• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to NVPTX assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "NVPTXAsmPrinter.h"
16 #include "InstPrinter/NVPTXInstPrinter.h"
17 #include "MCTargetDesc/NVPTXMCAsmInfo.h"
18 #include "NVPTX.h"
19 #include "NVPTXInstrInfo.h"
20 #include "NVPTXMCExpr.h"
21 #include "NVPTXMachineFunctionInfo.h"
22 #include "NVPTXRegisterInfo.h"
23 #include "NVPTXTargetMachine.h"
24 #include "NVPTXUtilities.h"
25 #include "cl_common_defines.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/CodeGen/Analysis.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Mangler.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSymbol.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FormattedStream.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/TargetRegistry.h"
48 #include "llvm/Support/TimeValue.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Transforms/Utils/UnrollLoop.h"
51 #include <sstream>
52 using namespace llvm;
53 
54 #define DEPOTNAME "__local_depot"
55 
56 static cl::opt<bool>
57 EmitLineNumbers("nvptx-emit-line-numbers", cl::Hidden,
58                 cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
59                 cl::init(true));
60 
61 static cl::opt<bool>
62 InterleaveSrc("nvptx-emit-src", cl::ZeroOrMore, cl::Hidden,
63               cl::desc("NVPTX Specific: Emit source line in ptx file"),
64               cl::init(false));
65 
66 namespace {
67 /// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
68 /// depends.
DiscoverDependentGlobals(const Value * V,DenseSet<const GlobalVariable * > & Globals)69 void DiscoverDependentGlobals(const Value *V,
70                               DenseSet<const GlobalVariable *> &Globals) {
71   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
72     Globals.insert(GV);
73   else {
74     if (const User *U = dyn_cast<User>(V)) {
75       for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
76         DiscoverDependentGlobals(U->getOperand(i), Globals);
77       }
78     }
79   }
80 }
81 
82 /// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
83 /// instances to be emitted, but only after any dependents have been added
84 /// first.
VisitGlobalVariableForEmission(const GlobalVariable * GV,SmallVectorImpl<const GlobalVariable * > & Order,DenseSet<const GlobalVariable * > & Visited,DenseSet<const GlobalVariable * > & Visiting)85 void VisitGlobalVariableForEmission(
86     const GlobalVariable *GV, SmallVectorImpl<const GlobalVariable *> &Order,
87     DenseSet<const GlobalVariable *> &Visited,
88     DenseSet<const GlobalVariable *> &Visiting) {
89   // Have we already visited this one?
90   if (Visited.count(GV))
91     return;
92 
93   // Do we have a circular dependency?
94   if (!Visiting.insert(GV).second)
95     report_fatal_error("Circular dependency found in global variable set");
96 
97   // Make sure we visit all dependents first
98   DenseSet<const GlobalVariable *> Others;
99   for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
100     DiscoverDependentGlobals(GV->getOperand(i), Others);
101 
102   for (DenseSet<const GlobalVariable *>::iterator I = Others.begin(),
103                                                   E = Others.end();
104        I != E; ++I)
105     VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
106 
107   // Now we can visit ourself
108   Order.push_back(GV);
109   Visited.insert(GV);
110   Visiting.erase(GV);
111 }
112 }
113 
emitLineNumberAsDotLoc(const MachineInstr & MI)114 void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) {
115   if (!EmitLineNumbers)
116     return;
117   if (ignoreLoc(MI))
118     return;
119 
120   const DebugLoc &curLoc = MI.getDebugLoc();
121 
122   if (!prevDebugLoc && !curLoc)
123     return;
124 
125   if (prevDebugLoc == curLoc)
126     return;
127 
128   prevDebugLoc = curLoc;
129 
130   if (!curLoc)
131     return;
132 
133   auto *Scope = cast_or_null<DIScope>(curLoc.getScope());
134   if (!Scope)
135      return;
136 
137   StringRef fileName(Scope->getFilename());
138   StringRef dirName(Scope->getDirectory());
139   SmallString<128> FullPathName = dirName;
140   if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
141     sys::path::append(FullPathName, fileName);
142     fileName = FullPathName;
143   }
144 
145   if (filenameMap.find(fileName) == filenameMap.end())
146     return;
147 
148   // Emit the line from the source file.
149   if (InterleaveSrc)
150     this->emitSrcInText(fileName, curLoc.getLine());
151 
152   std::stringstream temp;
153   temp << "\t.loc " << filenameMap[fileName] << " " << curLoc.getLine()
154        << " " << curLoc.getCol();
155   OutStreamer->EmitRawText(temp.str());
156 }
157 
EmitInstruction(const MachineInstr * MI)158 void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
159   SmallString<128> Str;
160   raw_svector_ostream OS(Str);
161   if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA)
162     emitLineNumberAsDotLoc(*MI);
163 
164   MCInst Inst;
165   lowerToMCInst(MI, Inst);
166   EmitToStreamer(*OutStreamer, Inst);
167 }
168 
169 // Handle symbol backtracking for targets that do not support image handles
lowerImageHandleOperand(const MachineInstr * MI,unsigned OpNo,MCOperand & MCOp)170 bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI,
171                                            unsigned OpNo, MCOperand &MCOp) {
172   const MachineOperand &MO = MI->getOperand(OpNo);
173   const MCInstrDesc &MCID = MI->getDesc();
174 
175   if (MCID.TSFlags & NVPTXII::IsTexFlag) {
176     // This is a texture fetch, so operand 4 is a texref and operand 5 is
177     // a samplerref
178     if (OpNo == 4 && MO.isImm()) {
179       lowerImageHandleSymbol(MO.getImm(), MCOp);
180       return true;
181     }
182     if (OpNo == 5 && MO.isImm() && !(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) {
183       lowerImageHandleSymbol(MO.getImm(), MCOp);
184       return true;
185     }
186 
187     return false;
188   } else if (MCID.TSFlags & NVPTXII::IsSuldMask) {
189     unsigned VecSize =
190       1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1);
191 
192     // For a surface load of vector size N, the Nth operand will be the surfref
193     if (OpNo == VecSize && MO.isImm()) {
194       lowerImageHandleSymbol(MO.getImm(), MCOp);
195       return true;
196     }
197 
198     return false;
199   } else if (MCID.TSFlags & NVPTXII::IsSustFlag) {
200     // This is a surface store, so operand 0 is a surfref
201     if (OpNo == 0 && MO.isImm()) {
202       lowerImageHandleSymbol(MO.getImm(), MCOp);
203       return true;
204     }
205 
206     return false;
207   } else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) {
208     // This is a query, so operand 1 is a surfref/texref
209     if (OpNo == 1 && MO.isImm()) {
210       lowerImageHandleSymbol(MO.getImm(), MCOp);
211       return true;
212     }
213 
214     return false;
215   }
216 
217   return false;
218 }
219 
lowerImageHandleSymbol(unsigned Index,MCOperand & MCOp)220 void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) {
221   // Ewwww
222   TargetMachine &TM = const_cast<TargetMachine&>(MF->getTarget());
223   NVPTXTargetMachine &nvTM = static_cast<NVPTXTargetMachine&>(TM);
224   const NVPTXMachineFunctionInfo *MFI = MF->getInfo<NVPTXMachineFunctionInfo>();
225   const char *Sym = MFI->getImageHandleSymbol(Index);
226   std::string *SymNamePtr =
227     nvTM.getManagedStrPool()->getManagedString(Sym);
228   MCOp = GetSymbolRef(OutContext.getOrCreateSymbol(
229     StringRef(SymNamePtr->c_str())));
230 }
231 
lowerToMCInst(const MachineInstr * MI,MCInst & OutMI)232 void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
233   OutMI.setOpcode(MI->getOpcode());
234   // Special: Do not mangle symbol operand of CALL_PROTOTYPE
235   if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
236     const MachineOperand &MO = MI->getOperand(0);
237     OutMI.addOperand(GetSymbolRef(
238       OutContext.getOrCreateSymbol(Twine(MO.getSymbolName()))));
239     return;
240   }
241 
242   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
243     const MachineOperand &MO = MI->getOperand(i);
244 
245     MCOperand MCOp;
246     if (!nvptxSubtarget->hasImageHandles()) {
247       if (lowerImageHandleOperand(MI, i, MCOp)) {
248         OutMI.addOperand(MCOp);
249         continue;
250       }
251     }
252 
253     if (lowerOperand(MO, MCOp))
254       OutMI.addOperand(MCOp);
255   }
256 }
257 
lowerOperand(const MachineOperand & MO,MCOperand & MCOp)258 bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
259                                    MCOperand &MCOp) {
260   switch (MO.getType()) {
261   default: llvm_unreachable("unknown operand type");
262   case MachineOperand::MO_Register:
263     MCOp = MCOperand::createReg(encodeVirtualRegister(MO.getReg()));
264     break;
265   case MachineOperand::MO_Immediate:
266     MCOp = MCOperand::createImm(MO.getImm());
267     break;
268   case MachineOperand::MO_MachineBasicBlock:
269     MCOp = MCOperand::createExpr(MCSymbolRefExpr::create(
270         MO.getMBB()->getSymbol(), OutContext));
271     break;
272   case MachineOperand::MO_ExternalSymbol:
273     MCOp = GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
274     break;
275   case MachineOperand::MO_GlobalAddress:
276     MCOp = GetSymbolRef(getSymbol(MO.getGlobal()));
277     break;
278   case MachineOperand::MO_FPImmediate: {
279     const ConstantFP *Cnt = MO.getFPImm();
280     const APFloat &Val = Cnt->getValueAPF();
281 
282     switch (Cnt->getType()->getTypeID()) {
283     default: report_fatal_error("Unsupported FP type"); break;
284     case Type::FloatTyID:
285       MCOp = MCOperand::createExpr(
286         NVPTXFloatMCExpr::createConstantFPSingle(Val, OutContext));
287       break;
288     case Type::DoubleTyID:
289       MCOp = MCOperand::createExpr(
290         NVPTXFloatMCExpr::createConstantFPDouble(Val, OutContext));
291       break;
292     }
293     break;
294   }
295   }
296   return true;
297 }
298 
encodeVirtualRegister(unsigned Reg)299 unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
300   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
301     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
302 
303     DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
304     unsigned RegNum = RegMap[Reg];
305 
306     // Encode the register class in the upper 4 bits
307     // Must be kept in sync with NVPTXInstPrinter::printRegName
308     unsigned Ret = 0;
309     if (RC == &NVPTX::Int1RegsRegClass) {
310       Ret = (1 << 28);
311     } else if (RC == &NVPTX::Int16RegsRegClass) {
312       Ret = (2 << 28);
313     } else if (RC == &NVPTX::Int32RegsRegClass) {
314       Ret = (3 << 28);
315     } else if (RC == &NVPTX::Int64RegsRegClass) {
316       Ret = (4 << 28);
317     } else if (RC == &NVPTX::Float32RegsRegClass) {
318       Ret = (5 << 28);
319     } else if (RC == &NVPTX::Float64RegsRegClass) {
320       Ret = (6 << 28);
321     } else {
322       report_fatal_error("Bad register class");
323     }
324 
325     // Insert the vreg number
326     Ret |= (RegNum & 0x0FFFFFFF);
327     return Ret;
328   } else {
329     // Some special-use registers are actually physical registers.
330     // Encode this as the register class ID of 0 and the real register ID.
331     return Reg & 0x0FFFFFFF;
332   }
333 }
334 
GetSymbolRef(const MCSymbol * Symbol)335 MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
336   const MCExpr *Expr;
337   Expr = MCSymbolRefExpr::create(Symbol, MCSymbolRefExpr::VK_None,
338                                  OutContext);
339   return MCOperand::createExpr(Expr);
340 }
341 
printReturnValStr(const Function * F,raw_ostream & O)342 void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
343   const DataLayout &DL = getDataLayout();
344   const TargetLowering *TLI = nvptxSubtarget->getTargetLowering();
345 
346   Type *Ty = F->getReturnType();
347 
348   bool isABI = (nvptxSubtarget->getSmVersion() >= 20);
349 
350   if (Ty->getTypeID() == Type::VoidTyID)
351     return;
352 
353   O << " (";
354 
355   if (isABI) {
356     if (Ty->isFloatingPointTy() || Ty->isIntegerTy()) {
357       unsigned size = 0;
358       if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
359         size = ITy->getBitWidth();
360         if (size < 32)
361           size = 32;
362       } else {
363         assert(Ty->isFloatingPointTy() && "Floating point type expected here");
364         size = Ty->getPrimitiveSizeInBits();
365       }
366 
367       O << ".param .b" << size << " func_retval0";
368     } else if (isa<PointerType>(Ty)) {
369       O << ".param .b" << TLI->getPointerTy(DL).getSizeInBits()
370         << " func_retval0";
371     } else if ((Ty->getTypeID() == Type::StructTyID) || isa<VectorType>(Ty)) {
372       unsigned totalsz = DL.getTypeAllocSize(Ty);
373        unsigned retAlignment = 0;
374        if (!llvm::getAlign(*F, 0, retAlignment))
375          retAlignment = DL.getABITypeAlignment(Ty);
376        O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
377          << "]";
378     } else
379       llvm_unreachable("Unknown return type");
380   } else {
381     SmallVector<EVT, 16> vtparts;
382     ComputeValueVTs(*TLI, DL, Ty, vtparts);
383     unsigned idx = 0;
384     for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
385       unsigned elems = 1;
386       EVT elemtype = vtparts[i];
387       if (vtparts[i].isVector()) {
388         elems = vtparts[i].getVectorNumElements();
389         elemtype = vtparts[i].getVectorElementType();
390       }
391 
392       for (unsigned j = 0, je = elems; j != je; ++j) {
393         unsigned sz = elemtype.getSizeInBits();
394         if (elemtype.isInteger() && (sz < 32))
395           sz = 32;
396         O << ".reg .b" << sz << " func_retval" << idx;
397         if (j < je - 1)
398           O << ", ";
399         ++idx;
400       }
401       if (i < e - 1)
402         O << ", ";
403     }
404   }
405   O << ") ";
406   return;
407 }
408 
printReturnValStr(const MachineFunction & MF,raw_ostream & O)409 void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
410                                         raw_ostream &O) {
411   const Function *F = MF.getFunction();
412   printReturnValStr(F, O);
413 }
414 
415 // Return true if MBB is the header of a loop marked with
416 // llvm.loop.unroll.disable.
417 // TODO: consider "#pragma unroll 1" which is equivalent to "#pragma nounroll".
isLoopHeaderOfNoUnroll(const MachineBasicBlock & MBB) const418 bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll(
419     const MachineBasicBlock &MBB) const {
420   MachineLoopInfo &LI = getAnalysis<MachineLoopInfo>();
421   // We insert .pragma "nounroll" only to the loop header.
422   if (!LI.isLoopHeader(&MBB))
423     return false;
424 
425   // llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore,
426   // we iterate through each back edge of the loop with header MBB, and check
427   // whether its metadata contains llvm.loop.unroll.disable.
428   for (auto I = MBB.pred_begin(); I != MBB.pred_end(); ++I) {
429     const MachineBasicBlock *PMBB = *I;
430     if (LI.getLoopFor(PMBB) != LI.getLoopFor(&MBB)) {
431       // Edges from other loops to MBB are not back edges.
432       continue;
433     }
434     if (const BasicBlock *PBB = PMBB->getBasicBlock()) {
435       if (MDNode *LoopID =
436               PBB->getTerminator()->getMetadata(LLVMContext::MD_loop)) {
437         if (GetUnrollMetadata(LoopID, "llvm.loop.unroll.disable"))
438           return true;
439       }
440     }
441   }
442   return false;
443 }
444 
EmitBasicBlockStart(const MachineBasicBlock & MBB) const445 void NVPTXAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
446   AsmPrinter::EmitBasicBlockStart(MBB);
447   if (isLoopHeaderOfNoUnroll(MBB))
448     OutStreamer->EmitRawText(StringRef("\t.pragma \"nounroll\";\n"));
449 }
450 
EmitFunctionEntryLabel()451 void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
452   SmallString<128> Str;
453   raw_svector_ostream O(Str);
454 
455   if (!GlobalsEmitted) {
456     emitGlobals(*MF->getFunction()->getParent());
457     GlobalsEmitted = true;
458   }
459 
460   // Set up
461   MRI = &MF->getRegInfo();
462   F = MF->getFunction();
463   emitLinkageDirective(F, O);
464   if (llvm::isKernelFunction(*F))
465     O << ".entry ";
466   else {
467     O << ".func ";
468     printReturnValStr(*MF, O);
469   }
470 
471   CurrentFnSym->print(O, MAI);
472 
473   emitFunctionParamList(*MF, O);
474 
475   if (llvm::isKernelFunction(*F))
476     emitKernelFunctionDirectives(*F, O);
477 
478   OutStreamer->EmitRawText(O.str());
479 
480   prevDebugLoc = DebugLoc();
481 }
482 
EmitFunctionBodyStart()483 void NVPTXAsmPrinter::EmitFunctionBodyStart() {
484   VRegMapping.clear();
485   OutStreamer->EmitRawText(StringRef("{\n"));
486   setAndEmitFunctionVirtualRegisters(*MF);
487 
488   SmallString<128> Str;
489   raw_svector_ostream O(Str);
490   emitDemotedVars(MF->getFunction(), O);
491   OutStreamer->EmitRawText(O.str());
492 }
493 
EmitFunctionBodyEnd()494 void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
495   OutStreamer->EmitRawText(StringRef("}\n"));
496   VRegMapping.clear();
497 }
498 
emitImplicitDef(const MachineInstr * MI) const499 void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
500   unsigned RegNo = MI->getOperand(0).getReg();
501   if (TargetRegisterInfo::isVirtualRegister(RegNo)) {
502     OutStreamer->AddComment(Twine("implicit-def: ") +
503                             getVirtualRegisterName(RegNo));
504   } else {
505     OutStreamer->AddComment(Twine("implicit-def: ") +
506                             nvptxSubtarget->getRegisterInfo()->getName(RegNo));
507   }
508   OutStreamer->AddBlankLine();
509 }
510 
emitKernelFunctionDirectives(const Function & F,raw_ostream & O) const511 void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
512                                                    raw_ostream &O) const {
513   // If the NVVM IR has some of reqntid* specified, then output
514   // the reqntid directive, and set the unspecified ones to 1.
515   // If none of reqntid* is specified, don't output reqntid directive.
516   unsigned reqntidx, reqntidy, reqntidz;
517   bool specified = false;
518   if (!llvm::getReqNTIDx(F, reqntidx))
519     reqntidx = 1;
520   else
521     specified = true;
522   if (!llvm::getReqNTIDy(F, reqntidy))
523     reqntidy = 1;
524   else
525     specified = true;
526   if (!llvm::getReqNTIDz(F, reqntidz))
527     reqntidz = 1;
528   else
529     specified = true;
530 
531   if (specified)
532     O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
533       << "\n";
534 
535   // If the NVVM IR has some of maxntid* specified, then output
536   // the maxntid directive, and set the unspecified ones to 1.
537   // If none of maxntid* is specified, don't output maxntid directive.
538   unsigned maxntidx, maxntidy, maxntidz;
539   specified = false;
540   if (!llvm::getMaxNTIDx(F, maxntidx))
541     maxntidx = 1;
542   else
543     specified = true;
544   if (!llvm::getMaxNTIDy(F, maxntidy))
545     maxntidy = 1;
546   else
547     specified = true;
548   if (!llvm::getMaxNTIDz(F, maxntidz))
549     maxntidz = 1;
550   else
551     specified = true;
552 
553   if (specified)
554     O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
555       << "\n";
556 
557   unsigned mincta;
558   if (llvm::getMinCTASm(F, mincta))
559     O << ".minnctapersm " << mincta << "\n";
560 }
561 
562 std::string
getVirtualRegisterName(unsigned Reg) const563 NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
564   const TargetRegisterClass *RC = MRI->getRegClass(Reg);
565 
566   std::string Name;
567   raw_string_ostream NameStr(Name);
568 
569   VRegRCMap::const_iterator I = VRegMapping.find(RC);
570   assert(I != VRegMapping.end() && "Bad register class");
571   const DenseMap<unsigned, unsigned> &RegMap = I->second;
572 
573   VRegMap::const_iterator VI = RegMap.find(Reg);
574   assert(VI != RegMap.end() && "Bad virtual register");
575   unsigned MappedVR = VI->second;
576 
577   NameStr << getNVPTXRegClassStr(RC) << MappedVR;
578 
579   NameStr.flush();
580   return Name;
581 }
582 
emitVirtualRegister(unsigned int vr,raw_ostream & O)583 void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
584                                           raw_ostream &O) {
585   O << getVirtualRegisterName(vr);
586 }
587 
printVecModifiedImmediate(const MachineOperand & MO,const char * Modifier,raw_ostream & O)588 void NVPTXAsmPrinter::printVecModifiedImmediate(
589     const MachineOperand &MO, const char *Modifier, raw_ostream &O) {
590   static const char vecelem[] = { '0', '1', '2', '3', '0', '1', '2', '3' };
591   int Imm = (int) MO.getImm();
592   if (0 == strcmp(Modifier, "vecelem"))
593     O << "_" << vecelem[Imm];
594   else if (0 == strcmp(Modifier, "vecv4comm1")) {
595     if ((Imm < 0) || (Imm > 3))
596       O << "//";
597   } else if (0 == strcmp(Modifier, "vecv4comm2")) {
598     if ((Imm < 4) || (Imm > 7))
599       O << "//";
600   } else if (0 == strcmp(Modifier, "vecv4pos")) {
601     if (Imm < 0)
602       Imm = 0;
603     O << "_" << vecelem[Imm % 4];
604   } else if (0 == strcmp(Modifier, "vecv2comm1")) {
605     if ((Imm < 0) || (Imm > 1))
606       O << "//";
607   } else if (0 == strcmp(Modifier, "vecv2comm2")) {
608     if ((Imm < 2) || (Imm > 3))
609       O << "//";
610   } else if (0 == strcmp(Modifier, "vecv2pos")) {
611     if (Imm < 0)
612       Imm = 0;
613     O << "_" << vecelem[Imm % 2];
614   } else
615     llvm_unreachable("Unknown Modifier on immediate operand");
616 }
617 
618 
619 
emitDeclaration(const Function * F,raw_ostream & O)620 void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
621 
622   emitLinkageDirective(F, O);
623   if (llvm::isKernelFunction(*F))
624     O << ".entry ";
625   else
626     O << ".func ";
627   printReturnValStr(F, O);
628   getSymbol(F)->print(O, MAI);
629   O << "\n";
630   emitFunctionParamList(F, O);
631   O << ";\n";
632 }
633 
usedInGlobalVarDef(const Constant * C)634 static bool usedInGlobalVarDef(const Constant *C) {
635   if (!C)
636     return false;
637 
638   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
639     return GV->getName() != "llvm.used";
640   }
641 
642   for (const User *U : C->users())
643     if (const Constant *C = dyn_cast<Constant>(U))
644       if (usedInGlobalVarDef(C))
645         return true;
646 
647   return false;
648 }
649 
usedInOneFunc(const User * U,Function const * & oneFunc)650 static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
651   if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
652     if (othergv->getName() == "llvm.used")
653       return true;
654   }
655 
656   if (const Instruction *instr = dyn_cast<Instruction>(U)) {
657     if (instr->getParent() && instr->getParent()->getParent()) {
658       const Function *curFunc = instr->getParent()->getParent();
659       if (oneFunc && (curFunc != oneFunc))
660         return false;
661       oneFunc = curFunc;
662       return true;
663     } else
664       return false;
665   }
666 
667   for (const User *UU : U->users())
668     if (!usedInOneFunc(UU, oneFunc))
669       return false;
670 
671   return true;
672 }
673 
674 /* Find out if a global variable can be demoted to local scope.
675  * Currently, this is valid for CUDA shared variables, which have local
676  * scope and global lifetime. So the conditions to check are :
677  * 1. Is the global variable in shared address space?
678  * 2. Does it have internal linkage?
679  * 3. Is the global variable referenced only in one function?
680  */
canDemoteGlobalVar(const GlobalVariable * gv,Function const * & f)681 static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
682   if (!gv->hasInternalLinkage())
683     return false;
684   PointerType *Pty = gv->getType();
685   if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
686     return false;
687 
688   const Function *oneFunc = nullptr;
689 
690   bool flag = usedInOneFunc(gv, oneFunc);
691   if (!flag)
692     return false;
693   if (!oneFunc)
694     return false;
695   f = oneFunc;
696   return true;
697 }
698 
useFuncSeen(const Constant * C,llvm::DenseMap<const Function *,bool> & seenMap)699 static bool useFuncSeen(const Constant *C,
700                         llvm::DenseMap<const Function *, bool> &seenMap) {
701   for (const User *U : C->users()) {
702     if (const Constant *cu = dyn_cast<Constant>(U)) {
703       if (useFuncSeen(cu, seenMap))
704         return true;
705     } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
706       const BasicBlock *bb = I->getParent();
707       if (!bb)
708         continue;
709       const Function *caller = bb->getParent();
710       if (!caller)
711         continue;
712       if (seenMap.find(caller) != seenMap.end())
713         return true;
714     }
715   }
716   return false;
717 }
718 
emitDeclarations(const Module & M,raw_ostream & O)719 void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
720   llvm::DenseMap<const Function *, bool> seenMap;
721   for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
722     const Function *F = &*FI;
723 
724     if (F->isDeclaration()) {
725       if (F->use_empty())
726         continue;
727       if (F->getIntrinsicID())
728         continue;
729       emitDeclaration(F, O);
730       continue;
731     }
732     for (const User *U : F->users()) {
733       if (const Constant *C = dyn_cast<Constant>(U)) {
734         if (usedInGlobalVarDef(C)) {
735           // The use is in the initialization of a global variable
736           // that is a function pointer, so print a declaration
737           // for the original function
738           emitDeclaration(F, O);
739           break;
740         }
741         // Emit a declaration of this function if the function that
742         // uses this constant expr has already been seen.
743         if (useFuncSeen(C, seenMap)) {
744           emitDeclaration(F, O);
745           break;
746         }
747       }
748 
749       if (!isa<Instruction>(U))
750         continue;
751       const Instruction *instr = cast<Instruction>(U);
752       const BasicBlock *bb = instr->getParent();
753       if (!bb)
754         continue;
755       const Function *caller = bb->getParent();
756       if (!caller)
757         continue;
758 
759       // If a caller has already been seen, then the caller is
760       // appearing in the module before the callee. so print out
761       // a declaration for the callee.
762       if (seenMap.find(caller) != seenMap.end()) {
763         emitDeclaration(F, O);
764         break;
765       }
766     }
767     seenMap[F] = true;
768   }
769 }
770 
recordAndEmitFilenames(Module & M)771 void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
772   DebugInfoFinder DbgFinder;
773   DbgFinder.processModule(M);
774 
775   unsigned i = 1;
776   for (const DICompileUnit *DIUnit : DbgFinder.compile_units()) {
777     StringRef Filename = DIUnit->getFilename();
778     StringRef Dirname = DIUnit->getDirectory();
779     SmallString<128> FullPathName = Dirname;
780     if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
781       sys::path::append(FullPathName, Filename);
782       Filename = FullPathName;
783     }
784     if (filenameMap.find(Filename) != filenameMap.end())
785       continue;
786     filenameMap[Filename] = i;
787     OutStreamer->EmitDwarfFileDirective(i, "", Filename);
788     ++i;
789   }
790 
791   for (DISubprogram *SP : DbgFinder.subprograms()) {
792     StringRef Filename = SP->getFilename();
793     StringRef Dirname = SP->getDirectory();
794     SmallString<128> FullPathName = Dirname;
795     if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
796       sys::path::append(FullPathName, Filename);
797       Filename = FullPathName;
798     }
799     if (filenameMap.find(Filename) != filenameMap.end())
800       continue;
801     filenameMap[Filename] = i;
802     OutStreamer->EmitDwarfFileDirective(i, "", Filename);
803     ++i;
804   }
805 }
806 
isEmptyXXStructor(GlobalVariable * GV)807 static bool isEmptyXXStructor(GlobalVariable *GV) {
808   if (!GV) return true;
809   const ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
810   if (!InitList) return true;  // Not an array; we don't know how to parse.
811   return InitList->getNumOperands() == 0;
812 }
813 
doInitialization(Module & M)814 bool NVPTXAsmPrinter::doInitialization(Module &M) {
815   // Construct a default subtarget off of the TargetMachine defaults. The
816   // rest of NVPTX isn't friendly to change subtargets per function and
817   // so the default TargetMachine will have all of the options.
818   const Triple &TT = TM.getTargetTriple();
819   StringRef CPU = TM.getTargetCPU();
820   StringRef FS = TM.getTargetFeatureString();
821   const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
822   const NVPTXSubtarget STI(TT, CPU, FS, NTM);
823 
824   if (M.alias_size()) {
825     report_fatal_error("Module has aliases, which NVPTX does not support.");
826     return true; // error
827   }
828   if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_ctors"))) {
829     report_fatal_error(
830         "Module has a nontrivial global ctor, which NVPTX does not support.");
831     return true;  // error
832   }
833   if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_dtors"))) {
834     report_fatal_error(
835         "Module has a nontrivial global dtor, which NVPTX does not support.");
836     return true;  // error
837   }
838 
839   SmallString<128> Str1;
840   raw_svector_ostream OS1(Str1);
841 
842   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
843 
844   // We need to call the parent's one explicitly.
845   //bool Result = AsmPrinter::doInitialization(M);
846 
847   // Initialize TargetLoweringObjectFile.
848   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
849       .Initialize(OutContext, TM);
850 
851   Mang = new Mangler();
852 
853   // Emit header before any dwarf directives are emitted below.
854   emitHeader(M, OS1, STI);
855   OutStreamer->EmitRawText(OS1.str());
856 
857   // Already commented out
858   //bool Result = AsmPrinter::doInitialization(M);
859 
860   // Emit module-level inline asm if it exists.
861   if (!M.getModuleInlineAsm().empty()) {
862     OutStreamer->AddComment("Start of file scope inline assembly");
863     OutStreamer->AddBlankLine();
864     OutStreamer->EmitRawText(StringRef(M.getModuleInlineAsm()));
865     OutStreamer->AddBlankLine();
866     OutStreamer->AddComment("End of file scope inline assembly");
867     OutStreamer->AddBlankLine();
868   }
869 
870   // If we're not NVCL we're CUDA, go ahead and emit filenames.
871   if (TM.getTargetTriple().getOS() != Triple::NVCL)
872     recordAndEmitFilenames(M);
873 
874   GlobalsEmitted = false;
875 
876   return false; // success
877 }
878 
emitGlobals(const Module & M)879 void NVPTXAsmPrinter::emitGlobals(const Module &M) {
880   SmallString<128> Str2;
881   raw_svector_ostream OS2(Str2);
882 
883   emitDeclarations(M, OS2);
884 
885   // As ptxas does not support forward references of globals, we need to first
886   // sort the list of module-level globals in def-use order. We visit each
887   // global variable in order, and ensure that we emit it *after* its dependent
888   // globals. We use a little extra memory maintaining both a set and a list to
889   // have fast searches while maintaining a strict ordering.
890   SmallVector<const GlobalVariable *, 8> Globals;
891   DenseSet<const GlobalVariable *> GVVisited;
892   DenseSet<const GlobalVariable *> GVVisiting;
893 
894   // Visit each global variable, in order
895   for (const GlobalVariable &I : M.globals())
896     VisitGlobalVariableForEmission(&I, Globals, GVVisited, GVVisiting);
897 
898   assert(GVVisited.size() == M.getGlobalList().size() &&
899          "Missed a global variable");
900   assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
901 
902   // Print out module-level global variables in proper order
903   for (unsigned i = 0, e = Globals.size(); i != e; ++i)
904     printModuleLevelGV(Globals[i], OS2);
905 
906   OS2 << '\n';
907 
908   OutStreamer->EmitRawText(OS2.str());
909 }
910 
emitHeader(Module & M,raw_ostream & O,const NVPTXSubtarget & STI)911 void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
912                                  const NVPTXSubtarget &STI) {
913   O << "//\n";
914   O << "// Generated by LLVM NVPTX Back-End\n";
915   O << "//\n";
916   O << "\n";
917 
918   unsigned PTXVersion = STI.getPTXVersion();
919   O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
920 
921   O << ".target ";
922   O << STI.getTargetName();
923 
924   const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
925   if (NTM.getDrvInterface() == NVPTX::NVCL)
926     O << ", texmode_independent";
927   else {
928     if (!STI.hasDouble())
929       O << ", map_f64_to_f32";
930   }
931 
932   if (MAI->doesSupportDebugInformation())
933     O << ", debug";
934 
935   O << "\n";
936 
937   O << ".address_size ";
938   if (NTM.is64Bit())
939     O << "64";
940   else
941     O << "32";
942   O << "\n";
943 
944   O << "\n";
945 }
946 
doFinalization(Module & M)947 bool NVPTXAsmPrinter::doFinalization(Module &M) {
948   // If we did not emit any functions, then the global declarations have not
949   // yet been emitted.
950   if (!GlobalsEmitted) {
951     emitGlobals(M);
952     GlobalsEmitted = true;
953   }
954 
955   // XXX Temproarily remove global variables so that doFinalization() will not
956   // emit them again (global variables are emitted at beginning).
957 
958   Module::GlobalListType &global_list = M.getGlobalList();
959   int i, n = global_list.size();
960   GlobalVariable **gv_array = new GlobalVariable *[n];
961 
962   // first, back-up GlobalVariable in gv_array
963   i = 0;
964   for (Module::global_iterator I = global_list.begin(), E = global_list.end();
965        I != E; ++I)
966     gv_array[i++] = &*I;
967 
968   // second, empty global_list
969   while (!global_list.empty())
970     global_list.remove(global_list.begin());
971 
972   // call doFinalization
973   bool ret = AsmPrinter::doFinalization(M);
974 
975   // now we restore global variables
976   for (i = 0; i < n; i++)
977     global_list.insert(global_list.end(), gv_array[i]);
978 
979   clearAnnotationCache(&M);
980 
981   delete[] gv_array;
982   return ret;
983 
984   //bool Result = AsmPrinter::doFinalization(M);
985   // Instead of calling the parents doFinalization, we may
986   // clone parents doFinalization and customize here.
987   // Currently, we if NVISA out the EmitGlobals() in
988   // parent's doFinalization, which is too intrusive.
989   //
990   // Same for the doInitialization.
991   //return Result;
992 }
993 
994 // This function emits appropriate linkage directives for
995 // functions and global variables.
996 //
997 // extern function declaration            -> .extern
998 // extern function definition             -> .visible
999 // external global variable with init     -> .visible
1000 // external without init                  -> .extern
1001 // appending                              -> not allowed, assert.
1002 // for any linkage other than
1003 // internal, private, linker_private,
1004 // linker_private_weak, linker_private_weak_def_auto,
1005 // we emit                                -> .weak.
1006 
emitLinkageDirective(const GlobalValue * V,raw_ostream & O)1007 void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
1008                                            raw_ostream &O) {
1009   if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) {
1010     if (V->hasExternalLinkage()) {
1011       if (isa<GlobalVariable>(V)) {
1012         const GlobalVariable *GVar = cast<GlobalVariable>(V);
1013         if (GVar) {
1014           if (GVar->hasInitializer())
1015             O << ".visible ";
1016           else
1017             O << ".extern ";
1018         }
1019       } else if (V->isDeclaration())
1020         O << ".extern ";
1021       else
1022         O << ".visible ";
1023     } else if (V->hasAppendingLinkage()) {
1024       std::string msg;
1025       msg.append("Error: ");
1026       msg.append("Symbol ");
1027       if (V->hasName())
1028         msg.append(V->getName());
1029       msg.append("has unsupported appending linkage type");
1030       llvm_unreachable(msg.c_str());
1031     } else if (!V->hasInternalLinkage() &&
1032                !V->hasPrivateLinkage()) {
1033       O << ".weak ";
1034     }
1035   }
1036 }
1037 
printModuleLevelGV(const GlobalVariable * GVar,raw_ostream & O,bool processDemoted)1038 void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
1039                                          raw_ostream &O,
1040                                          bool processDemoted) {
1041 
1042   // Skip meta data
1043   if (GVar->hasSection()) {
1044     if (GVar->getSection() == "llvm.metadata")
1045       return;
1046   }
1047 
1048   // Skip LLVM intrinsic global variables
1049   if (GVar->getName().startswith("llvm.") ||
1050       GVar->getName().startswith("nvvm."))
1051     return;
1052 
1053   const DataLayout &DL = getDataLayout();
1054 
1055   // GlobalVariables are always constant pointers themselves.
1056   PointerType *PTy = GVar->getType();
1057   Type *ETy = GVar->getValueType();
1058 
1059   if (GVar->hasExternalLinkage()) {
1060     if (GVar->hasInitializer())
1061       O << ".visible ";
1062     else
1063       O << ".extern ";
1064   } else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
1065              GVar->hasAvailableExternallyLinkage() ||
1066              GVar->hasCommonLinkage()) {
1067     O << ".weak ";
1068   }
1069 
1070   if (llvm::isTexture(*GVar)) {
1071     O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
1072     return;
1073   }
1074 
1075   if (llvm::isSurface(*GVar)) {
1076     O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
1077     return;
1078   }
1079 
1080   if (GVar->isDeclaration()) {
1081     // (extern) declarations, no definition or initializer
1082     // Currently the only known declaration is for an automatic __local
1083     // (.shared) promoted to global.
1084     emitPTXGlobalVariable(GVar, O);
1085     O << ";\n";
1086     return;
1087   }
1088 
1089   if (llvm::isSampler(*GVar)) {
1090     O << ".global .samplerref " << llvm::getSamplerName(*GVar);
1091 
1092     const Constant *Initializer = nullptr;
1093     if (GVar->hasInitializer())
1094       Initializer = GVar->getInitializer();
1095     const ConstantInt *CI = nullptr;
1096     if (Initializer)
1097       CI = dyn_cast<ConstantInt>(Initializer);
1098     if (CI) {
1099       unsigned sample = CI->getZExtValue();
1100 
1101       O << " = { ";
1102 
1103       for (int i = 0,
1104                addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
1105            i < 3; i++) {
1106         O << "addr_mode_" << i << " = ";
1107         switch (addr) {
1108         case 0:
1109           O << "wrap";
1110           break;
1111         case 1:
1112           O << "clamp_to_border";
1113           break;
1114         case 2:
1115           O << "clamp_to_edge";
1116           break;
1117         case 3:
1118           O << "wrap";
1119           break;
1120         case 4:
1121           O << "mirror";
1122           break;
1123         }
1124         O << ", ";
1125       }
1126       O << "filter_mode = ";
1127       switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
1128       case 0:
1129         O << "nearest";
1130         break;
1131       case 1:
1132         O << "linear";
1133         break;
1134       case 2:
1135         llvm_unreachable("Anisotropic filtering is not supported");
1136       default:
1137         O << "nearest";
1138         break;
1139       }
1140       if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
1141         O << ", force_unnormalized_coords = 1";
1142       }
1143       O << " }";
1144     }
1145 
1146     O << ";\n";
1147     return;
1148   }
1149 
1150   if (GVar->hasPrivateLinkage()) {
1151 
1152     if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
1153       return;
1154 
1155     // FIXME - need better way (e.g. Metadata) to avoid generating this global
1156     if (!strncmp(GVar->getName().data(), "filename", 8))
1157       return;
1158     if (GVar->use_empty())
1159       return;
1160   }
1161 
1162   const Function *demotedFunc = nullptr;
1163   if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
1164     O << "// " << GVar->getName() << " has been demoted\n";
1165     if (localDecls.find(demotedFunc) != localDecls.end())
1166       localDecls[demotedFunc].push_back(GVar);
1167     else {
1168       std::vector<const GlobalVariable *> temp;
1169       temp.push_back(GVar);
1170       localDecls[demotedFunc] = temp;
1171     }
1172     return;
1173   }
1174 
1175   O << ".";
1176   emitPTXAddressSpace(PTy->getAddressSpace(), O);
1177 
1178   if (isManaged(*GVar)) {
1179     O << " .attribute(.managed)";
1180   }
1181 
1182   if (GVar->getAlignment() == 0)
1183     O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
1184   else
1185     O << " .align " << GVar->getAlignment();
1186 
1187   if (ETy->isFloatingPointTy() || ETy->isIntegerTy() || ETy->isPointerTy()) {
1188     O << " .";
1189     // Special case: ABI requires that we use .u8 for predicates
1190     if (ETy->isIntegerTy(1))
1191       O << "u8";
1192     else
1193       O << getPTXFundamentalTypeStr(ETy, false);
1194     O << " ";
1195     getSymbol(GVar)->print(O, MAI);
1196 
1197     // Ptx allows variable initilization only for constant and global state
1198     // spaces.
1199     if (GVar->hasInitializer()) {
1200       if ((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1201           (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) {
1202         const Constant *Initializer = GVar->getInitializer();
1203         // 'undef' is treated as there is no value specified.
1204         if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
1205           O << " = ";
1206           printScalarConstant(Initializer, O);
1207         }
1208       } else {
1209         // The frontend adds zero-initializer to device and constant variables
1210         // that don't have an initial value, and UndefValue to shared
1211         // variables, so skip warning for this case.
1212         if (!GVar->getInitializer()->isNullValue() &&
1213             !isa<UndefValue>(GVar->getInitializer())) {
1214           report_fatal_error("initial value of '" + GVar->getName() +
1215                              "' is not allowed in addrspace(" +
1216                              Twine(PTy->getAddressSpace()) + ")");
1217         }
1218       }
1219     }
1220   } else {
1221     unsigned int ElementSize = 0;
1222 
1223     // Although PTX has direct support for struct type and array type and
1224     // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
1225     // targets that support these high level field accesses. Structs, arrays
1226     // and vectors are lowered into arrays of bytes.
1227     switch (ETy->getTypeID()) {
1228     case Type::StructTyID:
1229     case Type::ArrayTyID:
1230     case Type::VectorTyID:
1231       ElementSize = DL.getTypeStoreSize(ETy);
1232       // Ptx allows variable initilization only for constant and
1233       // global state spaces.
1234       if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1235            (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
1236           GVar->hasInitializer()) {
1237         const Constant *Initializer = GVar->getInitializer();
1238         if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
1239           AggBuffer aggBuffer(ElementSize, O, *this);
1240           bufferAggregateConstant(Initializer, &aggBuffer);
1241           if (aggBuffer.numSymbols) {
1242             if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit()) {
1243               O << " .u64 ";
1244               getSymbol(GVar)->print(O, MAI);
1245               O << "[";
1246               O << ElementSize / 8;
1247             } else {
1248               O << " .u32 ";
1249               getSymbol(GVar)->print(O, MAI);
1250               O << "[";
1251               O << ElementSize / 4;
1252             }
1253             O << "]";
1254           } else {
1255             O << " .b8 ";
1256             getSymbol(GVar)->print(O, MAI);
1257             O << "[";
1258             O << ElementSize;
1259             O << "]";
1260           }
1261           O << " = {";
1262           aggBuffer.print();
1263           O << "}";
1264         } else {
1265           O << " .b8 ";
1266           getSymbol(GVar)->print(O, MAI);
1267           if (ElementSize) {
1268             O << "[";
1269             O << ElementSize;
1270             O << "]";
1271           }
1272         }
1273       } else {
1274         O << " .b8 ";
1275         getSymbol(GVar)->print(O, MAI);
1276         if (ElementSize) {
1277           O << "[";
1278           O << ElementSize;
1279           O << "]";
1280         }
1281       }
1282       break;
1283     default:
1284       llvm_unreachable("type not supported yet");
1285     }
1286 
1287   }
1288   O << ";\n";
1289 }
1290 
emitDemotedVars(const Function * f,raw_ostream & O)1291 void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
1292   if (localDecls.find(f) == localDecls.end())
1293     return;
1294 
1295   std::vector<const GlobalVariable *> &gvars = localDecls[f];
1296 
1297   for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
1298     O << "\t// demoted variable\n\t";
1299     printModuleLevelGV(gvars[i], O, true);
1300   }
1301 }
1302 
emitPTXAddressSpace(unsigned int AddressSpace,raw_ostream & O) const1303 void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
1304                                           raw_ostream &O) const {
1305   switch (AddressSpace) {
1306   case llvm::ADDRESS_SPACE_LOCAL:
1307     O << "local";
1308     break;
1309   case llvm::ADDRESS_SPACE_GLOBAL:
1310     O << "global";
1311     break;
1312   case llvm::ADDRESS_SPACE_CONST:
1313     O << "const";
1314     break;
1315   case llvm::ADDRESS_SPACE_SHARED:
1316     O << "shared";
1317     break;
1318   default:
1319     report_fatal_error("Bad address space found while emitting PTX");
1320     break;
1321   }
1322 }
1323 
1324 std::string
getPTXFundamentalTypeStr(Type * Ty,bool useB4PTR) const1325 NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const {
1326   switch (Ty->getTypeID()) {
1327   default:
1328     llvm_unreachable("unexpected type");
1329     break;
1330   case Type::IntegerTyID: {
1331     unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
1332     if (NumBits == 1)
1333       return "pred";
1334     else if (NumBits <= 64) {
1335       std::string name = "u";
1336       return name + utostr(NumBits);
1337     } else {
1338       llvm_unreachable("Integer too large");
1339       break;
1340     }
1341     break;
1342   }
1343   case Type::FloatTyID:
1344     return "f32";
1345   case Type::DoubleTyID:
1346     return "f64";
1347   case Type::PointerTyID:
1348     if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit())
1349       if (useB4PTR)
1350         return "b64";
1351       else
1352         return "u64";
1353     else if (useB4PTR)
1354       return "b32";
1355     else
1356       return "u32";
1357   }
1358   llvm_unreachable("unexpected type");
1359   return nullptr;
1360 }
1361 
emitPTXGlobalVariable(const GlobalVariable * GVar,raw_ostream & O)1362 void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
1363                                             raw_ostream &O) {
1364 
1365   const DataLayout &DL = getDataLayout();
1366 
1367   // GlobalVariables are always constant pointers themselves.
1368   Type *ETy = GVar->getValueType();
1369 
1370   O << ".";
1371   emitPTXAddressSpace(GVar->getType()->getAddressSpace(), O);
1372   if (GVar->getAlignment() == 0)
1373     O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
1374   else
1375     O << " .align " << GVar->getAlignment();
1376 
1377   if (ETy->isFloatingPointTy() || ETy->isIntegerTy() || ETy->isPointerTy()) {
1378     O << " .";
1379     O << getPTXFundamentalTypeStr(ETy);
1380     O << " ";
1381     getSymbol(GVar)->print(O, MAI);
1382     return;
1383   }
1384 
1385   int64_t ElementSize = 0;
1386 
1387   // Although PTX has direct support for struct type and array type and LLVM IR
1388   // is very similar to PTX, the LLVM CodeGen does not support for targets that
1389   // support these high level field accesses. Structs and arrays are lowered
1390   // into arrays of bytes.
1391   switch (ETy->getTypeID()) {
1392   case Type::StructTyID:
1393   case Type::ArrayTyID:
1394   case Type::VectorTyID:
1395     ElementSize = DL.getTypeStoreSize(ETy);
1396     O << " .b8 ";
1397     getSymbol(GVar)->print(O, MAI);
1398     O << "[";
1399     if (ElementSize) {
1400       O << ElementSize;
1401     }
1402     O << "]";
1403     break;
1404   default:
1405     llvm_unreachable("type not supported yet");
1406   }
1407   return;
1408 }
1409 
getOpenCLAlignment(const DataLayout & DL,Type * Ty)1410 static unsigned int getOpenCLAlignment(const DataLayout &DL, Type *Ty) {
1411   if (Ty->isSingleValueType())
1412     return DL.getPrefTypeAlignment(Ty);
1413 
1414   auto *ATy = dyn_cast<ArrayType>(Ty);
1415   if (ATy)
1416     return getOpenCLAlignment(DL, ATy->getElementType());
1417 
1418   auto *STy = dyn_cast<StructType>(Ty);
1419   if (STy) {
1420     unsigned int alignStruct = 1;
1421     // Go through each element of the struct and find the
1422     // largest alignment.
1423     for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1424       Type *ETy = STy->getElementType(i);
1425       unsigned int align = getOpenCLAlignment(DL, ETy);
1426       if (align > alignStruct)
1427         alignStruct = align;
1428     }
1429     return alignStruct;
1430   }
1431 
1432   auto *FTy = dyn_cast<FunctionType>(Ty);
1433   if (FTy)
1434     return DL.getPointerPrefAlignment();
1435   return DL.getPrefTypeAlignment(Ty);
1436 }
1437 
printParamName(Function::const_arg_iterator I,int paramIndex,raw_ostream & O)1438 void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
1439                                      int paramIndex, raw_ostream &O) {
1440   getSymbol(I->getParent())->print(O, MAI);
1441   O << "_param_" << paramIndex;
1442 }
1443 
emitFunctionParamList(const Function * F,raw_ostream & O)1444 void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
1445   const DataLayout &DL = getDataLayout();
1446   const AttributeSet &PAL = F->getAttributes();
1447   const TargetLowering *TLI = nvptxSubtarget->getTargetLowering();
1448   Function::const_arg_iterator I, E;
1449   unsigned paramIndex = 0;
1450   bool first = true;
1451   bool isKernelFunc = llvm::isKernelFunction(*F);
1452   bool isABI = (nvptxSubtarget->getSmVersion() >= 20);
1453   MVT thePointerTy = TLI->getPointerTy(DL);
1454 
1455   if (F->arg_empty()) {
1456     O << "()\n";
1457     return;
1458   }
1459 
1460   O << "(\n";
1461 
1462   for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
1463     Type *Ty = I->getType();
1464 
1465     if (!first)
1466       O << ",\n";
1467 
1468     first = false;
1469 
1470     // Handle image/sampler parameters
1471     if (isKernelFunction(*F)) {
1472       if (isSampler(*I) || isImage(*I)) {
1473         if (isImage(*I)) {
1474           std::string sname = I->getName();
1475           if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
1476             if (nvptxSubtarget->hasImageHandles())
1477               O << "\t.param .u64 .ptr .surfref ";
1478             else
1479               O << "\t.param .surfref ";
1480             CurrentFnSym->print(O, MAI);
1481             O << "_param_" << paramIndex;
1482           }
1483           else { // Default image is read_only
1484             if (nvptxSubtarget->hasImageHandles())
1485               O << "\t.param .u64 .ptr .texref ";
1486             else
1487               O << "\t.param .texref ";
1488             CurrentFnSym->print(O, MAI);
1489             O << "_param_" << paramIndex;
1490           }
1491         } else {
1492           if (nvptxSubtarget->hasImageHandles())
1493             O << "\t.param .u64 .ptr .samplerref ";
1494           else
1495             O << "\t.param .samplerref ";
1496           CurrentFnSym->print(O, MAI);
1497           O << "_param_" << paramIndex;
1498         }
1499         continue;
1500       }
1501     }
1502 
1503     if (!PAL.hasAttribute(paramIndex + 1, Attribute::ByVal)) {
1504       if (Ty->isAggregateType() || Ty->isVectorTy()) {
1505         // Just print .param .align <a> .b8 .param[size];
1506         // <a> = PAL.getparamalignment
1507         // size = typeallocsize of element type
1508         unsigned align = PAL.getParamAlignment(paramIndex + 1);
1509         if (align == 0)
1510           align = DL.getABITypeAlignment(Ty);
1511 
1512         unsigned sz = DL.getTypeAllocSize(Ty);
1513         O << "\t.param .align " << align << " .b8 ";
1514         printParamName(I, paramIndex, O);
1515         O << "[" << sz << "]";
1516 
1517         continue;
1518       }
1519       // Just a scalar
1520       auto *PTy = dyn_cast<PointerType>(Ty);
1521       if (isKernelFunc) {
1522         if (PTy) {
1523           // Special handling for pointer arguments to kernel
1524           O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
1525 
1526           if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() !=
1527               NVPTX::CUDA) {
1528             Type *ETy = PTy->getElementType();
1529             int addrSpace = PTy->getAddressSpace();
1530             switch (addrSpace) {
1531             default:
1532               O << ".ptr ";
1533               break;
1534             case llvm::ADDRESS_SPACE_CONST:
1535               O << ".ptr .const ";
1536               break;
1537             case llvm::ADDRESS_SPACE_SHARED:
1538               O << ".ptr .shared ";
1539               break;
1540             case llvm::ADDRESS_SPACE_GLOBAL:
1541               O << ".ptr .global ";
1542               break;
1543             }
1544             O << ".align " << (int)getOpenCLAlignment(DL, ETy) << " ";
1545           }
1546           printParamName(I, paramIndex, O);
1547           continue;
1548         }
1549 
1550         // non-pointer scalar to kernel func
1551         O << "\t.param .";
1552         // Special case: predicate operands become .u8 types
1553         if (Ty->isIntegerTy(1))
1554           O << "u8";
1555         else
1556           O << getPTXFundamentalTypeStr(Ty);
1557         O << " ";
1558         printParamName(I, paramIndex, O);
1559         continue;
1560       }
1561       // Non-kernel function, just print .param .b<size> for ABI
1562       // and .reg .b<size> for non-ABI
1563       unsigned sz = 0;
1564       if (isa<IntegerType>(Ty)) {
1565         sz = cast<IntegerType>(Ty)->getBitWidth();
1566         if (sz < 32)
1567           sz = 32;
1568       } else if (isa<PointerType>(Ty))
1569         sz = thePointerTy.getSizeInBits();
1570       else
1571         sz = Ty->getPrimitiveSizeInBits();
1572       if (isABI)
1573         O << "\t.param .b" << sz << " ";
1574       else
1575         O << "\t.reg .b" << sz << " ";
1576       printParamName(I, paramIndex, O);
1577       continue;
1578     }
1579 
1580     // param has byVal attribute. So should be a pointer
1581     auto *PTy = dyn_cast<PointerType>(Ty);
1582     assert(PTy && "Param with byval attribute should be a pointer type");
1583     Type *ETy = PTy->getElementType();
1584 
1585     if (isABI || isKernelFunc) {
1586       // Just print .param .align <a> .b8 .param[size];
1587       // <a> = PAL.getparamalignment
1588       // size = typeallocsize of element type
1589       unsigned align = PAL.getParamAlignment(paramIndex + 1);
1590       if (align == 0)
1591         align = DL.getABITypeAlignment(ETy);
1592 
1593       unsigned sz = DL.getTypeAllocSize(ETy);
1594       O << "\t.param .align " << align << " .b8 ";
1595       printParamName(I, paramIndex, O);
1596       O << "[" << sz << "]";
1597       continue;
1598     } else {
1599       // Split the ETy into constituent parts and
1600       // print .param .b<size> <name> for each part.
1601       // Further, if a part is vector, print the above for
1602       // each vector element.
1603       SmallVector<EVT, 16> vtparts;
1604       ComputeValueVTs(*TLI, DL, ETy, vtparts);
1605       for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
1606         unsigned elems = 1;
1607         EVT elemtype = vtparts[i];
1608         if (vtparts[i].isVector()) {
1609           elems = vtparts[i].getVectorNumElements();
1610           elemtype = vtparts[i].getVectorElementType();
1611         }
1612 
1613         for (unsigned j = 0, je = elems; j != je; ++j) {
1614           unsigned sz = elemtype.getSizeInBits();
1615           if (elemtype.isInteger() && (sz < 32))
1616             sz = 32;
1617           O << "\t.reg .b" << sz << " ";
1618           printParamName(I, paramIndex, O);
1619           if (j < je - 1)
1620             O << ",\n";
1621           ++paramIndex;
1622         }
1623         if (i < e - 1)
1624           O << ",\n";
1625       }
1626       --paramIndex;
1627       continue;
1628     }
1629   }
1630 
1631   O << "\n)\n";
1632 }
1633 
emitFunctionParamList(const MachineFunction & MF,raw_ostream & O)1634 void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
1635                                             raw_ostream &O) {
1636   const Function *F = MF.getFunction();
1637   emitFunctionParamList(F, O);
1638 }
1639 
setAndEmitFunctionVirtualRegisters(const MachineFunction & MF)1640 void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
1641     const MachineFunction &MF) {
1642   SmallString<128> Str;
1643   raw_svector_ostream O(Str);
1644 
1645   // Map the global virtual register number to a register class specific
1646   // virtual register number starting from 1 with that class.
1647   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1648   //unsigned numRegClasses = TRI->getNumRegClasses();
1649 
1650   // Emit the Fake Stack Object
1651   const MachineFrameInfo *MFI = MF.getFrameInfo();
1652   int NumBytes = (int) MFI->getStackSize();
1653   if (NumBytes) {
1654     O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t" << DEPOTNAME
1655       << getFunctionNumber() << "[" << NumBytes << "];\n";
1656     if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) {
1657       O << "\t.reg .b64 \t%SP;\n";
1658       O << "\t.reg .b64 \t%SPL;\n";
1659     } else {
1660       O << "\t.reg .b32 \t%SP;\n";
1661       O << "\t.reg .b32 \t%SPL;\n";
1662     }
1663   }
1664 
1665   // Go through all virtual registers to establish the mapping between the
1666   // global virtual
1667   // register number and the per class virtual register number.
1668   // We use the per class virtual register number in the ptx output.
1669   unsigned int numVRs = MRI->getNumVirtRegs();
1670   for (unsigned i = 0; i < numVRs; i++) {
1671     unsigned int vr = TRI->index2VirtReg(i);
1672     const TargetRegisterClass *RC = MRI->getRegClass(vr);
1673     DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
1674     int n = regmap.size();
1675     regmap.insert(std::make_pair(vr, n + 1));
1676   }
1677 
1678   // Emit register declarations
1679   // @TODO: Extract out the real register usage
1680   // O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
1681   // O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
1682   // O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
1683   // O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
1684   // O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
1685   // O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
1686   // O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
1687 
1688   // Emit declaration of the virtual registers or 'physical' registers for
1689   // each register class
1690   for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
1691     const TargetRegisterClass *RC = TRI->getRegClass(i);
1692     DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
1693     std::string rcname = getNVPTXRegClassName(RC);
1694     std::string rcStr = getNVPTXRegClassStr(RC);
1695     int n = regmap.size();
1696 
1697     // Only declare those registers that may be used.
1698     if (n) {
1699        O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
1700          << ">;\n";
1701     }
1702   }
1703 
1704   OutStreamer->EmitRawText(O.str());
1705 }
1706 
printFPConstant(const ConstantFP * Fp,raw_ostream & O)1707 void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
1708   APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
1709   bool ignored;
1710   unsigned int numHex;
1711   const char *lead;
1712 
1713   if (Fp->getType()->getTypeID() == Type::FloatTyID) {
1714     numHex = 8;
1715     lead = "0f";
1716     APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &ignored);
1717   } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
1718     numHex = 16;
1719     lead = "0d";
1720     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
1721   } else
1722     llvm_unreachable("unsupported fp type");
1723 
1724   APInt API = APF.bitcastToAPInt();
1725   std::string hexstr(utohexstr(API.getZExtValue()));
1726   O << lead;
1727   if (hexstr.length() < numHex)
1728     O << std::string(numHex - hexstr.length(), '0');
1729   O << utohexstr(API.getZExtValue());
1730 }
1731 
printScalarConstant(const Constant * CPV,raw_ostream & O)1732 void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
1733   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1734     O << CI->getValue();
1735     return;
1736   }
1737   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
1738     printFPConstant(CFP, O);
1739     return;
1740   }
1741   if (isa<ConstantPointerNull>(CPV)) {
1742     O << "0";
1743     return;
1744   }
1745   if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1746     bool IsNonGenericPointer = false;
1747     if (GVar->getType()->getAddressSpace() != 0) {
1748       IsNonGenericPointer = true;
1749     }
1750     if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
1751       O << "generic(";
1752       getSymbol(GVar)->print(O, MAI);
1753       O << ")";
1754     } else {
1755       getSymbol(GVar)->print(O, MAI);
1756     }
1757     return;
1758   }
1759   if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1760     const Value *v = Cexpr->stripPointerCasts();
1761     PointerType *PTy = dyn_cast<PointerType>(Cexpr->getType());
1762     bool IsNonGenericPointer = false;
1763     if (PTy && PTy->getAddressSpace() != 0) {
1764       IsNonGenericPointer = true;
1765     }
1766     if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
1767       if (EmitGeneric && !isa<Function>(v) && !IsNonGenericPointer) {
1768         O << "generic(";
1769         getSymbol(GVar)->print(O, MAI);
1770         O << ")";
1771       } else {
1772         getSymbol(GVar)->print(O, MAI);
1773       }
1774       return;
1775     } else {
1776       lowerConstant(CPV)->print(O, MAI);
1777       return;
1778     }
1779   }
1780   llvm_unreachable("Not scalar type found in printScalarConstant()");
1781 }
1782 
1783 // These utility functions assure we get the right sequence of bytes for a given
1784 // type even for big-endian machines
ConvertIntToBytes(unsigned char * p,T val)1785 template <typename T> static void ConvertIntToBytes(unsigned char *p, T val) {
1786   int64_t vp = (int64_t)val;
1787   for (unsigned i = 0; i < sizeof(T); ++i) {
1788     p[i] = (unsigned char)vp;
1789     vp >>= 8;
1790   }
1791 }
ConvertFloatToBytes(unsigned char * p,float val)1792 static void ConvertFloatToBytes(unsigned char *p, float val) {
1793   int32_t *vp = (int32_t *)&val;
1794   for (unsigned i = 0; i < sizeof(int32_t); ++i) {
1795     p[i] = (unsigned char)*vp;
1796     *vp >>= 8;
1797   }
1798 }
ConvertDoubleToBytes(unsigned char * p,double val)1799 static void ConvertDoubleToBytes(unsigned char *p, double val) {
1800   int64_t *vp = (int64_t *)&val;
1801   for (unsigned i = 0; i < sizeof(int64_t); ++i) {
1802     p[i] = (unsigned char)*vp;
1803     *vp >>= 8;
1804   }
1805 }
1806 
bufferLEByte(const Constant * CPV,int Bytes,AggBuffer * aggBuffer)1807 void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
1808                                    AggBuffer *aggBuffer) {
1809 
1810   const DataLayout &DL = getDataLayout();
1811 
1812   if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
1813     int s = DL.getTypeAllocSize(CPV->getType());
1814     if (s < Bytes)
1815       s = Bytes;
1816     aggBuffer->addZeros(s);
1817     return;
1818   }
1819 
1820   unsigned char ptr[8];
1821   switch (CPV->getType()->getTypeID()) {
1822 
1823   case Type::IntegerTyID: {
1824     Type *ETy = CPV->getType();
1825     if (ETy == Type::getInt8Ty(CPV->getContext())) {
1826       unsigned char c = (unsigned char)cast<ConstantInt>(CPV)->getZExtValue();
1827       ConvertIntToBytes<>(ptr, c);
1828       aggBuffer->addBytes(ptr, 1, Bytes);
1829     } else if (ETy == Type::getInt16Ty(CPV->getContext())) {
1830       short int16 = (short)cast<ConstantInt>(CPV)->getZExtValue();
1831       ConvertIntToBytes<>(ptr, int16);
1832       aggBuffer->addBytes(ptr, 2, Bytes);
1833     } else if (ETy == Type::getInt32Ty(CPV->getContext())) {
1834       if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1835         int int32 = (int)(constInt->getZExtValue());
1836         ConvertIntToBytes<>(ptr, int32);
1837         aggBuffer->addBytes(ptr, 4, Bytes);
1838         break;
1839       } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1840         if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
1841                 ConstantFoldConstantExpression(Cexpr, DL))) {
1842           int int32 = (int)(constInt->getZExtValue());
1843           ConvertIntToBytes<>(ptr, int32);
1844           aggBuffer->addBytes(ptr, 4, Bytes);
1845           break;
1846         }
1847         if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1848           Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1849           aggBuffer->addSymbol(v, Cexpr->getOperand(0));
1850           aggBuffer->addZeros(4);
1851           break;
1852         }
1853       }
1854       llvm_unreachable("unsupported integer const type");
1855     } else if (ETy == Type::getInt64Ty(CPV->getContext())) {
1856       if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1857         long long int64 = (long long)(constInt->getZExtValue());
1858         ConvertIntToBytes<>(ptr, int64);
1859         aggBuffer->addBytes(ptr, 8, Bytes);
1860         break;
1861       } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1862         if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
1863                 ConstantFoldConstantExpression(Cexpr, DL))) {
1864           long long int64 = (long long)(constInt->getZExtValue());
1865           ConvertIntToBytes<>(ptr, int64);
1866           aggBuffer->addBytes(ptr, 8, Bytes);
1867           break;
1868         }
1869         if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1870           Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1871           aggBuffer->addSymbol(v, Cexpr->getOperand(0));
1872           aggBuffer->addZeros(8);
1873           break;
1874         }
1875       }
1876       llvm_unreachable("unsupported integer const type");
1877     } else
1878       llvm_unreachable("unsupported integer const type");
1879     break;
1880   }
1881   case Type::FloatTyID:
1882   case Type::DoubleTyID: {
1883     const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
1884     Type *Ty = CFP->getType();
1885     if (Ty == Type::getFloatTy(CPV->getContext())) {
1886       float float32 = (float) CFP->getValueAPF().convertToFloat();
1887       ConvertFloatToBytes(ptr, float32);
1888       aggBuffer->addBytes(ptr, 4, Bytes);
1889     } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
1890       double float64 = CFP->getValueAPF().convertToDouble();
1891       ConvertDoubleToBytes(ptr, float64);
1892       aggBuffer->addBytes(ptr, 8, Bytes);
1893     } else {
1894       llvm_unreachable("unsupported fp const type");
1895     }
1896     break;
1897   }
1898   case Type::PointerTyID: {
1899     if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1900       aggBuffer->addSymbol(GVar, GVar);
1901     } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1902       const Value *v = Cexpr->stripPointerCasts();
1903       aggBuffer->addSymbol(v, Cexpr);
1904     }
1905     unsigned int s = DL.getTypeAllocSize(CPV->getType());
1906     aggBuffer->addZeros(s);
1907     break;
1908   }
1909 
1910   case Type::ArrayTyID:
1911   case Type::VectorTyID:
1912   case Type::StructTyID: {
1913     if (isa<ConstantAggregate>(CPV) || isa<ConstantDataSequential>(CPV)) {
1914       int ElementSize = DL.getTypeAllocSize(CPV->getType());
1915       bufferAggregateConstant(CPV, aggBuffer);
1916       if (Bytes > ElementSize)
1917         aggBuffer->addZeros(Bytes - ElementSize);
1918     } else if (isa<ConstantAggregateZero>(CPV))
1919       aggBuffer->addZeros(Bytes);
1920     else
1921       llvm_unreachable("Unexpected Constant type");
1922     break;
1923   }
1924 
1925   default:
1926     llvm_unreachable("unsupported type");
1927   }
1928 }
1929 
bufferAggregateConstant(const Constant * CPV,AggBuffer * aggBuffer)1930 void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
1931                                               AggBuffer *aggBuffer) {
1932   const DataLayout &DL = getDataLayout();
1933   int Bytes;
1934 
1935   // Old constants
1936   if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
1937     if (CPV->getNumOperands())
1938       for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
1939         bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
1940     return;
1941   }
1942 
1943   if (const ConstantDataSequential *CDS =
1944           dyn_cast<ConstantDataSequential>(CPV)) {
1945     if (CDS->getNumElements())
1946       for (unsigned i = 0; i < CDS->getNumElements(); ++i)
1947         bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
1948                      aggBuffer);
1949     return;
1950   }
1951 
1952   if (isa<ConstantStruct>(CPV)) {
1953     if (CPV->getNumOperands()) {
1954       StructType *ST = cast<StructType>(CPV->getType());
1955       for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
1956         if (i == (e - 1))
1957           Bytes = DL.getStructLayout(ST)->getElementOffset(0) +
1958                   DL.getTypeAllocSize(ST) -
1959                   DL.getStructLayout(ST)->getElementOffset(i);
1960         else
1961           Bytes = DL.getStructLayout(ST)->getElementOffset(i + 1) -
1962                   DL.getStructLayout(ST)->getElementOffset(i);
1963         bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
1964       }
1965     }
1966     return;
1967   }
1968   llvm_unreachable("unsupported constant type in printAggregateConstant()");
1969 }
1970 
1971 // buildTypeNameMap - Run through symbol table looking for type names.
1972 //
1973 
1974 
ignoreLoc(const MachineInstr & MI)1975 bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) {
1976   switch (MI.getOpcode()) {
1977   default:
1978     return false;
1979   case NVPTX::CallArgBeginInst:
1980   case NVPTX::CallArgEndInst0:
1981   case NVPTX::CallArgEndInst1:
1982   case NVPTX::CallArgF32:
1983   case NVPTX::CallArgF64:
1984   case NVPTX::CallArgI16:
1985   case NVPTX::CallArgI32:
1986   case NVPTX::CallArgI32imm:
1987   case NVPTX::CallArgI64:
1988   case NVPTX::CallArgParam:
1989   case NVPTX::CallVoidInst:
1990   case NVPTX::CallVoidInstReg:
1991   case NVPTX::Callseq_End:
1992   case NVPTX::CallVoidInstReg64:
1993   case NVPTX::DeclareParamInst:
1994   case NVPTX::DeclareRetMemInst:
1995   case NVPTX::DeclareRetRegInst:
1996   case NVPTX::DeclareRetScalarInst:
1997   case NVPTX::DeclareScalarParamInst:
1998   case NVPTX::DeclareScalarRegInst:
1999   case NVPTX::StoreParamF32:
2000   case NVPTX::StoreParamF64:
2001   case NVPTX::StoreParamI16:
2002   case NVPTX::StoreParamI32:
2003   case NVPTX::StoreParamI64:
2004   case NVPTX::StoreParamI8:
2005   case NVPTX::StoreRetvalF32:
2006   case NVPTX::StoreRetvalF64:
2007   case NVPTX::StoreRetvalI16:
2008   case NVPTX::StoreRetvalI32:
2009   case NVPTX::StoreRetvalI64:
2010   case NVPTX::StoreRetvalI8:
2011   case NVPTX::LastCallArgF32:
2012   case NVPTX::LastCallArgF64:
2013   case NVPTX::LastCallArgI16:
2014   case NVPTX::LastCallArgI32:
2015   case NVPTX::LastCallArgI32imm:
2016   case NVPTX::LastCallArgI64:
2017   case NVPTX::LastCallArgParam:
2018   case NVPTX::LoadParamMemF32:
2019   case NVPTX::LoadParamMemF64:
2020   case NVPTX::LoadParamMemI16:
2021   case NVPTX::LoadParamMemI32:
2022   case NVPTX::LoadParamMemI64:
2023   case NVPTX::LoadParamMemI8:
2024   case NVPTX::PrototypeInst:
2025   case NVPTX::DBG_VALUE:
2026     return true;
2027   }
2028   return false;
2029 }
2030 
2031 /// lowerConstantForGV - Return an MCExpr for the given Constant.  This is mostly
2032 /// a copy from AsmPrinter::lowerConstant, except customized to only handle
2033 /// expressions that are representable in PTX and create
2034 /// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
2035 const MCExpr *
lowerConstantForGV(const Constant * CV,bool ProcessingGeneric)2036 NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric) {
2037   MCContext &Ctx = OutContext;
2038 
2039   if (CV->isNullValue() || isa<UndefValue>(CV))
2040     return MCConstantExpr::create(0, Ctx);
2041 
2042   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2043     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2044 
2045   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
2046     const MCSymbolRefExpr *Expr =
2047       MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2048     if (ProcessingGeneric) {
2049       return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx);
2050     } else {
2051       return Expr;
2052     }
2053   }
2054 
2055   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2056   if (!CE) {
2057     llvm_unreachable("Unknown constant value to lower!");
2058   }
2059 
2060   switch (CE->getOpcode()) {
2061   default:
2062     // If the code isn't optimized, there may be outstanding folding
2063     // opportunities. Attempt to fold the expression using DataLayout as a
2064     // last resort before giving up.
2065     if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout()))
2066       if (C != CE)
2067         return lowerConstantForGV(C, ProcessingGeneric);
2068 
2069     // Otherwise report the problem to the user.
2070     {
2071       std::string S;
2072       raw_string_ostream OS(S);
2073       OS << "Unsupported expression in static initializer: ";
2074       CE->printAsOperand(OS, /*PrintType=*/false,
2075                      !MF ? nullptr : MF->getFunction()->getParent());
2076       report_fatal_error(OS.str());
2077     }
2078 
2079   case Instruction::AddrSpaceCast: {
2080     // Strip the addrspacecast and pass along the operand
2081     PointerType *DstTy = cast<PointerType>(CE->getType());
2082     if (DstTy->getAddressSpace() == 0) {
2083       return lowerConstantForGV(cast<const Constant>(CE->getOperand(0)), true);
2084     }
2085     std::string S;
2086     raw_string_ostream OS(S);
2087     OS << "Unsupported expression in static initializer: ";
2088     CE->printAsOperand(OS, /*PrintType=*/ false,
2089                        !MF ? 0 : MF->getFunction()->getParent());
2090     report_fatal_error(OS.str());
2091   }
2092 
2093   case Instruction::GetElementPtr: {
2094     const DataLayout &DL = getDataLayout();
2095 
2096     // Generate a symbolic expression for the byte address
2097     APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
2098     cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
2099 
2100     const MCExpr *Base = lowerConstantForGV(CE->getOperand(0),
2101                                             ProcessingGeneric);
2102     if (!OffsetAI)
2103       return Base;
2104 
2105     int64_t Offset = OffsetAI.getSExtValue();
2106     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2107                                    Ctx);
2108   }
2109 
2110   case Instruction::Trunc:
2111     // We emit the value and depend on the assembler to truncate the generated
2112     // expression properly.  This is important for differences between
2113     // blockaddress labels.  Since the two labels are in the same function, it
2114     // is reasonable to treat their delta as a 32-bit value.
2115     // FALL THROUGH.
2116   case Instruction::BitCast:
2117     return lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
2118 
2119   case Instruction::IntToPtr: {
2120     const DataLayout &DL = getDataLayout();
2121 
2122     // Handle casts to pointers by changing them into casts to the appropriate
2123     // integer type.  This promotes constant folding and simplifies this code.
2124     Constant *Op = CE->getOperand(0);
2125     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2126                                       false/*ZExt*/);
2127     return lowerConstantForGV(Op, ProcessingGeneric);
2128   }
2129 
2130   case Instruction::PtrToInt: {
2131     const DataLayout &DL = getDataLayout();
2132 
2133     // Support only foldable casts to/from pointers that can be eliminated by
2134     // changing the pointer to the appropriately sized integer type.
2135     Constant *Op = CE->getOperand(0);
2136     Type *Ty = CE->getType();
2137 
2138     const MCExpr *OpExpr = lowerConstantForGV(Op, ProcessingGeneric);
2139 
2140     // We can emit the pointer value into this slot if the slot is an
2141     // integer slot equal to the size of the pointer.
2142     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2143       return OpExpr;
2144 
2145     // Otherwise the pointer is smaller than the resultant integer, mask off
2146     // the high bits so we are sure to get a proper truncation if the input is
2147     // a constant expr.
2148     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2149     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2150     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2151   }
2152 
2153   // The MC library also has a right-shift operator, but it isn't consistently
2154   // signed or unsigned between different targets.
2155   case Instruction::Add: {
2156     const MCExpr *LHS = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
2157     const MCExpr *RHS = lowerConstantForGV(CE->getOperand(1), ProcessingGeneric);
2158     switch (CE->getOpcode()) {
2159     default: llvm_unreachable("Unknown binary operator constant cast expr");
2160     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2161     }
2162   }
2163   }
2164 }
2165 
2166 // Copy of MCExpr::print customized for NVPTX
printMCExpr(const MCExpr & Expr,raw_ostream & OS)2167 void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) {
2168   switch (Expr.getKind()) {
2169   case MCExpr::Target:
2170     return cast<MCTargetExpr>(&Expr)->printImpl(OS, MAI);
2171   case MCExpr::Constant:
2172     OS << cast<MCConstantExpr>(Expr).getValue();
2173     return;
2174 
2175   case MCExpr::SymbolRef: {
2176     const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(Expr);
2177     const MCSymbol &Sym = SRE.getSymbol();
2178     Sym.print(OS, MAI);
2179     return;
2180   }
2181 
2182   case MCExpr::Unary: {
2183     const MCUnaryExpr &UE = cast<MCUnaryExpr>(Expr);
2184     switch (UE.getOpcode()) {
2185     case MCUnaryExpr::LNot:  OS << '!'; break;
2186     case MCUnaryExpr::Minus: OS << '-'; break;
2187     case MCUnaryExpr::Not:   OS << '~'; break;
2188     case MCUnaryExpr::Plus:  OS << '+'; break;
2189     }
2190     printMCExpr(*UE.getSubExpr(), OS);
2191     return;
2192   }
2193 
2194   case MCExpr::Binary: {
2195     const MCBinaryExpr &BE = cast<MCBinaryExpr>(Expr);
2196 
2197     // Only print parens around the LHS if it is non-trivial.
2198     if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS()) ||
2199         isa<NVPTXGenericMCSymbolRefExpr>(BE.getLHS())) {
2200       printMCExpr(*BE.getLHS(), OS);
2201     } else {
2202       OS << '(';
2203       printMCExpr(*BE.getLHS(), OS);
2204       OS<< ')';
2205     }
2206 
2207     switch (BE.getOpcode()) {
2208     case MCBinaryExpr::Add:
2209       // Print "X-42" instead of "X+-42".
2210       if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
2211         if (RHSC->getValue() < 0) {
2212           OS << RHSC->getValue();
2213           return;
2214         }
2215       }
2216 
2217       OS <<  '+';
2218       break;
2219     default: llvm_unreachable("Unhandled binary operator");
2220     }
2221 
2222     // Only print parens around the LHS if it is non-trivial.
2223     if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
2224       printMCExpr(*BE.getRHS(), OS);
2225     } else {
2226       OS << '(';
2227       printMCExpr(*BE.getRHS(), OS);
2228       OS << ')';
2229     }
2230     return;
2231   }
2232   }
2233 
2234   llvm_unreachable("Invalid expression kind!");
2235 }
2236 
2237 /// PrintAsmOperand - Print out an operand for an inline asm expression.
2238 ///
PrintAsmOperand(const MachineInstr * MI,unsigned OpNo,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)2239 bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
2240                                       unsigned AsmVariant,
2241                                       const char *ExtraCode, raw_ostream &O) {
2242   if (ExtraCode && ExtraCode[0]) {
2243     if (ExtraCode[1] != 0)
2244       return true; // Unknown modifier.
2245 
2246     switch (ExtraCode[0]) {
2247     default:
2248       // See if this is a generic print operand
2249       return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
2250     case 'r':
2251       break;
2252     }
2253   }
2254 
2255   printOperand(MI, OpNo, O);
2256 
2257   return false;
2258 }
2259 
PrintAsmMemoryOperand(const MachineInstr * MI,unsigned OpNo,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)2260 bool NVPTXAsmPrinter::PrintAsmMemoryOperand(
2261     const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant,
2262     const char *ExtraCode, raw_ostream &O) {
2263   if (ExtraCode && ExtraCode[0])
2264     return true; // Unknown modifier
2265 
2266   O << '[';
2267   printMemOperand(MI, OpNo, O);
2268   O << ']';
2269 
2270   return false;
2271 }
2272 
printOperand(const MachineInstr * MI,int opNum,raw_ostream & O,const char * Modifier)2273 void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
2274                                    raw_ostream &O, const char *Modifier) {
2275   const MachineOperand &MO = MI->getOperand(opNum);
2276   switch (MO.getType()) {
2277   case MachineOperand::MO_Register:
2278     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
2279       if (MO.getReg() == NVPTX::VRDepot)
2280         O << DEPOTNAME << getFunctionNumber();
2281       else
2282         O << NVPTXInstPrinter::getRegisterName(MO.getReg());
2283     } else {
2284       emitVirtualRegister(MO.getReg(), O);
2285     }
2286     return;
2287 
2288   case MachineOperand::MO_Immediate:
2289     if (!Modifier)
2290       O << MO.getImm();
2291     else if (strstr(Modifier, "vec") == Modifier)
2292       printVecModifiedImmediate(MO, Modifier, O);
2293     else
2294       llvm_unreachable(
2295           "Don't know how to handle modifier on immediate operand");
2296     return;
2297 
2298   case MachineOperand::MO_FPImmediate:
2299     printFPConstant(MO.getFPImm(), O);
2300     break;
2301 
2302   case MachineOperand::MO_GlobalAddress:
2303     getSymbol(MO.getGlobal())->print(O, MAI);
2304     break;
2305 
2306   case MachineOperand::MO_MachineBasicBlock:
2307     MO.getMBB()->getSymbol()->print(O, MAI);
2308     return;
2309 
2310   default:
2311     llvm_unreachable("Operand type not supported.");
2312   }
2313 }
2314 
printMemOperand(const MachineInstr * MI,int opNum,raw_ostream & O,const char * Modifier)2315 void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
2316                                       raw_ostream &O, const char *Modifier) {
2317   printOperand(MI, opNum, O);
2318 
2319   if (Modifier && !strcmp(Modifier, "add")) {
2320     O << ", ";
2321     printOperand(MI, opNum + 1, O);
2322   } else {
2323     if (MI->getOperand(opNum + 1).isImm() &&
2324         MI->getOperand(opNum + 1).getImm() == 0)
2325       return; // don't print ',0' or '+0'
2326     O << "+";
2327     printOperand(MI, opNum + 1, O);
2328   }
2329 }
2330 
emitSrcInText(StringRef filename,unsigned line)2331 void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
2332   std::stringstream temp;
2333   LineReader *reader = this->getReader(filename);
2334   temp << "\n//";
2335   temp << filename.str();
2336   temp << ":";
2337   temp << line;
2338   temp << " ";
2339   temp << reader->readLine(line);
2340   temp << "\n";
2341   this->OutStreamer->EmitRawText(temp.str());
2342 }
2343 
getReader(const std::string & filename)2344 LineReader *NVPTXAsmPrinter::getReader(const std::string &filename) {
2345   if (!reader) {
2346     reader = new LineReader(filename);
2347   }
2348 
2349   if (reader->fileName() != filename) {
2350     delete reader;
2351     reader = new LineReader(filename);
2352   }
2353 
2354   return reader;
2355 }
2356 
readLine(unsigned lineNum)2357 std::string LineReader::readLine(unsigned lineNum) {
2358   if (lineNum < theCurLine) {
2359     theCurLine = 0;
2360     fstr.seekg(0, std::ios::beg);
2361   }
2362   while (theCurLine < lineNum) {
2363     fstr.getline(buff, 500);
2364     theCurLine++;
2365   }
2366   return buff;
2367 }
2368 
2369 // Force static initialization.
LLVMInitializeNVPTXAsmPrinter()2370 extern "C" void LLVMInitializeNVPTXAsmPrinter() {
2371   RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
2372   RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2373 }
2374