1 /**
2 * libf2fs.c
3 *
4 * Copyright (c) 2013 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 * Copyright (c) 2019 Google Inc.
7 * http://www.google.com/
8 * Copyright (c) 2020 Google Inc.
9 * Robin Hsu <robinhsu@google.com>
10 * : add quick-buffer for sload compression support
11 *
12 * Dual licensed under the GPL or LGPL version 2 licenses.
13 */
14 #define _LARGEFILE64_SOURCE
15
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <errno.h>
20 #include <unistd.h>
21 #include <fcntl.h>
22 #ifdef HAVE_MNTENT_H
23 #include <mntent.h>
24 #endif
25 #include <time.h>
26 #ifndef ANDROID_WINDOWS_HOST
27 #include <sys/stat.h>
28 #include <sys/mount.h>
29 #include <sys/ioctl.h>
30 #endif
31 #ifdef HAVE_LINUX_HDREG_H
32 #include <linux/hdreg.h>
33 #endif
34
35 #include <stdbool.h>
36 #include <assert.h>
37 #include <inttypes.h>
38 #include "f2fs_fs.h"
39
40 struct f2fs_configuration c;
41
42 #ifdef WITH_ANDROID
43 #include <sparse/sparse.h>
44 struct sparse_file *f2fs_sparse_file;
45 static char **blocks;
46 u_int64_t blocks_count;
47 static char *zeroed_block;
48 #endif
49
__get_device_fd(__u64 * offset)50 static int __get_device_fd(__u64 *offset)
51 {
52 __u64 blk_addr = *offset >> F2FS_BLKSIZE_BITS;
53 int i;
54
55 for (i = 0; i < c.ndevs; i++) {
56 if (c.devices[i].start_blkaddr <= blk_addr &&
57 c.devices[i].end_blkaddr >= blk_addr) {
58 *offset -=
59 c.devices[i].start_blkaddr << F2FS_BLKSIZE_BITS;
60 return c.devices[i].fd;
61 }
62 }
63 return -1;
64 }
65
66 #ifndef HAVE_LSEEK64
67 typedef off_t off64_t;
68
lseek64(int fd,__u64 offset,int set)69 static inline off64_t lseek64(int fd, __u64 offset, int set)
70 {
71 return lseek(fd, offset, set);
72 }
73 #endif
74
75 /* ---------- dev_cache, Least Used First (LUF) policy ------------------- */
76 /*
77 * Least used block will be the first victim to be replaced when max hash
78 * collision exceeds
79 */
80 static bool *dcache_valid; /* is the cached block valid? */
81 static off64_t *dcache_blk; /* which block it cached */
82 static uint64_t *dcache_lastused; /* last used ticks for cache entries */
83 static char *dcache_buf; /* cached block data */
84 static uint64_t dcache_usetick; /* current use tick */
85
86 static uint64_t dcache_raccess;
87 static uint64_t dcache_rhit;
88 static uint64_t dcache_rmiss;
89 static uint64_t dcache_rreplace;
90
91 static bool dcache_exit_registered = false;
92
93 /*
94 * Shadow config:
95 *
96 * Active set of the configurations.
97 * Global configuration 'dcache_config' will be transferred here when
98 * when dcache_init() is called
99 */
100 static dev_cache_config_t dcache_config = {0, 16, 1};
101 static bool dcache_initialized = false;
102
103 #define MIN_NUM_CACHE_ENTRY 1024L
104 #define MAX_MAX_HASH_COLLISION 16
105
106 static long dcache_relocate_offset0[] = {
107 20, -20, 40, -40, 80, -80, 160, -160,
108 320, -320, 640, -640, 1280, -1280, 2560, -2560,
109 };
110 static int dcache_relocate_offset[16];
111
dcache_print_statistics(void)112 static void dcache_print_statistics(void)
113 {
114 long i;
115 long useCnt;
116
117 /* Number of used cache entries */
118 useCnt = 0;
119 for (i = 0; i < dcache_config.num_cache_entry; i++)
120 if (dcache_valid[i])
121 ++useCnt;
122
123 /*
124 * c: number of cache entries
125 * u: used entries
126 * RA: number of read access blocks
127 * CH: cache hit
128 * CM: cache miss
129 * Repl: read cache replaced
130 */
131 printf ("\nc, u, RA, CH, CM, Repl=\n");
132 printf ("%ld %ld %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
133 dcache_config.num_cache_entry,
134 useCnt,
135 dcache_raccess,
136 dcache_rhit,
137 dcache_rmiss,
138 dcache_rreplace);
139 }
140
dcache_release(void)141 void dcache_release(void)
142 {
143 if (!dcache_initialized)
144 return;
145
146 dcache_initialized = false;
147
148 if (c.cache_config.dbg_en)
149 dcache_print_statistics();
150
151 if (dcache_blk != NULL)
152 free(dcache_blk);
153 if (dcache_lastused != NULL)
154 free(dcache_lastused);
155 if (dcache_buf != NULL)
156 free(dcache_buf);
157 if (dcache_valid != NULL)
158 free(dcache_valid);
159 dcache_config.num_cache_entry = 0;
160 dcache_blk = NULL;
161 dcache_lastused = NULL;
162 dcache_buf = NULL;
163 dcache_valid = NULL;
164 }
165
166 // return 0 for success, error code for failure.
dcache_alloc_all(long n)167 static int dcache_alloc_all(long n)
168 {
169 if (n <= 0)
170 return -1;
171 if ((dcache_blk = (off64_t *) malloc(sizeof(off64_t) * n)) == NULL
172 || (dcache_lastused = (uint64_t *)
173 malloc(sizeof(uint64_t) * n)) == NULL
174 || (dcache_buf = (char *) malloc (F2FS_BLKSIZE * n)) == NULL
175 || (dcache_valid = (bool *) malloc(sizeof(bool) * n)) == NULL)
176 {
177 dcache_release();
178 return -1;
179 }
180 dcache_config.num_cache_entry = n;
181 return 0;
182 }
183
dcache_relocate_init(void)184 static void dcache_relocate_init(void)
185 {
186 int i;
187 int n0 = (sizeof(dcache_relocate_offset0)
188 / sizeof(dcache_relocate_offset0[0]));
189 int n = (sizeof(dcache_relocate_offset)
190 / sizeof(dcache_relocate_offset[0]));
191
192 ASSERT(n == n0);
193 for (i = 0; i < n && i < dcache_config.max_hash_collision; i++) {
194 if (labs(dcache_relocate_offset0[i])
195 > dcache_config.num_cache_entry / 2) {
196 dcache_config.max_hash_collision = i;
197 break;
198 }
199 dcache_relocate_offset[i] =
200 dcache_config.num_cache_entry
201 + dcache_relocate_offset0[i];
202 }
203 }
204
dcache_init(void)205 void dcache_init(void)
206 {
207 long n;
208
209 if (c.cache_config.num_cache_entry <= 0)
210 return;
211
212 /* release previous cache init, if any */
213 dcache_release();
214
215 dcache_blk = NULL;
216 dcache_lastused = NULL;
217 dcache_buf = NULL;
218 dcache_valid = NULL;
219
220 dcache_config = c.cache_config;
221
222 n = max(MIN_NUM_CACHE_ENTRY, dcache_config.num_cache_entry);
223
224 /* halve alloc size until alloc succeed, or min cache reached */
225 while (dcache_alloc_all(n) != 0 && n != MIN_NUM_CACHE_ENTRY)
226 n = max(MIN_NUM_CACHE_ENTRY, n/2);
227
228 /* must be the last: data dependent on num_cache_entry */
229 dcache_relocate_init();
230 dcache_initialized = true;
231
232 if (!dcache_exit_registered) {
233 dcache_exit_registered = true;
234 atexit(dcache_release); /* auto release */
235 }
236
237 dcache_raccess = 0;
238 dcache_rhit = 0;
239 dcache_rmiss = 0;
240 dcache_rreplace = 0;
241 }
242
dcache_addr(long entry)243 static inline char *dcache_addr(long entry)
244 {
245 return dcache_buf + F2FS_BLKSIZE * entry;
246 }
247
248 /* relocate on (n+1)-th collision */
dcache_relocate(long entry,int n)249 static inline long dcache_relocate(long entry, int n)
250 {
251 assert(dcache_config.num_cache_entry != 0);
252 return (entry + dcache_relocate_offset[n]) %
253 dcache_config.num_cache_entry;
254 }
255
dcache_find(off64_t blk)256 static long dcache_find(off64_t blk)
257 {
258 register long n = dcache_config.num_cache_entry;
259 register unsigned m = dcache_config.max_hash_collision;
260 long entry, least_used, target;
261 unsigned try;
262
263 assert(n > 0);
264 target = least_used = entry = blk % n; /* simple modulo hash */
265
266 for (try = 0; try < m; try++) {
267 if (!dcache_valid[target] || dcache_blk[target] == blk)
268 return target; /* found target or empty cache slot */
269 if (dcache_lastused[target] < dcache_lastused[least_used])
270 least_used = target;
271 target = dcache_relocate(entry, try); /* next target */
272 }
273 return least_used; /* max search reached, return least used slot */
274 }
275
276 /* Physical read into cache */
dcache_io_read(int fd,long entry,off64_t offset,off64_t blk)277 static int dcache_io_read(int fd, long entry, off64_t offset, off64_t blk)
278 {
279 if (lseek64(fd, offset, SEEK_SET) < 0) {
280 MSG(0, "\n lseek64 fail.\n");
281 return -1;
282 }
283 if (read(fd, dcache_buf + entry * F2FS_BLKSIZE, F2FS_BLKSIZE) < 0) {
284 MSG(0, "\n read() fail.\n");
285 return -1;
286 }
287 dcache_lastused[entry] = ++dcache_usetick;
288 dcache_valid[entry] = true;
289 dcache_blk[entry] = blk;
290 return 0;
291 }
292
293 /*
294 * - Note: Read/Write are not symmetric:
295 * For read, we need to do it block by block, due to the cache nature:
296 * some blocks may be cached, and others don't.
297 * For write, since we always do a write-thru, we can join all writes into one,
298 * and write it once at the caller. This function updates the cache for write, but
299 * not the do a physical write. The caller is responsible for the physical write.
300 * - Note: We concentrate read/write together, due to the fact of similar structure to find
301 * the relavant cache entries
302 * - Return values:
303 * 0: success
304 * 1: cache not available (uninitialized)
305 * -1: error
306 */
dcache_update_rw(int fd,void * buf,off64_t offset,size_t byte_count,bool is_write)307 static int dcache_update_rw(int fd, void *buf, off64_t offset,
308 size_t byte_count, bool is_write)
309 {
310 off64_t blk;
311 int addr_in_blk;
312 off64_t start;
313
314 if (!dcache_initialized)
315 dcache_init(); /* auto initialize */
316
317 if (!dcache_initialized)
318 return 1; /* not available */
319
320 blk = offset / F2FS_BLKSIZE;
321 addr_in_blk = offset % F2FS_BLKSIZE;
322 start = blk * F2FS_BLKSIZE;
323
324 while (byte_count != 0) {
325 size_t cur_size = min(byte_count,
326 (size_t)(F2FS_BLKSIZE - addr_in_blk));
327 long entry = dcache_find(blk);
328
329 if (!is_write)
330 ++dcache_raccess;
331
332 if (dcache_valid[entry] && dcache_blk[entry] == blk) {
333 /* cache hit */
334 if (is_write) /* write: update cache */
335 memcpy(dcache_addr(entry) + addr_in_blk,
336 buf, cur_size);
337 else
338 ++dcache_rhit;
339 } else {
340 /* cache miss */
341 if (!is_write) {
342 int err;
343 ++dcache_rmiss;
344 if (dcache_valid[entry])
345 ++dcache_rreplace;
346 /* read: physical I/O read into cache */
347 err = dcache_io_read(fd, entry, start, blk);
348 if (err)
349 return err;
350 }
351 }
352
353 /* read: copy data from cache */
354 /* write: nothing to do, since we don't do physical write. */
355 if (!is_write)
356 memcpy(buf, dcache_addr(entry) + addr_in_blk,
357 cur_size);
358
359 /* next block */
360 ++blk;
361 buf += cur_size;
362 start += F2FS_BLKSIZE;
363 byte_count -= cur_size;
364 addr_in_blk = 0;
365 }
366 return 0;
367 }
368
369 /*
370 * dcache_update_cache() just update cache, won't do physical I/O.
371 * Thus even no error, we need normal non-cache I/O for actual write
372 *
373 * return value: 1: cache not available
374 * 0: success, -1: I/O error
375 */
dcache_update_cache(int fd,void * buf,off64_t offset,size_t count)376 int dcache_update_cache(int fd, void *buf, off64_t offset, size_t count)
377 {
378 return dcache_update_rw(fd, buf, offset, count, true);
379 }
380
381 /* handles read into cache + read into buffer */
dcache_read(int fd,void * buf,off64_t offset,size_t count)382 int dcache_read(int fd, void *buf, off64_t offset, size_t count)
383 {
384 return dcache_update_rw(fd, buf, offset, count, false);
385 }
386
387 /*
388 * IO interfaces
389 */
dev_read_version(void * buf,__u64 offset,size_t len)390 int dev_read_version(void *buf, __u64 offset, size_t len)
391 {
392 if (c.sparse_mode)
393 return 0;
394 if (lseek64(c.kd, (off64_t)offset, SEEK_SET) < 0)
395 return -1;
396 if (read(c.kd, buf, len) < 0)
397 return -1;
398 return 0;
399 }
400
401 #ifdef WITH_ANDROID
sparse_read_blk(__u64 block,int count,void * buf)402 static int sparse_read_blk(__u64 block, int count, void *buf)
403 {
404 int i;
405 char *out = buf;
406 __u64 cur_block;
407
408 for (i = 0; i < count; ++i) {
409 cur_block = block + i;
410 if (blocks[cur_block])
411 memcpy(out + (i * F2FS_BLKSIZE),
412 blocks[cur_block], F2FS_BLKSIZE);
413 else if (blocks)
414 memset(out + (i * F2FS_BLKSIZE), 0, F2FS_BLKSIZE);
415 }
416 return 0;
417 }
418
sparse_write_blk(__u64 block,int count,const void * buf)419 static int sparse_write_blk(__u64 block, int count, const void *buf)
420 {
421 int i;
422 __u64 cur_block;
423 const char *in = buf;
424
425 for (i = 0; i < count; ++i) {
426 cur_block = block + i;
427 if (blocks[cur_block] == zeroed_block)
428 blocks[cur_block] = NULL;
429 if (!blocks[cur_block]) {
430 blocks[cur_block] = calloc(1, F2FS_BLKSIZE);
431 if (!blocks[cur_block])
432 return -ENOMEM;
433 }
434 memcpy(blocks[cur_block], in + (i * F2FS_BLKSIZE),
435 F2FS_BLKSIZE);
436 }
437 return 0;
438 }
439
sparse_write_zeroed_blk(__u64 block,int count)440 static int sparse_write_zeroed_blk(__u64 block, int count)
441 {
442 int i;
443 __u64 cur_block;
444
445 for (i = 0; i < count; ++i) {
446 cur_block = block + i;
447 if (blocks[cur_block])
448 continue;
449 blocks[cur_block] = zeroed_block;
450 }
451 return 0;
452 }
453
454 #ifdef SPARSE_CALLBACK_USES_SIZE_T
sparse_import_segment(void * UNUSED (priv),const void * data,size_t len,unsigned int block,unsigned int nr_blocks)455 static int sparse_import_segment(void *UNUSED(priv), const void *data,
456 size_t len, unsigned int block, unsigned int nr_blocks)
457 #else
458 static int sparse_import_segment(void *UNUSED(priv), const void *data, int len,
459 unsigned int block, unsigned int nr_blocks)
460 #endif
461 {
462 /* Ignore chunk headers, only write the data */
463 if (!nr_blocks || len % F2FS_BLKSIZE)
464 return 0;
465
466 return sparse_write_blk(block, nr_blocks, data);
467 }
468
sparse_merge_blocks(uint64_t start,uint64_t num,int zero)469 static int sparse_merge_blocks(uint64_t start, uint64_t num, int zero)
470 {
471 char *buf;
472 uint64_t i;
473
474 if (zero) {
475 blocks[start] = NULL;
476 return sparse_file_add_fill(f2fs_sparse_file, 0x0,
477 F2FS_BLKSIZE * num, start);
478 }
479
480 buf = calloc(num, F2FS_BLKSIZE);
481 if (!buf) {
482 fprintf(stderr, "failed to alloc %llu\n",
483 (unsigned long long)num * F2FS_BLKSIZE);
484 return -ENOMEM;
485 }
486
487 for (i = 0; i < num; i++) {
488 memcpy(buf + i * F2FS_BLKSIZE, blocks[start + i], F2FS_BLKSIZE);
489 free(blocks[start + i]);
490 blocks[start + i] = NULL;
491 }
492
493 /* free_sparse_blocks will release this buf. */
494 blocks[start] = buf;
495
496 return sparse_file_add_data(f2fs_sparse_file, blocks[start],
497 F2FS_BLKSIZE * num, start);
498 }
499 #else
sparse_read_blk(__u64 block,int count,void * buf)500 static int sparse_read_blk(__u64 block, int count, void *buf) { return 0; }
sparse_write_blk(__u64 block,int count,const void * buf)501 static int sparse_write_blk(__u64 block, int count, const void *buf) { return 0; }
sparse_write_zeroed_blk(__u64 block,int count)502 static int sparse_write_zeroed_blk(__u64 block, int count) { return 0; }
503 #endif
504
dev_read(void * buf,__u64 offset,size_t len)505 int dev_read(void *buf, __u64 offset, size_t len)
506 {
507 int fd;
508 int err;
509
510 if (c.max_size < (offset + len))
511 c.max_size = offset + len;
512
513 if (c.sparse_mode)
514 return sparse_read_blk(offset / F2FS_BLKSIZE,
515 len / F2FS_BLKSIZE, buf);
516
517 fd = __get_device_fd(&offset);
518 if (fd < 0)
519 return fd;
520
521 /* err = 1: cache not available, fall back to non-cache R/W */
522 /* err = 0: success, err=-1: I/O error */
523 err = dcache_read(fd, buf, (off64_t)offset, len);
524 if (err <= 0)
525 return err;
526 if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
527 return -1;
528 if (read(fd, buf, len) < 0)
529 return -1;
530 return 0;
531 }
532
533 #ifdef POSIX_FADV_WILLNEED
dev_readahead(__u64 offset,size_t len)534 int dev_readahead(__u64 offset, size_t len)
535 #else
536 int dev_readahead(__u64 offset, size_t UNUSED(len))
537 #endif
538 {
539 int fd = __get_device_fd(&offset);
540
541 if (fd < 0)
542 return fd;
543 #ifdef POSIX_FADV_WILLNEED
544 return posix_fadvise(fd, offset, len, POSIX_FADV_WILLNEED);
545 #else
546 return 0;
547 #endif
548 }
549
dev_write(void * buf,__u64 offset,size_t len)550 int dev_write(void *buf, __u64 offset, size_t len)
551 {
552 int fd;
553
554 if (c.max_size < (offset + len))
555 c.max_size = offset + len;
556
557 if (c.dry_run)
558 return 0;
559
560 if (c.sparse_mode)
561 return sparse_write_blk(offset / F2FS_BLKSIZE,
562 len / F2FS_BLKSIZE, buf);
563
564 fd = __get_device_fd(&offset);
565 if (fd < 0)
566 return fd;
567
568 /*
569 * dcache_update_cache() just update cache, won't do I/O.
570 * Thus even no error, we need normal non-cache I/O for actual write
571 */
572 if (dcache_update_cache(fd, buf, (off64_t)offset, len) < 0)
573 return -1;
574 if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
575 return -1;
576 if (write(fd, buf, len) < 0)
577 return -1;
578 return 0;
579 }
580
dev_write_block(void * buf,__u64 blk_addr)581 int dev_write_block(void *buf, __u64 blk_addr)
582 {
583 return dev_write(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
584 }
585
dev_write_dump(void * buf,__u64 offset,size_t len)586 int dev_write_dump(void *buf, __u64 offset, size_t len)
587 {
588 if (lseek64(c.dump_fd, (off64_t)offset, SEEK_SET) < 0)
589 return -1;
590 if (write(c.dump_fd, buf, len) < 0)
591 return -1;
592 return 0;
593 }
594
dev_fill(void * buf,__u64 offset,size_t len)595 int dev_fill(void *buf, __u64 offset, size_t len)
596 {
597 int fd;
598
599 if (c.max_size < (offset + len))
600 c.max_size = offset + len;
601
602 if (c.sparse_mode)
603 return sparse_write_zeroed_blk(offset / F2FS_BLKSIZE,
604 len / F2FS_BLKSIZE);
605
606 fd = __get_device_fd(&offset);
607 if (fd < 0)
608 return fd;
609
610 /* Only allow fill to zero */
611 if (*((__u8*)buf))
612 return -1;
613 if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
614 return -1;
615 if (write(fd, buf, len) < 0)
616 return -1;
617 return 0;
618 }
619
dev_fill_block(void * buf,__u64 blk_addr)620 int dev_fill_block(void *buf, __u64 blk_addr)
621 {
622 return dev_fill(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
623 }
624
dev_read_block(void * buf,__u64 blk_addr)625 int dev_read_block(void *buf, __u64 blk_addr)
626 {
627 return dev_read(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
628 }
629
dev_reada_block(__u64 blk_addr)630 int dev_reada_block(__u64 blk_addr)
631 {
632 return dev_readahead(blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
633 }
634
f2fs_fsync_device(void)635 int f2fs_fsync_device(void)
636 {
637 #ifndef ANDROID_WINDOWS_HOST
638 int i;
639
640 for (i = 0; i < c.ndevs; i++) {
641 if (fsync(c.devices[i].fd) < 0) {
642 MSG(0, "\tError: Could not conduct fsync!!!\n");
643 return -1;
644 }
645 }
646 #endif
647 return 0;
648 }
649
f2fs_init_sparse_file(void)650 int f2fs_init_sparse_file(void)
651 {
652 #ifdef WITH_ANDROID
653 if (c.func == MKFS) {
654 f2fs_sparse_file = sparse_file_new(F2FS_BLKSIZE, c.device_size);
655 if (!f2fs_sparse_file)
656 return -1;
657 } else {
658 f2fs_sparse_file = sparse_file_import(c.devices[0].fd,
659 true, false);
660 if (!f2fs_sparse_file)
661 return -1;
662
663 c.device_size = sparse_file_len(f2fs_sparse_file, 0, 0);
664 c.device_size &= (~((u_int64_t)(F2FS_BLKSIZE - 1)));
665 }
666
667 if (sparse_file_block_size(f2fs_sparse_file) != F2FS_BLKSIZE) {
668 MSG(0, "\tError: Corrupted sparse file\n");
669 return -1;
670 }
671 blocks_count = c.device_size / F2FS_BLKSIZE;
672 blocks = calloc(blocks_count, sizeof(char *));
673 if (!blocks) {
674 MSG(0, "\tError: Calloc Failed for blocks!!!\n");
675 return -1;
676 }
677
678 zeroed_block = calloc(1, F2FS_BLKSIZE);
679 if (!zeroed_block) {
680 MSG(0, "\tError: Calloc Failed for zeroed block!!!\n");
681 return -1;
682 }
683
684 return sparse_file_foreach_chunk(f2fs_sparse_file, true, false,
685 sparse_import_segment, NULL);
686 #else
687 MSG(0, "\tError: Sparse mode is only supported for android\n");
688 return -1;
689 #endif
690 }
691
f2fs_release_sparse_resource(void)692 void f2fs_release_sparse_resource(void)
693 {
694 #ifdef WITH_ANDROID
695 int j;
696
697 if (c.sparse_mode) {
698 if (f2fs_sparse_file != NULL) {
699 sparse_file_destroy(f2fs_sparse_file);
700 f2fs_sparse_file = NULL;
701 }
702 for (j = 0; j < blocks_count; j++)
703 free(blocks[j]);
704 free(blocks);
705 blocks = NULL;
706 free(zeroed_block);
707 zeroed_block = NULL;
708 }
709 #endif
710 }
711
712 #define MAX_CHUNK_SIZE (1 * 1024 * 1024 * 1024ULL)
713 #define MAX_CHUNK_COUNT (MAX_CHUNK_SIZE / F2FS_BLKSIZE)
f2fs_finalize_device(void)714 int f2fs_finalize_device(void)
715 {
716 int i;
717 int ret = 0;
718
719 #ifdef WITH_ANDROID
720 if (c.sparse_mode) {
721 int64_t chunk_start = (blocks[0] == NULL) ? -1 : 0;
722 uint64_t j;
723
724 if (c.func != MKFS) {
725 sparse_file_destroy(f2fs_sparse_file);
726 ret = ftruncate(c.devices[0].fd, 0);
727 ASSERT(!ret);
728 lseek(c.devices[0].fd, 0, SEEK_SET);
729 f2fs_sparse_file = sparse_file_new(F2FS_BLKSIZE,
730 c.device_size);
731 }
732
733 for (j = 0; j < blocks_count; ++j) {
734 if (chunk_start != -1) {
735 if (j - chunk_start >= MAX_CHUNK_COUNT) {
736 ret = sparse_merge_blocks(chunk_start,
737 j - chunk_start, 0);
738 ASSERT(!ret);
739 chunk_start = -1;
740 }
741 }
742
743 if (chunk_start == -1) {
744 if (!blocks[j])
745 continue;
746
747 if (blocks[j] == zeroed_block) {
748 ret = sparse_merge_blocks(j, 1, 1);
749 ASSERT(!ret);
750 } else {
751 chunk_start = j;
752 }
753 } else {
754 if (blocks[j] && blocks[j] != zeroed_block)
755 continue;
756
757 ret = sparse_merge_blocks(chunk_start,
758 j - chunk_start, 0);
759 ASSERT(!ret);
760
761 if (blocks[j] == zeroed_block) {
762 ret = sparse_merge_blocks(j, 1, 1);
763 ASSERT(!ret);
764 }
765
766 chunk_start = -1;
767 }
768 }
769 if (chunk_start != -1) {
770 ret = sparse_merge_blocks(chunk_start,
771 blocks_count - chunk_start, 0);
772 ASSERT(!ret);
773 }
774
775 sparse_file_write(f2fs_sparse_file, c.devices[0].fd,
776 /*gzip*/0, /*sparse*/1, /*crc*/0);
777
778 f2fs_release_sparse_resource();
779 }
780 #endif
781 /*
782 * We should call fsync() to flush out all the dirty pages
783 * in the block device page cache.
784 */
785 for (i = 0; i < c.ndevs; i++) {
786 #ifndef ANDROID_WINDOWS_HOST
787 ret = fsync(c.devices[i].fd);
788 if (ret < 0) {
789 MSG(0, "\tError: Could not conduct fsync!!!\n");
790 break;
791 }
792 #endif
793 ret = close(c.devices[i].fd);
794 if (ret < 0) {
795 MSG(0, "\tError: Failed to close device file!!!\n");
796 break;
797 }
798 free(c.devices[i].path);
799 free(c.devices[i].zone_cap_blocks);
800 }
801 close(c.kd);
802
803 return ret;
804 }
805