• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrXferProcessor_DEFINED
9 #define GrXferProcessor_DEFINED
10 
11 #include "GrBlend.h"
12 #include "GrNonAtomicRef.h"
13 #include "GrProcessor.h"
14 #include "GrProcessorAnalysis.h"
15 #include "GrTypes.h"
16 
17 class GrGLSLXferProcessor;
18 class GrProcessorSet;
19 class GrShaderCaps;
20 
21 /**
22  * Barriers for blending. When a shader reads the dst directly, an Xfer barrier is sometimes
23  * required after a pixel has been written, before it can be safely read again.
24  */
25 enum GrXferBarrierType {
26     kNone_GrXferBarrierType = 0, //<! No barrier is required
27     kTexture_GrXferBarrierType,  //<! Required when a shader reads and renders to the same texture.
28     kBlend_GrXferBarrierType,    //<! Required by certain blend extensions.
29 };
30 /** Should be able to treat kNone as false in boolean expressions */
31 GR_STATIC_ASSERT(SkToBool(kNone_GrXferBarrierType) == false);
32 
33 /**
34  * GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst
35  * color, and for applying any coverage. It does this by emitting fragment shader code and
36  * controlling the fixed-function blend state. When dual-source blending is available, it may also
37  * write a seconday fragment shader output color. GrXferProcessor has two modes of operation:
38  *
39  * Dst read: When allowed by the backend API, or when supplied a texture of the destination, the
40  * GrXferProcessor may read the destination color. While operating in this mode, the subclass only
41  * provides shader code that blends the src and dst colors, and the base class applies coverage.
42  *
43  * No dst read: When not performing a dst read, the subclass is given full control of the fixed-
44  * function blend state and/or secondary output, and is responsible to apply coverage on its own.
45  *
46  * A GrXferProcessor is never installed directly into our draw state, but instead is created from a
47  * GrXPFactory once we have finalized the state of our draw.
48  */
49 class GrXferProcessor : public GrProcessor, public GrNonAtomicRef<GrXferProcessor> {
50 public:
51     /**
52      * A texture that contains the dst pixel values and an integer coord offset from device space
53      * to the space of the texture. Depending on GPU capabilities a DstTexture may be used by a
54      * GrXferProcessor for blending in the fragment shader.
55      */
56     class DstProxy {
57     public:
DstProxy()58         DstProxy() { fOffset.set(0, 0); }
59 
DstProxy(const DstProxy & other)60         DstProxy(const DstProxy& other) {
61             *this = other;
62         }
63 
DstProxy(sk_sp<GrTextureProxy> proxy,const SkIPoint & offset)64         DstProxy(sk_sp<GrTextureProxy> proxy, const SkIPoint& offset)
65             : fProxy(std::move(proxy)) {
66             if (fProxy) {
67                 fOffset = offset;
68             } else {
69                 fOffset.set(0, 0);
70             }
71         }
72 
73         DstProxy& operator=(const DstProxy& other) {
74             fProxy = other.fProxy;
75             fOffset = other.fOffset;
76             return *this;
77         }
78 
79         bool operator==(const DstProxy& that) const {
80             return fProxy == that.fProxy && fOffset == that.fOffset;
81         }
82         bool operator!=(const DstProxy& that) const { return !(*this == that); }
83 
offset()84         const SkIPoint& offset() const { return fOffset; }
85 
setOffset(const SkIPoint & offset)86         void setOffset(const SkIPoint& offset) { fOffset = offset; }
setOffset(int ox,int oy)87         void setOffset(int ox, int oy) { fOffset.set(ox, oy); }
88 
proxy()89         GrTextureProxy* proxy() const { return fProxy.get(); }
90 
setProxy(sk_sp<GrTextureProxy> proxy)91         void setProxy(sk_sp<GrTextureProxy> proxy) {
92             fProxy = std::move(proxy);
93             if (!fProxy) {
94                 fOffset = {0, 0};
95             }
96         }
97 
instantiate(GrResourceProvider * resourceProvider)98         bool instantiate(GrResourceProvider* resourceProvider) {
99             return SkToBool(fProxy->instantiate(resourceProvider));
100         }
101 
102     private:
103         sk_sp<GrTextureProxy> fProxy;
104         SkIPoint              fOffset;
105     };
106 
107     /**
108      * Sets a unique key on the GrProcessorKeyBuilder calls onGetGLSLProcessorKey(...) to get the
109      * specific subclass's key.
110      */
111     void getGLSLProcessorKey(const GrShaderCaps&,
112                              GrProcessorKeyBuilder*,
113                              const GrSurfaceOrigin* originIfDstTexture) const;
114 
115     /** Returns a new instance of the appropriate *GL* implementation class
116         for the given GrXferProcessor; caller is responsible for deleting
117         the object. */
118     virtual GrGLSLXferProcessor* createGLSLInstance() const = 0;
119 
120     /**
121      * Returns the barrier type, if any, that this XP will require. Note that the possibility
122      * that a kTexture type barrier is required is handled by the GrPipeline and need not be
123      * considered by subclass overrides of this function.
124      */
xferBarrierType(const GrCaps & caps)125     virtual GrXferBarrierType xferBarrierType(const GrCaps& caps) const {
126         return kNone_GrXferBarrierType;
127     }
128 
129     struct BlendInfo {
resetBlendInfo130         void reset() {
131             fEquation = kAdd_GrBlendEquation;
132             fSrcBlend = kOne_GrBlendCoeff;
133             fDstBlend = kZero_GrBlendCoeff;
134             fBlendConstant = SK_PMColor4fTRANSPARENT;
135             fWriteColor = true;
136         }
137 
138         SkDEBUGCODE(SkString dump() const;)
139 
140         GrBlendEquation fEquation;
141         GrBlendCoeff    fSrcBlend;
142         GrBlendCoeff    fDstBlend;
143         SkPMColor4f     fBlendConstant;
144         bool            fWriteColor;
145     };
146 
147     void getBlendInfo(BlendInfo* blendInfo) const;
148 
willReadDstColor()149     bool willReadDstColor() const { return fWillReadDstColor; }
150 
151     /**
152      * If we are performing a dst read, returns whether the base class will use mixed samples to
153      * antialias the shader's final output. If not doing a dst read, the subclass is responsible
154      * for antialiasing and this returns false.
155      */
dstReadUsesMixedSamples()156     bool dstReadUsesMixedSamples() const { return fDstReadUsesMixedSamples; }
157 
158     /**
159      * Returns whether or not this xferProcossor will set a secondary output to be used with dual
160      * source blending.
161      */
162     bool hasSecondaryOutput() const;
163 
isLCD()164     bool isLCD() const { return fIsLCD; }
165 
166     /** Returns true if this and other processor conservatively draw identically. It can only return
167         true when the two processor are of the same subclass (i.e. they return the same object from
168         from getFactory()).
169 
170         A return value of true from isEqual() should not be used to test whether the processor would
171         generate the same shader code. To test for identical code generation use getGLSLProcessorKey
172       */
173 
isEqual(const GrXferProcessor & that)174     bool isEqual(const GrXferProcessor& that) const {
175         if (this->classID() != that.classID()) {
176             return false;
177         }
178         if (this->fWillReadDstColor != that.fWillReadDstColor) {
179             return false;
180         }
181         if (this->fDstReadUsesMixedSamples != that.fDstReadUsesMixedSamples) {
182             return false;
183         }
184         if (fIsLCD != that.fIsLCD) {
185             return false;
186         }
187         return this->onIsEqual(that);
188     }
189 
190 protected:
191     GrXferProcessor(ClassID classID);
192     GrXferProcessor(ClassID classID, bool willReadDstColor, bool hasMixedSamples,
193                     GrProcessorAnalysisCoverage);
194 
195 private:
196     /**
197      * Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this xfer
198      * processor's GL backend implementation.
199      */
200     virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0;
201 
202     /**
203      * If we are not performing a dst read, returns whether the subclass will set a secondary
204      * output. When using dst reads, the base class controls the secondary output and this method
205      * will not be called.
206      */
onHasSecondaryOutput()207     virtual bool onHasSecondaryOutput() const { return false; }
208 
209     /**
210      * If we are not performing a dst read, retrieves the fixed-function blend state required by the
211      * subclass. When using dst reads, the base class controls the fixed-function blend state and
212      * this method will not be called. The BlendInfo struct comes initialized to "no blending".
213      */
onGetBlendInfo(BlendInfo *)214     virtual void onGetBlendInfo(BlendInfo*) const {}
215 
216     virtual bool onIsEqual(const GrXferProcessor&) const = 0;
217 
218     bool fWillReadDstColor;
219     bool fDstReadUsesMixedSamples;
220     bool fIsLCD;
221 
222     typedef GrProcessor INHERITED;
223 };
224 
225 /**
226  * We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is
227  * known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the
228  * draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the
229  * draw information to create a GrXferProcessor (XP) which can implement the desired blending for
230  * the draw.
231  *
232  * Before the XP is created, the XPF is able to answer queries about what functionality the XPs it
233  * creates will have. For example, can it create an XP that supports RGB coverage or will the XP
234  * blend with the destination color.
235  *
236  * GrXPFactories are intended to be static immutable objects. We pass them around as raw pointers
237  * and expect the pointers to always be valid and for the factories to be reusable and thread safe.
238  * Equality is tested for using pointer comparison. GrXPFactory destructors must be no-ops.
239  */
240 
241 // In order to construct GrXPFactory subclass instances as constexpr the subclass, and therefore
242 // GrXPFactory, must be a literal type. One requirement is having a trivial destructor. This is ok
243 // since these objects have no need for destructors. However, GCC and clang throw a warning when a
244 // class has virtual functions and a non-virtual destructor. We suppress that warning here and
245 // for the subclasses.
246 #if defined(__GNUC__)
247 #pragma GCC diagnostic push
248 #pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
249 #endif
250 #if defined(__clang__)
251 #pragma clang diagnostic push
252 #pragma clang diagnostic ignored "-Wnon-virtual-dtor"
253 #endif
254 class GrXPFactory {
255 public:
256     typedef GrXferProcessor::DstProxy DstProxy;
257 
258     enum class AnalysisProperties : unsigned {
259         kNone = 0x0,
260         /**
261          * The fragment shader will require the destination color.
262          */
263         kReadsDstInShader = 0x1,
264         /**
265          * The op may apply coverage as alpha and still blend correctly.
266          */
267         kCompatibleWithAlphaAsCoverage = 0x2,
268         /**
269          * The color input to the GrXferProcessor will be ignored.
270          */
271         kIgnoresInputColor = 0x4,
272         /**
273          * The destination color will be provided to the fragment processor using a texture. This is
274          * additional information about the implementation of kReadsDstInShader.
275          */
276         kRequiresDstTexture = 0x10,
277         /**
278          * If set, each pixel can only be touched once during a draw (e.g., because we have a dst
279          * texture or because we need an xfer barrier).
280          */
281         kRequiresNonOverlappingDraws = 0x20,
282     };
283     GR_DECL_BITFIELD_CLASS_OPS_FRIENDS(AnalysisProperties);
284 
285     static sk_sp<const GrXferProcessor> MakeXferProcessor(const GrXPFactory*,
286                                                           const GrProcessorAnalysisColor&,
287                                                           GrProcessorAnalysisCoverage,
288                                                           bool hasMixedSamples,
289                                                           const GrCaps& caps);
290 
291     static AnalysisProperties GetAnalysisProperties(const GrXPFactory*,
292                                                     const GrProcessorAnalysisColor&,
293                                                     const GrProcessorAnalysisCoverage&,
294                                                     const GrCaps&);
295 
296 protected:
GrXPFactory()297     constexpr GrXPFactory() {}
298 
299 private:
300     virtual sk_sp<const GrXferProcessor> makeXferProcessor(const GrProcessorAnalysisColor&,
301                                                            GrProcessorAnalysisCoverage,
302                                                            bool hasMixedSamples,
303                                                            const GrCaps&) const = 0;
304 
305     /**
306      * Subclass analysis implementation. This should not return kNeedsDstInTexture as that will be
307      * inferred by the base class based on kReadsDstInShader and the caps.
308      */
309     virtual AnalysisProperties analysisProperties(const GrProcessorAnalysisColor&,
310                                                   const GrProcessorAnalysisCoverage&,
311                                                   const GrCaps&) const = 0;
312 };
313 #if defined(__GNUC__)
314 #pragma GCC diagnostic pop
315 #endif
316 #if defined(__clang__)
317 #pragma clang diagnostic pop
318 #endif
319 
320 GR_MAKE_BITFIELD_CLASS_OPS(GrXPFactory::AnalysisProperties);
321 
322 #endif
323