• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrGLSLGeometryProcessor_DEFINED
9 #define GrGLSLGeometryProcessor_DEFINED
10 
11 #include "src/gpu/GrFragmentProcessor.h"
12 #include "src/gpu/GrGeometryProcessor.h"
13 #include "src/gpu/glsl/GrGLSLProgramDataManager.h"
14 #include "src/gpu/glsl/GrGLSLUniformHandler.h"
15 
16 class GrGeometryProcessor;
17 class GrGLSLFPFragmentBuilder;
18 class GrGLSLGeometryBuilder;
19 class GrGLSLGPBuilder;
20 class GrGLSLVaryingHandler;
21 class GrGLSLVertexBuilder;
22 class GrShaderCaps;
23 
24 /**
25  * GrGeometryProcessor-derived classes that need to emit GLSL vertex shader code should be paired
26  * with a sibling class derived from GrGLSLGeometryProcessor (and return an instance of it from
27  * createGLSLInstance).
28  */
29 class GrGLSLGeometryProcessor {
30 public:
31     using UniformHandle         = GrGLSLProgramDataManager::UniformHandle;
32     using SamplerHandle         = GrGLSLUniformHandler::SamplerHandle;
33 
~GrGLSLGeometryProcessor()34     virtual ~GrGLSLGeometryProcessor() {}
35 
36     /**
37      * This class provides access to each GrFragmentProcessor in a GrPipeline that requires varying
38      * local coords to be produced by the primitive processor. It is also used by the primitive
39      * processor to specify the fragment shader variable that will hold the transformed coords for
40      * each of those GrFragmentProcessors. It is required that the primitive processor iterate over
41      * each fragment processor and insert a shader var result for each. The GrGLSLFragmentProcessors
42      * will reference these variables in their fragment code.
43      */
44     class FPCoordTransformHandler : public SkNoncopyable {
45     public:
46         FPCoordTransformHandler(const GrPipeline&, SkTArray<GrShaderVar>*);
~FPCoordTransformHandler()47         ~FPCoordTransformHandler() { SkASSERT(!fIter); }
48 
49         operator bool() const { return (bool)fIter; }
50 
51         // Gets the current GrFragmentProcessor
52         const GrFragmentProcessor& get() const;
53 
54         FPCoordTransformHandler& operator++();
55 
specifyCoordsForCurrCoordTransform(GrShaderVar varyingVar)56         void specifyCoordsForCurrCoordTransform(GrShaderVar varyingVar) {
57             SkASSERT(!fAddedCoord);
58             fTransformedCoordVars->push_back(varyingVar);
59             SkDEBUGCODE(fAddedCoord = true;)
60         }
61 
62     private:
63         GrFragmentProcessor::CIter fIter;
64         SkDEBUGCODE(bool           fAddedCoord = false;)
65         SkTArray<GrShaderVar>*     fTransformedCoordVars;
66     };
67 
68     struct EmitArgs {
EmitArgsEmitArgs69         EmitArgs(GrGLSLVertexBuilder* vertBuilder,
70                  GrGLSLGeometryBuilder* geomBuilder,
71                  GrGLSLFPFragmentBuilder* fragBuilder,
72                  GrGLSLVaryingHandler* varyingHandler,
73                  GrGLSLUniformHandler* uniformHandler,
74                  const GrShaderCaps* caps,
75                  const GrGeometryProcessor& geomProc,
76                  const char* outputColor,
77                  const char* outputCoverage,
78                  const SamplerHandle* texSamplers,
79                  FPCoordTransformHandler* transformHandler)
80             : fVertBuilder(vertBuilder)
81             , fGeomBuilder(geomBuilder)
82             , fFragBuilder(fragBuilder)
83             , fVaryingHandler(varyingHandler)
84             , fUniformHandler(uniformHandler)
85             , fShaderCaps(caps)
86             , fGeomProc(geomProc)
87             , fOutputColor(outputColor)
88             , fOutputCoverage(outputCoverage)
89             , fTexSamplers(texSamplers)
90             , fFPCoordTransformHandler(transformHandler) {}
91         GrGLSLVertexBuilder* fVertBuilder;
92         GrGLSLGeometryBuilder* fGeomBuilder;
93         GrGLSLFPFragmentBuilder* fFragBuilder;
94         GrGLSLVaryingHandler* fVaryingHandler;
95         GrGLSLUniformHandler* fUniformHandler;
96         const GrShaderCaps* fShaderCaps;
97         const GrGeometryProcessor& fGeomProc;
98         const char* fOutputColor;
99         const char* fOutputCoverage;
100         const SamplerHandle* fTexSamplers;
101         FPCoordTransformHandler* fFPCoordTransformHandler;
102     };
103 
104     /* Any general emit code goes in the base class emitCode.  Subclasses override onEmitCode */
105     void emitCode(EmitArgs&);
106 
107     /**
108      * Called after all effect emitCode() functions, to give the processor a chance to write out
109      * additional transformation code now that all uniforms have been emitted.
110      * It generates the final code for assigning transformed coordinates to the varyings recorded
111      * in the call to collectTransforms(). This must happen after FP code emission so that it has
112      * access to any uniforms the FPs registered for uniform sample matrix invocations.
113      */
114     void emitTransformCode(GrGLSLVertexBuilder* vb,
115                            GrGLSLUniformHandler* uniformHandler);
116 
117     /**
118      * A GrGLSLGeometryProcessor instance can be reused with any GrGLSLGeometryProcessor that
119      * produces the same stage key; this function reads data from a GrGLSLGeometryProcessor and
120      * uploads any uniform variables required  by the shaders created in emitCode(). The
121      * GrGeometryProcessor parameter is guaranteed to be of the same type and to have an
122      * identical processor key as the GrGeometryProcessor that created this
123      * GrGLSLGeometryProcessor.
124      * The subclass should use the transform range to perform any setup required for the coord
125      * transforms of the FPs that are part of the same program, such as updating matrix uniforms.
126      * The range will iterate over the transforms in the same order as the TransformHandler passed
127      * to emitCode.
128      */
129     virtual void setData(const GrGLSLProgramDataManager&,
130                          const GrShaderCaps&,
131                          const GrGeometryProcessor&) = 0;
132 
133     // We use these methods as a temporary back door to inject OpenGL tessellation code. Once
134     // tessellation is supported by SkSL we can remove these.
getTessControlShaderGLSL(const GrGeometryProcessor &,const char * versionAndExtensionDecls,const GrGLSLUniformHandler &,const GrShaderCaps &)135     virtual SkString getTessControlShaderGLSL(const GrGeometryProcessor&,
136                                               const char* versionAndExtensionDecls,
137                                               const GrGLSLUniformHandler&,
138                                               const GrShaderCaps&) const {
139         SK_ABORT("Not implemented.");
140     }
getTessEvaluationShaderGLSL(const GrGeometryProcessor &,const char * versionAndExtensionDecls,const GrGLSLUniformHandler &,const GrShaderCaps &)141     virtual SkString getTessEvaluationShaderGLSL(const GrGeometryProcessor&,
142                                                  const char* versionAndExtensionDecls,
143                                                  const GrGLSLUniformHandler&,
144                                                  const GrShaderCaps&) const {
145         SK_ABORT("Not implemented.");
146     }
147 
148 protected:
149     void setupUniformColor(GrGLSLFPFragmentBuilder* fragBuilder,
150                            GrGLSLUniformHandler* uniformHandler,
151                            const char* outputName,
152                            UniformHandle* colorUniform);
153 
154     // A helper for setting the matrix on a uniform handle initialized through
155     // writeOutputPosition or writeLocalCoord. Automatically handles elided uniforms,
156     // scale+translate matrices, and state tracking (if provided state pointer is non-null).
157     static void SetTransform(const GrGLSLProgramDataManager&,
158                              const GrShaderCaps&,
159                              const UniformHandle& uniform,
160                              const SkMatrix& matrix,
161                              SkMatrix* state = nullptr);
162 
163     struct GrGPArgs {
164         // Used to specify the output variable used by the GP to store its device position. It can
165         // either be a float2 or a float3 (in order to handle perspective). The subclass sets this
166         // in its onEmitCode().
167         GrShaderVar fPositionVar;
168         // Used to specify the variable storing the draw's local coordinates. It can be either a
169         // float2, float3, or void. It can only be void when no FP needs local coordinates. This
170         // variable can be an attribute or local variable, but should not itself be a varying.
171         // GrGLSLGeometryProcessor automatically determines if this must be passed to a FS.
172         GrShaderVar fLocalCoordVar;
173     };
174 
175     // Helpers for adding code to write the transformed vertex position. The first simple version
176     // just writes a variable named by 'posName' into the position output variable with the
177     // assumption that the position is 2D. The second version transforms the input position by a
178     // view matrix and the output variable is 2D or 3D depending on whether the view matrix is
179     // perspective. Both versions declare the output position variable and will set
180     // GrGPArgs::fPositionVar.
181     static void WriteOutputPosition(GrGLSLVertexBuilder*, GrGPArgs*, const char* posName);
182     static void WriteOutputPosition(GrGLSLVertexBuilder*,
183                                     GrGLSLUniformHandler*,
184                                     const GrShaderCaps&,
185                                     GrGPArgs*,
186                                     const char* posName,
187                                     const SkMatrix& viewMatrix,
188                                     UniformHandle* viewMatrixUniform);
189 
190     // Helper to transform an existing variable by a given local matrix (e.g. the inverse view
191     // matrix). It will declare the transformed local coord variable and will set
192     // GrGPArgs::fLocalCoordVar.
193     static void WriteLocalCoord(GrGLSLVertexBuilder*,
194                                 GrGLSLUniformHandler*,
195                                 const GrShaderCaps&,
196                                 GrGPArgs*,
197                                 GrShaderVar localVar,
198                                 const SkMatrix& localMatrix,
199                                 UniformHandle* localMatrixUniform);
200 
201     // GPs that use writeOutputPosition and/or writeLocalCoord must incorporate the matrix type
202     // into their key, and should use this function or one of the other related helpers.
ComputeMatrixKey(const GrShaderCaps & caps,const SkMatrix & mat)203     static uint32_t ComputeMatrixKey(const GrShaderCaps& caps, const SkMatrix& mat) {
204         if (!caps.reducedShaderMode()) {
205             if (mat.isIdentity()) {
206                 return 0b00;
207             }
208             if (mat.isScaleTranslate()) {
209                 return 0b01;
210             }
211         }
212         if (!mat.hasPerspective()) {
213             return 0b10;
214         }
215         return 0b11;
216     }
ComputeMatrixKeys(const GrShaderCaps & shaderCaps,const SkMatrix & viewMatrix,const SkMatrix & localMatrix)217     static uint32_t ComputeMatrixKeys(const GrShaderCaps& shaderCaps,
218                                       const SkMatrix& viewMatrix,
219                                       const SkMatrix& localMatrix) {
220         return (ComputeMatrixKey(shaderCaps, viewMatrix) << kMatrixKeyBits) |
221                ComputeMatrixKey(shaderCaps, localMatrix);
222     }
AddMatrixKeys(const GrShaderCaps & shaderCaps,uint32_t flags,const SkMatrix & viewMatrix,const SkMatrix & localMatrix)223     static uint32_t AddMatrixKeys(const GrShaderCaps& shaderCaps,
224                                   uint32_t flags,
225                                   const SkMatrix& viewMatrix,
226                                   const SkMatrix& localMatrix) {
227         // Shifting to make room for the matrix keys shouldn't lose bits
228         SkASSERT(((flags << (2 * kMatrixKeyBits)) >> (2 * kMatrixKeyBits)) == flags);
229         return (flags << (2 * kMatrixKeyBits)) |
230                ComputeMatrixKeys(shaderCaps, viewMatrix, localMatrix);
231     }
232     static constexpr int kMatrixKeyBits = 2;
233 
234 private:
235     virtual void onEmitCode(EmitArgs&, GrGPArgs*) = 0;
236 
237     // Iterates over the FPs in 'handler' to register additional varyings and uniforms to support
238     // VS-promoted local coord evaluation for the FPs. Subclasses must call this with
239     // 'localCoordsVar' set to an SkSL variable expression of type 'float2' or 'float3' representing
240     // the original local coordinates of the draw.
241     //
242     // This must happen before FP code emission so that the FPs can find the appropriate varying
243     // handles they use in place of explicit coord sampling; it is automatically called after
244     // onEmitCode() returns using the value stored in GpArgs::fLocalCoordVar.
245     void collectTransforms(GrGLSLVertexBuilder* vb,
246                            GrGLSLVaryingHandler* varyingHandler,
247                            GrGLSLUniformHandler* uniformHandler,
248                            const GrShaderVar& localCoordsVar,
249                            FPCoordTransformHandler* handler);
250 
251     struct TransformInfo {
252         // The vertex-shader output variable to assign the transformed coordinates to
253         GrShaderVar                fOutputCoords;
254         // The coordinate to be transformed
255         GrShaderVar                fLocalCoords;
256         // The leaf FP of a transform hierarchy to be evaluated in the vertex shader;
257         // this FP will be const-uniform sampled, and all of its parents will have a sample matrix
258         // type of none or const-uniform.
259         const GrFragmentProcessor* fFP;
260     };
261     SkTArray<TransformInfo> fTransformInfos;
262 };
263 
264 #endif
265