1 //===- Inliner.cpp - Pass to inline function calls ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a basic inlining algorithm that operates bottom up over
10 // the Strongly Connect Components(SCCs) of the CallGraph. This enables a more
11 // incremental propagation of inlining decisions from the leafs to the roots of
12 // the callgraph.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "PassDetail.h"
17 #include "mlir/Analysis/CallGraph.h"
18 #include "mlir/IR/PatternMatch.h"
19 #include "mlir/Interfaces/SideEffectInterfaces.h"
20 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
21 #include "mlir/Transforms/InliningUtils.h"
22 #include "mlir/Transforms/Passes.h"
23 #include "llvm/ADT/SCCIterator.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/Parallel.h"
26
27 #define DEBUG_TYPE "inlining"
28
29 using namespace mlir;
30
31 //===----------------------------------------------------------------------===//
32 // Symbol Use Tracking
33 //===----------------------------------------------------------------------===//
34
35 /// Walk all of the used symbol callgraph nodes referenced with the given op.
walkReferencedSymbolNodes(Operation * op,CallGraph & cg,SymbolTableCollection & symbolTable,DenseMap<Attribute,CallGraphNode * > & resolvedRefs,function_ref<void (CallGraphNode *,Operation *)> callback)36 static void walkReferencedSymbolNodes(
37 Operation *op, CallGraph &cg, SymbolTableCollection &symbolTable,
38 DenseMap<Attribute, CallGraphNode *> &resolvedRefs,
39 function_ref<void(CallGraphNode *, Operation *)> callback) {
40 auto symbolUses = SymbolTable::getSymbolUses(op);
41 assert(symbolUses && "expected uses to be valid");
42
43 Operation *symbolTableOp = op->getParentOp();
44 for (const SymbolTable::SymbolUse &use : *symbolUses) {
45 auto refIt = resolvedRefs.insert({use.getSymbolRef(), nullptr});
46 CallGraphNode *&node = refIt.first->second;
47
48 // If this is the first instance of this reference, try to resolve a
49 // callgraph node for it.
50 if (refIt.second) {
51 auto *symbolOp = symbolTable.lookupNearestSymbolFrom(symbolTableOp,
52 use.getSymbolRef());
53 auto callableOp = dyn_cast_or_null<CallableOpInterface>(symbolOp);
54 if (!callableOp)
55 continue;
56 node = cg.lookupNode(callableOp.getCallableRegion());
57 }
58 if (node)
59 callback(node, use.getUser());
60 }
61 }
62
63 //===----------------------------------------------------------------------===//
64 // CGUseList
65
66 namespace {
67 /// This struct tracks the uses of callgraph nodes that can be dropped when
68 /// use_empty. It directly tracks and manages a use-list for all of the
69 /// call-graph nodes. This is necessary because many callgraph nodes are
70 /// referenced by SymbolRefAttr, which has no mechanism akin to the SSA `Use`
71 /// class.
72 struct CGUseList {
73 /// This struct tracks the uses of callgraph nodes within a specific
74 /// operation.
75 struct CGUser {
76 /// Any nodes referenced in the top-level attribute list of this user. We
77 /// use a set here because the number of references does not matter.
78 DenseSet<CallGraphNode *> topLevelUses;
79
80 /// Uses of nodes referenced by nested operations.
81 DenseMap<CallGraphNode *, int> innerUses;
82 };
83
84 CGUseList(Operation *op, CallGraph &cg, SymbolTableCollection &symbolTable);
85
86 /// Drop uses of nodes referred to by the given call operation that resides
87 /// within 'userNode'.
88 void dropCallUses(CallGraphNode *userNode, Operation *callOp, CallGraph &cg);
89
90 /// Remove the given node from the use list.
91 void eraseNode(CallGraphNode *node);
92
93 /// Returns true if the given callgraph node has no uses and can be pruned.
94 bool isDead(CallGraphNode *node) const;
95
96 /// Returns true if the given callgraph node has a single use and can be
97 /// discarded.
98 bool hasOneUseAndDiscardable(CallGraphNode *node) const;
99
100 /// Recompute the uses held by the given callgraph node.
101 void recomputeUses(CallGraphNode *node, CallGraph &cg);
102
103 /// Merge the uses of 'lhs' with the uses of the 'rhs' after inlining a copy
104 /// of 'lhs' into 'rhs'.
105 void mergeUsesAfterInlining(CallGraphNode *lhs, CallGraphNode *rhs);
106
107 private:
108 /// Decrement the uses of discardable nodes referenced by the given user.
109 void decrementDiscardableUses(CGUser &uses);
110
111 /// A mapping between a discardable callgraph node (that is a symbol) and the
112 /// number of uses for this node.
113 DenseMap<CallGraphNode *, int> discardableSymNodeUses;
114
115 /// A mapping between a callgraph node and the symbol callgraph nodes that it
116 /// uses.
117 DenseMap<CallGraphNode *, CGUser> nodeUses;
118
119 /// A symbol table to use when resolving call lookups.
120 SymbolTableCollection &symbolTable;
121 };
122 } // end anonymous namespace
123
CGUseList(Operation * op,CallGraph & cg,SymbolTableCollection & symbolTable)124 CGUseList::CGUseList(Operation *op, CallGraph &cg,
125 SymbolTableCollection &symbolTable)
126 : symbolTable(symbolTable) {
127 /// A set of callgraph nodes that are always known to be live during inlining.
128 DenseMap<Attribute, CallGraphNode *> alwaysLiveNodes;
129
130 // Walk each of the symbol tables looking for discardable callgraph nodes.
131 auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) {
132 for (Operation &op : symbolTableOp->getRegion(0).getOps()) {
133 // If this is a callgraph operation, check to see if it is discardable.
134 if (auto callable = dyn_cast<CallableOpInterface>(&op)) {
135 if (auto *node = cg.lookupNode(callable.getCallableRegion())) {
136 SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(&op);
137 if (symbol && (allUsesVisible || symbol.isPrivate()) &&
138 symbol.canDiscardOnUseEmpty()) {
139 discardableSymNodeUses.try_emplace(node, 0);
140 }
141 continue;
142 }
143 }
144 // Otherwise, check for any referenced nodes. These will be always-live.
145 walkReferencedSymbolNodes(&op, cg, symbolTable, alwaysLiveNodes,
146 [](CallGraphNode *, Operation *) {});
147 }
148 };
149 SymbolTable::walkSymbolTables(op, /*allSymUsesVisible=*/!op->getBlock(),
150 walkFn);
151
152 // Drop the use information for any discardable nodes that are always live.
153 for (auto &it : alwaysLiveNodes)
154 discardableSymNodeUses.erase(it.second);
155
156 // Compute the uses for each of the callable nodes in the graph.
157 for (CallGraphNode *node : cg)
158 recomputeUses(node, cg);
159 }
160
dropCallUses(CallGraphNode * userNode,Operation * callOp,CallGraph & cg)161 void CGUseList::dropCallUses(CallGraphNode *userNode, Operation *callOp,
162 CallGraph &cg) {
163 auto &userRefs = nodeUses[userNode].innerUses;
164 auto walkFn = [&](CallGraphNode *node, Operation *user) {
165 auto parentIt = userRefs.find(node);
166 if (parentIt == userRefs.end())
167 return;
168 --parentIt->second;
169 --discardableSymNodeUses[node];
170 };
171 DenseMap<Attribute, CallGraphNode *> resolvedRefs;
172 walkReferencedSymbolNodes(callOp, cg, symbolTable, resolvedRefs, walkFn);
173 }
174
eraseNode(CallGraphNode * node)175 void CGUseList::eraseNode(CallGraphNode *node) {
176 // Drop all child nodes.
177 for (auto &edge : *node)
178 if (edge.isChild())
179 eraseNode(edge.getTarget());
180
181 // Drop the uses held by this node and erase it.
182 auto useIt = nodeUses.find(node);
183 assert(useIt != nodeUses.end() && "expected node to be valid");
184 decrementDiscardableUses(useIt->getSecond());
185 nodeUses.erase(useIt);
186 discardableSymNodeUses.erase(node);
187 }
188
isDead(CallGraphNode * node) const189 bool CGUseList::isDead(CallGraphNode *node) const {
190 // If the parent operation isn't a symbol, simply check normal SSA deadness.
191 Operation *nodeOp = node->getCallableRegion()->getParentOp();
192 if (!isa<SymbolOpInterface>(nodeOp))
193 return MemoryEffectOpInterface::hasNoEffect(nodeOp) && nodeOp->use_empty();
194
195 // Otherwise, check the number of symbol uses.
196 auto symbolIt = discardableSymNodeUses.find(node);
197 return symbolIt != discardableSymNodeUses.end() && symbolIt->second == 0;
198 }
199
hasOneUseAndDiscardable(CallGraphNode * node) const200 bool CGUseList::hasOneUseAndDiscardable(CallGraphNode *node) const {
201 // If this isn't a symbol node, check for side-effects and SSA use count.
202 Operation *nodeOp = node->getCallableRegion()->getParentOp();
203 if (!isa<SymbolOpInterface>(nodeOp))
204 return MemoryEffectOpInterface::hasNoEffect(nodeOp) && nodeOp->hasOneUse();
205
206 // Otherwise, check the number of symbol uses.
207 auto symbolIt = discardableSymNodeUses.find(node);
208 return symbolIt != discardableSymNodeUses.end() && symbolIt->second == 1;
209 }
210
recomputeUses(CallGraphNode * node,CallGraph & cg)211 void CGUseList::recomputeUses(CallGraphNode *node, CallGraph &cg) {
212 Operation *parentOp = node->getCallableRegion()->getParentOp();
213 CGUser &uses = nodeUses[node];
214 decrementDiscardableUses(uses);
215
216 // Collect the new discardable uses within this node.
217 uses = CGUser();
218 DenseMap<Attribute, CallGraphNode *> resolvedRefs;
219 auto walkFn = [&](CallGraphNode *refNode, Operation *user) {
220 auto discardSymIt = discardableSymNodeUses.find(refNode);
221 if (discardSymIt == discardableSymNodeUses.end())
222 return;
223
224 if (user != parentOp)
225 ++uses.innerUses[refNode];
226 else if (!uses.topLevelUses.insert(refNode).second)
227 return;
228 ++discardSymIt->second;
229 };
230 walkReferencedSymbolNodes(parentOp, cg, symbolTable, resolvedRefs, walkFn);
231 }
232
mergeUsesAfterInlining(CallGraphNode * lhs,CallGraphNode * rhs)233 void CGUseList::mergeUsesAfterInlining(CallGraphNode *lhs, CallGraphNode *rhs) {
234 auto &lhsUses = nodeUses[lhs], &rhsUses = nodeUses[rhs];
235 for (auto &useIt : lhsUses.innerUses) {
236 rhsUses.innerUses[useIt.first] += useIt.second;
237 discardableSymNodeUses[useIt.first] += useIt.second;
238 }
239 }
240
decrementDiscardableUses(CGUser & uses)241 void CGUseList::decrementDiscardableUses(CGUser &uses) {
242 for (CallGraphNode *node : uses.topLevelUses)
243 --discardableSymNodeUses[node];
244 for (auto &it : uses.innerUses)
245 discardableSymNodeUses[it.first] -= it.second;
246 }
247
248 //===----------------------------------------------------------------------===//
249 // CallGraph traversal
250 //===----------------------------------------------------------------------===//
251
252 namespace {
253 /// This class represents a specific callgraph SCC.
254 class CallGraphSCC {
255 public:
CallGraphSCC(llvm::scc_iterator<const CallGraph * > & parentIterator)256 CallGraphSCC(llvm::scc_iterator<const CallGraph *> &parentIterator)
257 : parentIterator(parentIterator) {}
258 /// Return a range over the nodes within this SCC.
begin()259 std::vector<CallGraphNode *>::iterator begin() { return nodes.begin(); }
end()260 std::vector<CallGraphNode *>::iterator end() { return nodes.end(); }
261
262 /// Reset the nodes of this SCC with those provided.
reset(const std::vector<CallGraphNode * > & newNodes)263 void reset(const std::vector<CallGraphNode *> &newNodes) { nodes = newNodes; }
264
265 /// Remove the given node from this SCC.
remove(CallGraphNode * node)266 void remove(CallGraphNode *node) {
267 auto it = llvm::find(nodes, node);
268 if (it != nodes.end()) {
269 nodes.erase(it);
270 parentIterator.ReplaceNode(node, nullptr);
271 }
272 }
273
274 private:
275 std::vector<CallGraphNode *> nodes;
276 llvm::scc_iterator<const CallGraph *> &parentIterator;
277 };
278 } // end anonymous namespace
279
280 /// Run a given transformation over the SCCs of the callgraph in a bottom up
281 /// traversal.
282 static void
runTransformOnCGSCCs(const CallGraph & cg,function_ref<void (CallGraphSCC &)> sccTransformer)283 runTransformOnCGSCCs(const CallGraph &cg,
284 function_ref<void(CallGraphSCC &)> sccTransformer) {
285 llvm::scc_iterator<const CallGraph *> cgi = llvm::scc_begin(&cg);
286 CallGraphSCC currentSCC(cgi);
287 while (!cgi.isAtEnd()) {
288 // Copy the current SCC and increment so that the transformer can modify the
289 // SCC without invalidating our iterator.
290 currentSCC.reset(*cgi);
291 ++cgi;
292 sccTransformer(currentSCC);
293 }
294 }
295
296 namespace {
297 /// This struct represents a resolved call to a given callgraph node. Given that
298 /// the call does not actually contain a direct reference to the
299 /// Region(CallGraphNode) that it is dispatching to, we need to resolve them
300 /// explicitly.
301 struct ResolvedCall {
ResolvedCall__anon92f6fd4f0711::ResolvedCall302 ResolvedCall(CallOpInterface call, CallGraphNode *sourceNode,
303 CallGraphNode *targetNode)
304 : call(call), sourceNode(sourceNode), targetNode(targetNode) {}
305 CallOpInterface call;
306 CallGraphNode *sourceNode, *targetNode;
307 };
308 } // end anonymous namespace
309
310 /// Collect all of the callable operations within the given range of blocks. If
311 /// `traverseNestedCGNodes` is true, this will also collect call operations
312 /// inside of nested callgraph nodes.
collectCallOps(iterator_range<Region::iterator> blocks,CallGraphNode * sourceNode,CallGraph & cg,SymbolTableCollection & symbolTable,SmallVectorImpl<ResolvedCall> & calls,bool traverseNestedCGNodes)313 static void collectCallOps(iterator_range<Region::iterator> blocks,
314 CallGraphNode *sourceNode, CallGraph &cg,
315 SymbolTableCollection &symbolTable,
316 SmallVectorImpl<ResolvedCall> &calls,
317 bool traverseNestedCGNodes) {
318 SmallVector<std::pair<Block *, CallGraphNode *>, 8> worklist;
319 auto addToWorklist = [&](CallGraphNode *node,
320 iterator_range<Region::iterator> blocks) {
321 for (Block &block : blocks)
322 worklist.emplace_back(&block, node);
323 };
324
325 addToWorklist(sourceNode, blocks);
326 while (!worklist.empty()) {
327 Block *block;
328 std::tie(block, sourceNode) = worklist.pop_back_val();
329
330 for (Operation &op : *block) {
331 if (auto call = dyn_cast<CallOpInterface>(op)) {
332 // TODO: Support inlining nested call references.
333 CallInterfaceCallable callable = call.getCallableForCallee();
334 if (SymbolRefAttr symRef = callable.dyn_cast<SymbolRefAttr>()) {
335 if (!symRef.isa<FlatSymbolRefAttr>())
336 continue;
337 }
338
339 CallGraphNode *targetNode = cg.resolveCallable(call, symbolTable);
340 if (!targetNode->isExternal())
341 calls.emplace_back(call, sourceNode, targetNode);
342 continue;
343 }
344
345 // If this is not a call, traverse the nested regions. If
346 // `traverseNestedCGNodes` is false, then don't traverse nested call graph
347 // regions.
348 for (auto &nestedRegion : op.getRegions()) {
349 CallGraphNode *nestedNode = cg.lookupNode(&nestedRegion);
350 if (traverseNestedCGNodes || !nestedNode)
351 addToWorklist(nestedNode ? nestedNode : sourceNode, nestedRegion);
352 }
353 }
354 }
355 }
356
357 //===----------------------------------------------------------------------===//
358 // Inliner
359 //===----------------------------------------------------------------------===//
360 namespace {
361 /// This class provides a specialization of the main inlining interface.
362 struct Inliner : public InlinerInterface {
Inliner__anon92f6fd4f0911::Inliner363 Inliner(MLIRContext *context, CallGraph &cg,
364 SymbolTableCollection &symbolTable)
365 : InlinerInterface(context), cg(cg), symbolTable(symbolTable) {}
366
367 /// Process a set of blocks that have been inlined. This callback is invoked
368 /// *before* inlined terminator operations have been processed.
369 void
processInlinedBlocks__anon92f6fd4f0911::Inliner370 processInlinedBlocks(iterator_range<Region::iterator> inlinedBlocks) final {
371 // Find the closest callgraph node from the first block.
372 CallGraphNode *node;
373 Region *region = inlinedBlocks.begin()->getParent();
374 while (!(node = cg.lookupNode(region))) {
375 region = region->getParentRegion();
376 assert(region && "expected valid parent node");
377 }
378
379 collectCallOps(inlinedBlocks, node, cg, symbolTable, calls,
380 /*traverseNestedCGNodes=*/true);
381 }
382
383 /// Mark the given callgraph node for deletion.
markForDeletion__anon92f6fd4f0911::Inliner384 void markForDeletion(CallGraphNode *node) { deadNodes.insert(node); }
385
386 /// This method properly disposes of callables that became dead during
387 /// inlining. This should not be called while iterating over the SCCs.
eraseDeadCallables__anon92f6fd4f0911::Inliner388 void eraseDeadCallables() {
389 for (CallGraphNode *node : deadNodes)
390 node->getCallableRegion()->getParentOp()->erase();
391 }
392
393 /// The set of callables known to be dead.
394 SmallPtrSet<CallGraphNode *, 8> deadNodes;
395
396 /// The current set of call instructions to consider for inlining.
397 SmallVector<ResolvedCall, 8> calls;
398
399 /// The callgraph being operated on.
400 CallGraph &cg;
401
402 /// A symbol table to use when resolving call lookups.
403 SymbolTableCollection &symbolTable;
404 };
405 } // namespace
406
407 /// Returns true if the given call should be inlined.
shouldInline(ResolvedCall & resolvedCall)408 static bool shouldInline(ResolvedCall &resolvedCall) {
409 // Don't allow inlining terminator calls. We currently don't support this
410 // case.
411 if (resolvedCall.call->isKnownTerminator())
412 return false;
413
414 // Don't allow inlining if the target is an ancestor of the call. This
415 // prevents inlining recursively.
416 if (resolvedCall.targetNode->getCallableRegion()->isAncestor(
417 resolvedCall.call->getParentRegion()))
418 return false;
419
420 // Otherwise, inline.
421 return true;
422 }
423
424 /// Attempt to inline calls within the given scc. This function returns
425 /// success if any calls were inlined, failure otherwise.
inlineCallsInSCC(Inliner & inliner,CGUseList & useList,CallGraphSCC & currentSCC)426 static LogicalResult inlineCallsInSCC(Inliner &inliner, CGUseList &useList,
427 CallGraphSCC ¤tSCC) {
428 CallGraph &cg = inliner.cg;
429 auto &calls = inliner.calls;
430
431 // A set of dead nodes to remove after inlining.
432 SmallVector<CallGraphNode *, 1> deadNodes;
433
434 // Collect all of the direct calls within the nodes of the current SCC. We
435 // don't traverse nested callgraph nodes, because they are handled separately
436 // likely within a different SCC.
437 for (CallGraphNode *node : currentSCC) {
438 if (node->isExternal())
439 continue;
440
441 // Don't collect calls if the node is already dead.
442 if (useList.isDead(node)) {
443 deadNodes.push_back(node);
444 } else {
445 collectCallOps(*node->getCallableRegion(), node, cg, inliner.symbolTable,
446 calls, /*traverseNestedCGNodes=*/false);
447 }
448 }
449
450 // Try to inline each of the call operations. Don't cache the end iterator
451 // here as more calls may be added during inlining.
452 bool inlinedAnyCalls = false;
453 for (unsigned i = 0; i != calls.size(); ++i) {
454 ResolvedCall it = calls[i];
455 bool doInline = shouldInline(it);
456 CallOpInterface call = it.call;
457 LLVM_DEBUG({
458 if (doInline)
459 llvm::dbgs() << "* Inlining call: " << call << "\n";
460 else
461 llvm::dbgs() << "* Not inlining call: " << call << "\n";
462 });
463 if (!doInline)
464 continue;
465 Region *targetRegion = it.targetNode->getCallableRegion();
466
467 // If this is the last call to the target node and the node is discardable,
468 // then inline it in-place and delete the node if successful.
469 bool inlineInPlace = useList.hasOneUseAndDiscardable(it.targetNode);
470
471 LogicalResult inlineResult = inlineCall(
472 inliner, call, cast<CallableOpInterface>(targetRegion->getParentOp()),
473 targetRegion, /*shouldCloneInlinedRegion=*/!inlineInPlace);
474 if (failed(inlineResult)) {
475 LLVM_DEBUG(llvm::dbgs() << "** Failed to inline\n");
476 continue;
477 }
478 inlinedAnyCalls = true;
479
480 // If the inlining was successful, Merge the new uses into the source node.
481 useList.dropCallUses(it.sourceNode, call.getOperation(), cg);
482 useList.mergeUsesAfterInlining(it.targetNode, it.sourceNode);
483
484 // then erase the call.
485 call.erase();
486
487 // If we inlined in place, mark the node for deletion.
488 if (inlineInPlace) {
489 useList.eraseNode(it.targetNode);
490 deadNodes.push_back(it.targetNode);
491 }
492 }
493
494 for (CallGraphNode *node : deadNodes) {
495 currentSCC.remove(node);
496 inliner.markForDeletion(node);
497 }
498 calls.clear();
499 return success(inlinedAnyCalls);
500 }
501
502 /// Canonicalize the nodes within the given SCC with the given set of
503 /// canonicalization patterns.
canonicalizeSCC(CallGraph & cg,CGUseList & useList,CallGraphSCC & currentSCC,MLIRContext * context,const FrozenRewritePatternList & canonPatterns)504 static void canonicalizeSCC(CallGraph &cg, CGUseList &useList,
505 CallGraphSCC ¤tSCC, MLIRContext *context,
506 const FrozenRewritePatternList &canonPatterns) {
507 // Collect the sets of nodes to canonicalize.
508 SmallVector<CallGraphNode *, 4> nodesToCanonicalize;
509 for (auto *node : currentSCC) {
510 // Don't canonicalize the external node, it has no valid callable region.
511 if (node->isExternal())
512 continue;
513
514 // Don't canonicalize nodes with children. Nodes with children
515 // require special handling as we may remove the node during
516 // canonicalization. In the future, we should be able to handle this
517 // case with proper node deletion tracking.
518 if (node->hasChildren())
519 continue;
520
521 // We also won't apply canonicalizations for nodes that are not
522 // isolated. This avoids potentially mutating the regions of nodes defined
523 // above, this is also a stipulation of the 'applyPatternsAndFoldGreedily'
524 // driver.
525 auto *region = node->getCallableRegion();
526 if (!region->getParentOp()->isKnownIsolatedFromAbove())
527 continue;
528 nodesToCanonicalize.push_back(node);
529 }
530 if (nodesToCanonicalize.empty())
531 return;
532
533 // Canonicalize each of the nodes within the SCC in parallel.
534 // NOTE: This is simple now, because we don't enable canonicalizing nodes
535 // within children. When we remove this restriction, this logic will need to
536 // be reworked.
537 if (context->isMultithreadingEnabled()) {
538 ParallelDiagnosticHandler canonicalizationHandler(context);
539 llvm::parallelForEachN(
540 /*Begin=*/0, /*End=*/nodesToCanonicalize.size(), [&](size_t index) {
541 // Set the order for this thread so that diagnostics will be properly
542 // ordered.
543 canonicalizationHandler.setOrderIDForThread(index);
544
545 // Apply the canonicalization patterns to this region.
546 auto *node = nodesToCanonicalize[index];
547 applyPatternsAndFoldGreedily(*node->getCallableRegion(),
548 canonPatterns);
549
550 // Make sure to reset the order ID for the diagnostic handler, as this
551 // thread may be used in a different context.
552 canonicalizationHandler.eraseOrderIDForThread();
553 });
554 } else {
555 for (CallGraphNode *node : nodesToCanonicalize)
556 applyPatternsAndFoldGreedily(*node->getCallableRegion(), canonPatterns);
557 }
558
559 // Recompute the uses held by each of the nodes.
560 for (CallGraphNode *node : nodesToCanonicalize)
561 useList.recomputeUses(node, cg);
562 }
563
564 //===----------------------------------------------------------------------===//
565 // InlinerPass
566 //===----------------------------------------------------------------------===//
567
568 namespace {
569 struct InlinerPass : public InlinerBase<InlinerPass> {
570 void runOnOperation() override;
571
572 /// Attempt to inline calls within the given scc, and run canonicalizations
573 /// with the given patterns, until a fixed point is reached. This allows for
574 /// the inlining of newly devirtualized calls.
575 void inlineSCC(Inliner &inliner, CGUseList &useList, CallGraphSCC ¤tSCC,
576 MLIRContext *context,
577 const FrozenRewritePatternList &canonPatterns);
578 };
579 } // end anonymous namespace
580
runOnOperation()581 void InlinerPass::runOnOperation() {
582 CallGraph &cg = getAnalysis<CallGraph>();
583 auto *context = &getContext();
584
585 // The inliner should only be run on operations that define a symbol table,
586 // as the callgraph will need to resolve references.
587 Operation *op = getOperation();
588 if (!op->hasTrait<OpTrait::SymbolTable>()) {
589 op->emitOpError() << " was scheduled to run under the inliner, but does "
590 "not define a symbol table";
591 return signalPassFailure();
592 }
593
594 // Collect a set of canonicalization patterns to use when simplifying
595 // callable regions within an SCC.
596 OwningRewritePatternList canonPatterns;
597 for (auto *op : context->getRegisteredOperations())
598 op->getCanonicalizationPatterns(canonPatterns, context);
599 FrozenRewritePatternList frozenCanonPatterns(std::move(canonPatterns));
600
601 // Run the inline transform in post-order over the SCCs in the callgraph.
602 SymbolTableCollection symbolTable;
603 Inliner inliner(context, cg, symbolTable);
604 CGUseList useList(getOperation(), cg, symbolTable);
605 runTransformOnCGSCCs(cg, [&](CallGraphSCC &scc) {
606 inlineSCC(inliner, useList, scc, context, frozenCanonPatterns);
607 });
608
609 // After inlining, make sure to erase any callables proven to be dead.
610 inliner.eraseDeadCallables();
611 }
612
inlineSCC(Inliner & inliner,CGUseList & useList,CallGraphSCC & currentSCC,MLIRContext * context,const FrozenRewritePatternList & canonPatterns)613 void InlinerPass::inlineSCC(Inliner &inliner, CGUseList &useList,
614 CallGraphSCC ¤tSCC, MLIRContext *context,
615 const FrozenRewritePatternList &canonPatterns) {
616 // If we successfully inlined any calls, run some simplifications on the
617 // nodes of the scc. Continue attempting to inline until we reach a fixed
618 // point, or a maximum iteration count. We canonicalize here as it may
619 // devirtualize new calls, as well as give us a better cost model.
620 unsigned iterationCount = 0;
621 while (succeeded(inlineCallsInSCC(inliner, useList, currentSCC))) {
622 // If we aren't allowing simplifications or the max iteration count was
623 // reached, then bail out early.
624 if (disableCanonicalization || ++iterationCount >= maxInliningIterations)
625 break;
626 canonicalizeSCC(inliner.cg, useList, currentSCC, context, canonPatterns);
627 }
628 }
629
createInlinerPass()630 std::unique_ptr<Pass> mlir::createInlinerPass() {
631 return std::make_unique<InlinerPass>();
632 }
633