1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "hw-Parcel"
18 //#define LOG_NDEBUG 0
19
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <inttypes.h>
23 #include <pthread.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <sys/mman.h>
28 #include <sys/stat.h>
29 #include <sys/types.h>
30 #include <sys/resource.h>
31 #include <unistd.h>
32
33 #include <hwbinder/Binder.h>
34 #include <hwbinder/BpHwBinder.h>
35 #include <hwbinder/IPCThreadState.h>
36 #include <hwbinder/Parcel.h>
37 #include <hwbinder/ProcessState.h>
38
39 #include <cutils/ashmem.h>
40 #include <utils/Log.h>
41 #include <utils/misc.h>
42 #include <utils/String8.h>
43 #include <utils/String16.h>
44
45 #include "binder_kernel.h"
46 #include <hwbinder/Static.h>
47 #include "TextOutput.h"
48 #include "Utils.h"
49
50 #include <atomic>
51
52 #define LOG_REFS(...)
53 //#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
54 #define LOG_ALLOC(...)
55 //#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
56 #define LOG_BUFFER(...)
57 // #define LOG_BUFFER(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
58
59 // ---------------------------------------------------------------------------
60
61 // This macro should never be used at runtime, as a too large value
62 // of s could cause an integer overflow. Instead, you should always
63 // use the wrapper function pad_size()
64 #define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
65
pad_size(size_t s)66 static size_t pad_size(size_t s) {
67 if (s > (std::numeric_limits<size_t>::max() - 3)) {
68 LOG_ALWAYS_FATAL("pad size too big %zu", s);
69 }
70 return PAD_SIZE_UNSAFE(s);
71 }
72
73 // Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
74 #define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
75
76 namespace android {
77 namespace hardware {
78
79 static std::atomic<size_t> gParcelGlobalAllocCount;
80 static std::atomic<size_t> gParcelGlobalAllocSize;
81
82 static size_t gMaxFds = 0;
83
acquire_binder_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)84 void acquire_binder_object(const sp<ProcessState>& proc,
85 const flat_binder_object& obj, const void* who)
86 {
87 switch (obj.hdr.type) {
88 case BINDER_TYPE_BINDER:
89 if (obj.binder) {
90 LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
91 reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
92 }
93 return;
94 case BINDER_TYPE_WEAK_BINDER:
95 if (obj.binder)
96 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
97 return;
98 case BINDER_TYPE_HANDLE: {
99 const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
100 if (b != nullptr) {
101 LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
102 b->incStrong(who);
103 }
104 return;
105 }
106 case BINDER_TYPE_WEAK_HANDLE: {
107 const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
108 if (b != nullptr) b.get_refs()->incWeak(who);
109 return;
110 }
111 }
112
113 ALOGD("Invalid object type 0x%08x", obj.hdr.type);
114 }
115
acquire_object(const sp<ProcessState> & proc,const binder_object_header & obj,const void * who)116 void acquire_object(const sp<ProcessState>& proc, const binder_object_header& obj,
117 const void *who) {
118 switch (obj.type) {
119 case BINDER_TYPE_BINDER:
120 case BINDER_TYPE_WEAK_BINDER:
121 case BINDER_TYPE_HANDLE:
122 case BINDER_TYPE_WEAK_HANDLE: {
123 const flat_binder_object& fbo = reinterpret_cast<const flat_binder_object&>(obj);
124 acquire_binder_object(proc, fbo, who);
125 break;
126 }
127 }
128 }
129
release_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)130 void release_object(const sp<ProcessState>& proc,
131 const flat_binder_object& obj, const void* who)
132 {
133 switch (obj.hdr.type) {
134 case BINDER_TYPE_BINDER:
135 if (obj.binder) {
136 LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
137 reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
138 }
139 return;
140 case BINDER_TYPE_WEAK_BINDER:
141 if (obj.binder)
142 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
143 return;
144 case BINDER_TYPE_HANDLE: {
145 const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
146 if (b != nullptr) {
147 LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
148 b->decStrong(who);
149 }
150 return;
151 }
152 case BINDER_TYPE_WEAK_HANDLE: {
153 const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
154 if (b != nullptr) b.get_refs()->decWeak(who);
155 return;
156 }
157 case BINDER_TYPE_FD: {
158 if (obj.cookie != 0) { // owned
159 close(obj.handle);
160 }
161 return;
162 }
163 case BINDER_TYPE_PTR: {
164 // The relevant buffer is part of the transaction buffer and will be freed that way
165 return;
166 }
167 case BINDER_TYPE_FDA: {
168 // The enclosed file descriptors are closed in the kernel
169 return;
170 }
171 }
172
173 ALOGE("Invalid object type 0x%08x", obj.hdr.type);
174 }
175
finish_flatten_binder(const sp<IBinder> &,const flat_binder_object & flat,Parcel * out)176 inline static status_t finish_flatten_binder(
177 const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
178 {
179 return out->writeObject(flat);
180 }
181
flatten_binder(const sp<ProcessState> &,const sp<IBinder> & binder,Parcel * out)182 status_t flatten_binder(const sp<ProcessState>& /*proc*/,
183 const sp<IBinder>& binder, Parcel* out)
184 {
185 flat_binder_object obj = {};
186
187 if (binder != nullptr) {
188 BHwBinder *local = binder->localBinder();
189 if (!local) {
190 BpHwBinder *proxy = binder->remoteBinder();
191 if (proxy == nullptr) {
192 ALOGE("null proxy");
193 }
194 const int32_t handle = proxy ? proxy->handle() : 0;
195 obj.hdr.type = BINDER_TYPE_HANDLE;
196 obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS;
197 obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
198 obj.handle = handle;
199 obj.cookie = 0;
200 } else {
201 // Get policy and convert it
202 int policy = local->getMinSchedulingPolicy();
203 int priority = local->getMinSchedulingPriority();
204
205 obj.flags = priority & FLAT_BINDER_FLAG_PRIORITY_MASK;
206 obj.flags |= FLAT_BINDER_FLAG_ACCEPTS_FDS | FLAT_BINDER_FLAG_INHERIT_RT;
207 obj.flags |= (policy & 3) << FLAT_BINDER_FLAG_SCHED_POLICY_SHIFT;
208 if (local->isRequestingSid()) {
209 obj.flags |= FLAT_BINDER_FLAG_TXN_SECURITY_CTX;
210 }
211 obj.hdr.type = BINDER_TYPE_BINDER;
212 obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
213 obj.cookie = reinterpret_cast<uintptr_t>(local);
214 }
215 } else {
216 obj.hdr.type = BINDER_TYPE_BINDER;
217 obj.binder = 0;
218 obj.cookie = 0;
219 }
220
221 return finish_flatten_binder(binder, obj, out);
222 }
223
finish_unflatten_binder(BpHwBinder *,const flat_binder_object &,const Parcel &)224 inline static status_t finish_unflatten_binder(
225 BpHwBinder* /*proxy*/, const flat_binder_object& /*flat*/,
226 const Parcel& /*in*/)
227 {
228 return NO_ERROR;
229 }
230
unflatten_binder(const sp<ProcessState> & proc,const Parcel & in,sp<IBinder> * out)231 status_t unflatten_binder(const sp<ProcessState>& proc,
232 const Parcel& in, sp<IBinder>* out)
233 {
234 const flat_binder_object* flat = in.readObject<flat_binder_object>();
235
236 if (flat) {
237 switch (flat->hdr.type) {
238 case BINDER_TYPE_BINDER:
239 *out = reinterpret_cast<IBinder*>(flat->cookie);
240 return finish_unflatten_binder(nullptr, *flat, in);
241 case BINDER_TYPE_HANDLE:
242 *out = proc->getStrongProxyForHandle(flat->handle);
243 return finish_unflatten_binder(
244 static_cast<BpHwBinder*>(out->get()), *flat, in);
245 }
246 }
247 return BAD_TYPE;
248 }
249
250 // ---------------------------------------------------------------------------
251
Parcel()252 Parcel::Parcel()
253 {
254 LOG_ALLOC("Parcel %p: constructing", this);
255 initState();
256 }
257
~Parcel()258 Parcel::~Parcel()
259 {
260 freeDataNoInit();
261 LOG_ALLOC("Parcel %p: destroyed", this);
262 }
263
getGlobalAllocSize()264 size_t Parcel::getGlobalAllocSize() {
265 return gParcelGlobalAllocSize.load();
266 }
267
getGlobalAllocCount()268 size_t Parcel::getGlobalAllocCount() {
269 return gParcelGlobalAllocCount.load();
270 }
271
data() const272 const uint8_t* Parcel::data() const
273 {
274 return mData;
275 }
276
dataSize() const277 size_t Parcel::dataSize() const
278 {
279 return (mDataSize > mDataPos ? mDataSize : mDataPos);
280 }
281
dataAvail() const282 size_t Parcel::dataAvail() const
283 {
284 size_t result = dataSize() - dataPosition();
285 if (result > INT32_MAX) {
286 LOG_ALWAYS_FATAL("result too big: %zu", result);
287 }
288 return result;
289 }
290
dataPosition() const291 size_t Parcel::dataPosition() const
292 {
293 return mDataPos;
294 }
295
dataCapacity() const296 size_t Parcel::dataCapacity() const
297 {
298 return mDataCapacity;
299 }
300
setDataSize(size_t size)301 status_t Parcel::setDataSize(size_t size)
302 {
303 if (size > INT32_MAX) {
304 // don't accept size_t values which may have come from an
305 // inadvertent conversion from a negative int.
306 return BAD_VALUE;
307 }
308
309 status_t err;
310 err = continueWrite(size);
311 if (err == NO_ERROR) {
312 mDataSize = size;
313 ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
314 }
315 return err;
316 }
317
setDataPosition(size_t pos) const318 void Parcel::setDataPosition(size_t pos) const
319 {
320 if (pos > INT32_MAX) {
321 // don't accept size_t values which may have come from an
322 // inadvertent conversion from a negative int.
323 LOG_ALWAYS_FATAL("pos too big: %zu", pos);
324 }
325
326 mDataPos = pos;
327 mNextObjectHint = 0;
328 }
329
setDataCapacity(size_t size)330 status_t Parcel::setDataCapacity(size_t size)
331 {
332 if (size > INT32_MAX) {
333 // don't accept size_t values which may have come from an
334 // inadvertent conversion from a negative int.
335 return BAD_VALUE;
336 }
337
338 if (size > mDataCapacity) return continueWrite(size);
339 return NO_ERROR;
340 }
341
setData(const uint8_t * buffer,size_t len)342 status_t Parcel::setData(const uint8_t* buffer, size_t len)
343 {
344 if (len > INT32_MAX) {
345 // don't accept size_t values which may have come from an
346 // inadvertent conversion from a negative int.
347 return BAD_VALUE;
348 }
349
350 status_t err = restartWrite(len);
351 if (err == NO_ERROR) {
352 memcpy(const_cast<uint8_t*>(data()), buffer, len);
353 mDataSize = len;
354 mFdsKnown = false;
355 }
356 return err;
357 }
358
markSensitive() const359 void Parcel::markSensitive() const
360 {
361 mDeallocZero = true;
362 }
363
364 // Write RPC headers. (previously just the interface token)
writeInterfaceToken(const char * interface)365 status_t Parcel::writeInterfaceToken(const char* interface)
366 {
367 // currently the interface identification token is just its name as a string
368 return writeCString(interface);
369 }
370
enforceInterface(const char * interface) const371 bool Parcel::enforceInterface(const char* interface) const
372 {
373 const char* str = readCString();
374 if (str != nullptr && strcmp(str, interface) == 0) {
375 return true;
376 } else {
377 ALOGW("**** enforceInterface() expected '%s' but read '%s'",
378 interface, (str ? str : "<empty string>"));
379 return false;
380 }
381 }
382
objects() const383 const binder_size_t* Parcel::objects() const
384 {
385 return mObjects;
386 }
387
objectsCount() const388 size_t Parcel::objectsCount() const
389 {
390 return mObjectsSize;
391 }
392
errorCheck() const393 status_t Parcel::errorCheck() const
394 {
395 return mError;
396 }
397
setError(status_t err)398 void Parcel::setError(status_t err)
399 {
400 mError = err;
401 }
402
finishWrite(size_t len)403 status_t Parcel::finishWrite(size_t len)
404 {
405 if (len > INT32_MAX) {
406 // don't accept size_t values which may have come from an
407 // inadvertent conversion from a negative int.
408 return BAD_VALUE;
409 }
410
411 //printf("Finish write of %d\n", len);
412 mDataPos += len;
413 ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
414 if (mDataPos > mDataSize) {
415 mDataSize = mDataPos;
416 ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
417 }
418 //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
419 return NO_ERROR;
420 }
421
writeUnpadded(const void * data,size_t len)422 status_t Parcel::writeUnpadded(const void* data, size_t len)
423 {
424 if (len > INT32_MAX) {
425 // don't accept size_t values which may have come from an
426 // inadvertent conversion from a negative int.
427 return BAD_VALUE;
428 }
429
430 size_t end = mDataPos + len;
431 if (end < mDataPos) {
432 // integer overflow
433 return BAD_VALUE;
434 }
435
436 if (end <= mDataCapacity) {
437 restart_write:
438 memcpy(mData+mDataPos, data, len);
439 return finishWrite(len);
440 }
441
442 status_t err = growData(len);
443 if (err == NO_ERROR) goto restart_write;
444 return err;
445 }
446
write(const void * data,size_t len)447 status_t Parcel::write(const void* data, size_t len)
448 {
449 if (len > INT32_MAX) {
450 // don't accept size_t values which may have come from an
451 // inadvertent conversion from a negative int.
452 return BAD_VALUE;
453 }
454
455 void* const d = writeInplace(len);
456 if (d) {
457 memcpy(d, data, len);
458 return NO_ERROR;
459 }
460 return mError;
461 }
462
writeInplace(size_t len)463 void* Parcel::writeInplace(size_t len)
464 {
465 if (len > INT32_MAX) {
466 // don't accept size_t values which may have come from an
467 // inadvertent conversion from a negative int.
468 return nullptr;
469 }
470
471 const size_t padded = pad_size(len);
472
473 // validate for integer overflow
474 if (mDataPos+padded < mDataPos) {
475 return nullptr;
476 }
477
478 if ((mDataPos+padded) <= mDataCapacity) {
479 restart_write:
480 //printf("Writing %ld bytes, padded to %ld\n", len, padded);
481 uint8_t* const data = mData+mDataPos;
482
483 // Need to pad at end?
484 if (padded != len) {
485 #if BYTE_ORDER == BIG_ENDIAN
486 static const uint32_t mask[4] = {
487 0x00000000, 0xffffff00, 0xffff0000, 0xff000000
488 };
489 #endif
490 #if BYTE_ORDER == LITTLE_ENDIAN
491 static const uint32_t mask[4] = {
492 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
493 };
494 #endif
495 //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
496 // *reinterpret_cast<void**>(data+padded-4));
497 *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
498 }
499
500 finishWrite(padded);
501 return data;
502 }
503
504 status_t err = growData(padded);
505 if (err == NO_ERROR) goto restart_write;
506 return nullptr;
507 }
508
writeInt8(int8_t val)509 status_t Parcel::writeInt8(int8_t val)
510 {
511 return write(&val, sizeof(val));
512 }
513
writeUint8(uint8_t val)514 status_t Parcel::writeUint8(uint8_t val)
515 {
516 return write(&val, sizeof(val));
517 }
518
writeInt16(int16_t val)519 status_t Parcel::writeInt16(int16_t val)
520 {
521 return write(&val, sizeof(val));
522 }
523
writeUint16(uint16_t val)524 status_t Parcel::writeUint16(uint16_t val)
525 {
526 return write(&val, sizeof(val));
527 }
528
writeInt32(int32_t val)529 status_t Parcel::writeInt32(int32_t val)
530 {
531 return writeAligned(val);
532 }
533
writeUint32(uint32_t val)534 status_t Parcel::writeUint32(uint32_t val)
535 {
536 return writeAligned(val);
537 }
538
writeBool(bool val)539 status_t Parcel::writeBool(bool val)
540 {
541 return writeInt8(int8_t(val));
542 }
writeInt64(int64_t val)543 status_t Parcel::writeInt64(int64_t val)
544 {
545 return writeAligned(val);
546 }
547
writeUint64(uint64_t val)548 status_t Parcel::writeUint64(uint64_t val)
549 {
550 return writeAligned(val);
551 }
552
writePointer(uintptr_t val)553 status_t Parcel::writePointer(uintptr_t val)
554 {
555 return writeAligned<binder_uintptr_t>(val);
556 }
557
writeFloat(float val)558 status_t Parcel::writeFloat(float val)
559 {
560 return writeAligned(val);
561 }
562
563 #if defined(__mips__) && defined(__mips_hard_float)
564
writeDouble(double val)565 status_t Parcel::writeDouble(double val)
566 {
567 union {
568 double d;
569 unsigned long long ll;
570 } u;
571 u.d = val;
572 return writeAligned(u.ll);
573 }
574
575 #else
576
writeDouble(double val)577 status_t Parcel::writeDouble(double val)
578 {
579 return writeAligned(val);
580 }
581
582 #endif
583
writeCString(const char * str)584 status_t Parcel::writeCString(const char* str)
585 {
586 return write(str, strlen(str)+1);
587 }
writeString16(const std::unique_ptr<String16> & str)588 status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
589 {
590 if (!str) {
591 return writeInt32(-1);
592 }
593
594 return writeString16(*str);
595 }
596
writeString16(const String16 & str)597 status_t Parcel::writeString16(const String16& str)
598 {
599 return writeString16(str.string(), str.size());
600 }
601
writeString16(const char16_t * str,size_t len)602 status_t Parcel::writeString16(const char16_t* str, size_t len)
603 {
604 if (str == nullptr) return writeInt32(-1);
605
606 status_t err = writeInt32(len);
607 if (err == NO_ERROR) {
608 len *= sizeof(char16_t);
609 uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
610 if (data) {
611 memcpy(data, str, len);
612 *reinterpret_cast<char16_t*>(data+len) = 0;
613 return NO_ERROR;
614 }
615 err = mError;
616 }
617 return err;
618 }
writeStrongBinder(const sp<IBinder> & val)619 status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
620 {
621 return flatten_binder(ProcessState::self(), val, this);
622 }
623
624 template <typename T>
writeObject(const T & val)625 status_t Parcel::writeObject(const T& val)
626 {
627 const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
628 const bool enoughObjects = mObjectsSize < mObjectsCapacity;
629 if (enoughData && enoughObjects) {
630 restart_write:
631 *reinterpret_cast<T*>(mData+mDataPos) = val;
632
633 const binder_object_header* hdr = reinterpret_cast<binder_object_header*>(mData+mDataPos);
634 switch (hdr->type) {
635 case BINDER_TYPE_BINDER:
636 case BINDER_TYPE_WEAK_BINDER:
637 case BINDER_TYPE_HANDLE:
638 case BINDER_TYPE_WEAK_HANDLE: {
639 const flat_binder_object *fbo = reinterpret_cast<const flat_binder_object*>(hdr);
640 if (fbo->binder != 0) {
641 mObjects[mObjectsSize++] = mDataPos;
642 acquire_binder_object(ProcessState::self(), *fbo, this);
643 }
644 break;
645 }
646 case BINDER_TYPE_FD: {
647 // remember if it's a file descriptor
648 if (!mAllowFds) {
649 // fail before modifying our object index
650 return FDS_NOT_ALLOWED;
651 }
652 mHasFds = mFdsKnown = true;
653 mObjects[mObjectsSize++] = mDataPos;
654 break;
655 }
656 case BINDER_TYPE_FDA:
657 mObjects[mObjectsSize++] = mDataPos;
658 break;
659 case BINDER_TYPE_PTR: {
660 const binder_buffer_object *buffer_obj = reinterpret_cast<
661 const binder_buffer_object*>(hdr);
662 if ((void *)buffer_obj->buffer != nullptr) {
663 mObjects[mObjectsSize++] = mDataPos;
664 }
665 break;
666 }
667 default: {
668 ALOGE("writeObject: unknown type %d", hdr->type);
669 break;
670 }
671 }
672 return finishWrite(sizeof(val));
673 }
674
675 if (!enoughData) {
676 const status_t err = growData(sizeof(val));
677 if (err != NO_ERROR) return err;
678 }
679 if (!enoughObjects) {
680 if (mObjectsSize > SIZE_MAX - 2) return NO_MEMORY; // overflow
681 if (mObjectsSize + 2 > SIZE_MAX / 3) return NO_MEMORY; // overflow
682 size_t newSize = ((mObjectsSize+2)*3)/2;
683 if (newSize > SIZE_MAX / sizeof(binder_size_t)) return NO_MEMORY; // overflow
684 binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
685 if (objects == nullptr) return NO_MEMORY;
686 mObjects = objects;
687 mObjectsCapacity = newSize;
688 }
689
690 goto restart_write;
691 }
692
693 template status_t Parcel::writeObject<flat_binder_object>(const flat_binder_object& val);
694 template status_t Parcel::writeObject<binder_fd_object>(const binder_fd_object& val);
695 template status_t Parcel::writeObject<binder_buffer_object>(const binder_buffer_object& val);
696 template status_t Parcel::writeObject<binder_fd_array_object>(const binder_fd_array_object& val);
697
validateBufferChild(size_t child_buffer_handle,size_t child_offset) const698 bool Parcel::validateBufferChild(size_t child_buffer_handle,
699 size_t child_offset) const {
700 if (child_buffer_handle >= mObjectsSize)
701 return false;
702 binder_buffer_object *child = reinterpret_cast<binder_buffer_object*>
703 (mData + mObjects[child_buffer_handle]);
704 if (child->hdr.type != BINDER_TYPE_PTR || child_offset > child->length) {
705 // Parent object not a buffer, or not large enough
706 LOG_BUFFER("writeEmbeddedReference found weird child. "
707 "child_offset = %zu, child->length = %zu",
708 child_offset, (size_t)child->length);
709 return false;
710 }
711 return true;
712 }
713
validateBufferParent(size_t parent_buffer_handle,size_t parent_offset) const714 bool Parcel::validateBufferParent(size_t parent_buffer_handle,
715 size_t parent_offset) const {
716 if (parent_buffer_handle >= mObjectsSize)
717 return false;
718 binder_buffer_object *parent = reinterpret_cast<binder_buffer_object*>
719 (mData + mObjects[parent_buffer_handle]);
720 if (parent->hdr.type != BINDER_TYPE_PTR ||
721 sizeof(binder_uintptr_t) > parent->length ||
722 parent_offset > parent->length - sizeof(binder_uintptr_t)) {
723 // Parent object not a buffer, or not large enough
724 return false;
725 }
726 return true;
727 }
writeEmbeddedBuffer(const void * buffer,size_t length,size_t * handle,size_t parent_buffer_handle,size_t parent_offset)728 status_t Parcel::writeEmbeddedBuffer(
729 const void *buffer, size_t length, size_t *handle,
730 size_t parent_buffer_handle, size_t parent_offset) {
731 LOG_BUFFER("writeEmbeddedBuffer(%p, %zu, parent = (%zu, %zu)) -> %zu",
732 buffer, length, parent_buffer_handle,
733 parent_offset, mObjectsSize);
734 if(!validateBufferParent(parent_buffer_handle, parent_offset))
735 return BAD_VALUE;
736 binder_buffer_object obj = {
737 .hdr = { .type = BINDER_TYPE_PTR },
738 .flags = BINDER_BUFFER_FLAG_HAS_PARENT,
739 .buffer = reinterpret_cast<binder_uintptr_t>(buffer),
740 .length = length,
741 .parent = parent_buffer_handle,
742 .parent_offset = parent_offset,
743 };
744 if (handle != nullptr) {
745 // We use an index into mObjects as a handle
746 *handle = mObjectsSize;
747 }
748 return writeObject(obj);
749 }
750
writeBuffer(const void * buffer,size_t length,size_t * handle)751 status_t Parcel::writeBuffer(const void *buffer, size_t length, size_t *handle)
752 {
753 LOG_BUFFER("writeBuffer(%p, %zu) -> %zu",
754 buffer, length, mObjectsSize);
755 binder_buffer_object obj {
756 .hdr = { .type = BINDER_TYPE_PTR },
757 .flags = 0,
758 .buffer = reinterpret_cast<binder_uintptr_t>(buffer),
759 .length = length,
760 };
761 if (handle != nullptr) {
762 // We use an index into mObjects as a handle
763 *handle = mObjectsSize;
764 }
765 return writeObject(obj);
766 }
767
clearCache() const768 void Parcel::clearCache() const {
769 LOG_BUFFER("clearing cache.");
770 mBufCachePos = 0;
771 mBufCache.clear();
772 }
773
updateCache() const774 void Parcel::updateCache() const {
775 if(mBufCachePos == mObjectsSize)
776 return;
777 LOG_BUFFER("updating cache from %zu to %zu", mBufCachePos, mObjectsSize);
778 for(size_t i = mBufCachePos; i < mObjectsSize; i++) {
779 binder_size_t dataPos = mObjects[i];
780 binder_buffer_object *obj =
781 reinterpret_cast<binder_buffer_object*>(mData+dataPos);
782 if(obj->hdr.type != BINDER_TYPE_PTR)
783 continue;
784 BufferInfo ifo;
785 ifo.index = i;
786 ifo.buffer = obj->buffer;
787 ifo.bufend = obj->buffer + obj->length;
788 mBufCache.push_back(ifo);
789 }
790 mBufCachePos = mObjectsSize;
791 }
792
793 /* O(n) (n=#buffers) to find a buffer that contains the given addr */
findBuffer(const void * ptr,size_t length,bool * found,size_t * handle,size_t * offset) const794 status_t Parcel::findBuffer(const void *ptr, size_t length, bool *found,
795 size_t *handle, size_t *offset) const {
796 if(found == nullptr)
797 return UNKNOWN_ERROR;
798 updateCache();
799 binder_uintptr_t ptrVal = reinterpret_cast<binder_uintptr_t>(ptr);
800 // true if the pointer is in some buffer, but the length is too big
801 // so that ptr + length doesn't fit into the buffer.
802 bool suspectRejectBadPointer = false;
803 LOG_BUFFER("findBuffer examining %zu objects.", mObjectsSize);
804 for(auto entry = mBufCache.rbegin(); entry != mBufCache.rend(); ++entry ) {
805 if(entry->buffer <= ptrVal && ptrVal < entry->bufend) {
806 // might have found it.
807 if(ptrVal + length <= entry->bufend) {
808 *found = true;
809 if(handle != nullptr) *handle = entry->index;
810 if(offset != nullptr) *offset = ptrVal - entry->buffer;
811 LOG_BUFFER(" findBuffer has a match at %zu!", entry->index);
812 return OK;
813 } else {
814 suspectRejectBadPointer = true;
815 }
816 }
817 }
818 LOG_BUFFER("findBuffer did not find for ptr = %p.", ptr);
819 *found = false;
820 return suspectRejectBadPointer ? BAD_VALUE : OK;
821 }
822
823 /* findBuffer with the assumption that ptr = .buffer (so it points to top
824 * of the buffer, aka offset 0).
825 * */
quickFindBuffer(const void * ptr,size_t * handle) const826 status_t Parcel::quickFindBuffer(const void *ptr, size_t *handle) const {
827 updateCache();
828 binder_uintptr_t ptrVal = reinterpret_cast<binder_uintptr_t>(ptr);
829 LOG_BUFFER("quickFindBuffer examining %zu objects.", mObjectsSize);
830 for(auto entry = mBufCache.rbegin(); entry != mBufCache.rend(); ++entry ) {
831 if(entry->buffer == ptrVal) {
832 if(handle != nullptr) *handle = entry->index;
833 return OK;
834 }
835 }
836 LOG_BUFFER("quickFindBuffer did not find for ptr = %p.", ptr);
837 return NO_INIT;
838 }
839
writeNativeHandleNoDup(const native_handle_t * handle,bool embedded,size_t parent_buffer_handle,size_t parent_offset)840 status_t Parcel::writeNativeHandleNoDup(const native_handle_t *handle,
841 bool embedded,
842 size_t parent_buffer_handle,
843 size_t parent_offset)
844 {
845 size_t buffer_handle;
846 status_t status = OK;
847
848 if (handle == nullptr) {
849 status = writeUint64(0);
850 return status;
851 }
852
853 size_t native_handle_size = sizeof(native_handle_t)
854 + handle->numFds * sizeof(int) + handle->numInts * sizeof(int);
855 writeUint64(native_handle_size);
856
857 if (embedded) {
858 status = writeEmbeddedBuffer((void*) handle,
859 native_handle_size, &buffer_handle,
860 parent_buffer_handle, parent_offset);
861 } else {
862 status = writeBuffer((void*) handle, native_handle_size, &buffer_handle);
863 }
864
865 if (status != OK) {
866 return status;
867 }
868
869 struct binder_fd_array_object fd_array {
870 .hdr = { .type = BINDER_TYPE_FDA },
871 .num_fds = static_cast<binder_size_t>(handle->numFds),
872 .parent = buffer_handle,
873 .parent_offset = offsetof(native_handle_t, data),
874 };
875
876 return writeObject(fd_array);
877 }
878
writeNativeHandleNoDup(const native_handle_t * handle)879 status_t Parcel::writeNativeHandleNoDup(const native_handle_t *handle)
880 {
881 return writeNativeHandleNoDup(handle, false /* embedded */);
882 }
883
writeEmbeddedNativeHandle(const native_handle_t * handle,size_t parent_buffer_handle,size_t parent_offset)884 status_t Parcel::writeEmbeddedNativeHandle(const native_handle_t *handle,
885 size_t parent_buffer_handle,
886 size_t parent_offset)
887 {
888 return writeNativeHandleNoDup(handle, true /* embedded */,
889 parent_buffer_handle, parent_offset);
890 }
891
read(void * outData,size_t len) const892 status_t Parcel::read(void* outData, size_t len) const
893 {
894 if (len > INT32_MAX) {
895 // don't accept size_t values which may have come from an
896 // inadvertent conversion from a negative int.
897 return BAD_VALUE;
898 }
899
900 if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
901 && len <= pad_size(len)) {
902 memcpy(outData, mData+mDataPos, len);
903 mDataPos += pad_size(len);
904 ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
905 return NO_ERROR;
906 }
907 return NOT_ENOUGH_DATA;
908 }
909
readInplace(size_t len) const910 const void* Parcel::readInplace(size_t len) const
911 {
912 if (len > INT32_MAX) {
913 // don't accept size_t values which may have come from an
914 // inadvertent conversion from a negative int.
915 return nullptr;
916 }
917
918 if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
919 && len <= pad_size(len)) {
920 const void* data = mData+mDataPos;
921 mDataPos += pad_size(len);
922 ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
923 return data;
924 }
925 return nullptr;
926 }
927
928 template<class T>
readAligned(T * pArg) const929 status_t Parcel::readAligned(T *pArg) const {
930 static_assert(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
931
932 if ((mDataPos+sizeof(T)) <= mDataSize) {
933 const void* data = mData+mDataPos;
934 mDataPos += sizeof(T);
935 *pArg = *reinterpret_cast<const T*>(data);
936 return NO_ERROR;
937 } else {
938 return NOT_ENOUGH_DATA;
939 }
940 }
941
942 template<class T>
readAligned() const943 T Parcel::readAligned() const {
944 T result;
945 if (readAligned(&result) != NO_ERROR) {
946 result = 0;
947 }
948
949 return result;
950 }
951
952 template<class T>
writeAligned(T val)953 status_t Parcel::writeAligned(T val) {
954 static_assert(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
955
956 if ((mDataPos+sizeof(val)) <= mDataCapacity) {
957 restart_write:
958 *reinterpret_cast<T*>(mData+mDataPos) = val;
959 return finishWrite(sizeof(val));
960 }
961
962 status_t err = growData(sizeof(val));
963 if (err == NO_ERROR) goto restart_write;
964 return err;
965 }
966
readInt8(int8_t * pArg) const967 status_t Parcel::readInt8(int8_t *pArg) const
968 {
969 return read(pArg, sizeof(*pArg));
970 }
971
readUint8(uint8_t * pArg) const972 status_t Parcel::readUint8(uint8_t *pArg) const
973 {
974 return read(pArg, sizeof(*pArg));
975 }
976
readInt16(int16_t * pArg) const977 status_t Parcel::readInt16(int16_t *pArg) const
978 {
979 return read(pArg, sizeof(*pArg));
980 }
981
readUint16(uint16_t * pArg) const982 status_t Parcel::readUint16(uint16_t *pArg) const
983 {
984 return read(pArg, sizeof(*pArg));
985 }
986
readInt32(int32_t * pArg) const987 status_t Parcel::readInt32(int32_t *pArg) const
988 {
989 return readAligned(pArg);
990 }
991
readInt32() const992 int32_t Parcel::readInt32() const
993 {
994 return readAligned<int32_t>();
995 }
996
readUint32(uint32_t * pArg) const997 status_t Parcel::readUint32(uint32_t *pArg) const
998 {
999 return readAligned(pArg);
1000 }
1001
readUint32() const1002 uint32_t Parcel::readUint32() const
1003 {
1004 return readAligned<uint32_t>();
1005 }
1006
readInt64(int64_t * pArg) const1007 status_t Parcel::readInt64(int64_t *pArg) const
1008 {
1009 return readAligned(pArg);
1010 }
1011
readInt64() const1012 int64_t Parcel::readInt64() const
1013 {
1014 return readAligned<int64_t>();
1015 }
1016
readUint64(uint64_t * pArg) const1017 status_t Parcel::readUint64(uint64_t *pArg) const
1018 {
1019 return readAligned(pArg);
1020 }
1021
readUint64() const1022 uint64_t Parcel::readUint64() const
1023 {
1024 return readAligned<uint64_t>();
1025 }
1026
readPointer(uintptr_t * pArg) const1027 status_t Parcel::readPointer(uintptr_t *pArg) const
1028 {
1029 status_t ret;
1030 binder_uintptr_t ptr;
1031 ret = readAligned(&ptr);
1032 if (!ret)
1033 *pArg = ptr;
1034 return ret;
1035 }
1036
readPointer() const1037 uintptr_t Parcel::readPointer() const
1038 {
1039 return readAligned<binder_uintptr_t>();
1040 }
1041
1042
readFloat(float * pArg) const1043 status_t Parcel::readFloat(float *pArg) const
1044 {
1045 return readAligned(pArg);
1046 }
1047
1048
readFloat() const1049 float Parcel::readFloat() const
1050 {
1051 return readAligned<float>();
1052 }
1053
1054 #if defined(__mips__) && defined(__mips_hard_float)
1055
readDouble(double * pArg) const1056 status_t Parcel::readDouble(double *pArg) const
1057 {
1058 union {
1059 double d;
1060 unsigned long long ll;
1061 } u;
1062 u.d = 0;
1063 status_t status;
1064 status = readAligned(&u.ll);
1065 *pArg = u.d;
1066 return status;
1067 }
1068
readDouble() const1069 double Parcel::readDouble() const
1070 {
1071 union {
1072 double d;
1073 unsigned long long ll;
1074 } u;
1075 u.ll = readAligned<unsigned long long>();
1076 return u.d;
1077 }
1078
1079 #else
1080
readDouble(double * pArg) const1081 status_t Parcel::readDouble(double *pArg) const
1082 {
1083 return readAligned(pArg);
1084 }
1085
readDouble() const1086 double Parcel::readDouble() const
1087 {
1088 return readAligned<double>();
1089 }
1090
1091 #endif
1092
readBool(bool * pArg) const1093 status_t Parcel::readBool(bool *pArg) const
1094 {
1095 int8_t tmp;
1096 status_t ret = readInt8(&tmp);
1097 *pArg = (tmp != 0);
1098 return ret;
1099 }
1100
readBool() const1101 bool Parcel::readBool() const
1102 {
1103 int8_t tmp;
1104 status_t err = readInt8(&tmp);
1105
1106 if (err != OK) {
1107 return 0;
1108 }
1109
1110 return tmp != 0;
1111 }
1112
readCString() const1113 const char* Parcel::readCString() const
1114 {
1115 if (mDataPos < mDataSize) {
1116 const size_t avail = mDataSize-mDataPos;
1117 const char* str = reinterpret_cast<const char*>(mData+mDataPos);
1118 // is the string's trailing NUL within the parcel's valid bounds?
1119 const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
1120 if (eos) {
1121 const size_t len = eos - str;
1122 mDataPos += pad_size(len+1);
1123 ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
1124 return str;
1125 }
1126 }
1127 return nullptr;
1128 }
readString16() const1129 String16 Parcel::readString16() const
1130 {
1131 size_t len;
1132 const char16_t* str = readString16Inplace(&len);
1133 if (str) return String16(str, len);
1134 ALOGE("Reading a NULL string not supported here.");
1135 return String16();
1136 }
1137
readString16(std::unique_ptr<String16> * pArg) const1138 status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
1139 {
1140 const int32_t start = dataPosition();
1141 int32_t size;
1142 status_t status = readInt32(&size);
1143 pArg->reset();
1144
1145 if (status != OK || size < 0) {
1146 return status;
1147 }
1148
1149 setDataPosition(start);
1150 pArg->reset(new (std::nothrow) String16());
1151
1152 status = readString16(pArg->get());
1153
1154 if (status != OK) {
1155 pArg->reset();
1156 }
1157
1158 return status;
1159 }
1160
readString16(String16 * pArg) const1161 status_t Parcel::readString16(String16* pArg) const
1162 {
1163 size_t len;
1164 const char16_t* str = readString16Inplace(&len);
1165 if (str) {
1166 pArg->setTo(str, len);
1167 return 0;
1168 } else {
1169 *pArg = String16();
1170 return UNEXPECTED_NULL;
1171 }
1172 }
1173
readString16Inplace(size_t * outLen) const1174 const char16_t* Parcel::readString16Inplace(size_t* outLen) const
1175 {
1176 int32_t size = readInt32();
1177 // watch for potential int overflow from size+1
1178 if (size >= 0 && size < INT32_MAX) {
1179 *outLen = size;
1180 const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
1181 if (str != nullptr) {
1182 return str;
1183 }
1184 }
1185 *outLen = 0;
1186 return nullptr;
1187 }
readStrongBinder(sp<IBinder> * val) const1188 status_t Parcel::readStrongBinder(sp<IBinder>* val) const
1189 {
1190 status_t status = readNullableStrongBinder(val);
1191 if (status == OK && !val->get()) {
1192 status = UNEXPECTED_NULL;
1193 }
1194 return status;
1195 }
1196
readNullableStrongBinder(sp<IBinder> * val) const1197 status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const
1198 {
1199 return unflatten_binder(ProcessState::self(), *this, val);
1200 }
1201
readStrongBinder() const1202 sp<IBinder> Parcel::readStrongBinder() const
1203 {
1204 sp<IBinder> val;
1205 // Note that a lot of code in Android reads binders by hand with this
1206 // method, and that code has historically been ok with getting nullptr
1207 // back (while ignoring error codes).
1208 readNullableStrongBinder(&val);
1209 return val;
1210 }
1211
1212 template<typename T>
readObject(size_t * objects_offset) const1213 const T* Parcel::readObject(size_t *objects_offset) const
1214 {
1215 const size_t DPOS = mDataPos;
1216 if (objects_offset != nullptr) {
1217 *objects_offset = 0;
1218 }
1219
1220 if ((DPOS+sizeof(T)) <= mDataSize) {
1221 const T* obj = reinterpret_cast<const T*>(mData+DPOS);
1222 mDataPos = DPOS + sizeof(T);
1223 const binder_object_header *hdr = reinterpret_cast<const binder_object_header*>(obj);
1224 switch (hdr->type) {
1225 case BINDER_TYPE_BINDER:
1226 case BINDER_TYPE_WEAK_BINDER:
1227 case BINDER_TYPE_HANDLE:
1228 case BINDER_TYPE_WEAK_HANDLE: {
1229 const flat_binder_object *flat_obj =
1230 reinterpret_cast<const flat_binder_object*>(hdr);
1231 if (flat_obj->cookie == 0 && flat_obj->binder == 0) {
1232 // When transferring a NULL binder object, we don't write it into
1233 // the object list, so we don't want to check for it when
1234 // reading.
1235 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1236 return obj;
1237 }
1238 break;
1239 }
1240 case BINDER_TYPE_FD:
1241 case BINDER_TYPE_FDA:
1242 // fd (-arrays) must always appear in the meta-data list (eg touched by the kernel)
1243 break;
1244 case BINDER_TYPE_PTR: {
1245 const binder_buffer_object *buffer_obj =
1246 reinterpret_cast<const binder_buffer_object*>(hdr);
1247 if ((void *)buffer_obj->buffer == nullptr) {
1248 // null pointers can be returned directly - they're not written in the
1249 // object list. All non-null buffers must appear in the objects list.
1250 return obj;
1251 }
1252 break;
1253 }
1254 }
1255 // Ensure that this object is valid...
1256 binder_size_t* const OBJS = mObjects;
1257 const size_t N = mObjectsSize;
1258 size_t opos = mNextObjectHint;
1259
1260 if (N > 0) {
1261 ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
1262 this, DPOS, opos);
1263
1264 // Start at the current hint position, looking for an object at
1265 // the current data position.
1266 if (opos < N) {
1267 while (opos < (N-1) && OBJS[opos] < DPOS) {
1268 opos++;
1269 }
1270 } else {
1271 opos = N-1;
1272 }
1273 if (OBJS[opos] == DPOS) {
1274 // Found it!
1275 ALOGV("Parcel %p found obj %zu at index %zu with forward search",
1276 this, DPOS, opos);
1277 mNextObjectHint = opos+1;
1278 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1279 if (objects_offset != nullptr) {
1280 *objects_offset = opos;
1281 }
1282 return obj;
1283 }
1284
1285 // Look backwards for it...
1286 while (opos > 0 && OBJS[opos] > DPOS) {
1287 opos--;
1288 }
1289 if (OBJS[opos] == DPOS) {
1290 // Found it!
1291 ALOGV("Parcel %p found obj %zu at index %zu with backward search",
1292 this, DPOS, opos);
1293 mNextObjectHint = opos+1;
1294 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1295 if (objects_offset != nullptr) {
1296 *objects_offset = opos;
1297 }
1298 return obj;
1299 }
1300 }
1301 ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
1302 this, DPOS);
1303 }
1304 return nullptr;
1305 }
1306
1307 template const flat_binder_object* Parcel::readObject<flat_binder_object>(size_t *objects_offset) const;
1308
1309 template const binder_fd_object* Parcel::readObject<binder_fd_object>(size_t *objects_offset) const;
1310
1311 template const binder_buffer_object* Parcel::readObject<binder_buffer_object>(size_t *objects_offset) const;
1312
1313 template const binder_fd_array_object* Parcel::readObject<binder_fd_array_object>(size_t *objects_offset) const;
1314
verifyBufferObject(const binder_buffer_object * buffer_obj,size_t size,uint32_t flags,size_t parent,size_t parentOffset) const1315 bool Parcel::verifyBufferObject(const binder_buffer_object *buffer_obj,
1316 size_t size, uint32_t flags, size_t parent,
1317 size_t parentOffset) const {
1318 if (buffer_obj->length != size) {
1319 ALOGE("Buffer length %" PRIu64 " does not match expected size %zu.",
1320 static_cast<uint64_t>(buffer_obj->length), size);
1321 return false;
1322 }
1323
1324 if (buffer_obj->flags != flags) {
1325 ALOGE("Buffer flags 0x%02X do not match expected flags 0x%02X.", buffer_obj->flags, flags);
1326 return false;
1327 }
1328
1329 if (flags & BINDER_BUFFER_FLAG_HAS_PARENT) {
1330 if (buffer_obj->parent != parent) {
1331 ALOGE("Buffer parent %" PRIu64 " does not match expected parent %zu.",
1332 static_cast<uint64_t>(buffer_obj->parent), parent);
1333 return false;
1334 }
1335 if (buffer_obj->parent_offset != parentOffset) {
1336 ALOGE("Buffer parent offset %" PRIu64 " does not match expected offset %zu.",
1337 static_cast<uint64_t>(buffer_obj->parent_offset), parentOffset);
1338 return false;
1339 }
1340
1341 binder_buffer_object *parentBuffer =
1342 reinterpret_cast<binder_buffer_object*>(mData + mObjects[parent]);
1343 void* bufferInParent = *reinterpret_cast<void**>(
1344 reinterpret_cast<uint8_t*>(parentBuffer->buffer) + parentOffset);
1345 void* childBuffer = reinterpret_cast<void*>(buffer_obj->buffer);
1346
1347 if (bufferInParent != childBuffer) {
1348 ALOGE("Buffer in parent %p differs from embedded buffer %p",
1349 bufferInParent, childBuffer);
1350 android_errorWriteLog(0x534e4554, "179289794");
1351 return false;
1352 }
1353 }
1354
1355 return true;
1356 }
1357
readBuffer(size_t buffer_size,size_t * buffer_handle,uint32_t flags,size_t parent,size_t parentOffset,const void ** buffer_out) const1358 status_t Parcel::readBuffer(size_t buffer_size, size_t *buffer_handle,
1359 uint32_t flags, size_t parent, size_t parentOffset,
1360 const void **buffer_out) const {
1361
1362 const binder_buffer_object* buffer_obj = readObject<binder_buffer_object>(buffer_handle);
1363
1364 if (buffer_obj == nullptr || buffer_obj->hdr.type != BINDER_TYPE_PTR) {
1365 return BAD_VALUE;
1366 }
1367
1368 if (!verifyBufferObject(buffer_obj, buffer_size, flags, parent, parentOffset)) {
1369 return BAD_VALUE;
1370 }
1371
1372 // in read side, always use .buffer and .length.
1373 *buffer_out = reinterpret_cast<void*>(buffer_obj->buffer);
1374
1375 return OK;
1376 }
1377
readNullableBuffer(size_t buffer_size,size_t * buffer_handle,const void ** buffer_out) const1378 status_t Parcel::readNullableBuffer(size_t buffer_size, size_t *buffer_handle,
1379 const void **buffer_out) const
1380 {
1381 return readBuffer(buffer_size, buffer_handle,
1382 0 /* flags */, 0 /* parent */, 0 /* parentOffset */,
1383 buffer_out);
1384 }
1385
readBuffer(size_t buffer_size,size_t * buffer_handle,const void ** buffer_out) const1386 status_t Parcel::readBuffer(size_t buffer_size, size_t *buffer_handle,
1387 const void **buffer_out) const
1388 {
1389 status_t status = readNullableBuffer(buffer_size, buffer_handle, buffer_out);
1390 if (status == OK && *buffer_out == nullptr) {
1391 return UNEXPECTED_NULL;
1392 }
1393 return status;
1394 }
1395
1396
readEmbeddedBuffer(size_t buffer_size,size_t * buffer_handle,size_t parent_buffer_handle,size_t parent_offset,const void ** buffer_out) const1397 status_t Parcel::readEmbeddedBuffer(size_t buffer_size,
1398 size_t *buffer_handle,
1399 size_t parent_buffer_handle,
1400 size_t parent_offset,
1401 const void **buffer_out) const
1402 {
1403 status_t status = readNullableEmbeddedBuffer(buffer_size, buffer_handle,
1404 parent_buffer_handle,
1405 parent_offset, buffer_out);
1406 if (status == OK && *buffer_out == nullptr) {
1407 return UNEXPECTED_NULL;
1408 }
1409 return status;
1410 }
1411
readNullableEmbeddedBuffer(size_t buffer_size,size_t * buffer_handle,size_t parent_buffer_handle,size_t parent_offset,const void ** buffer_out) const1412 status_t Parcel::readNullableEmbeddedBuffer(size_t buffer_size,
1413 size_t *buffer_handle,
1414 size_t parent_buffer_handle,
1415 size_t parent_offset,
1416 const void **buffer_out) const
1417 {
1418 return readBuffer(buffer_size, buffer_handle, BINDER_BUFFER_FLAG_HAS_PARENT,
1419 parent_buffer_handle, parent_offset, buffer_out);
1420 }
1421
readEmbeddedNativeHandle(size_t parent_buffer_handle,size_t parent_offset,const native_handle_t ** handle) const1422 status_t Parcel::readEmbeddedNativeHandle(size_t parent_buffer_handle,
1423 size_t parent_offset,
1424 const native_handle_t **handle) const
1425 {
1426 status_t status = readNullableEmbeddedNativeHandle(parent_buffer_handle, parent_offset, handle);
1427 if (status == OK && *handle == nullptr) {
1428 return UNEXPECTED_NULL;
1429 }
1430 return status;
1431 }
1432
readNullableNativeHandleNoDup(const native_handle_t ** handle,bool embedded,size_t parent_buffer_handle,size_t parent_offset) const1433 status_t Parcel::readNullableNativeHandleNoDup(const native_handle_t **handle,
1434 bool embedded,
1435 size_t parent_buffer_handle,
1436 size_t parent_offset) const
1437 {
1438 uint64_t nativeHandleSize;
1439 status_t status = readUint64(&nativeHandleSize);
1440 if (status != OK) {
1441 return BAD_VALUE;
1442 }
1443
1444 if (nativeHandleSize == 0) {
1445 // If !embedded, then parent_* vars are 0 and don't actually correspond
1446 // to anything. In that case, we're actually reading this data into
1447 // writable memory, and the handle returned from here will actually be
1448 // used (rather than be ignored).
1449 if (embedded) {
1450 binder_buffer_object *parentBuffer =
1451 reinterpret_cast<binder_buffer_object*>(mData + mObjects[parent_buffer_handle]);
1452
1453 void* bufferInParent = *reinterpret_cast<void**>(
1454 reinterpret_cast<uint8_t*>(parentBuffer->buffer) + parent_offset);
1455
1456 if (bufferInParent != nullptr) {
1457 ALOGE("Buffer in (handle) parent %p is not nullptr.", bufferInParent);
1458 android_errorWriteLog(0x534e4554, "179289794");
1459 return BAD_VALUE;
1460 }
1461 }
1462
1463 *handle = nullptr;
1464 return status;
1465 }
1466
1467 if (nativeHandleSize < sizeof(native_handle_t)) {
1468 ALOGE("Received a native_handle_t size that was too small.");
1469 return BAD_VALUE;
1470 }
1471
1472 size_t fdaParent;
1473 if (embedded) {
1474 status = readNullableEmbeddedBuffer(nativeHandleSize, &fdaParent,
1475 parent_buffer_handle, parent_offset,
1476 reinterpret_cast<const void**>(handle));
1477 } else {
1478 status = readNullableBuffer(nativeHandleSize, &fdaParent,
1479 reinterpret_cast<const void**>(handle));
1480 }
1481
1482 if (status != OK) {
1483 return status;
1484 }
1485
1486 if (*handle == nullptr) {
1487 // null handle already read above
1488 ALOGE("Expecting non-null handle buffer");
1489 return BAD_VALUE;
1490 }
1491
1492 int numFds = (*handle)->numFds;
1493 int numInts = (*handle)->numInts;
1494
1495 if (numFds < 0 || numFds > NATIVE_HANDLE_MAX_FDS) {
1496 ALOGE("Received native_handle with invalid number of fds.");
1497 return BAD_VALUE;
1498 }
1499
1500 if (numInts < 0 || numInts > NATIVE_HANDLE_MAX_INTS) {
1501 ALOGE("Received native_handle with invalid number of ints.");
1502 return BAD_VALUE;
1503 }
1504
1505 if (nativeHandleSize != (sizeof(native_handle_t) + ((numFds + numInts) * sizeof(int)))) {
1506 ALOGE("Size of native_handle doesn't match.");
1507 return BAD_VALUE;
1508 }
1509
1510 const binder_fd_array_object* fd_array_obj = readObject<binder_fd_array_object>();
1511
1512 if (fd_array_obj == nullptr || fd_array_obj->hdr.type != BINDER_TYPE_FDA) {
1513 ALOGE("Can't find file-descriptor array object.");
1514 return BAD_VALUE;
1515 }
1516
1517 if (static_cast<int>(fd_array_obj->num_fds) != numFds) {
1518 ALOGE("Number of native handles does not match.");
1519 return BAD_VALUE;
1520 }
1521
1522 if (fd_array_obj->parent != fdaParent) {
1523 ALOGE("Parent handle of file-descriptor array not correct.");
1524 return BAD_VALUE;
1525 }
1526
1527 if (fd_array_obj->parent_offset != offsetof(native_handle_t, data)) {
1528 ALOGE("FD array object not properly offset in parent.");
1529 return BAD_VALUE;
1530 }
1531
1532 return OK;
1533 }
1534
readNullableEmbeddedNativeHandle(size_t parent_buffer_handle,size_t parent_offset,const native_handle_t ** handle) const1535 status_t Parcel::readNullableEmbeddedNativeHandle(size_t parent_buffer_handle,
1536 size_t parent_offset,
1537 const native_handle_t **handle) const
1538 {
1539 return readNullableNativeHandleNoDup(handle, true /* embedded */, parent_buffer_handle,
1540 parent_offset);
1541 }
1542
readNativeHandleNoDup(const native_handle_t ** handle) const1543 status_t Parcel::readNativeHandleNoDup(const native_handle_t **handle) const
1544 {
1545 status_t status = readNullableNativeHandleNoDup(handle);
1546 if (status == OK && *handle == nullptr) {
1547 return UNEXPECTED_NULL;
1548 }
1549 return status;
1550 }
1551
readNullableNativeHandleNoDup(const native_handle_t ** handle) const1552 status_t Parcel::readNullableNativeHandleNoDup(const native_handle_t **handle) const
1553 {
1554 return readNullableNativeHandleNoDup(handle, false /* embedded */);
1555 }
1556
closeFileDescriptors()1557 void Parcel::closeFileDescriptors()
1558 {
1559 size_t i = mObjectsSize;
1560 if (i > 0) {
1561 //ALOGI("Closing file descriptors for %zu objects...", i);
1562 }
1563 while (i > 0) {
1564 i--;
1565 const flat_binder_object* flat
1566 = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
1567 if (flat->hdr.type == BINDER_TYPE_FD) {
1568 //ALOGI("Closing fd: %ld", flat->handle);
1569 close(flat->handle);
1570 }
1571 }
1572 }
1573
ipcData() const1574 uintptr_t Parcel::ipcData() const
1575 {
1576 return reinterpret_cast<uintptr_t>(mData);
1577 }
1578
ipcDataSize() const1579 size_t Parcel::ipcDataSize() const
1580 {
1581 return mDataSize > mDataPos ? mDataSize : mDataPos;
1582 }
1583
ipcObjects() const1584 uintptr_t Parcel::ipcObjects() const
1585 {
1586 return reinterpret_cast<uintptr_t>(mObjects);
1587 }
1588
ipcObjectsCount() const1589 size_t Parcel::ipcObjectsCount() const
1590 {
1591 return mObjectsSize;
1592 }
1593
1594 #define BUFFER_ALIGNMENT_BYTES 8
ipcBufferSize() const1595 size_t Parcel::ipcBufferSize() const
1596 {
1597 size_t totalBuffersSize = 0;
1598 // Add size for BINDER_TYPE_PTR
1599 size_t i = mObjectsSize;
1600 while (i > 0) {
1601 i--;
1602 const binder_buffer_object* buffer
1603 = reinterpret_cast<binder_buffer_object*>(mData+mObjects[i]);
1604 if (buffer->hdr.type == BINDER_TYPE_PTR) {
1605 /* The binder kernel driver requires each buffer to be 8-byte
1606 * aligned */
1607 size_t alignedSize = (buffer->length + (BUFFER_ALIGNMENT_BYTES - 1))
1608 & ~(BUFFER_ALIGNMENT_BYTES - 1);
1609 if (alignedSize > SIZE_MAX - totalBuffersSize) {
1610 ALOGE("ipcBuffersSize(): invalid buffer sizes.");
1611 return 0;
1612 }
1613 totalBuffersSize += alignedSize;
1614 }
1615 }
1616 return totalBuffersSize;
1617 }
1618
ipcSetDataReference(const uint8_t * data,size_t dataSize,const binder_size_t * objects,size_t objectsCount,release_func relFunc,void * relCookie)1619 void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
1620 const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
1621 {
1622 binder_size_t minOffset = 0;
1623 freeDataNoInit();
1624 mError = NO_ERROR;
1625 mData = const_cast<uint8_t*>(data);
1626 mDataSize = mDataCapacity = dataSize;
1627 //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
1628 mDataPos = 0;
1629 ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
1630 mObjects = const_cast<binder_size_t*>(objects);
1631 mObjectsSize = mObjectsCapacity = objectsCount;
1632 mNextObjectHint = 0;
1633 clearCache();
1634 mOwner = relFunc;
1635 mOwnerCookie = relCookie;
1636 for (size_t i = 0; i < mObjectsSize; i++) {
1637 binder_size_t offset = mObjects[i];
1638 if (offset < minOffset) {
1639 ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
1640 __func__, (uint64_t)offset, (uint64_t)minOffset);
1641 mObjectsSize = 0;
1642 break;
1643 }
1644 minOffset = offset + sizeof(flat_binder_object);
1645 }
1646 scanForFds();
1647 }
1648
print(TextOutput & to,uint32_t) const1649 void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
1650 {
1651 to << "Parcel(";
1652
1653 if (errorCheck() != NO_ERROR) {
1654 const status_t err = errorCheck();
1655 to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
1656 } else if (dataSize() > 0) {
1657 const uint8_t* DATA = data();
1658 to << indent << HexDump(DATA, dataSize()) << dedent;
1659 const binder_size_t* OBJS = objects();
1660 const size_t N = objectsCount();
1661 for (size_t i=0; i<N; i++) {
1662 const flat_binder_object* flat
1663 = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
1664 if (flat->hdr.type == BINDER_TYPE_PTR) {
1665 const binder_buffer_object* buffer
1666 = reinterpret_cast<const binder_buffer_object*>(DATA+OBJS[i]);
1667 HexDump bufferDump((const uint8_t*)buffer->buffer, (size_t)buffer->length);
1668 bufferDump.setSingleLineCutoff(0);
1669 to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << " (buffer size " << buffer->length << "):";
1670 to << indent << bufferDump << dedent;
1671 } else {
1672 to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
1673 << TypeCode(flat->hdr.type & 0x7f7f7f00)
1674 << " = " << flat->binder;
1675 }
1676 }
1677 } else {
1678 to << "NULL";
1679 }
1680
1681 to << ")";
1682 }
1683
releaseObjects()1684 void Parcel::releaseObjects()
1685 {
1686 const sp<ProcessState> proc(ProcessState::self());
1687 size_t i = mObjectsSize;
1688 uint8_t* const data = mData;
1689 binder_size_t* const objects = mObjects;
1690 while (i > 0) {
1691 i--;
1692 const flat_binder_object* flat
1693 = reinterpret_cast<flat_binder_object*>(data+objects[i]);
1694 release_object(proc, *flat, this);
1695 }
1696 }
1697
acquireObjects()1698 void Parcel::acquireObjects()
1699 {
1700 const sp<ProcessState> proc(ProcessState::self());
1701 size_t i = mObjectsSize;
1702 uint8_t* const data = mData;
1703 binder_size_t* const objects = mObjects;
1704 while (i > 0) {
1705 i--;
1706 const binder_object_header* flat
1707 = reinterpret_cast<binder_object_header*>(data+objects[i]);
1708 acquire_object(proc, *flat, this);
1709 }
1710 }
1711
freeData()1712 void Parcel::freeData()
1713 {
1714 freeDataNoInit();
1715 initState();
1716 }
1717
freeDataNoInit()1718 void Parcel::freeDataNoInit()
1719 {
1720 if (mOwner) {
1721 LOG_ALLOC("Parcel %p: freeing other owner data", this);
1722 //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
1723 mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
1724 } else {
1725 LOG_ALLOC("Parcel %p: freeing allocated data", this);
1726 releaseObjects();
1727 if (mData) {
1728 LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
1729 gParcelGlobalAllocSize -= mDataCapacity;
1730 gParcelGlobalAllocCount--;
1731 if (mDeallocZero) {
1732 zeroMemory(mData, mDataSize);
1733 }
1734 free(mData);
1735 }
1736 if (mObjects) free(mObjects);
1737 }
1738 }
1739
growData(size_t len)1740 status_t Parcel::growData(size_t len)
1741 {
1742 if (len > INT32_MAX) {
1743 // don't accept size_t values which may have come from an
1744 // inadvertent conversion from a negative int.
1745 return BAD_VALUE;
1746 }
1747 if (len > SIZE_MAX - mDataSize) return NO_MEMORY; // overflow
1748 if (mDataSize + len > SIZE_MAX / 3) return NO_MEMORY; // overflow
1749 size_t newSize = ((mDataSize+len)*3)/2;
1750 return continueWrite(newSize);
1751 }
1752
reallocZeroFree(uint8_t * data,size_t oldCapacity,size_t newCapacity,bool zero)1753 static uint8_t* reallocZeroFree(uint8_t* data, size_t oldCapacity, size_t newCapacity, bool zero) {
1754 if (!zero) {
1755 return (uint8_t*)realloc(data, newCapacity);
1756 }
1757 uint8_t* newData = (uint8_t*)malloc(newCapacity);
1758 if (!newData) {
1759 return nullptr;
1760 }
1761
1762 memcpy(newData, data, std::min(oldCapacity, newCapacity));
1763 zeroMemory(data, oldCapacity);
1764 free(data);
1765 return newData;
1766 }
1767
restartWrite(size_t desired)1768 status_t Parcel::restartWrite(size_t desired)
1769 {
1770 if (desired > INT32_MAX) {
1771 // don't accept size_t values which may have come from an
1772 // inadvertent conversion from a negative int.
1773 return BAD_VALUE;
1774 }
1775
1776 if (mOwner) {
1777 freeData();
1778 return continueWrite(desired);
1779 }
1780
1781 uint8_t* data = reallocZeroFree(mData, mDataCapacity, desired, mDeallocZero);
1782 if (!data && desired > mDataCapacity) {
1783 mError = NO_MEMORY;
1784 return NO_MEMORY;
1785 }
1786
1787 releaseObjects();
1788
1789 if (data || desired == 0) {
1790 LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
1791 if (mDataCapacity > desired) {
1792 gParcelGlobalAllocSize -= (mDataCapacity - desired);
1793 } else {
1794 gParcelGlobalAllocSize += (desired - mDataCapacity);
1795 }
1796
1797 if (!mData) {
1798 gParcelGlobalAllocCount++;
1799 }
1800 mData = data;
1801 mDataCapacity = desired;
1802 }
1803
1804 mDataSize = mDataPos = 0;
1805 ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
1806 ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
1807
1808 free(mObjects);
1809 mObjects = nullptr;
1810 mObjectsSize = mObjectsCapacity = 0;
1811 mNextObjectHint = 0;
1812 mHasFds = false;
1813 clearCache();
1814 mFdsKnown = true;
1815 mAllowFds = true;
1816
1817 return NO_ERROR;
1818 }
1819
continueWrite(size_t desired)1820 status_t Parcel::continueWrite(size_t desired)
1821 {
1822 if (desired > INT32_MAX) {
1823 // don't accept size_t values which may have come from an
1824 // inadvertent conversion from a negative int.
1825 return BAD_VALUE;
1826 }
1827
1828 // If shrinking, first adjust for any objects that appear
1829 // after the new data size.
1830 size_t objectsSize = mObjectsSize;
1831 if (desired < mDataSize) {
1832 if (desired == 0) {
1833 objectsSize = 0;
1834 } else {
1835 while (objectsSize > 0) {
1836 if (mObjects[objectsSize-1] < desired)
1837 break;
1838 objectsSize--;
1839 }
1840 }
1841 }
1842
1843 if (mOwner) {
1844 // If the size is going to zero, just release the owner's data.
1845 if (desired == 0) {
1846 freeData();
1847 return NO_ERROR;
1848 }
1849
1850 // If there is a different owner, we need to take
1851 // posession.
1852 uint8_t* data = (uint8_t*)malloc(desired);
1853 if (!data) {
1854 mError = NO_MEMORY;
1855 return NO_MEMORY;
1856 }
1857 binder_size_t* objects = nullptr;
1858
1859 if (objectsSize) {
1860 objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
1861 if (!objects) {
1862 free(data);
1863
1864 mError = NO_MEMORY;
1865 return NO_MEMORY;
1866 }
1867
1868 // Little hack to only acquire references on objects
1869 // we will be keeping.
1870 size_t oldObjectsSize = mObjectsSize;
1871 mObjectsSize = objectsSize;
1872 acquireObjects();
1873 mObjectsSize = oldObjectsSize;
1874 }
1875
1876 if (mData) {
1877 memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
1878 }
1879 if (objects && mObjects) {
1880 memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
1881 }
1882 //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
1883 mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
1884 mOwner = nullptr;
1885
1886 LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
1887 gParcelGlobalAllocSize += desired;
1888 gParcelGlobalAllocCount++;
1889
1890 mData = data;
1891 mObjects = objects;
1892 mDataSize = (mDataSize < desired) ? mDataSize : desired;
1893 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
1894 mDataCapacity = desired;
1895 mObjectsSize = mObjectsCapacity = objectsSize;
1896 mNextObjectHint = 0;
1897
1898 clearCache();
1899 } else if (mData) {
1900 if (objectsSize < mObjectsSize) {
1901 // Need to release refs on any objects we are dropping.
1902 const sp<ProcessState> proc(ProcessState::self());
1903 for (size_t i=objectsSize; i<mObjectsSize; i++) {
1904 const flat_binder_object* flat
1905 = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
1906 if (flat->hdr.type == BINDER_TYPE_FD) {
1907 // will need to rescan because we may have lopped off the only FDs
1908 mFdsKnown = false;
1909 }
1910 release_object(proc, *flat, this);
1911 }
1912
1913 if (objectsSize == 0) {
1914 free(mObjects);
1915 mObjects = nullptr;
1916 } else {
1917 binder_size_t* objects =
1918 (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
1919 if (objects) {
1920 mObjects = objects;
1921 }
1922 }
1923 mObjectsSize = objectsSize;
1924 mNextObjectHint = 0;
1925
1926 clearCache();
1927 }
1928
1929 // We own the data, so we can just do a realloc().
1930 if (desired > mDataCapacity) {
1931 uint8_t* data = reallocZeroFree(mData, mDataCapacity, desired, mDeallocZero);
1932 if (data) {
1933 LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
1934 desired);
1935 gParcelGlobalAllocSize += desired;
1936 gParcelGlobalAllocSize -= mDataCapacity;
1937 mData = data;
1938 mDataCapacity = desired;
1939 } else {
1940 mError = NO_MEMORY;
1941 return NO_MEMORY;
1942 }
1943 } else {
1944 if (mDataSize > desired) {
1945 mDataSize = desired;
1946 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
1947 }
1948 if (mDataPos > desired) {
1949 mDataPos = desired;
1950 ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
1951 }
1952 }
1953
1954 } else {
1955 // This is the first data. Easy!
1956 uint8_t* data = (uint8_t*)malloc(desired);
1957 if (!data) {
1958 mError = NO_MEMORY;
1959 return NO_MEMORY;
1960 }
1961
1962 if(!(mDataCapacity == 0 && mObjects == nullptr
1963 && mObjectsCapacity == 0)) {
1964 ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
1965 }
1966
1967 LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
1968 gParcelGlobalAllocSize += desired;
1969 gParcelGlobalAllocCount++;
1970
1971 mData = data;
1972 mDataSize = mDataPos = 0;
1973 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
1974 ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
1975 mDataCapacity = desired;
1976 }
1977
1978 return NO_ERROR;
1979 }
1980
initState()1981 void Parcel::initState()
1982 {
1983 LOG_ALLOC("Parcel %p: initState", this);
1984 mError = NO_ERROR;
1985 mData = nullptr;
1986 mDataSize = 0;
1987 mDataCapacity = 0;
1988 mDataPos = 0;
1989 ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
1990 ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
1991 mObjects = nullptr;
1992 mObjectsSize = 0;
1993 mObjectsCapacity = 0;
1994 mNextObjectHint = 0;
1995 mHasFds = false;
1996 mFdsKnown = true;
1997 mAllowFds = true;
1998 mDeallocZero = false;
1999 mOwner = nullptr;
2000 clearCache();
2001
2002 // racing multiple init leads only to multiple identical write
2003 if (gMaxFds == 0) {
2004 struct rlimit result;
2005 if (!getrlimit(RLIMIT_NOFILE, &result)) {
2006 gMaxFds = (size_t)result.rlim_cur;
2007 //ALOGI("parcel fd limit set to %zu", gMaxFds);
2008 } else {
2009 ALOGW("Unable to getrlimit: %s", strerror(errno));
2010 gMaxFds = 1024;
2011 }
2012 }
2013 }
2014
scanForFds() const2015 void Parcel::scanForFds() const
2016 {
2017 bool hasFds = false;
2018 for (size_t i=0; i<mObjectsSize; i++) {
2019 const flat_binder_object* flat
2020 = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
2021 if (flat->hdr.type == BINDER_TYPE_FD) {
2022 hasFds = true;
2023 break;
2024 }
2025 }
2026 mHasFds = hasFds;
2027 mFdsKnown = true;
2028 }
2029
2030 } // namespace hardware
2031 } // namespace android
2032