OutputSection *sec = outputSections[i];
2089 sec->sectionIndex = i + 1;
2090 sec->shName = in.shStrTab->addString(sec->name);
2091 }
2092
2093 // Binary and relocatable output does not have PHDRS.
2094 // The headers have to be created before finalize as that can influence the
2095 // image base and the dynamic section on mips includes the image base.
2096 if (!config->relocatable && !config->oFormatBinary) {
2097 for (Partition &part : partitions) {
2098 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2099 : createPhdrs(part);
2100 if (config->emachine == EM_ARM) {
2101 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2102 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2103 }
2104 if (config->emachine == EM_MIPS) {
2105 // Add separate segments for MIPS-specific sections.
2106 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2107 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2108 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2109 }
2110 }
2111 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2112
2113 // Find the TLS segment. This happens before the section layout loop so that
2114 // Android relocation packing can look up TLS symbol addresses. We only need
2115 // to care about the main partition here because all TLS symbols were moved
2116 // to the main partition (see MarkLive.cpp).
2117 for (PhdrEntry *p : mainPart->phdrs)
2118 if (p->p_type == PT_TLS)
2119 Out::tlsPhdr = p;
2120 }
2121
2122 // Some symbols are defined in term of program headers. Now that we
2123 // have the headers, we can find out which sections they point to.
2124 setReservedSymbolSections();
2125
2126 {
2127 llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2128
2129 finalizeSynthetic(in.bss);
2130 finalizeSynthetic(in.bssRelRo);
2131 finalizeSynthetic(in.symTabShndx);
2132 finalizeSynthetic(in.shStrTab);
2133 finalizeSynthetic(in.strTab);
2134 finalizeSynthetic(in.got);
2135 finalizeSynthetic(in.mipsGot);
2136 finalizeSynthetic(in.igotPlt);
2137 finalizeSynthetic(in.gotPlt);
2138 finalizeSynthetic(in.relaIplt);
2139 finalizeSynthetic(in.relaPlt);
2140 finalizeSynthetic(in.plt);
2141 finalizeSynthetic(in.iplt);
2142 finalizeSynthetic(in.ppc32Got2);
2143 finalizeSynthetic(in.partIndex);
2144
2145 // Dynamic section must be the last one in this list and dynamic
2146 // symbol table section (dynSymTab) must be the first one.
2147 for (Partition &part : partitions) {
2148 finalizeSynthetic(part.dynSymTab);
2149 finalizeSynthetic(part.gnuHashTab);
2150 finalizeSynthetic(part.hashTab);
2151 finalizeSynthetic(part.verDef);
2152 finalizeSynthetic(part.relaDyn);
2153 finalizeSynthetic(part.relrDyn);
2154 finalizeSynthetic(part.ehFrameHdr);
2155 finalizeSynthetic(part.verSym);
2156 finalizeSynthetic(part.verNeed);
2157 finalizeSynthetic(part.dynamic);
2158 }
2159 }
2160
2161 if (!script->hasSectionsCommand && !config->relocatable)
2162 fixSectionAlignments();
2163
2164 // This is used to:
2165 // 1) Create "thunks":
2166 // Jump instructions in many ISAs have small displacements, and therefore
2167 // they cannot jump to arbitrary addresses in memory. For example, RISC-V
2168 // JAL instruction can target only +-1 MiB from PC. It is a linker's
2169 // responsibility to create and insert small pieces of code between
2170 // sections to extend the ranges if jump targets are out of range. Such
2171 // code pieces are called "thunks".
2172 //
2173 // We add thunks at this stage. We couldn't do this before this point
2174 // because this is the earliest point where we know sizes of sections and
2175 // their layouts (that are needed to determine if jump targets are in
2176 // range).
2177 //
2178 // 2) Update the sections. We need to generate content that depends on the
2179 // address of InputSections. For example, MIPS GOT section content or
2180 // android packed relocations sections content.
2181 //
2182 // 3) Assign the final values for the linker script symbols. Linker scripts
2183 // sometimes using forward symbol declarations. We want to set the correct
2184 // values. They also might change after adding the thunks.
2185 finalizeAddressDependentContent();
2186 if (errorCount())
2187 return;
2188
2189 {
2190 llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2191 // finalizeAddressDependentContent may have added local symbols to the
2192 // static symbol table.
2193 finalizeSynthetic(in.symTab);
2194 finalizeSynthetic(in.ppc64LongBranchTarget);
2195 }
2196
2197 // Relaxation to delete inter-basic block jumps created by basic block
2198 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2199 // can relax jump instructions based on symbol offset.
2200 if (config->optimizeBBJumps)
2201 optimizeBasicBlockJumps();
2202
2203 // Fill other section headers. The dynamic table is finalized
2204 // at the end because some tags like RELSZ depend on result
2205 // of finalizing other sections.
2206 for (OutputSection *sec : outputSections)
2207 sec->finalize();
2208 }
2209
2210 // Ensure data sections are not mixed with executable sections when
2211 // -execute-only is used. -execute-only is a feature to make pages executable
2212 // but not readable, and the feature is currently supported only on AArch64.
checkExecuteOnly()2213 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2214 if (!config->executeOnly)
2215 return;
2216
2217 for (OutputSection *os : outputSections)
2218 if (os->flags & SHF_EXECINSTR)
2219 for (InputSection *isec : getInputSections(os))
2220 if (!(isec->flags & SHF_EXECINSTR))
2221 error("cannot place " + toString(isec) + " into " + toString(os->name) +
2222 ": -execute-only does not support intermingling data and code");
2223 }
2224
2225 // The linker is expected to define SECNAME_start and SECNAME_end
2226 // symbols for a few sections. This function defines them.
addStartEndSymbols()2227 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2228 // If a section does not exist, there's ambiguity as to how we
2229 // define _start and _end symbols for an init/fini section. Since
2230 // the loader assume that the symbols are always defined, we need to
2231 // always define them. But what value? The loader iterates over all
2232 // pointers between _start and _end to run global ctors/dtors, so if
2233 // the section is empty, their symbol values don't actually matter
2234 // as long as _start and _end point to the same location.
2235 //
2236 // That said, we don't want to set the symbols to 0 (which is
2237 // probably the simplest value) because that could cause some
2238 // program to fail to link due to relocation overflow, if their
2239 // program text is above 2 GiB. We use the address of the .text
2240 // section instead to prevent that failure.
2241 //
2242 // In rare situations, the .text section may not exist. If that's the
2243 // case, use the image base address as a last resort.
2244 OutputSection *Default = findSection(".text");
2245 if (!Default)
2246 Default = Out::elfHeader;
2247
2248 auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2249 if (os) {
2250 addOptionalRegular(start, os, 0);
2251 addOptionalRegular(end, os, -1);
2252 } else {
2253 addOptionalRegular(start, Default, 0);
2254 addOptionalRegular(end, Default, 0);
2255 }
2256 };
2257
2258 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2259 define("__init_array_start", "__init_array_end", Out::initArray);
2260 define("__fini_array_start", "__fini_array_end", Out::finiArray);
2261
2262 if (OutputSection *sec = findSection(".ARM.exidx"))
2263 define("__exidx_start", "__exidx_end", sec);
2264 }
2265
2266 // If a section name is valid as a C identifier (which is rare because of
2267 // the leading '.'), linkers are expected to define __start_<secname> and
2268 // __stop_<secname> symbols. They are at beginning and end of the section,
2269 // respectively. This is not requested by the ELF standard, but GNU ld and
2270 // gold provide the feature, and used by many programs.
2271 template <class ELFT>
addStartStopSymbols(OutputSection * sec)2272 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
2273 StringRef s = sec->name;
2274 if (!isValidCIdentifier(s))
2275 return;
2276 addOptionalRegular(saver.save("__start_" + s), sec, 0,
2277 config->zStartStopVisibility);
2278 addOptionalRegular(saver.save("__stop_" + s), sec, -1,
2279 config->zStartStopVisibility);
2280 }
2281
needsPtLoad(OutputSection * sec)2282 static bool needsPtLoad(OutputSection *sec) {
2283 if (!(sec->flags & SHF_ALLOC) || sec->noload)
2284 return false;
2285
2286 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2287 // responsible for allocating space for them, not the PT_LOAD that
2288 // contains the TLS initialization image.
2289 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2290 return false;
2291 return true;
2292 }
2293
2294 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2295 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2296 // RW. This means that there is no alignment in the RO to RX transition and we
2297 // cannot create a PT_LOAD there.
computeFlags(uint64_t flags)2298 static uint64_t computeFlags(uint64_t flags) {
2299 if (config->omagic)
2300 return PF_R | PF_W | PF_X;
2301 if (config->executeOnly && (flags & PF_X))
2302 return flags & ~PF_R;
2303 if (config->singleRoRx && !(flags & PF_W))
2304 return flags | PF_X;
2305 return flags;
2306 }
2307
2308 // Decide which program headers to create and which sections to include in each
2309 // one.
2310 template <class ELFT>
createPhdrs(Partition & part)2311 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
2312 std::vector<PhdrEntry *> ret;
2313 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2314 ret.push_back(make<PhdrEntry>(type, flags));
2315 return ret.back();
2316 };
2317
2318 unsigned partNo = part.getNumber();
2319 bool isMain = partNo == 1;
2320
2321 // Add the first PT_LOAD segment for regular output sections.
2322 uint64_t flags = computeFlags(PF_R);
2323 PhdrEntry *load = nullptr;
2324
2325 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2326 // PT_LOAD.
2327 if (!config->nmagic && !config->omagic) {
2328 // The first phdr entry is PT_PHDR which describes the program header
2329 // itself.
2330 if (isMain)
2331 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2332 else
2333 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2334
2335 // PT_INTERP must be the second entry if exists.
2336 if (OutputSection *cmd = findSection(".interp", partNo))
2337 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2338
2339 // Add the headers. We will remove them if they don't fit.
2340 // In the other partitions the headers are ordinary sections, so they don't
2341 // need to be added here.
2342 if (isMain) {
2343 load = addHdr(PT_LOAD, flags);
2344 load->add(Out::elfHeader);
2345 load->add(Out::programHeaders);
2346 }
2347 }
2348
2349 // PT_GNU_RELRO includes all sections that should be marked as
2350 // read-only by dynamic linker after processing relocations.
2351 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2352 // an error message if more than one PT_GNU_RELRO PHDR is required.
2353 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2354 bool inRelroPhdr = false;
2355 OutputSection *relroEnd = nullptr;
2356 for (OutputSection *sec : outputSections) {
2357 if (sec->partition != partNo || !needsPtLoad(sec))
2358 continue;
2359 if (isRelroSection(sec)) {
2360 inRelroPhdr = true;
2361 if (!relroEnd)
2362 relRo->add(sec);
2363 else
2364 error("section: " + sec->name + " is not contiguous with other relro" +
2365 " sections");
2366 } else if (inRelroPhdr) {
2367 inRelroPhdr = false;
2368 relroEnd = sec;
2369 }
2370 }
2371
2372 for (OutputSection *sec : outputSections) {
2373 if (!needsPtLoad(sec))
2374 continue;
2375
2376 // Normally, sections in partitions other than the current partition are
2377 // ignored. But partition number 255 is a special case: it contains the
2378 // partition end marker (.part.end). It needs to be added to the main
2379 // partition so that a segment is created for it in the main partition,
2380 // which will cause the dynamic loader to reserve space for the other
2381 // partitions.
2382 if (sec->partition != partNo) {
2383 if (isMain && sec->partition == 255)
2384 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2385 continue;
2386 }
2387
2388 // Segments are contiguous memory regions that has the same attributes
2389 // (e.g. executable or writable). There is one phdr for each segment.
2390 // Therefore, we need to create a new phdr when the next section has
2391 // different flags or is loaded at a discontiguous address or memory
2392 // region using AT or AT> linker script command, respectively. At the same
2393 // time, we don't want to create a separate load segment for the headers,
2394 // even if the first output section has an AT or AT> attribute.
2395 uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2396 bool sameLMARegion =
2397 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2398 if (!(load && newFlags == flags && sec != relroEnd &&
2399 sec->memRegion == load->firstSec->memRegion &&
2400 (sameLMARegion || load->lastSec == Out::programHeaders))) {
2401 load = addHdr(PT_LOAD, newFlags);
2402 flags = newFlags;
2403 }
2404
2405 load->add(sec);
2406 }
2407
2408 // Add a TLS segment if any.
2409 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2410 for (OutputSection *sec : outputSections)
2411 if (sec->partition == partNo && sec->flags & SHF_TLS)
2412 tlsHdr->add(sec);
2413 if (tlsHdr->firstSec)
2414 ret.push_back(tlsHdr);
2415
2416 // Add an entry for .dynamic.
2417 if (OutputSection *sec = part.dynamic->getParent())
2418 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2419
2420 if (relRo->firstSec)
2421 ret.push_back(relRo);
2422
2423 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2424 if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2425 part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2426 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2427 ->add(part.ehFrameHdr->getParent());
2428
2429 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2430 // the dynamic linker fill the segment with random data.
2431 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2432 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2433
2434 if (config->zGnustack != GnuStackKind::None) {
2435 // PT_GNU_STACK is a special section to tell the loader to make the
2436 // pages for the stack non-executable. If you really want an executable
2437 // stack, you can pass -z execstack, but that's not recommended for
2438 // security reasons.
2439 unsigned perm = PF_R | PF_W;
2440 if (config->zGnustack == GnuStackKind::Exec)
2441 perm |= PF_X;
2442 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2443 }
2444
2445 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2446 // is expected to perform W^X violations, such as calling mprotect(2) or
2447 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2448 // OpenBSD.
2449 if (config->zWxneeded)
2450 addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2451
2452 if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2453 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2454
2455 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2456 // same alignment.
2457 PhdrEntry *note = nullptr;
2458 for (OutputSection *sec : outputSections) {
2459 if (sec->partition != partNo)
2460 continue;
2461 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2462 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
2463 note = addHdr(PT_NOTE, PF_R);
2464 note->add(sec);
2465 } else {
2466 note = nullptr;
2467 }
2468 }
2469 return ret;
2470 }
2471
2472 template <class ELFT>
addPhdrForSection(Partition & part,unsigned shType,unsigned pType,unsigned pFlags)2473 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2474 unsigned pType, unsigned pFlags) {
2475 unsigned partNo = part.getNumber();
2476 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2477 return cmd->partition == partNo && cmd->type == shType;
2478 });
2479 if (i == outputSections.end())
2480 return;
2481
2482 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2483 entry->add(*i);
2484 part.phdrs.push_back(entry);
2485 }
2486
2487 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2488 // This is achieved by assigning an alignment expression to addrExpr of each
2489 // such section.
fixSectionAlignments()2490 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2491 const PhdrEntry *prev;
2492 auto pageAlign = [&](const PhdrEntry *p) {
2493 OutputSection *cmd = p->firstSec;
2494 if (!cmd)
2495 return;
2496 cmd->alignExpr = [align = cmd->alignment]() { return align; };
2497 if (!cmd->addrExpr) {
2498 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2499 // padding in the file contents.
2500 //
2501 // When -z separate-code is used we must not have any overlap in pages
2502 // between an executable segment and a non-executable segment. We align to
2503 // the next maximum page size boundary on transitions between executable
2504 // and non-executable segments.
2505 //
2506 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2507 // sections will be extracted to a separate file. Align to the next
2508 // maximum page size boundary so that we can find the ELF header at the
2509 // start. We cannot benefit from overlapping p_offset ranges with the
2510 // previous segment anyway.
2511 if (config->zSeparate == SeparateSegmentKind::Loadable ||
2512 (config->zSeparate == SeparateSegmentKind::Code && prev &&
2513 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2514 cmd->type == SHT_LLVM_PART_EHDR)
2515 cmd->addrExpr = [] {
2516 return alignTo(script->getDot(), config->maxPageSize);
2517 };
2518 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2519 // it must be the RW. Align to p_align(PT_TLS) to make sure
2520 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2521 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2522 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2523 // be congruent to 0 modulo p_align(PT_TLS).
2524 //
2525 // Technically this is not required, but as of 2019, some dynamic loaders
2526 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2527 // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2528 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2529 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2530 // blocks correctly. We need to keep the workaround for a while.
2531 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2532 cmd->addrExpr = [] {
2533 return alignTo(script->getDot(), config->maxPageSize) +
2534 alignTo(script->getDot() % config->maxPageSize,
2535 Out::tlsPhdr->p_align);
2536 };
2537 else
2538 cmd->addrExpr = [] {
2539 return alignTo(script->getDot(), config->maxPageSize) +
2540 script->getDot() % config->maxPageSize;
2541 };
2542 }
2543 };
2544
2545 for (Partition &part : partitions) {
2546 prev = nullptr;
2547 for (const PhdrEntry *p : part.phdrs)
2548 if (p->p_type == PT_LOAD && p->firstSec) {
2549 pageAlign(p);
2550 prev = p;
2551 }
2552 }
2553 }
2554
2555 // Compute an in-file position for a given section. The file offset must be the
2556 // same with its virtual address modulo the page size, so that the loader can
2557 // load executables without any address adjustment.
computeFileOffset(OutputSection * os,uint64_t off)2558 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2559 // The first section in a PT_LOAD has to have congruent offset and address
2560 // modulo the maximum page size.
2561 if (os->ptLoad && os->ptLoad->firstSec == os)
2562 return alignTo(off, os->ptLoad->p_align, os->addr);
2563
2564 // File offsets are not significant for .bss sections other than the first one
2565 // in a PT_LOAD. By convention, we keep section offsets monotonically
2566 // increasing rather than setting to zero.
2567 if (os->type == SHT_NOBITS)
2568 return off;
2569
2570 // If the section is not in a PT_LOAD, we just have to align it.
2571 if (!os->ptLoad)
2572 return alignTo(off, os->alignment);
2573
2574 // If two sections share the same PT_LOAD the file offset is calculated
2575 // using this formula: Off2 = Off1 + (VA2 - VA1).
2576 OutputSection *first = os->ptLoad->firstSec;
2577 return first->offset + os->addr - first->addr;
2578 }
2579
2580 // Set an in-file position to a given section and returns the end position of
2581 // the section.
setFileOffset(OutputSection * os,uint64_t off)2582 static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
2583 off = computeFileOffset(os, off);
2584 os->offset = off;
2585
2586 if (os->type == SHT_NOBITS)
2587 return off;
2588 return off + os->size;
2589 }
2590
assignFileOffsetsBinary()2591 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2592 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2593 auto needsOffset = [](OutputSection &sec) {
2594 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
2595 };
2596 uint64_t minAddr = UINT64_MAX;
2597 for (OutputSection *sec : outputSections)
2598 if (needsOffset(*sec)) {
2599 sec->offset = sec->getLMA();
2600 minAddr = std::min(minAddr, sec->offset);
2601 }
2602
2603 // Sections are laid out at LMA minus minAddr.
2604 fileSize = 0;
2605 for (OutputSection *sec : outputSections)
2606 if (needsOffset(*sec)) {
2607 sec->offset -= minAddr;
2608 fileSize = std::max(fileSize, sec->offset + sec->size);
2609 }
2610 }
2611
rangeToString(uint64_t addr,uint64_t len)2612 static std::string rangeToString(uint64_t addr, uint64_t len) {
2613 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2614 }
2615
2616 // Assign file offsets to output sections.
assignFileOffsets()2617 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2618 uint64_t off = 0;
2619 off = setFileOffset(Out::elfHeader, off);
2620 off = setFileOffset(Out::programHeaders, off);
2621
2622 PhdrEntry *lastRX = nullptr;
2623 for (Partition &part : partitions)
2624 for (PhdrEntry *p : part.phdrs)
2625 if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2626 lastRX = p;
2627
2628 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2629 // will not occupy file offsets contained by a PT_LOAD.
2630 for (OutputSection *sec : outputSections) {
2631 if (!(sec->flags & SHF_ALLOC))
2632 continue;
2633 off = setFileOffset(sec, off);
2634
2635 // If this is a last section of the last executable segment and that
2636 // segment is the last loadable segment, align the offset of the
2637 // following section to avoid loading non-segments parts of the file.
2638 if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2639 lastRX->lastSec == sec)
2640 off = alignTo(off, config->commonPageSize);
2641 }
2642 for (OutputSection *sec : outputSections)
2643 if (!(sec->flags & SHF_ALLOC))
2644 off = setFileOffset(sec, off);
2645
2646 sectionHeaderOff = alignTo(off, config->wordsize);
2647 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2648
2649 // Our logic assumes that sections have rising VA within the same segment.
2650 // With use of linker scripts it is possible to violate this rule and get file
2651 // offset overlaps or overflows. That should never happen with a valid script
2652 // which does not move the location counter backwards and usually scripts do
2653 // not do that. Unfortunately, there are apps in the wild, for example, Linux
2654 // kernel, which control segment distribution explicitly and move the counter
2655 // backwards, so we have to allow doing that to support linking them. We
2656 // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2657 // we want to prevent file size overflows because it would crash the linker.
2658 for (OutputSection *sec : outputSections) {
2659 if (sec->type == SHT_NOBITS)
2660 continue;
2661 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2662 error("unable to place section " + sec->name + " at file offset " +
2663 rangeToString(sec->offset, sec->size) +
2664 "; check your linker script for overflows");
2665 }
2666 }
2667
2668 // Finalize the program headers. We call this function after we assign
2669 // file offsets and VAs to all sections.
setPhdrs(Partition & part)2670 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2671 for (PhdrEntry *p : part.phdrs) {
2672 OutputSection *first = p->firstSec;
2673 OutputSection *last = p->lastSec;
2674
2675 if (first) {
2676 p->p_filesz = last->offset - first->offset;
2677 if (last->type != SHT_NOBITS)
2678 p->p_filesz += last->size;
2679
2680 p->p_memsz = last->addr + last->size - first->addr;
2681 p->p_offset = first->offset;
2682 p->p_vaddr = first->addr;
2683
2684 // File offsets in partitions other than the main partition are relative
2685 // to the offset of the ELF headers. Perform that adjustment now.
2686 if (part.elfHeader)
2687 p->p_offset -= part.elfHeader->getParent()->offset;
2688
2689 if (!p->hasLMA)
2690 p->p_paddr = first->getLMA();
2691 }
2692
2693 if (p->p_type == PT_GNU_RELRO) {
2694 p->p_align = 1;
2695 // musl/glibc ld.so rounds the size down, so we need to round up
2696 // to protect the last page. This is a no-op on FreeBSD which always
2697 // rounds up.
2698 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
2699 p->p_offset;
2700 }
2701 }
2702 }
2703
2704 // A helper struct for checkSectionOverlap.
2705 namespace {
2706 struct SectionOffset {
2707 OutputSection *sec;
2708 uint64_t offset;
2709 };
2710 } // namespace
2711
2712 // Check whether sections overlap for a specific address range (file offsets,
2713 // load and virtual addresses).
checkOverlap(StringRef name,std::vector<SectionOffset> & sections,bool isVirtualAddr)2714 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions,
2715 bool isVirtualAddr) {
2716 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2717 return a.offset < b.offset;
2718 });
2719
2720 // Finding overlap is easy given a vector is sorted by start position.
2721 // If an element starts before the end of the previous element, they overlap.
2722 for (size_t i = 1, end = sections.size(); i < end; ++i) {
2723 SectionOffset a = sections[i - 1];
2724 SectionOffset b = sections[i];
2725 if (b.offset >= a.offset + a.sec->size)
2726 continue;
2727
2728 // If both sections are in OVERLAY we allow the overlapping of virtual
2729 // addresses, because it is what OVERLAY was designed for.
2730 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2731 continue;
2732
2733 errorOrWarn("section " + a.sec->name + " " + name +
2734 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2735 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2736 b.sec->name + " range is " +
2737 rangeToString(b.offset, b.sec->size));
2738 }
2739 }
2740
2741 // Check for overlapping sections and address overflows.
2742 //
2743 // In this function we check that none of the output sections have overlapping
2744 // file offsets. For SHF_ALLOC sections we also check that the load address
2745 // ranges and the virtual address ranges don't overlap
checkSections()2746 template <class ELFT> void Writer<ELFT>::checkSections() {
2747 // First, check that section's VAs fit in available address space for target.
2748 for (OutputSection *os : outputSections)
2749 if ((os->addr + os->size < os->addr) ||
2750 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
2751 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2752 " of size 0x" + utohexstr(os->size) +
2753 " exceeds available address space");
2754
2755 // Check for overlapping file offsets. In this case we need to skip any
2756 // section marked as SHT_NOBITS. These sections don't actually occupy space in
2757 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2758 // binary is specified only add SHF_ALLOC sections are added to the output
2759 // file so we skip any non-allocated sections in that case.
2760 std::vector<SectionOffset> fileOffs;
2761 for (OutputSection *sec : outputSections)
2762 if (sec->size > 0 && sec->type != SHT_NOBITS &&
2763 (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2764 fileOffs.push_back({sec, sec->offset});
2765 checkOverlap("file", fileOffs, false);
2766
2767 // When linking with -r there is no need to check for overlapping virtual/load
2768 // addresses since those addresses will only be assigned when the final
2769 // executable/shared object is created.
2770 if (config->relocatable)
2771 return;
2772
2773 // Checking for overlapping virtual and load addresses only needs to take
2774 // into account SHF_ALLOC sections since others will not be loaded.
2775 // Furthermore, we also need to skip SHF_TLS sections since these will be
2776 // mapped to other addresses at runtime and can therefore have overlapping
2777 // ranges in the file.
2778 std::vector<SectionOffset> vmas;
2779 for (OutputSection *sec : outputSections)
2780 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2781 vmas.push_back({sec, sec->addr});
2782 checkOverlap("virtual address", vmas, true);
2783
2784 // Finally, check that the load addresses don't overlap. This will usually be
2785 // the same as the virtual addresses but can be different when using a linker
2786 // script with AT().
2787 std::vector<SectionOffset> lmas;
2788 for (OutputSection *sec : outputSections)
2789 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2790 lmas.push_back({sec, sec->getLMA()});
2791 checkOverlap("load address", lmas, false);
2792 }
2793
2794 // The entry point address is chosen in the following ways.
2795 //
2796 // 1. the '-e' entry command-line option;
2797 // 2. the ENTRY(symbol) command in a linker control script;
2798 // 3. the value of the symbol _start, if present;
2799 // 4. the number represented by the entry symbol, if it is a number;
2800 // 5. the address of the first byte of the .text section, if present;
2801 // 6. the address 0.
getEntryAddr()2802 static uint64_t getEntryAddr() {
2803 // Case 1, 2 or 3
2804 if (Symbol *b = symtab->find(config->entry))
2805 return b->getVA();
2806
2807 // Case 4
2808 uint64_t addr;
2809 if (to_integer(config->entry, addr))
2810 return addr;
2811
2812 // Case 5
2813 if (OutputSection *sec = findSection(".text")) {
2814 if (config->warnMissingEntry)
2815 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
2816 utohexstr(sec->addr));
2817 return sec->addr;
2818 }
2819
2820 // Case 6
2821 if (config->warnMissingEntry)
2822 warn("cannot find entry symbol " + config->entry +
2823 "; not setting start address");
2824 return 0;
2825 }
2826
getELFType()2827 static uint16_t getELFType() {
2828 if (config->isPic)
2829 return ET_DYN;
2830 if (config->relocatable)
2831 return ET_REL;
2832 return ET_EXEC;
2833 }
2834
writeHeader()2835 template <class ELFT> void Writer<ELFT>::writeHeader() {
2836 writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2837 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2838
2839 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2840 eHdr->e_type = getELFType();
2841 eHdr->e_entry = getEntryAddr();
2842 eHdr->e_shoff = sectionHeaderOff;
2843
2844 // Write the section header table.
2845 //
2846 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2847 // and e_shstrndx fields. When the value of one of these fields exceeds
2848 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2849 // use fields in the section header at index 0 to store
2850 // the value. The sentinel values and fields are:
2851 // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2852 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2853 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2854 size_t num = outputSections.size() + 1;
2855 if (num >= SHN_LORESERVE)
2856 sHdrs->sh_size = num;
2857 else
2858 eHdr->e_shnum = num;
2859
2860 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2861 if (strTabIndex >= SHN_LORESERVE) {
2862 sHdrs->sh_link = strTabIndex;
2863 eHdr->e_shstrndx = SHN_XINDEX;
2864 } else {
2865 eHdr->e_shstrndx = strTabIndex;
2866 }
2867
2868 for (OutputSection *sec : outputSections)
2869 sec->writeHeaderTo<ELFT>(++sHdrs);
2870 }
2871
2872 // Open a result file.
openFile()2873 template <class ELFT> void Writer<ELFT>::openFile() {
2874 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2875 if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2876 error("output file too large: " + Twine(fileSize) + " bytes");
2877 return;
2878 }
2879
2880 unlinkAsync(config->outputFile);
2881 unsigned flags = 0;
2882 if (!config->relocatable)
2883 flags |= FileOutputBuffer::F_executable;
2884 if (!config->mmapOutputFile)
2885 flags |= FileOutputBuffer::F_no_mmap;
2886 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2887 FileOutputBuffer::create(config->outputFile, fileSize, flags);
2888
2889 if (!bufferOrErr) {
2890 error("failed to open " + config->outputFile + ": " +
2891 llvm::toString(bufferOrErr.takeError()));
2892 return;
2893 }
2894 buffer = std::move(*bufferOrErr);
2895 Out::bufferStart = buffer->getBufferStart();
2896 }
2897
writeSectionsBinary()2898 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2899 for (OutputSection *sec : outputSections)
2900 if (sec->flags & SHF_ALLOC)
2901 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2902 }
2903
fillTrap(uint8_t * i,uint8_t * end)2904 static void fillTrap(uint8_t *i, uint8_t *end) {
2905 for (; i + 4 <= end; i += 4)
2906 memcpy(i, &target->trapInstr, 4);
2907 }
2908
2909 // Fill the last page of executable segments with trap instructions
2910 // instead of leaving them as zero. Even though it is not required by any
2911 // standard, it is in general a good thing to do for security reasons.
2912 //
2913 // We'll leave other pages in segments as-is because the rest will be
2914 // overwritten by output sections.
writeTrapInstr()2915 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2916 for (Partition &part : partitions) {
2917 // Fill the last page.
2918 for (PhdrEntry *p : part.phdrs)
2919 if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2920 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
2921 config->commonPageSize),
2922 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
2923 config->commonPageSize));
2924
2925 // Round up the file size of the last segment to the page boundary iff it is
2926 // an executable segment to ensure that other tools don't accidentally
2927 // trim the instruction padding (e.g. when stripping the file).
2928 PhdrEntry *last = nullptr;
2929 for (PhdrEntry *p : part.phdrs)
2930 if (p->p_type == PT_LOAD)
2931 last = p;
2932
2933 if (last && (last->p_flags & PF_X))
2934 last->p_memsz = last->p_filesz =
2935 alignTo(last->p_filesz, config->commonPageSize);
2936 }
2937 }
2938
2939 // Write section contents to a mmap'ed file.
writeSections()2940 template <class ELFT> void Writer<ELFT>::writeSections() {
2941 // In -r or -emit-relocs mode, write the relocation sections first as in
2942 // ELf_Rel targets we might find out that we need to modify the relocated
2943 // section while doing it.
2944 for (OutputSection *sec : outputSections)
2945 if (sec->type == SHT_REL || sec->type == SHT_RELA)
2946 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2947
2948 for (OutputSection *sec : outputSections)
2949 if (sec->type != SHT_REL && sec->type != SHT_RELA)
2950 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2951 }
2952
2953 // Split one uint8 array into small pieces of uint8 arrays.
split(ArrayRef<uint8_t> arr,size_t chunkSize)2954 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
2955 size_t chunkSize) {
2956 std::vector<ArrayRef<uint8_t>> ret;
2957 while (arr.size() > chunkSize) {
2958 ret.push_back(arr.take_front(chunkSize));
2959 arr = arr.drop_front(chunkSize);
2960 }
2961 if (!arr.empty())
2962 ret.push_back(arr);
2963 return ret;
2964 }
2965
2966 // Computes a hash value of Data using a given hash function.
2967 // In order to utilize multiple cores, we first split data into 1MB
2968 // chunks, compute a hash for each chunk, and then compute a hash value
2969 // of the hash values.
2970 static void
computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,llvm::ArrayRef<uint8_t> data,std::function<void (uint8_t * dest,ArrayRef<uint8_t> arr)> hashFn)2971 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2972 llvm::ArrayRef<uint8_t> data,
2973 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2974 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2975 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
2976
2977 // Compute hash values.
2978 parallelForEachN(0, chunks.size(), [&](size_t i) {
2979 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
2980 });
2981
2982 // Write to the final output buffer.
2983 hashFn(hashBuf.data(), hashes);
2984 }
2985
writeBuildId()2986 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2987 if (!mainPart->buildId || !mainPart->buildId->getParent())
2988 return;
2989
2990 if (config->buildId == BuildIdKind::Hexstring) {
2991 for (Partition &part : partitions)
2992 part.buildId->writeBuildId(config->buildIdVector);
2993 return;
2994 }
2995
2996 // Compute a hash of all sections of the output file.
2997 size_t hashSize = mainPart->buildId->hashSize;
2998 std::vector<uint8_t> buildId(hashSize);
2999 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
3000
3001 switch (config->buildId) {
3002 case BuildIdKind::Fast:
3003 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
3004 write64le(dest, xxHash64(arr));
3005 });
3006 break;
3007 case BuildIdKind::Md5:
3008 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3009 memcpy(dest, MD5::hash(arr).data(), hashSize);
3010 });
3011 break;
3012 case BuildIdKind::Sha1:
3013 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3014 memcpy(dest, SHA1::hash(arr).data(), hashSize);
3015 });
3016 break;
3017 case BuildIdKind::Uuid:
3018 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
3019 error("entropy source failure: " + ec.message());
3020 break;
3021 default:
3022 llvm_unreachable("unknown BuildIdKind");
3023 }
3024 for (Partition &part : partitions)
3025 part.buildId->writeBuildId(buildId);
3026 }
3027
3028 template void elf::createSyntheticSections<ELF32LE>();
3029 template void elf::createSyntheticSections<ELF32BE>();
3030 template void elf::createSyntheticSections<ELF64LE>();
3031 template void elf::createSyntheticSections<ELF64BE>();
3032
3033 template void elf::writeResult<ELF32LE>();
3034 template void elf::writeResult<ELF32BE>();
3035 template void elf::writeResult<ELF64LE>();
3036 template void elf::writeResult<ELF64BE>();
3037