1 //===-- sanitizer_win.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements windows-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
13
14 #include "sanitizer_platform.h"
15 #if SANITIZER_WINDOWS
16
17 #define WIN32_LEAN_AND_MEAN
18 #define NOGDI
19 #include <windows.h>
20 #include <io.h>
21 #include <psapi.h>
22 #include <stdlib.h>
23
24 #include "sanitizer_common.h"
25 #include "sanitizer_file.h"
26 #include "sanitizer_libc.h"
27 #include "sanitizer_mutex.h"
28 #include "sanitizer_placement_new.h"
29 #include "sanitizer_win_defs.h"
30
31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32 #pragma comment(lib, "psapi")
33 #endif
34 #if SANITIZER_WIN_TRACE
35 #include <traceloggingprovider.h>
36 // Windows trace logging provider init
37 #pragma comment(lib, "advapi32.lib")
38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41 (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42 0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43 #else
44 #define TraceLoggingUnregister(x)
45 #endif
46
47 // A macro to tell the compiler that this part of the code cannot be reached,
48 // if the compiler supports this feature. Since we're using this in
49 // code that is called when terminating the process, the expansion of the
50 // macro should not terminate the process to avoid infinite recursion.
51 #if defined(__clang__)
52 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
53 #elif defined(__GNUC__) && \
54 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
55 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
56 #elif defined(_MSC_VER)
57 # define BUILTIN_UNREACHABLE() __assume(0)
58 #else
59 # define BUILTIN_UNREACHABLE()
60 #endif
61
62 namespace __sanitizer {
63
64 #include "sanitizer_syscall_generic.inc"
65
66 // --------------------- sanitizer_common.h
GetPageSize()67 uptr GetPageSize() {
68 SYSTEM_INFO si;
69 GetSystemInfo(&si);
70 return si.dwPageSize;
71 }
72
GetMmapGranularity()73 uptr GetMmapGranularity() {
74 SYSTEM_INFO si;
75 GetSystemInfo(&si);
76 return si.dwAllocationGranularity;
77 }
78
GetMaxUserVirtualAddress()79 uptr GetMaxUserVirtualAddress() {
80 SYSTEM_INFO si;
81 GetSystemInfo(&si);
82 return (uptr)si.lpMaximumApplicationAddress;
83 }
84
GetMaxVirtualAddress()85 uptr GetMaxVirtualAddress() {
86 return GetMaxUserVirtualAddress();
87 }
88
FileExists(const char * filename)89 bool FileExists(const char *filename) {
90 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
91 }
92
internal_getpid()93 uptr internal_getpid() {
94 return GetProcessId(GetCurrentProcess());
95 }
96
internal_dlinfo(void * handle,int request,void * p)97 int internal_dlinfo(void *handle, int request, void *p) {
98 UNIMPLEMENTED();
99 }
100
101 // In contrast to POSIX, on Windows GetCurrentThreadId()
102 // returns a system-unique identifier.
GetTid()103 tid_t GetTid() {
104 return GetCurrentThreadId();
105 }
106
GetThreadSelf()107 uptr GetThreadSelf() {
108 return GetTid();
109 }
110
111 #if !SANITIZER_GO
GetThreadStackTopAndBottom(bool at_initialization,uptr * stack_top,uptr * stack_bottom)112 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
113 uptr *stack_bottom) {
114 CHECK(stack_top);
115 CHECK(stack_bottom);
116 MEMORY_BASIC_INFORMATION mbi;
117 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
118 // FIXME: is it possible for the stack to not be a single allocation?
119 // Are these values what ASan expects to get (reserved, not committed;
120 // including stack guard page) ?
121 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
122 *stack_bottom = (uptr)mbi.AllocationBase;
123 }
124 #endif // #if !SANITIZER_GO
125
MmapOrDie(uptr size,const char * mem_type,bool raw_report)126 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
127 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
128 if (rv == 0)
129 ReportMmapFailureAndDie(size, mem_type, "allocate",
130 GetLastError(), raw_report);
131 return rv;
132 }
133
UnmapOrDie(void * addr,uptr size)134 void UnmapOrDie(void *addr, uptr size) {
135 if (!size || !addr)
136 return;
137
138 MEMORY_BASIC_INFORMATION mbi;
139 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
140
141 // MEM_RELEASE can only be used to unmap whole regions previously mapped with
142 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
143 // fails try MEM_DECOMMIT.
144 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
145 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
146 Report("ERROR: %s failed to "
147 "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
148 SanitizerToolName, size, size, addr, GetLastError());
149 CHECK("unable to unmap" && 0);
150 }
151 }
152 }
153
ReturnNullptrOnOOMOrDie(uptr size,const char * mem_type,const char * mmap_type)154 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
155 const char *mmap_type) {
156 error_t last_error = GetLastError();
157 if (last_error == ERROR_NOT_ENOUGH_MEMORY)
158 return nullptr;
159 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
160 }
161
MmapOrDieOnFatalError(uptr size,const char * mem_type)162 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
163 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
164 if (rv == 0)
165 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
166 return rv;
167 }
168
169 // We want to map a chunk of address space aligned to 'alignment'.
MmapAlignedOrDieOnFatalError(uptr size,uptr alignment,const char * mem_type)170 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
171 const char *mem_type) {
172 CHECK(IsPowerOfTwo(size));
173 CHECK(IsPowerOfTwo(alignment));
174
175 // Windows will align our allocations to at least 64K.
176 alignment = Max(alignment, GetMmapGranularity());
177
178 uptr mapped_addr =
179 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
180 if (!mapped_addr)
181 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
182
183 // If we got it right on the first try, return. Otherwise, unmap it and go to
184 // the slow path.
185 if (IsAligned(mapped_addr, alignment))
186 return (void*)mapped_addr;
187 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
188 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
189
190 // If we didn't get an aligned address, overallocate, find an aligned address,
191 // unmap, and try to allocate at that aligned address.
192 int retries = 0;
193 const int kMaxRetries = 10;
194 for (; retries < kMaxRetries &&
195 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
196 retries++) {
197 // Overallocate size + alignment bytes.
198 mapped_addr =
199 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
200 if (!mapped_addr)
201 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
202
203 // Find the aligned address.
204 uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
205
206 // Free the overallocation.
207 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
208 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
209
210 // Attempt to allocate exactly the number of bytes we need at the aligned
211 // address. This may fail for a number of reasons, in which case we continue
212 // the loop.
213 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
214 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
215 }
216
217 // Fail if we can't make this work quickly.
218 if (retries == kMaxRetries && mapped_addr == 0)
219 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
220
221 return (void *)mapped_addr;
222 }
223
MmapFixedNoReserve(uptr fixed_addr,uptr size,const char * name)224 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
225 // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
226 // but on Win64 it does.
227 (void)name; // unsupported
228 #if !SANITIZER_GO && SANITIZER_WINDOWS64
229 // On asan/Windows64, use MEM_COMMIT would result in error
230 // 1455:ERROR_COMMITMENT_LIMIT.
231 // Asan uses exception handler to commit page on demand.
232 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
233 #else
234 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
235 PAGE_READWRITE);
236 #endif
237 if (p == 0) {
238 Report("ERROR: %s failed to "
239 "allocate %p (%zd) bytes at %p (error code: %d)\n",
240 SanitizerToolName, size, size, fixed_addr, GetLastError());
241 return false;
242 }
243 return true;
244 }
245
MmapFixedSuperNoReserve(uptr fixed_addr,uptr size,const char * name)246 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
247 // FIXME: Windows support large pages too. Might be worth checking
248 return MmapFixedNoReserve(fixed_addr, size, name);
249 }
250
251 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
252 // 'MmapFixedNoAccess'.
MmapFixedOrDie(uptr fixed_addr,uptr size,const char * name)253 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
254 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
255 MEM_COMMIT, PAGE_READWRITE);
256 if (p == 0) {
257 char mem_type[30];
258 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
259 fixed_addr);
260 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
261 }
262 return p;
263 }
264
265 // Uses fixed_addr for now.
266 // Will use offset instead once we've implemented this function for real.
Map(uptr fixed_addr,uptr size,const char * name)267 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
268 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
269 }
270
MapOrDie(uptr fixed_addr,uptr size,const char * name)271 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
272 const char *name) {
273 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
274 }
275
Unmap(uptr addr,uptr size)276 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
277 // Only unmap if it covers the entire range.
278 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
279 // We unmap the whole range, just null out the base.
280 base_ = nullptr;
281 size_ = 0;
282 UnmapOrDie(reinterpret_cast<void*>(addr), size);
283 }
284
MmapFixedOrDieOnFatalError(uptr fixed_addr,uptr size,const char * name)285 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
286 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
287 MEM_COMMIT, PAGE_READWRITE);
288 if (p == 0) {
289 char mem_type[30];
290 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
291 fixed_addr);
292 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
293 }
294 return p;
295 }
296
MmapNoReserveOrDie(uptr size,const char * mem_type)297 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
298 // FIXME: make this really NoReserve?
299 return MmapOrDie(size, mem_type);
300 }
301
Init(uptr size,const char * name,uptr fixed_addr)302 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
303 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
304 size_ = size;
305 name_ = name;
306 (void)os_handle_; // unsupported
307 return reinterpret_cast<uptr>(base_);
308 }
309
310
MmapFixedNoAccess(uptr fixed_addr,uptr size,const char * name)311 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
312 (void)name; // unsupported
313 void *res = VirtualAlloc((LPVOID)fixed_addr, size,
314 MEM_RESERVE, PAGE_NOACCESS);
315 if (res == 0)
316 Report("WARNING: %s failed to "
317 "mprotect %p (%zd) bytes at %p (error code: %d)\n",
318 SanitizerToolName, size, size, fixed_addr, GetLastError());
319 return res;
320 }
321
MmapNoAccess(uptr size)322 void *MmapNoAccess(uptr size) {
323 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
324 if (res == 0)
325 Report("WARNING: %s failed to "
326 "mprotect %p (%zd) bytes (error code: %d)\n",
327 SanitizerToolName, size, size, GetLastError());
328 return res;
329 }
330
MprotectNoAccess(uptr addr,uptr size)331 bool MprotectNoAccess(uptr addr, uptr size) {
332 DWORD old_protection;
333 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
334 }
335
ReleaseMemoryPagesToOS(uptr beg,uptr end)336 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
337 // This is almost useless on 32-bits.
338 // FIXME: add madvise-analog when we move to 64-bits.
339 }
340
SetShadowRegionHugePageMode(uptr addr,uptr size)341 void SetShadowRegionHugePageMode(uptr addr, uptr size) {
342 // FIXME: probably similar to ReleaseMemoryToOS.
343 }
344
DontDumpShadowMemory(uptr addr,uptr length)345 bool DontDumpShadowMemory(uptr addr, uptr length) {
346 // This is almost useless on 32-bits.
347 // FIXME: add madvise-analog when we move to 64-bits.
348 return true;
349 }
350
MapDynamicShadow(uptr shadow_size_bytes,uptr shadow_scale,uptr min_shadow_base_alignment,UNUSED uptr & high_mem_end)351 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
352 uptr min_shadow_base_alignment,
353 UNUSED uptr &high_mem_end) {
354 const uptr granularity = GetMmapGranularity();
355 const uptr alignment =
356 Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
357 const uptr left_padding =
358 Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
359 uptr space_size = shadow_size_bytes + left_padding;
360 uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
361 granularity, nullptr, nullptr);
362 CHECK_NE((uptr)0, shadow_start);
363 CHECK(IsAligned(shadow_start, alignment));
364 return shadow_start;
365 }
366
FindAvailableMemoryRange(uptr size,uptr alignment,uptr left_padding,uptr * largest_gap_found,uptr * max_occupied_addr)367 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
368 uptr *largest_gap_found,
369 uptr *max_occupied_addr) {
370 uptr address = 0;
371 while (true) {
372 MEMORY_BASIC_INFORMATION info;
373 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
374 return 0;
375
376 if (info.State == MEM_FREE) {
377 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
378 alignment);
379 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
380 return shadow_address;
381 }
382
383 // Move to the next region.
384 address = (uptr)info.BaseAddress + info.RegionSize;
385 }
386 return 0;
387 }
388
MemoryRangeIsAvailable(uptr range_start,uptr range_end)389 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
390 MEMORY_BASIC_INFORMATION mbi;
391 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
392 return mbi.Protect == PAGE_NOACCESS &&
393 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
394 }
395
MapFileToMemory(const char * file_name,uptr * buff_size)396 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
397 UNIMPLEMENTED();
398 }
399
MapWritableFileToMemory(void * addr,uptr size,fd_t fd,OFF_T offset)400 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
401 UNIMPLEMENTED();
402 }
403
404 static const int kMaxEnvNameLength = 128;
405 static const DWORD kMaxEnvValueLength = 32767;
406
407 namespace {
408
409 struct EnvVariable {
410 char name[kMaxEnvNameLength];
411 char value[kMaxEnvValueLength];
412 };
413
414 } // namespace
415
416 static const int kEnvVariables = 5;
417 static EnvVariable env_vars[kEnvVariables];
418 static int num_env_vars;
419
GetEnv(const char * name)420 const char *GetEnv(const char *name) {
421 // Note: this implementation caches the values of the environment variables
422 // and limits their quantity.
423 for (int i = 0; i < num_env_vars; i++) {
424 if (0 == internal_strcmp(name, env_vars[i].name))
425 return env_vars[i].value;
426 }
427 CHECK_LT(num_env_vars, kEnvVariables);
428 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
429 kMaxEnvValueLength);
430 if (rv > 0 && rv < kMaxEnvValueLength) {
431 CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
432 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
433 num_env_vars++;
434 return env_vars[num_env_vars - 1].value;
435 }
436 return 0;
437 }
438
GetPwd()439 const char *GetPwd() {
440 UNIMPLEMENTED();
441 }
442
GetUid()443 u32 GetUid() {
444 UNIMPLEMENTED();
445 }
446
447 namespace {
448 struct ModuleInfo {
449 const char *filepath;
450 uptr base_address;
451 uptr end_address;
452 };
453
454 #if !SANITIZER_GO
CompareModulesBase(const void * pl,const void * pr)455 int CompareModulesBase(const void *pl, const void *pr) {
456 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
457 if (l->base_address < r->base_address)
458 return -1;
459 return l->base_address > r->base_address;
460 }
461 #endif
462 } // namespace
463
464 #if !SANITIZER_GO
DumpProcessMap()465 void DumpProcessMap() {
466 Report("Dumping process modules:\n");
467 ListOfModules modules;
468 modules.init();
469 uptr num_modules = modules.size();
470
471 InternalMmapVector<ModuleInfo> module_infos(num_modules);
472 for (size_t i = 0; i < num_modules; ++i) {
473 module_infos[i].filepath = modules[i].full_name();
474 module_infos[i].base_address = modules[i].ranges().front()->beg;
475 module_infos[i].end_address = modules[i].ranges().back()->end;
476 }
477 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
478 CompareModulesBase);
479
480 for (size_t i = 0; i < num_modules; ++i) {
481 const ModuleInfo &mi = module_infos[i];
482 if (mi.end_address != 0) {
483 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
484 mi.filepath[0] ? mi.filepath : "[no name]");
485 } else if (mi.filepath[0]) {
486 Printf("\t??\?-??? %s\n", mi.filepath);
487 } else {
488 Printf("\t???\n");
489 }
490 }
491 }
492 #endif
493
DisableCoreDumperIfNecessary()494 void DisableCoreDumperIfNecessary() {
495 // Do nothing.
496 }
497
ReExec()498 void ReExec() {
499 UNIMPLEMENTED();
500 }
501
PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments * args)502 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
503
StackSizeIsUnlimited()504 bool StackSizeIsUnlimited() {
505 UNIMPLEMENTED();
506 }
507
SetStackSizeLimitInBytes(uptr limit)508 void SetStackSizeLimitInBytes(uptr limit) {
509 UNIMPLEMENTED();
510 }
511
AddressSpaceIsUnlimited()512 bool AddressSpaceIsUnlimited() {
513 UNIMPLEMENTED();
514 }
515
SetAddressSpaceUnlimited()516 void SetAddressSpaceUnlimited() {
517 UNIMPLEMENTED();
518 }
519
IsPathSeparator(const char c)520 bool IsPathSeparator(const char c) {
521 return c == '\\' || c == '/';
522 }
523
IsAlpha(char c)524 static bool IsAlpha(char c) {
525 c = ToLower(c);
526 return c >= 'a' && c <= 'z';
527 }
528
IsAbsolutePath(const char * path)529 bool IsAbsolutePath(const char *path) {
530 return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
531 IsPathSeparator(path[2]);
532 }
533
SleepForSeconds(int seconds)534 void SleepForSeconds(int seconds) {
535 Sleep(seconds * 1000);
536 }
537
SleepForMillis(int millis)538 void SleepForMillis(int millis) {
539 Sleep(millis);
540 }
541
NanoTime()542 u64 NanoTime() {
543 static LARGE_INTEGER frequency = {};
544 LARGE_INTEGER counter;
545 if (UNLIKELY(frequency.QuadPart == 0)) {
546 QueryPerformanceFrequency(&frequency);
547 CHECK_NE(frequency.QuadPart, 0);
548 }
549 QueryPerformanceCounter(&counter);
550 counter.QuadPart *= 1000ULL * 1000000ULL;
551 counter.QuadPart /= frequency.QuadPart;
552 return counter.QuadPart;
553 }
554
MonotonicNanoTime()555 u64 MonotonicNanoTime() { return NanoTime(); }
556
Abort()557 void Abort() {
558 internal__exit(3);
559 }
560
561 #if !SANITIZER_GO
562 // Read the file to extract the ImageBase field from the PE header. If ASLR is
563 // disabled and this virtual address is available, the loader will typically
564 // load the image at this address. Therefore, we call it the preferred base. Any
565 // addresses in the DWARF typically assume that the object has been loaded at
566 // this address.
GetPreferredBase(const char * modname)567 static uptr GetPreferredBase(const char *modname) {
568 fd_t fd = OpenFile(modname, RdOnly, nullptr);
569 if (fd == kInvalidFd)
570 return 0;
571 FileCloser closer(fd);
572
573 // Read just the DOS header.
574 IMAGE_DOS_HEADER dos_header;
575 uptr bytes_read;
576 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
577 bytes_read != sizeof(dos_header))
578 return 0;
579
580 // The file should start with the right signature.
581 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
582 return 0;
583
584 // The layout at e_lfanew is:
585 // "PE\0\0"
586 // IMAGE_FILE_HEADER
587 // IMAGE_OPTIONAL_HEADER
588 // Seek to e_lfanew and read all that data.
589 char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
590 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
591 INVALID_SET_FILE_POINTER)
592 return 0;
593 if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
594 bytes_read != sizeof(buf))
595 return 0;
596
597 // Check for "PE\0\0" before the PE header.
598 char *pe_sig = &buf[0];
599 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
600 return 0;
601
602 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
603 IMAGE_OPTIONAL_HEADER *pe_header =
604 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
605
606 // Check for more magic in the PE header.
607 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
608 return 0;
609
610 // Finally, return the ImageBase.
611 return (uptr)pe_header->ImageBase;
612 }
613
init()614 void ListOfModules::init() {
615 clearOrInit();
616 HANDLE cur_process = GetCurrentProcess();
617
618 // Query the list of modules. Start by assuming there are no more than 256
619 // modules and retry if that's not sufficient.
620 HMODULE *hmodules = 0;
621 uptr modules_buffer_size = sizeof(HMODULE) * 256;
622 DWORD bytes_required;
623 while (!hmodules) {
624 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
625 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
626 &bytes_required));
627 if (bytes_required > modules_buffer_size) {
628 // Either there turned out to be more than 256 hmodules, or new hmodules
629 // could have loaded since the last try. Retry.
630 UnmapOrDie(hmodules, modules_buffer_size);
631 hmodules = 0;
632 modules_buffer_size = bytes_required;
633 }
634 }
635
636 // |num_modules| is the number of modules actually present,
637 size_t num_modules = bytes_required / sizeof(HMODULE);
638 for (size_t i = 0; i < num_modules; ++i) {
639 HMODULE handle = hmodules[i];
640 MODULEINFO mi;
641 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
642 continue;
643
644 // Get the UTF-16 path and convert to UTF-8.
645 wchar_t modname_utf16[kMaxPathLength];
646 int modname_utf16_len =
647 GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
648 if (modname_utf16_len == 0)
649 modname_utf16[0] = '\0';
650 char module_name[kMaxPathLength];
651 int module_name_len =
652 ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
653 &module_name[0], kMaxPathLength, NULL, NULL);
654 module_name[module_name_len] = '\0';
655
656 uptr base_address = (uptr)mi.lpBaseOfDll;
657 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
658
659 // Adjust the base address of the module so that we get a VA instead of an
660 // RVA when computing the module offset. This helps llvm-symbolizer find the
661 // right DWARF CU. In the common case that the image is loaded at it's
662 // preferred address, we will now print normal virtual addresses.
663 uptr preferred_base = GetPreferredBase(&module_name[0]);
664 uptr adjusted_base = base_address - preferred_base;
665
666 LoadedModule cur_module;
667 cur_module.set(module_name, adjusted_base);
668 // We add the whole module as one single address range.
669 cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
670 /*writable*/ true);
671 modules_.push_back(cur_module);
672 }
673 UnmapOrDie(hmodules, modules_buffer_size);
674 }
675
fallbackInit()676 void ListOfModules::fallbackInit() { clear(); }
677
678 // We can't use atexit() directly at __asan_init time as the CRT is not fully
679 // initialized at this point. Place the functions into a vector and use
680 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
681 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
682
Atexit(void (* function)(void))683 int Atexit(void (*function)(void)) {
684 atexit_functions.push_back(function);
685 return 0;
686 }
687
RunAtexit()688 static int RunAtexit() {
689 TraceLoggingUnregister(g_asan_provider);
690 int ret = 0;
691 for (uptr i = 0; i < atexit_functions.size(); ++i) {
692 ret |= atexit(atexit_functions[i]);
693 }
694 return ret;
695 }
696
697 #pragma section(".CRT$XID", long, read)
698 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
699 #endif
700
701 // ------------------ sanitizer_libc.h
OpenFile(const char * filename,FileAccessMode mode,error_t * last_error)702 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
703 // FIXME: Use the wide variants to handle Unicode filenames.
704 fd_t res;
705 if (mode == RdOnly) {
706 res = CreateFileA(filename, GENERIC_READ,
707 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
708 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
709 } else if (mode == WrOnly) {
710 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
711 FILE_ATTRIBUTE_NORMAL, nullptr);
712 } else {
713 UNIMPLEMENTED();
714 }
715 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
716 CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
717 if (res == kInvalidFd && last_error)
718 *last_error = GetLastError();
719 return res;
720 }
721
CloseFile(fd_t fd)722 void CloseFile(fd_t fd) {
723 CloseHandle(fd);
724 }
725
ReadFromFile(fd_t fd,void * buff,uptr buff_size,uptr * bytes_read,error_t * error_p)726 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
727 error_t *error_p) {
728 CHECK(fd != kInvalidFd);
729
730 // bytes_read can't be passed directly to ReadFile:
731 // uptr is unsigned long long on 64-bit Windows.
732 unsigned long num_read_long;
733
734 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
735 if (!success && error_p)
736 *error_p = GetLastError();
737 if (bytes_read)
738 *bytes_read = num_read_long;
739 return success;
740 }
741
SupportsColoredOutput(fd_t fd)742 bool SupportsColoredOutput(fd_t fd) {
743 // FIXME: support colored output.
744 return false;
745 }
746
WriteToFile(fd_t fd,const void * buff,uptr buff_size,uptr * bytes_written,error_t * error_p)747 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
748 error_t *error_p) {
749 CHECK(fd != kInvalidFd);
750
751 // Handle null optional parameters.
752 error_t dummy_error;
753 error_p = error_p ? error_p : &dummy_error;
754 uptr dummy_bytes_written;
755 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
756
757 // Initialize output parameters in case we fail.
758 *error_p = 0;
759 *bytes_written = 0;
760
761 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
762 // closed, in which case this will fail.
763 if (fd == kStdoutFd || fd == kStderrFd) {
764 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
765 if (fd == 0) {
766 *error_p = ERROR_INVALID_HANDLE;
767 return false;
768 }
769 }
770
771 DWORD bytes_written_32;
772 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
773 *error_p = GetLastError();
774 return false;
775 } else {
776 *bytes_written = bytes_written_32;
777 return true;
778 }
779 }
780
internal_sched_yield()781 uptr internal_sched_yield() {
782 Sleep(0);
783 return 0;
784 }
785
internal__exit(int exitcode)786 void internal__exit(int exitcode) {
787 TraceLoggingUnregister(g_asan_provider);
788 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
789 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
790 // so add our own breakpoint here.
791 if (::IsDebuggerPresent())
792 __debugbreak();
793 TerminateProcess(GetCurrentProcess(), exitcode);
794 BUILTIN_UNREACHABLE();
795 }
796
internal_ftruncate(fd_t fd,uptr size)797 uptr internal_ftruncate(fd_t fd, uptr size) {
798 UNIMPLEMENTED();
799 }
800
GetRSS()801 uptr GetRSS() {
802 PROCESS_MEMORY_COUNTERS counters;
803 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
804 return 0;
805 return counters.WorkingSetSize;
806 }
807
internal_start_thread(void * (* func)(void * arg),void * arg)808 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
internal_join_thread(void * th)809 void internal_join_thread(void *th) { }
810
811 // ---------------------- BlockingMutex ---------------- {{{1
812
BlockingMutex()813 BlockingMutex::BlockingMutex() {
814 CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
815 internal_memset(this, 0, sizeof(*this));
816 }
817
Lock()818 void BlockingMutex::Lock() {
819 AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
820 CHECK_EQ(owner_, 0);
821 owner_ = GetThreadSelf();
822 }
823
Unlock()824 void BlockingMutex::Unlock() {
825 CheckLocked();
826 owner_ = 0;
827 ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
828 }
829
CheckLocked()830 void BlockingMutex::CheckLocked() {
831 CHECK_EQ(owner_, GetThreadSelf());
832 }
833
GetTlsSize()834 uptr GetTlsSize() {
835 return 0;
836 }
837
InitTlsSize()838 void InitTlsSize() {
839 }
840
GetThreadStackAndTls(bool main,uptr * stk_addr,uptr * stk_size,uptr * tls_addr,uptr * tls_size)841 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
842 uptr *tls_addr, uptr *tls_size) {
843 #if SANITIZER_GO
844 *stk_addr = 0;
845 *stk_size = 0;
846 *tls_addr = 0;
847 *tls_size = 0;
848 #else
849 uptr stack_top, stack_bottom;
850 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
851 *stk_addr = stack_bottom;
852 *stk_size = stack_top - stack_bottom;
853 *tls_addr = 0;
854 *tls_size = 0;
855 #endif
856 }
857
Write(const char * buffer,uptr length)858 void ReportFile::Write(const char *buffer, uptr length) {
859 SpinMutexLock l(mu);
860 ReopenIfNecessary();
861 if (!WriteToFile(fd, buffer, length)) {
862 // stderr may be closed, but we may be able to print to the debugger
863 // instead. This is the case when launching a program from Visual Studio,
864 // and the following routine should write to its console.
865 OutputDebugStringA(buffer);
866 }
867 }
868
SetAlternateSignalStack()869 void SetAlternateSignalStack() {
870 // FIXME: Decide what to do on Windows.
871 }
872
UnsetAlternateSignalStack()873 void UnsetAlternateSignalStack() {
874 // FIXME: Decide what to do on Windows.
875 }
876
InstallDeadlySignalHandlers(SignalHandlerType handler)877 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
878 (void)handler;
879 // FIXME: Decide what to do on Windows.
880 }
881
GetHandleSignalMode(int signum)882 HandleSignalMode GetHandleSignalMode(int signum) {
883 // FIXME: Decide what to do on Windows.
884 return kHandleSignalNo;
885 }
886
887 // Check based on flags if we should handle this exception.
IsHandledDeadlyException(DWORD exceptionCode)888 bool IsHandledDeadlyException(DWORD exceptionCode) {
889 switch (exceptionCode) {
890 case EXCEPTION_ACCESS_VIOLATION:
891 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
892 case EXCEPTION_STACK_OVERFLOW:
893 case EXCEPTION_DATATYPE_MISALIGNMENT:
894 case EXCEPTION_IN_PAGE_ERROR:
895 return common_flags()->handle_segv;
896 case EXCEPTION_ILLEGAL_INSTRUCTION:
897 case EXCEPTION_PRIV_INSTRUCTION:
898 case EXCEPTION_BREAKPOINT:
899 return common_flags()->handle_sigill;
900 case EXCEPTION_FLT_DENORMAL_OPERAND:
901 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
902 case EXCEPTION_FLT_INEXACT_RESULT:
903 case EXCEPTION_FLT_INVALID_OPERATION:
904 case EXCEPTION_FLT_OVERFLOW:
905 case EXCEPTION_FLT_STACK_CHECK:
906 case EXCEPTION_FLT_UNDERFLOW:
907 case EXCEPTION_INT_DIVIDE_BY_ZERO:
908 case EXCEPTION_INT_OVERFLOW:
909 return common_flags()->handle_sigfpe;
910 }
911 return false;
912 }
913
IsAccessibleMemoryRange(uptr beg,uptr size)914 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
915 SYSTEM_INFO si;
916 GetNativeSystemInfo(&si);
917 uptr page_size = si.dwPageSize;
918 uptr page_mask = ~(page_size - 1);
919
920 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
921 page <= end;) {
922 MEMORY_BASIC_INFORMATION info;
923 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
924 return false;
925
926 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
927 info.Protect == PAGE_EXECUTE)
928 return false;
929
930 if (info.RegionSize == 0)
931 return false;
932
933 page += info.RegionSize;
934 }
935
936 return true;
937 }
938
IsStackOverflow() const939 bool SignalContext::IsStackOverflow() const {
940 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
941 }
942
InitPcSpBp()943 void SignalContext::InitPcSpBp() {
944 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
945 CONTEXT *context_record = (CONTEXT *)context;
946
947 pc = (uptr)exception_record->ExceptionAddress;
948 #ifdef _WIN64
949 bp = (uptr)context_record->Rbp;
950 sp = (uptr)context_record->Rsp;
951 #else
952 bp = (uptr)context_record->Ebp;
953 sp = (uptr)context_record->Esp;
954 #endif
955 }
956
GetAddress() const957 uptr SignalContext::GetAddress() const {
958 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
959 if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
960 return exception_record->ExceptionInformation[1];
961 return (uptr)exception_record->ExceptionAddress;
962 }
963
IsMemoryAccess() const964 bool SignalContext::IsMemoryAccess() const {
965 return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
966 EXCEPTION_ACCESS_VIOLATION;
967 }
968
IsTrueFaultingAddress() const969 bool SignalContext::IsTrueFaultingAddress() const { return true; }
970
GetWriteFlag() const971 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
972 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
973
974 // The write flag is only available for access violation exceptions.
975 if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
976 return SignalContext::UNKNOWN;
977
978 // The contents of this array are documented at
979 // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
980 // The first element indicates read as 0, write as 1, or execute as 8. The
981 // second element is the faulting address.
982 switch (exception_record->ExceptionInformation[0]) {
983 case 0:
984 return SignalContext::READ;
985 case 1:
986 return SignalContext::WRITE;
987 case 8:
988 return SignalContext::UNKNOWN;
989 }
990 return SignalContext::UNKNOWN;
991 }
992
DumpAllRegisters(void * context)993 void SignalContext::DumpAllRegisters(void *context) {
994 // FIXME: Implement this.
995 }
996
GetType() const997 int SignalContext::GetType() const {
998 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
999 }
1000
Describe() const1001 const char *SignalContext::Describe() const {
1002 unsigned code = GetType();
1003 // Get the string description of the exception if this is a known deadly
1004 // exception.
1005 switch (code) {
1006 case EXCEPTION_ACCESS_VIOLATION:
1007 return "access-violation";
1008 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1009 return "array-bounds-exceeded";
1010 case EXCEPTION_STACK_OVERFLOW:
1011 return "stack-overflow";
1012 case EXCEPTION_DATATYPE_MISALIGNMENT:
1013 return "datatype-misalignment";
1014 case EXCEPTION_IN_PAGE_ERROR:
1015 return "in-page-error";
1016 case EXCEPTION_ILLEGAL_INSTRUCTION:
1017 return "illegal-instruction";
1018 case EXCEPTION_PRIV_INSTRUCTION:
1019 return "priv-instruction";
1020 case EXCEPTION_BREAKPOINT:
1021 return "breakpoint";
1022 case EXCEPTION_FLT_DENORMAL_OPERAND:
1023 return "flt-denormal-operand";
1024 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1025 return "flt-divide-by-zero";
1026 case EXCEPTION_FLT_INEXACT_RESULT:
1027 return "flt-inexact-result";
1028 case EXCEPTION_FLT_INVALID_OPERATION:
1029 return "flt-invalid-operation";
1030 case EXCEPTION_FLT_OVERFLOW:
1031 return "flt-overflow";
1032 case EXCEPTION_FLT_STACK_CHECK:
1033 return "flt-stack-check";
1034 case EXCEPTION_FLT_UNDERFLOW:
1035 return "flt-underflow";
1036 case EXCEPTION_INT_DIVIDE_BY_ZERO:
1037 return "int-divide-by-zero";
1038 case EXCEPTION_INT_OVERFLOW:
1039 return "int-overflow";
1040 }
1041 return "unknown exception";
1042 }
1043
ReadBinaryName(char * buf,uptr buf_len)1044 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1045 // FIXME: Actually implement this function.
1046 CHECK_GT(buf_len, 0);
1047 buf[0] = 0;
1048 return 0;
1049 }
1050
ReadLongProcessName(char * buf,uptr buf_len)1051 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1052 return ReadBinaryName(buf, buf_len);
1053 }
1054
CheckVMASize()1055 void CheckVMASize() {
1056 // Do nothing.
1057 }
1058
InitializePlatformEarly()1059 void InitializePlatformEarly() {
1060 // Do nothing.
1061 }
1062
MaybeReexec()1063 void MaybeReexec() {
1064 // No need to re-exec on Windows.
1065 }
1066
CheckASLR()1067 void CheckASLR() {
1068 // Do nothing
1069 }
1070
CheckMPROTECT()1071 void CheckMPROTECT() {
1072 // Do nothing
1073 }
1074
GetArgv()1075 char **GetArgv() {
1076 // FIXME: Actually implement this function.
1077 return 0;
1078 }
1079
GetEnviron()1080 char **GetEnviron() {
1081 // FIXME: Actually implement this function.
1082 return 0;
1083 }
1084
StartSubprocess(const char * program,const char * const argv[],const char * const envp[],fd_t stdin_fd,fd_t stdout_fd,fd_t stderr_fd)1085 pid_t StartSubprocess(const char *program, const char *const argv[],
1086 const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1087 fd_t stderr_fd) {
1088 // FIXME: implement on this platform
1089 // Should be implemented based on
1090 // SymbolizerProcess::StarAtSymbolizerSubprocess
1091 // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1092 return -1;
1093 }
1094
IsProcessRunning(pid_t pid)1095 bool IsProcessRunning(pid_t pid) {
1096 // FIXME: implement on this platform.
1097 return false;
1098 }
1099
WaitForProcess(pid_t pid)1100 int WaitForProcess(pid_t pid) { return -1; }
1101
1102 // FIXME implement on this platform.
GetMemoryProfile(fill_profile_f cb,uptr * stats,uptr stats_size)1103 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
1104
CheckNoDeepBind(const char * filename,int flag)1105 void CheckNoDeepBind(const char *filename, int flag) {
1106 // Do nothing.
1107 }
1108
1109 // FIXME: implement on this platform.
GetRandom(void * buffer,uptr length,bool blocking)1110 bool GetRandom(void *buffer, uptr length, bool blocking) {
1111 UNIMPLEMENTED();
1112 }
1113
GetNumberOfCPUs()1114 u32 GetNumberOfCPUs() {
1115 SYSTEM_INFO sysinfo = {};
1116 GetNativeSystemInfo(&sysinfo);
1117 return sysinfo.dwNumberOfProcessors;
1118 }
1119
1120 #if SANITIZER_WIN_TRACE
1121 // TODO(mcgov): Rename this project-wide to PlatformLogInit
AndroidLogInit(void)1122 void AndroidLogInit(void) {
1123 HRESULT hr = TraceLoggingRegister(g_asan_provider);
1124 if (!SUCCEEDED(hr))
1125 return;
1126 }
1127
SetAbortMessage(const char *)1128 void SetAbortMessage(const char *) {}
1129
LogFullErrorReport(const char * buffer)1130 void LogFullErrorReport(const char *buffer) {
1131 if (common_flags()->log_to_syslog) {
1132 InternalMmapVector<wchar_t> filename;
1133 DWORD filename_length = 0;
1134 do {
1135 filename.resize(filename.size() + 0x100);
1136 filename_length =
1137 GetModuleFileNameW(NULL, filename.begin(), filename.size());
1138 } while (filename_length >= filename.size());
1139 TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1140 TraceLoggingValue(filename.begin(), "ExecutableName"),
1141 TraceLoggingValue(buffer, "AsanReportContents"));
1142 }
1143 }
1144 #endif // SANITIZER_WIN_TRACE
1145
InitializePlatformCommonFlags(CommonFlags * cf)1146 void InitializePlatformCommonFlags(CommonFlags *cf) {}
1147
1148 } // namespace __sanitizer
1149
1150 #endif // _WIN32
1151