• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // This header is logically internal, but is made public because it is used
36 // from protocol-compiler-generated code, which may reside in other components.
37 
38 #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
39 #define GOOGLE_PROTOBUF_EXTENSION_SET_H__
40 
41 #include <algorithm>
42 #include <cassert>
43 #include <map>
44 #include <string>
45 #include <utility>
46 #include <vector>
47 
48 #include <google/protobuf/stubs/common.h>
49 #include <google/protobuf/stubs/logging.h>
50 #include <google/protobuf/parse_context.h>
51 #include <google/protobuf/io/coded_stream.h>
52 #include <google/protobuf/port.h>
53 #include <google/protobuf/repeated_field.h>
54 #include <google/protobuf/wire_format_lite.h>
55 
56 #include <google/protobuf/port_def.inc>
57 
58 #ifdef SWIG
59 #error "You cannot SWIG proto headers"
60 #endif
61 
62 namespace google {
63 namespace protobuf {
64 class Arena;
65 class Descriptor;       // descriptor.h
66 class FieldDescriptor;  // descriptor.h
67 class DescriptorPool;   // descriptor.h
68 class MessageLite;      // message_lite.h
69 class Message;          // message.h
70 class MessageFactory;   // message.h
71 class UnknownFieldSet;  // unknown_field_set.h
72 namespace io {
73 class CodedInputStream;   // coded_stream.h
74 class CodedOutputStream;  // coded_stream.h
75 }  // namespace io
76 namespace internal {
77 class FieldSkipper;  // wire_format_lite.h
78 }
79 }  // namespace protobuf
80 }  // namespace google
81 
82 namespace google {
83 namespace protobuf {
84 namespace internal {
85 
86 class InternalMetadataWithArenaLite;
87 class InternalMetadataWithArena;
88 
89 // Used to store values of type WireFormatLite::FieldType without having to
90 // #include wire_format_lite.h.  Also, ensures that we use only one byte to
91 // store these values, which is important to keep the layout of
92 // ExtensionSet::Extension small.
93 typedef uint8 FieldType;
94 
95 // A function which, given an integer value, returns true if the number
96 // matches one of the defined values for the corresponding enum type.  This
97 // is used with RegisterEnumExtension, below.
98 typedef bool EnumValidityFunc(int number);
99 
100 // Version of the above which takes an argument.  This is needed to deal with
101 // extensions that are not compiled in.
102 typedef bool EnumValidityFuncWithArg(const void* arg, int number);
103 
104 // Information about a registered extension.
105 struct ExtensionInfo {
ExtensionInfoExtensionInfo106   inline ExtensionInfo() {}
ExtensionInfoExtensionInfo107   inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked)
108       : type(type_param),
109         is_repeated(isrepeated),
110         is_packed(ispacked),
111         descriptor(NULL) {}
112 
113   FieldType type;
114   bool is_repeated;
115   bool is_packed;
116 
117   struct EnumValidityCheck {
118     EnumValidityFuncWithArg* func;
119     const void* arg;
120   };
121 
122   struct MessageInfo {
123     const MessageLite* prototype;
124   };
125 
126   union {
127     EnumValidityCheck enum_validity_check;
128     MessageInfo message_info;
129   };
130 
131   // The descriptor for this extension, if one exists and is known.  May be
132   // NULL.  Must not be NULL if the descriptor for the extension does not
133   // live in the same pool as the descriptor for the containing type.
134   const FieldDescriptor* descriptor;
135 };
136 
137 // Abstract interface for an object which looks up extension definitions.  Used
138 // when parsing.
139 class PROTOBUF_EXPORT ExtensionFinder {
140  public:
141   virtual ~ExtensionFinder();
142 
143   // Find the extension with the given containing type and number.
144   virtual bool Find(int number, ExtensionInfo* output) = 0;
145 };
146 
147 // Implementation of ExtensionFinder which finds extensions defined in .proto
148 // files which have been compiled into the binary.
149 class PROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder {
150  public:
GeneratedExtensionFinder(const MessageLite * containing_type)151   GeneratedExtensionFinder(const MessageLite* containing_type)
152       : containing_type_(containing_type) {}
~GeneratedExtensionFinder()153   ~GeneratedExtensionFinder() override {}
154 
155   // Returns true and fills in *output if found, otherwise returns false.
156   bool Find(int number, ExtensionInfo* output) override;
157 
158  private:
159   const MessageLite* containing_type_;
160 };
161 
162 // A FieldSkipper used for parsing MessageSet.
163 class MessageSetFieldSkipper;
164 
165 // Note:  extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
166 // finding extensions from a DescriptorPool.
167 
168 // This is an internal helper class intended for use within the protocol buffer
169 // library and generated classes.  Clients should not use it directly.  Instead,
170 // use the generated accessors such as GetExtension() of the class being
171 // extended.
172 //
173 // This class manages extensions for a protocol message object.  The
174 // message's HasExtension(), GetExtension(), MutableExtension(), and
175 // ClearExtension() methods are just thin wrappers around the embedded
176 // ExtensionSet.  When parsing, if a tag number is encountered which is
177 // inside one of the message type's extension ranges, the tag is passed
178 // off to the ExtensionSet for parsing.  Etc.
179 class PROTOBUF_EXPORT ExtensionSet {
180  public:
181   ExtensionSet();
182   explicit ExtensionSet(Arena* arena);
183   ~ExtensionSet();
184 
185   // These are called at startup by protocol-compiler-generated code to
186   // register known extensions.  The registrations are used by ParseField()
187   // to look up extensions for parsed field numbers.  Note that dynamic parsing
188   // does not use ParseField(); only protocol-compiler-generated parsing
189   // methods do.
190   static void RegisterExtension(const MessageLite* containing_type, int number,
191                                 FieldType type, bool is_repeated,
192                                 bool is_packed);
193   static void RegisterEnumExtension(const MessageLite* containing_type,
194                                     int number, FieldType type,
195                                     bool is_repeated, bool is_packed,
196                                     EnumValidityFunc* is_valid);
197   static void RegisterMessageExtension(const MessageLite* containing_type,
198                                        int number, FieldType type,
199                                        bool is_repeated, bool is_packed,
200                                        const MessageLite* prototype);
201 
202   // =================================================================
203 
204   // Add all fields which are currently present to the given vector.  This
205   // is useful to implement Reflection::ListFields().
206   void AppendToList(const Descriptor* containing_type,
207                     const DescriptorPool* pool,
208                     std::vector<const FieldDescriptor*>* output) const;
209 
210   // =================================================================
211   // Accessors
212   //
213   // Generated message classes include type-safe templated wrappers around
214   // these methods.  Generally you should use those rather than call these
215   // directly, unless you are doing low-level memory management.
216   //
217   // When calling any of these accessors, the extension number requested
218   // MUST exist in the DescriptorPool provided to the constructor.  Otherwise,
219   // the method will fail an assert.  Normally, though, you would not call
220   // these directly; you would either call the generated accessors of your
221   // message class (e.g. GetExtension()) or you would call the accessors
222   // of the reflection interface.  In both cases, it is impossible to
223   // trigger this assert failure:  the generated accessors only accept
224   // linked-in extension types as parameters, while the Reflection interface
225   // requires you to provide the FieldDescriptor describing the extension.
226   //
227   // When calling any of these accessors, a protocol-compiler-generated
228   // implementation of the extension corresponding to the number MUST
229   // be linked in, and the FieldDescriptor used to refer to it MUST be
230   // the one generated by that linked-in code.  Otherwise, the method will
231   // die on an assert failure.  The message objects returned by the message
232   // accessors are guaranteed to be of the correct linked-in type.
233   //
234   // These methods pretty much match Reflection except that:
235   // - They're not virtual.
236   // - They identify fields by number rather than FieldDescriptors.
237   // - They identify enum values using integers rather than descriptors.
238   // - Strings provide Mutable() in addition to Set() accessors.
239 
240   bool Has(int number) const;
241   int ExtensionSize(int number) const;  // Size of a repeated extension.
242   int NumExtensions() const;            // The number of extensions
243   FieldType ExtensionType(int number) const;
244   void ClearExtension(int number);
245 
246   // singular fields -------------------------------------------------
247 
248   int32 GetInt32(int number, int32 default_value) const;
249   int64 GetInt64(int number, int64 default_value) const;
250   uint32 GetUInt32(int number, uint32 default_value) const;
251   uint64 GetUInt64(int number, uint64 default_value) const;
252   float GetFloat(int number, float default_value) const;
253   double GetDouble(int number, double default_value) const;
254   bool GetBool(int number, bool default_value) const;
255   int GetEnum(int number, int default_value) const;
256   const std::string& GetString(int number,
257                                const std::string& default_value) const;
258   const MessageLite& GetMessage(int number,
259                                 const MessageLite& default_value) const;
260   const MessageLite& GetMessage(int number, const Descriptor* message_type,
261                                 MessageFactory* factory) const;
262 
263   // |descriptor| may be NULL so long as it is known that the descriptor for
264   // the extension lives in the same pool as the descriptor for the containing
265   // type.
266 #define desc const FieldDescriptor* descriptor  // avoid line wrapping
267   void SetInt32(int number, FieldType type, int32 value, desc);
268   void SetInt64(int number, FieldType type, int64 value, desc);
269   void SetUInt32(int number, FieldType type, uint32 value, desc);
270   void SetUInt64(int number, FieldType type, uint64 value, desc);
271   void SetFloat(int number, FieldType type, float value, desc);
272   void SetDouble(int number, FieldType type, double value, desc);
273   void SetBool(int number, FieldType type, bool value, desc);
274   void SetEnum(int number, FieldType type, int value, desc);
275   void SetString(int number, FieldType type, const std::string& value, desc);
276   std::string* MutableString(int number, FieldType type, desc);
277   MessageLite* MutableMessage(int number, FieldType type,
278                               const MessageLite& prototype, desc);
279   MessageLite* MutableMessage(const FieldDescriptor* decsriptor,
280                               MessageFactory* factory);
281   // Adds the given message to the ExtensionSet, taking ownership of the
282   // message object. Existing message with the same number will be deleted.
283   // If "message" is NULL, this is equivalent to "ClearExtension(number)".
284   void SetAllocatedMessage(int number, FieldType type,
285                            const FieldDescriptor* descriptor,
286                            MessageLite* message);
287   void UnsafeArenaSetAllocatedMessage(int number, FieldType type,
288                                       const FieldDescriptor* descriptor,
289                                       MessageLite* message);
290   MessageLite* ReleaseMessage(int number, const MessageLite& prototype);
291   MessageLite* UnsafeArenaReleaseMessage(int number,
292                                          const MessageLite& prototype);
293 
294   MessageLite* ReleaseMessage(const FieldDescriptor* descriptor,
295                               MessageFactory* factory);
296   MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor,
297                                          MessageFactory* factory);
298 #undef desc
GetArenaNoVirtual()299   Arena* GetArenaNoVirtual() const { return arena_; }
300 
301   // repeated fields -------------------------------------------------
302 
303   // Fetches a RepeatedField extension by number; returns |default_value|
304   // if no such extension exists. User should not touch this directly; it is
305   // used by the GetRepeatedExtension() method.
306   const void* GetRawRepeatedField(int number, const void* default_value) const;
307   // Fetches a mutable version of a RepeatedField extension by number,
308   // instantiating one if none exists. Similar to above, user should not use
309   // this directly; it underlies MutableRepeatedExtension().
310   void* MutableRawRepeatedField(int number, FieldType field_type, bool packed,
311                                 const FieldDescriptor* desc);
312 
313   // This is an overload of MutableRawRepeatedField to maintain compatibility
314   // with old code using a previous API. This version of
315   // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension.
316   // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.)
317   void* MutableRawRepeatedField(int number);
318 
319   int32 GetRepeatedInt32(int number, int index) const;
320   int64 GetRepeatedInt64(int number, int index) const;
321   uint32 GetRepeatedUInt32(int number, int index) const;
322   uint64 GetRepeatedUInt64(int number, int index) const;
323   float GetRepeatedFloat(int number, int index) const;
324   double GetRepeatedDouble(int number, int index) const;
325   bool GetRepeatedBool(int number, int index) const;
326   int GetRepeatedEnum(int number, int index) const;
327   const std::string& GetRepeatedString(int number, int index) const;
328   const MessageLite& GetRepeatedMessage(int number, int index) const;
329 
330   void SetRepeatedInt32(int number, int index, int32 value);
331   void SetRepeatedInt64(int number, int index, int64 value);
332   void SetRepeatedUInt32(int number, int index, uint32 value);
333   void SetRepeatedUInt64(int number, int index, uint64 value);
334   void SetRepeatedFloat(int number, int index, float value);
335   void SetRepeatedDouble(int number, int index, double value);
336   void SetRepeatedBool(int number, int index, bool value);
337   void SetRepeatedEnum(int number, int index, int value);
338   void SetRepeatedString(int number, int index, const std::string& value);
339   std::string* MutableRepeatedString(int number, int index);
340   MessageLite* MutableRepeatedMessage(int number, int index);
341 
342 #define desc const FieldDescriptor* descriptor  // avoid line wrapping
343   void AddInt32(int number, FieldType type, bool packed, int32 value, desc);
344   void AddInt64(int number, FieldType type, bool packed, int64 value, desc);
345   void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc);
346   void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc);
347   void AddFloat(int number, FieldType type, bool packed, float value, desc);
348   void AddDouble(int number, FieldType type, bool packed, double value, desc);
349   void AddBool(int number, FieldType type, bool packed, bool value, desc);
350   void AddEnum(int number, FieldType type, bool packed, int value, desc);
351   void AddString(int number, FieldType type, const std::string& value, desc);
352   std::string* AddString(int number, FieldType type, desc);
353   MessageLite* AddMessage(int number, FieldType type,
354                           const MessageLite& prototype, desc);
355   MessageLite* AddMessage(const FieldDescriptor* descriptor,
356                           MessageFactory* factory);
357   void AddAllocatedMessage(const FieldDescriptor* descriptor,
358                            MessageLite* new_entry);
359 #undef desc
360 
361   void RemoveLast(int number);
362   MessageLite* ReleaseLast(int number);
363   void SwapElements(int number, int index1, int index2);
364 
365   // -----------------------------------------------------------------
366   // TODO(kenton):  Hardcore memory management accessors
367 
368   // =================================================================
369   // convenience methods for implementing methods of Message
370   //
371   // These could all be implemented in terms of the other methods of this
372   // class, but providing them here helps keep the generated code size down.
373 
374   void Clear();
375   void MergeFrom(const ExtensionSet& other);
376   void Swap(ExtensionSet* other);
377   void SwapExtension(ExtensionSet* other, int number);
378   bool IsInitialized() const;
379 
380   // Parses a single extension from the input. The input should start out
381   // positioned immediately after the tag.
382   bool ParseField(uint32 tag, io::CodedInputStream* input,
383                   ExtensionFinder* extension_finder,
384                   FieldSkipper* field_skipper);
385 
386   // Specific versions for lite or full messages (constructs the appropriate
387   // FieldSkipper automatically).  |containing_type| is the default
388   // instance for the containing message; it is used only to look up the
389   // extension by number.  See RegisterExtension(), above.  Unlike the other
390   // methods of ExtensionSet, this only works for generated message types --
391   // it looks up extensions registered using RegisterExtension().
392   bool ParseField(uint32 tag, io::CodedInputStream* input,
393                   const MessageLite* containing_type);
394   bool ParseField(uint32 tag, io::CodedInputStream* input,
395                   const Message* containing_type,
396                   UnknownFieldSet* unknown_fields);
397   bool ParseField(uint32 tag, io::CodedInputStream* input,
398                   const MessageLite* containing_type,
399                   io::CodedOutputStream* unknown_fields);
400 
401 #if GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER
402   // Lite parser
403   const char* ParseField(uint64 tag, const char* ptr,
404                          const MessageLite* containing_type,
405                          internal::InternalMetadataWithArenaLite* metadata,
406                          internal::ParseContext* ctx);
407   // Full parser
408   const char* ParseField(uint64 tag, const char* ptr,
409                          const Message* containing_type,
410                          internal::InternalMetadataWithArena* metadata,
411                          internal::ParseContext* ctx);
412   template <typename Msg, typename Metadata>
ParseMessageSet(const char * ptr,const Msg * containing_type,Metadata * metadata,internal::ParseContext * ctx)413   const char* ParseMessageSet(const char* ptr, const Msg* containing_type,
414                               Metadata* metadata, internal::ParseContext* ctx) {
415     struct MessageSetItem {
416       const char* _InternalParse(const char* ptr, ParseContext* ctx) {
417         return me->ParseMessageSetItem(ptr, containing_type, metadata, ctx);
418       }
419       ExtensionSet* me;
420       const Msg* containing_type;
421       Metadata* metadata;
422     } item{this, containing_type, metadata};
423     while (!ctx->Done(&ptr)) {
424       uint32 tag;
425       ptr = ReadTag(ptr, &tag);
426       GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
427       if (tag == WireFormatLite::kMessageSetItemStartTag) {
428         ptr = ctx->ParseGroup(&item, ptr, tag);
429         GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
430       } else {
431         if (tag == 0 || (tag & 7) == 4) {
432           ctx->SetLastTag(tag);
433           return ptr;
434         }
435         ptr = ParseField(tag, ptr, containing_type, metadata, ctx);
436         GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
437       }
438     }
439     return ptr;
440   }
441 #endif
442 
443   // Parse an entire message in MessageSet format.  Such messages have no
444   // fields, only extensions.
445   bool ParseMessageSetLite(io::CodedInputStream* input,
446                            ExtensionFinder* extension_finder,
447                            FieldSkipper* field_skipper);
448   bool ParseMessageSet(io::CodedInputStream* input,
449                        ExtensionFinder* extension_finder,
450                        MessageSetFieldSkipper* field_skipper);
451 
452   // Specific versions for lite or full messages (constructs the appropriate
453   // FieldSkipper automatically).
454   bool ParseMessageSet(io::CodedInputStream* input,
455                        const MessageLite* containing_type,
456                        std::string* unknown_fields);
457   bool ParseMessageSet(io::CodedInputStream* input,
458                        const Message* containing_type,
459                        UnknownFieldSet* unknown_fields);
460 
461   // Write all extension fields with field numbers in the range
462   //   [start_field_number, end_field_number)
463   // to the output stream, using the cached sizes computed when ByteSize() was
464   // last called.  Note that the range bounds are inclusive-exclusive.
465   void SerializeWithCachedSizes(int start_field_number, int end_field_number,
466                                 io::CodedOutputStream* output) const;
467 
468   // Same as SerializeWithCachedSizes, but without any bounds checking.
469   // The caller must ensure that target has sufficient capacity for the
470   // serialized extensions.
471   //
472   // Returns a pointer past the last written byte.
473   uint8* InternalSerializeWithCachedSizesToArray(int start_field_number,
474                                                  int end_field_number,
475                                                  uint8* target) const;
476 
477   // Like above but serializes in MessageSet format.
478   void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const;
479   uint8* InternalSerializeMessageSetWithCachedSizesToArray(uint8* target) const;
480 
481   // For backward-compatibility, versions of two of the above methods that
482   // serialize deterministically iff SetDefaultSerializationDeterministic()
483   // has been called.
484   uint8* SerializeWithCachedSizesToArray(int start_field_number,
485                                          int end_field_number,
486                                          uint8* target) const;
487   uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const;
488 
489   // Returns the total serialized size of all the extensions.
490   size_t ByteSize() const;
491 
492   // Like ByteSize() but uses MessageSet format.
493   size_t MessageSetByteSize() const;
494 
495   // Returns (an estimate of) the total number of bytes used for storing the
496   // extensions in memory, excluding sizeof(*this).  If the ExtensionSet is
497   // for a lite message (and thus possibly contains lite messages), the results
498   // are undefined (might work, might crash, might corrupt data, might not even
499   // be linked in).  It's up to the protocol compiler to avoid calling this on
500   // such ExtensionSets (easy enough since lite messages don't implement
501   // SpaceUsed()).
502   size_t SpaceUsedExcludingSelfLong() const;
503 
504   // This method just calls SpaceUsedExcludingSelfLong() but it can not be
505   // inlined because the definition of SpaceUsedExcludingSelfLong() is not
506   // included in lite runtime and when an inline method refers to it MSVC
507   // will complain about unresolved symbols when building the lite runtime
508   // as .dll.
509   int SpaceUsedExcludingSelf() const;
510 
511  private:
512   // Interface of a lazily parsed singular message extension.
513   class PROTOBUF_EXPORT LazyMessageExtension {
514    public:
LazyMessageExtension()515     LazyMessageExtension() {}
~LazyMessageExtension()516     virtual ~LazyMessageExtension() {}
517 
518     virtual LazyMessageExtension* New(Arena* arena) const = 0;
519     virtual const MessageLite& GetMessage(
520         const MessageLite& prototype) const = 0;
521     virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0;
522     virtual void SetAllocatedMessage(MessageLite* message) = 0;
523     virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message) = 0;
524     virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0;
525     virtual MessageLite* UnsafeArenaReleaseMessage(
526         const MessageLite& prototype) = 0;
527 
528     virtual bool IsInitialized() const = 0;
529 
530     PROTOBUF_DEPRECATED_MSG("Please use ByteSizeLong() instead")
ByteSize()531     virtual int ByteSize() const { return internal::ToIntSize(ByteSizeLong()); }
532     virtual size_t ByteSizeLong() const = 0;
533     virtual size_t SpaceUsedLong() const = 0;
534 
535     virtual void MergeFrom(const LazyMessageExtension& other) = 0;
536     virtual void Clear() = 0;
537 
538     virtual bool ReadMessage(const MessageLite& prototype,
539                              io::CodedInputStream* input) = 0;
540 #if GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER
541     virtual const char* _InternalParse(const char* ptr, ParseContext* ctx) = 0;
542 #endif
543     virtual void WriteMessage(int number,
544                               io::CodedOutputStream* output) const = 0;
545     virtual uint8* WriteMessageToArray(int number, uint8* target) const = 0;
546 
547    private:
548     virtual void UnusedKeyMethod();  // Dummy key method to avoid weak vtable.
549 
550     GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension);
551   };
552   struct Extension {
553     // The order of these fields packs Extension into 24 bytes when using 8
554     // byte alignment. Consider this when adding or removing fields here.
555     union {
556       int32 int32_value;
557       int64 int64_value;
558       uint32 uint32_value;
559       uint64 uint64_value;
560       float float_value;
561       double double_value;
562       bool bool_value;
563       int enum_value;
564       std::string* string_value;
565       MessageLite* message_value;
566       LazyMessageExtension* lazymessage_value;
567 
568       RepeatedField<int32>* repeated_int32_value;
569       RepeatedField<int64>* repeated_int64_value;
570       RepeatedField<uint32>* repeated_uint32_value;
571       RepeatedField<uint64>* repeated_uint64_value;
572       RepeatedField<float>* repeated_float_value;
573       RepeatedField<double>* repeated_double_value;
574       RepeatedField<bool>* repeated_bool_value;
575       RepeatedField<int>* repeated_enum_value;
576       RepeatedPtrField<std::string>* repeated_string_value;
577       RepeatedPtrField<MessageLite>* repeated_message_value;
578     };
579 
580     FieldType type;
581     bool is_repeated;
582 
583     // For singular types, indicates if the extension is "cleared".  This
584     // happens when an extension is set and then later cleared by the caller.
585     // We want to keep the Extension object around for reuse, so instead of
586     // removing it from the map, we just set is_cleared = true.  This has no
587     // meaning for repeated types; for those, the size of the RepeatedField
588     // simply becomes zero when cleared.
589     bool is_cleared : 4;
590 
591     // For singular message types, indicates whether lazy parsing is enabled
592     // for this extension. This field is only valid when type == TYPE_MESSAGE
593     // and !is_repeated because we only support lazy parsing for singular
594     // message types currently. If is_lazy = true, the extension is stored in
595     // lazymessage_value. Otherwise, the extension will be message_value.
596     bool is_lazy : 4;
597 
598     // For repeated types, this indicates if the [packed=true] option is set.
599     bool is_packed;
600 
601     // For packed fields, the size of the packed data is recorded here when
602     // ByteSize() is called then used during serialization.
603     // TODO(kenton):  Use atomic<int> when C++ supports it.
604     mutable int cached_size;
605 
606     // The descriptor for this extension, if one exists and is known.  May be
607     // NULL.  Must not be NULL if the descriptor for the extension does not
608     // live in the same pool as the descriptor for the containing type.
609     const FieldDescriptor* descriptor;
610 
611     // Some helper methods for operations on a single Extension.
612     void SerializeFieldWithCachedSizes(int number,
613                                        io::CodedOutputStream* output) const;
614     uint8* InternalSerializeFieldWithCachedSizesToArray(int number,
615                                                         uint8* target) const;
616     void SerializeMessageSetItemWithCachedSizes(
617         int number, io::CodedOutputStream* output) const;
618     uint8* InternalSerializeMessageSetItemWithCachedSizesToArray(
619         int number, uint8* target) const;
620     size_t ByteSize(int number) const;
621     size_t MessageSetItemByteSize(int number) const;
622     void Clear();
623     int GetSize() const;
624     void Free();
625     size_t SpaceUsedExcludingSelfLong() const;
626     bool IsInitialized() const;
627   };
628 
629   // The Extension struct is small enough to be passed by value, so we use it
630   // directly as the value type in mappings rather than use pointers.  We use
631   // sorted maps rather than hash-maps because we expect most ExtensionSets will
632   // only contain a small number of extension.  Also, we want AppendToList and
633   // deterministic serialization to order fields by field number.
634 
635   struct KeyValue {
636     int first;
637     Extension second;
638 
639     struct FirstComparator {
operatorKeyValue::FirstComparator640       bool operator()(const KeyValue& lhs, const KeyValue& rhs) const {
641         return lhs.first < rhs.first;
642       }
operatorKeyValue::FirstComparator643       bool operator()(const KeyValue& lhs, int key) const {
644         return lhs.first < key;
645       }
operatorKeyValue::FirstComparator646       bool operator()(int key, const KeyValue& rhs) const {
647         return key < rhs.first;
648       }
649     };
650   };
651 
652   typedef std::map<int, Extension> LargeMap;
653 
654   // Wrapper API that switches between flat-map and LargeMap.
655 
656   // Finds a key (if present) in the ExtensionSet.
657   const Extension* FindOrNull(int key) const;
658   Extension* FindOrNull(int key);
659 
660   // Helper-functions that only inspect the LargeMap.
661   const Extension* FindOrNullInLargeMap(int key) const;
662   Extension* FindOrNullInLargeMap(int key);
663 
664   // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or
665   // finds the already-existing Extension for that key (returns false).
666   // The Extension* will point to the new-or-found Extension.
667   std::pair<Extension*, bool> Insert(int key);
668 
669   // Grows the flat_capacity_.
670   // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap.
671   void GrowCapacity(size_t minimum_new_capacity);
672   static constexpr uint16 kMaximumFlatCapacity = 256;
is_large()673   bool is_large() const { return flat_capacity_ > kMaximumFlatCapacity; }
674 
675   // Removes a key from the ExtensionSet.
676   void Erase(int key);
677 
Size()678   size_t Size() const {
679     return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_;
680   }
681 
682   // Similar to std::for_each.
683   // Each Iterator is decomposed into ->first and ->second fields, so
684   // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair.
685   template <typename Iterator, typename KeyValueFunctor>
ForEach(Iterator begin,Iterator end,KeyValueFunctor func)686   static KeyValueFunctor ForEach(Iterator begin, Iterator end,
687                                  KeyValueFunctor func) {
688     for (Iterator it = begin; it != end; ++it) func(it->first, it->second);
689     return std::move(func);
690   }
691 
692   // Applies a functor to the <int, Extension&> pairs in sorted order.
693   template <typename KeyValueFunctor>
ForEach(KeyValueFunctor func)694   KeyValueFunctor ForEach(KeyValueFunctor func) {
695     if (PROTOBUF_PREDICT_FALSE(is_large())) {
696       return ForEach(map_.large->begin(), map_.large->end(), std::move(func));
697     }
698     return ForEach(flat_begin(), flat_end(), std::move(func));
699   }
700 
701   // Applies a functor to the <int, const Extension&> pairs in sorted order.
702   template <typename KeyValueFunctor>
ForEach(KeyValueFunctor func)703   KeyValueFunctor ForEach(KeyValueFunctor func) const {
704     if (PROTOBUF_PREDICT_FALSE(is_large())) {
705       return ForEach(map_.large->begin(), map_.large->end(), std::move(func));
706     }
707     return ForEach(flat_begin(), flat_end(), std::move(func));
708   }
709 
710   // Merges existing Extension from other_extension
711   void InternalExtensionMergeFrom(int number, const Extension& other_extension);
712 
713   // Returns true and fills field_number and extension if extension is found.
714   // Note to support packed repeated field compatibility, it also fills whether
715   // the tag on wire is packed, which can be different from
716   // extension->is_packed (whether packed=true is specified).
717   bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder,
718                                 int* field_number, ExtensionInfo* extension,
719                                 bool* was_packed_on_wire);
720 
721   // Returns true and fills extension if extension is found.
722   // Note to support packed repeated field compatibility, it also fills whether
723   // the tag on wire is packed, which can be different from
724   // extension->is_packed (whether packed=true is specified).
725   bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number,
726                                         ExtensionFinder* extension_finder,
727                                         ExtensionInfo* extension,
728                                         bool* was_packed_on_wire);
729 
730   // Parses a single extension from the input. The input should start out
731   // positioned immediately after the wire tag. This method is called in
732   // ParseField() after field number and was_packed_on_wire is extracted from
733   // the wire tag and ExtensionInfo is found by the field number.
734   bool ParseFieldWithExtensionInfo(int field_number, bool was_packed_on_wire,
735                                    const ExtensionInfo& extension,
736                                    io::CodedInputStream* input,
737                                    FieldSkipper* field_skipper);
738 
739   // Like ParseField(), but this method may parse singular message extensions
740   // lazily depending on the value of FLAGS_eagerly_parse_message_sets.
741   bool ParseFieldMaybeLazily(int wire_type, int field_number,
742                              io::CodedInputStream* input,
743                              ExtensionFinder* extension_finder,
744                              MessageSetFieldSkipper* field_skipper);
745 
746   // Gets the extension with the given number, creating it if it does not
747   // already exist.  Returns true if the extension did not already exist.
748   bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
749                          Extension** result);
750 
751   // Gets the repeated extension for the given descriptor, creating it if
752   // it does not exist.
753   Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor);
754 
755   // Parse a single MessageSet item -- called just after the item group start
756   // tag has been read.
757   bool ParseMessageSetItemLite(io::CodedInputStream* input,
758                                ExtensionFinder* extension_finder,
759                                FieldSkipper* field_skipper);
760   // Parse a single MessageSet item -- called just after the item group start
761   // tag has been read.
762   bool ParseMessageSetItem(io::CodedInputStream* input,
763                            ExtensionFinder* extension_finder,
764                            MessageSetFieldSkipper* field_skipper);
765 
766 #if GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER
FindExtension(int wire_type,uint32 field,const MessageLite * containing_type,const internal::ParseContext * ctx,ExtensionInfo * extension,bool * was_packed_on_wire)767   bool FindExtension(int wire_type, uint32 field,
768                      const MessageLite* containing_type,
769                      const internal::ParseContext* ctx,
770                      ExtensionInfo* extension, bool* was_packed_on_wire) {
771     GeneratedExtensionFinder finder(containing_type);
772     return FindExtensionInfoFromFieldNumber(wire_type, field, &finder,
773                                             extension, was_packed_on_wire);
774   }
775   inline bool FindExtension(int wire_type, uint32 field,
776                             const Message* containing_type,
777                             const internal::ParseContext* ctx,
778                             ExtensionInfo* extension, bool* was_packed_on_wire);
779   // Used for MessageSet only
ParseFieldMaybeLazily(uint64 tag,const char * ptr,const MessageLite * containing_type,internal::InternalMetadataWithArenaLite * metadata,internal::ParseContext * ctx)780   const char* ParseFieldMaybeLazily(
781       uint64 tag, const char* ptr, const MessageLite* containing_type,
782       internal::InternalMetadataWithArenaLite* metadata,
783       internal::ParseContext* ctx) {
784     // Lite MessageSet doesn't implement lazy.
785     return ParseField(tag, ptr, containing_type, metadata, ctx);
786   }
787   const char* ParseFieldMaybeLazily(
788       uint64 tag, const char* ptr, const Message* containing_type,
789       internal::InternalMetadataWithArena* metadata,
790       internal::ParseContext* ctx);
791   const char* ParseMessageSetItem(
792       const char* ptr, const MessageLite* containing_type,
793       internal::InternalMetadataWithArenaLite* metadata,
794       internal::ParseContext* ctx);
795   const char* ParseMessageSetItem(const char* ptr,
796                                   const Message* containing_type,
797                                   internal::InternalMetadataWithArena* metadata,
798                                   internal::ParseContext* ctx);
799 
800   // Implemented in extension_set_inl.h to keep code out of the header file.
801   template <typename T>
802   const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire,
803                                           const ExtensionInfo& info,
804                                           T* metadata, const char* ptr,
805                                           internal::ParseContext* ctx);
806   template <typename Msg, typename Metadata>
807   const char* ParseMessageSetItemTmpl(const char* ptr,
808                                       const Msg* containing_type,
809                                       Metadata* metadata,
810                                       internal::ParseContext* ctx);
811 #endif  // GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER
812 
813   // Hack:  RepeatedPtrFieldBase declares ExtensionSet as a friend.  This
814   //   friendship should automatically extend to ExtensionSet::Extension, but
815   //   unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
816   //   correctly.  So, we must provide helpers for calling methods of that
817   //   class.
818 
819   // Defined in extension_set_heavy.cc.
820   static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong(
821       RepeatedPtrFieldBase* field);
822 
flat_begin()823   KeyValue* flat_begin() {
824     assert(!is_large());
825     return map_.flat;
826   }
flat_begin()827   const KeyValue* flat_begin() const {
828     assert(!is_large());
829     return map_.flat;
830   }
flat_end()831   KeyValue* flat_end() {
832     assert(!is_large());
833     return map_.flat + flat_size_;
834   }
flat_end()835   const KeyValue* flat_end() const {
836     assert(!is_large());
837     return map_.flat + flat_size_;
838   }
839 
840   Arena* arena_;
841 
842   // Manual memory-management:
843   // map_.flat is an allocated array of flat_capacity_ elements.
844   // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix.
845   uint16 flat_capacity_;
846   uint16 flat_size_;
847   union AllocatedData {
848     KeyValue* flat;
849 
850     // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap,
851     // which guarantees O(n lg n) CPU but larger constant factors.
852     LargeMap* large;
853   } map_;
854 
855   static void DeleteFlatMap(const KeyValue* flat, uint16 flat_capacity);
856 
857   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
858 };
859 
860 // These are just for convenience...
SetString(int number,FieldType type,const std::string & value,const FieldDescriptor * descriptor)861 inline void ExtensionSet::SetString(int number, FieldType type,
862                                     const std::string& value,
863                                     const FieldDescriptor* descriptor) {
864   MutableString(number, type, descriptor)->assign(value);
865 }
SetRepeatedString(int number,int index,const std::string & value)866 inline void ExtensionSet::SetRepeatedString(int number, int index,
867                                             const std::string& value) {
868   MutableRepeatedString(number, index)->assign(value);
869 }
AddString(int number,FieldType type,const std::string & value,const FieldDescriptor * descriptor)870 inline void ExtensionSet::AddString(int number, FieldType type,
871                                     const std::string& value,
872                                     const FieldDescriptor* descriptor) {
873   AddString(number, type, descriptor)->assign(value);
874 }
875 
876 // ===================================================================
877 // Glue for generated extension accessors
878 
879 // -------------------------------------------------------------------
880 // Template magic
881 
882 // First we have a set of classes representing "type traits" for different
883 // field types.  A type traits class knows how to implement basic accessors
884 // for extensions of a particular type given an ExtensionSet.  The signature
885 // for a type traits class looks like this:
886 //
887 //   class TypeTraits {
888 //    public:
889 //     typedef ? ConstType;
890 //     typedef ? MutableType;
891 //     // TypeTraits for singular fields and repeated fields will define the
892 //     // symbol "Singular" or "Repeated" respectively. These two symbols will
893 //     // be used in extension accessors to distinguish between singular
894 //     // extensions and repeated extensions. If the TypeTraits for the passed
895 //     // in extension doesn't have the expected symbol defined, it means the
896 //     // user is passing a repeated extension to a singular accessor, or the
897 //     // opposite. In that case the C++ compiler will generate an error
898 //     // message "no matching member function" to inform the user.
899 //     typedef ? Singular
900 //     typedef ? Repeated
901 //
902 //     static inline ConstType Get(int number, const ExtensionSet& set);
903 //     static inline void Set(int number, ConstType value, ExtensionSet* set);
904 //     static inline MutableType Mutable(int number, ExtensionSet* set);
905 //
906 //     // Variants for repeated fields.
907 //     static inline ConstType Get(int number, const ExtensionSet& set,
908 //                                 int index);
909 //     static inline void Set(int number, int index,
910 //                            ConstType value, ExtensionSet* set);
911 //     static inline MutableType Mutable(int number, int index,
912 //                                       ExtensionSet* set);
913 //     static inline void Add(int number, ConstType value, ExtensionSet* set);
914 //     static inline MutableType Add(int number, ExtensionSet* set);
915 //     This is used by the ExtensionIdentifier constructor to register
916 //     the extension at dynamic initialization.
917 //     template <typename ExtendeeT>
918 //     static void Register(int number, FieldType type, bool is_packed);
919 //   };
920 //
921 // Not all of these methods make sense for all field types.  For example, the
922 // "Mutable" methods only make sense for strings and messages, and the
923 // repeated methods only make sense for repeated types.  So, each type
924 // traits class implements only the set of methods from this signature that it
925 // actually supports.  This will cause a compiler error if the user tries to
926 // access an extension using a method that doesn't make sense for its type.
927 // For example, if "foo" is an extension of type "optional int32", then if you
928 // try to write code like:
929 //   my_message.MutableExtension(foo)
930 // you will get a compile error because PrimitiveTypeTraits<int32> does not
931 // have a "Mutable()" method.
932 
933 // -------------------------------------------------------------------
934 // PrimitiveTypeTraits
935 
936 // Since the ExtensionSet has different methods for each primitive type,
937 // we must explicitly define the methods of the type traits class for each
938 // known type.
939 template <typename Type>
940 class PrimitiveTypeTraits {
941  public:
942   typedef Type ConstType;
943   typedef Type MutableType;
944   typedef PrimitiveTypeTraits<Type> Singular;
945 
946   static inline ConstType Get(int number, const ExtensionSet& set,
947                               ConstType default_value);
948   static inline void Set(int number, FieldType field_type, ConstType value,
949                          ExtensionSet* set);
950   template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)951   static void Register(int number, FieldType type, bool is_packed) {
952     ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
953                                     type, false, is_packed);
954   }
955 };
956 
957 template <typename Type>
958 class RepeatedPrimitiveTypeTraits {
959  public:
960   typedef Type ConstType;
961   typedef Type MutableType;
962   typedef RepeatedPrimitiveTypeTraits<Type> Repeated;
963 
964   typedef RepeatedField<Type> RepeatedFieldType;
965 
966   static inline Type Get(int number, const ExtensionSet& set, int index);
967   static inline void Set(int number, int index, Type value, ExtensionSet* set);
968   static inline void Add(int number, FieldType field_type, bool is_packed,
969                          Type value, ExtensionSet* set);
970 
971   static inline const RepeatedField<ConstType>& GetRepeated(
972       int number, const ExtensionSet& set);
973   static inline RepeatedField<Type>* MutableRepeated(int number,
974                                                      FieldType field_type,
975                                                      bool is_packed,
976                                                      ExtensionSet* set);
977 
978   static const RepeatedFieldType* GetDefaultRepeatedField();
979   template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)980   static void Register(int number, FieldType type, bool is_packed) {
981     ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
982                                     type, true, is_packed);
983   }
984 };
985 
986 class PROTOBUF_EXPORT RepeatedPrimitiveDefaults {
987  private:
988   template <typename Type>
989   friend class RepeatedPrimitiveTypeTraits;
990   static const RepeatedPrimitiveDefaults* default_instance();
991   RepeatedField<int32> default_repeated_field_int32_;
992   RepeatedField<int64> default_repeated_field_int64_;
993   RepeatedField<uint32> default_repeated_field_uint32_;
994   RepeatedField<uint64> default_repeated_field_uint64_;
995   RepeatedField<double> default_repeated_field_double_;
996   RepeatedField<float> default_repeated_field_float_;
997   RepeatedField<bool> default_repeated_field_bool_;
998 };
999 
1000 #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD)                           \
1001   template <>                                                                  \
1002   inline TYPE PrimitiveTypeTraits<TYPE>::Get(                                  \
1003       int number, const ExtensionSet& set, TYPE default_value) {               \
1004     return set.Get##METHOD(number, default_value);                             \
1005   }                                                                            \
1006   template <>                                                                  \
1007   inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \
1008                                              TYPE value, ExtensionSet* set) {  \
1009     set->Set##METHOD(number, field_type, value, NULL);                         \
1010   }                                                                            \
1011                                                                                \
1012   template <>                                                                  \
1013   inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get(                          \
1014       int number, const ExtensionSet& set, int index) {                        \
1015     return set.GetRepeated##METHOD(number, index);                             \
1016   }                                                                            \
1017   template <>                                                                  \
1018   inline void RepeatedPrimitiveTypeTraits<TYPE>::Set(                          \
1019       int number, int index, TYPE value, ExtensionSet* set) {                  \
1020     set->SetRepeated##METHOD(number, index, value);                            \
1021   }                                                                            \
1022   template <>                                                                  \
1023   inline void RepeatedPrimitiveTypeTraits<TYPE>::Add(                          \
1024       int number, FieldType field_type, bool is_packed, TYPE value,            \
1025       ExtensionSet* set) {                                                     \
1026     set->Add##METHOD(number, field_type, is_packed, value, NULL);              \
1027   }                                                                            \
1028   template <>                                                                  \
1029   inline const RepeatedField<TYPE>*                                            \
1030   RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() {               \
1031     return &RepeatedPrimitiveDefaults::default_instance()                      \
1032                 ->default_repeated_field_##TYPE##_;                            \
1033   }                                                                            \
1034   template <>                                                                  \
1035   inline const RepeatedField<TYPE>&                                            \
1036   RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number,                   \
1037                                                  const ExtensionSet& set) {    \
1038     return *reinterpret_cast<const RepeatedField<TYPE>*>(                      \
1039         set.GetRawRepeatedField(number, GetDefaultRepeatedField()));           \
1040   }                                                                            \
1041   template <>                                                                  \
1042   inline RepeatedField<TYPE>*                                                  \
1043   RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated(                          \
1044       int number, FieldType field_type, bool is_packed, ExtensionSet* set) {   \
1045     return reinterpret_cast<RepeatedField<TYPE>*>(                             \
1046         set->MutableRawRepeatedField(number, field_type, is_packed, NULL));    \
1047   }
1048 
PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32,Int32)1049 PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32, Int32)
1050 PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64, Int64)
1051 PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32)
1052 PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64)
1053 PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float)
1054 PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
1055 PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool)
1056 
1057 #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
1058 
1059 // -------------------------------------------------------------------
1060 // StringTypeTraits
1061 
1062 // Strings support both Set() and Mutable().
1063 class PROTOBUF_EXPORT StringTypeTraits {
1064  public:
1065   typedef const std::string& ConstType;
1066   typedef std::string* MutableType;
1067   typedef StringTypeTraits Singular;
1068 
1069   static inline const std::string& Get(int number, const ExtensionSet& set,
1070                                        ConstType default_value) {
1071     return set.GetString(number, default_value);
1072   }
1073   static inline void Set(int number, FieldType field_type,
1074                          const std::string& value, ExtensionSet* set) {
1075     set->SetString(number, field_type, value, NULL);
1076   }
1077   static inline std::string* Mutable(int number, FieldType field_type,
1078                                      ExtensionSet* set) {
1079     return set->MutableString(number, field_type, NULL);
1080   }
1081   template <typename ExtendeeT>
1082   static void Register(int number, FieldType type, bool is_packed) {
1083     ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
1084                                     type, false, is_packed);
1085   }
1086 };
1087 
1088 class PROTOBUF_EXPORT RepeatedStringTypeTraits {
1089  public:
1090   typedef const std::string& ConstType;
1091   typedef std::string* MutableType;
1092   typedef RepeatedStringTypeTraits Repeated;
1093 
1094   typedef RepeatedPtrField<std::string> RepeatedFieldType;
1095 
Get(int number,const ExtensionSet & set,int index)1096   static inline const std::string& Get(int number, const ExtensionSet& set,
1097                                        int index) {
1098     return set.GetRepeatedString(number, index);
1099   }
Set(int number,int index,const std::string & value,ExtensionSet * set)1100   static inline void Set(int number, int index, const std::string& value,
1101                          ExtensionSet* set) {
1102     set->SetRepeatedString(number, index, value);
1103   }
Mutable(int number,int index,ExtensionSet * set)1104   static inline std::string* Mutable(int number, int index, ExtensionSet* set) {
1105     return set->MutableRepeatedString(number, index);
1106   }
Add(int number,FieldType field_type,bool,const std::string & value,ExtensionSet * set)1107   static inline void Add(int number, FieldType field_type, bool /*is_packed*/,
1108                          const std::string& value, ExtensionSet* set) {
1109     set->AddString(number, field_type, value, NULL);
1110   }
Add(int number,FieldType field_type,ExtensionSet * set)1111   static inline std::string* Add(int number, FieldType field_type,
1112                                  ExtensionSet* set) {
1113     return set->AddString(number, field_type, NULL);
1114   }
GetRepeated(int number,const ExtensionSet & set)1115   static inline const RepeatedPtrField<std::string>& GetRepeated(
1116       int number, const ExtensionSet& set) {
1117     return *reinterpret_cast<const RepeatedPtrField<std::string>*>(
1118         set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1119   }
1120 
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)1121   static inline RepeatedPtrField<std::string>* MutableRepeated(
1122       int number, FieldType field_type, bool is_packed, ExtensionSet* set) {
1123     return reinterpret_cast<RepeatedPtrField<std::string>*>(
1124         set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
1125   }
1126 
1127   static const RepeatedFieldType* GetDefaultRepeatedField();
1128 
1129   template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)1130   static void Register(int number, FieldType type, bool is_packed) {
1131     ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
1132                                     type, true, is_packed);
1133   }
1134 
1135  private:
1136   static void InitializeDefaultRepeatedFields();
1137   static void DestroyDefaultRepeatedFields();
1138 };
1139 
1140 // -------------------------------------------------------------------
1141 // EnumTypeTraits
1142 
1143 // ExtensionSet represents enums using integers internally, so we have to
1144 // static_cast around.
1145 template <typename Type, bool IsValid(int)>
1146 class EnumTypeTraits {
1147  public:
1148   typedef Type ConstType;
1149   typedef Type MutableType;
1150   typedef EnumTypeTraits<Type, IsValid> Singular;
1151 
Get(int number,const ExtensionSet & set,ConstType default_value)1152   static inline ConstType Get(int number, const ExtensionSet& set,
1153                               ConstType default_value) {
1154     return static_cast<Type>(set.GetEnum(number, default_value));
1155   }
Set(int number,FieldType field_type,ConstType value,ExtensionSet * set)1156   static inline void Set(int number, FieldType field_type, ConstType value,
1157                          ExtensionSet* set) {
1158     GOOGLE_DCHECK(IsValid(value));
1159     set->SetEnum(number, field_type, value, NULL);
1160   }
1161   template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)1162   static void Register(int number, FieldType type, bool is_packed) {
1163     ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number,
1164                                         type, false, is_packed, IsValid);
1165   }
1166 };
1167 
1168 template <typename Type, bool IsValid(int)>
1169 class RepeatedEnumTypeTraits {
1170  public:
1171   typedef Type ConstType;
1172   typedef Type MutableType;
1173   typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated;
1174 
1175   typedef RepeatedField<Type> RepeatedFieldType;
1176 
Get(int number,const ExtensionSet & set,int index)1177   static inline ConstType Get(int number, const ExtensionSet& set, int index) {
1178     return static_cast<Type>(set.GetRepeatedEnum(number, index));
1179   }
Set(int number,int index,ConstType value,ExtensionSet * set)1180   static inline void Set(int number, int index, ConstType value,
1181                          ExtensionSet* set) {
1182     GOOGLE_DCHECK(IsValid(value));
1183     set->SetRepeatedEnum(number, index, value);
1184   }
Add(int number,FieldType field_type,bool is_packed,ConstType value,ExtensionSet * set)1185   static inline void Add(int number, FieldType field_type, bool is_packed,
1186                          ConstType value, ExtensionSet* set) {
1187     GOOGLE_DCHECK(IsValid(value));
1188     set->AddEnum(number, field_type, is_packed, value, NULL);
1189   }
GetRepeated(int number,const ExtensionSet & set)1190   static inline const RepeatedField<Type>& GetRepeated(
1191       int number, const ExtensionSet& set) {
1192     // Hack: the `Extension` struct stores a RepeatedField<int> for enums.
1193     // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType>
1194     // so we need to do some casting magic. See message.h for similar
1195     // contortions for non-extension fields.
1196     return *reinterpret_cast<const RepeatedField<Type>*>(
1197         set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1198   }
1199 
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)1200   static inline RepeatedField<Type>* MutableRepeated(int number,
1201                                                      FieldType field_type,
1202                                                      bool is_packed,
1203                                                      ExtensionSet* set) {
1204     return reinterpret_cast<RepeatedField<Type>*>(
1205         set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
1206   }
1207 
GetDefaultRepeatedField()1208   static const RepeatedFieldType* GetDefaultRepeatedField() {
1209     // Hack: as noted above, repeated enum fields are internally stored as a
1210     // RepeatedField<int>. We need to be able to instantiate global static
1211     // objects to return as default (empty) repeated fields on non-existent
1212     // extensions. We would not be able to know a-priori all of the enum types
1213     // (values of |Type|) to instantiate all of these, so we just re-use int32's
1214     // default repeated field object.
1215     return reinterpret_cast<const RepeatedField<Type>*>(
1216         RepeatedPrimitiveTypeTraits<int32>::GetDefaultRepeatedField());
1217   }
1218   template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)1219   static void Register(int number, FieldType type, bool is_packed) {
1220     ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number,
1221                                         type, true, is_packed, IsValid);
1222   }
1223 };
1224 
1225 // -------------------------------------------------------------------
1226 // MessageTypeTraits
1227 
1228 // ExtensionSet guarantees that when manipulating extensions with message
1229 // types, the implementation used will be the compiled-in class representing
1230 // that type.  So, we can static_cast down to the exact type we expect.
1231 template <typename Type>
1232 class MessageTypeTraits {
1233  public:
1234   typedef const Type& ConstType;
1235   typedef Type* MutableType;
1236   typedef MessageTypeTraits<Type> Singular;
1237 
Get(int number,const ExtensionSet & set,ConstType default_value)1238   static inline ConstType Get(int number, const ExtensionSet& set,
1239                               ConstType default_value) {
1240     return static_cast<const Type&>(set.GetMessage(number, default_value));
1241   }
Mutable(int number,FieldType field_type,ExtensionSet * set)1242   static inline MutableType Mutable(int number, FieldType field_type,
1243                                     ExtensionSet* set) {
1244     return static_cast<Type*>(set->MutableMessage(
1245         number, field_type, Type::default_instance(), NULL));
1246   }
SetAllocated(int number,FieldType field_type,MutableType message,ExtensionSet * set)1247   static inline void SetAllocated(int number, FieldType field_type,
1248                                   MutableType message, ExtensionSet* set) {
1249     set->SetAllocatedMessage(number, field_type, NULL, message);
1250   }
UnsafeArenaSetAllocated(int number,FieldType field_type,MutableType message,ExtensionSet * set)1251   static inline void UnsafeArenaSetAllocated(int number, FieldType field_type,
1252                                              MutableType message,
1253                                              ExtensionSet* set) {
1254     set->UnsafeArenaSetAllocatedMessage(number, field_type, NULL, message);
1255   }
Release(int number,FieldType,ExtensionSet * set)1256   static inline MutableType Release(int number, FieldType /* field_type */,
1257                                     ExtensionSet* set) {
1258     return static_cast<Type*>(
1259         set->ReleaseMessage(number, Type::default_instance()));
1260   }
UnsafeArenaRelease(int number,FieldType,ExtensionSet * set)1261   static inline MutableType UnsafeArenaRelease(int number,
1262                                                FieldType /* field_type */,
1263                                                ExtensionSet* set) {
1264     return static_cast<Type*>(
1265         set->UnsafeArenaReleaseMessage(number, Type::default_instance()));
1266   }
1267   template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)1268   static void Register(int number, FieldType type, bool is_packed) {
1269     ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(),
1270                                            number, type, false, is_packed,
1271                                            &Type::default_instance());
1272   }
1273 };
1274 
1275 // forward declaration
1276 class RepeatedMessageGenericTypeTraits;
1277 
1278 template <typename Type>
1279 class RepeatedMessageTypeTraits {
1280  public:
1281   typedef const Type& ConstType;
1282   typedef Type* MutableType;
1283   typedef RepeatedMessageTypeTraits<Type> Repeated;
1284 
1285   typedef RepeatedPtrField<Type> RepeatedFieldType;
1286 
Get(int number,const ExtensionSet & set,int index)1287   static inline ConstType Get(int number, const ExtensionSet& set, int index) {
1288     return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
1289   }
Mutable(int number,int index,ExtensionSet * set)1290   static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
1291     return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
1292   }
Add(int number,FieldType field_type,ExtensionSet * set)1293   static inline MutableType Add(int number, FieldType field_type,
1294                                 ExtensionSet* set) {
1295     return static_cast<Type*>(
1296         set->AddMessage(number, field_type, Type::default_instance(), NULL));
1297   }
GetRepeated(int number,const ExtensionSet & set)1298   static inline const RepeatedPtrField<Type>& GetRepeated(
1299       int number, const ExtensionSet& set) {
1300     // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same
1301     // casting hack applies here, because a RepeatedPtrField<MessageLite>
1302     // cannot naturally become a RepeatedPtrType<Type> even though Type is
1303     // presumably a message. google::protobuf::Message goes through similar contortions
1304     // with a reinterpret_cast<>.
1305     return *reinterpret_cast<const RepeatedPtrField<Type>*>(
1306         set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1307   }
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)1308   static inline RepeatedPtrField<Type>* MutableRepeated(int number,
1309                                                         FieldType field_type,
1310                                                         bool is_packed,
1311                                                         ExtensionSet* set) {
1312     return reinterpret_cast<RepeatedPtrField<Type>*>(
1313         set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
1314   }
1315 
1316   static const RepeatedFieldType* GetDefaultRepeatedField();
1317   template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)1318   static void Register(int number, FieldType type, bool is_packed) {
1319     ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(),
1320                                            number, type, true, is_packed,
1321                                            &Type::default_instance());
1322   }
1323 };
1324 
1325 template <typename Type>
1326 inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType*
GetDefaultRepeatedField()1327 RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() {
1328   static auto instance = OnShutdownDelete(new RepeatedFieldType);
1329   return instance;
1330 }
1331 
1332 // -------------------------------------------------------------------
1333 // ExtensionIdentifier
1334 
1335 // This is the type of actual extension objects.  E.g. if you have:
1336 //   extends Foo with optional int32 bar = 1234;
1337 // then "bar" will be defined in C++ as:
1338 //   ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 1, false> bar(1234);
1339 //
1340 // Note that we could, in theory, supply the field number as a template
1341 // parameter, and thus make an instance of ExtensionIdentifier have no
1342 // actual contents.  However, if we did that, then using an extension
1343 // identifier would not necessarily cause the compiler to output any sort
1344 // of reference to any symbol defined in the extension's .pb.o file.  Some
1345 // linkers will actually drop object files that are not explicitly referenced,
1346 // but that would be bad because it would cause this extension to not be
1347 // registered at static initialization, and therefore using it would crash.
1348 
1349 template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type,
1350           bool is_packed>
1351 class ExtensionIdentifier {
1352  public:
1353   typedef TypeTraitsType TypeTraits;
1354   typedef ExtendeeType Extendee;
1355 
ExtensionIdentifier(int number,typename TypeTraits::ConstType default_value)1356   ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value)
1357       : number_(number), default_value_(default_value) {
1358     Register(number);
1359   }
number()1360   inline int number() const { return number_; }
default_value()1361   typename TypeTraits::ConstType default_value() const {
1362     return default_value_;
1363   }
1364 
Register(int number)1365   static void Register(int number) {
1366     TypeTraits::template Register<ExtendeeType>(number, field_type, is_packed);
1367   }
1368 
1369  private:
1370   const int number_;
1371   typename TypeTraits::ConstType default_value_;
1372 };
1373 
1374 // -------------------------------------------------------------------
1375 // Generated accessors
1376 
1377 // This macro should be expanded in the context of a generated type which
1378 // has extensions.
1379 //
1380 // We use "_proto_TypeTraits" as a type name below because "TypeTraits"
1381 // causes problems if the class has a nested message or enum type with that
1382 // name and "_TypeTraits" is technically reserved for the C++ library since
1383 // it starts with an underscore followed by a capital letter.
1384 //
1385 // For similar reason, we use "_field_type" and "_is_packed" as parameter names
1386 // below, so that "field_type" and "is_packed" can be used as field names.
1387 #define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME)                       \
1388   /* Has, Size, Clear */                                                      \
1389   template <typename _proto_TypeTraits,                                       \
1390             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1391             bool _is_packed>                                                  \
1392   inline bool HasExtension(                                                   \
1393       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1394           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1395     return _extensions_.Has(id.number());                                     \
1396   }                                                                           \
1397                                                                               \
1398   template <typename _proto_TypeTraits,                                       \
1399             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1400             bool _is_packed>                                                  \
1401   inline void ClearExtension(                                                 \
1402       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1403           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) {       \
1404     _extensions_.ClearExtension(id.number());                                 \
1405   }                                                                           \
1406                                                                               \
1407   template <typename _proto_TypeTraits,                                       \
1408             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1409             bool _is_packed>                                                  \
1410   inline int ExtensionSize(                                                   \
1411       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1412           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1413     return _extensions_.ExtensionSize(id.number());                           \
1414   }                                                                           \
1415                                                                               \
1416   /* Singular accessors */                                                    \
1417   template <typename _proto_TypeTraits,                                       \
1418             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1419             bool _is_packed>                                                  \
1420   inline typename _proto_TypeTraits::Singular::ConstType GetExtension(        \
1421       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1422           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1423     return _proto_TypeTraits::Get(id.number(), _extensions_,                  \
1424                                   id.default_value());                        \
1425   }                                                                           \
1426                                                                               \
1427   template <typename _proto_TypeTraits,                                       \
1428             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1429             bool _is_packed>                                                  \
1430   inline typename _proto_TypeTraits::Singular::MutableType MutableExtension(  \
1431       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1432           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) {       \
1433     return _proto_TypeTraits::Mutable(id.number(), _field_type,               \
1434                                       &_extensions_);                         \
1435   }                                                                           \
1436                                                                               \
1437   template <typename _proto_TypeTraits,                                       \
1438             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1439             bool _is_packed>                                                  \
1440   inline void SetExtension(                                                   \
1441       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1442           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,         \
1443       typename _proto_TypeTraits::Singular::ConstType value) {                \
1444     _proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_);   \
1445   }                                                                           \
1446                                                                               \
1447   template <typename _proto_TypeTraits,                                       \
1448             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1449             bool _is_packed>                                                  \
1450   inline void SetAllocatedExtension(                                          \
1451       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1452           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,         \
1453       typename _proto_TypeTraits::Singular::MutableType value) {              \
1454     _proto_TypeTraits::SetAllocated(id.number(), _field_type, value,          \
1455                                     &_extensions_);                           \
1456   }                                                                           \
1457   template <typename _proto_TypeTraits,                                       \
1458             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1459             bool _is_packed>                                                  \
1460   inline void UnsafeArenaSetAllocatedExtension(                               \
1461       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1462           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,         \
1463       typename _proto_TypeTraits::Singular::MutableType value) {              \
1464     _proto_TypeTraits::UnsafeArenaSetAllocated(id.number(), _field_type,      \
1465                                                value, &_extensions_);         \
1466   }                                                                           \
1467   template <typename _proto_TypeTraits,                                       \
1468             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1469             bool _is_packed>                                                  \
1470   inline typename _proto_TypeTraits::Singular::MutableType ReleaseExtension(  \
1471       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1472           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) {       \
1473     return _proto_TypeTraits::Release(id.number(), _field_type,               \
1474                                       &_extensions_);                         \
1475   }                                                                           \
1476   template <typename _proto_TypeTraits,                                       \
1477             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1478             bool _is_packed>                                                  \
1479   inline typename _proto_TypeTraits::Singular::MutableType                    \
1480   UnsafeArenaReleaseExtension(                                                \
1481       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1482           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) {       \
1483     return _proto_TypeTraits::UnsafeArenaRelease(id.number(), _field_type,    \
1484                                                  &_extensions_);              \
1485   }                                                                           \
1486                                                                               \
1487   /* Repeated accessors */                                                    \
1488   template <typename _proto_TypeTraits,                                       \
1489             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1490             bool _is_packed>                                                  \
1491   inline typename _proto_TypeTraits::Repeated::ConstType GetExtension(        \
1492       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1493           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,         \
1494       int index) const {                                                      \
1495     return _proto_TypeTraits::Get(id.number(), _extensions_, index);          \
1496   }                                                                           \
1497                                                                               \
1498   template <typename _proto_TypeTraits,                                       \
1499             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1500             bool _is_packed>                                                  \
1501   inline typename _proto_TypeTraits::Repeated::MutableType MutableExtension(  \
1502       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1503           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,         \
1504       int index) {                                                            \
1505     return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_);     \
1506   }                                                                           \
1507                                                                               \
1508   template <typename _proto_TypeTraits,                                       \
1509             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1510             bool _is_packed>                                                  \
1511   inline void SetExtension(                                                   \
1512       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1513           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,         \
1514       int index, typename _proto_TypeTraits::Repeated::ConstType value) {     \
1515     _proto_TypeTraits::Set(id.number(), index, value, &_extensions_);         \
1516   }                                                                           \
1517                                                                               \
1518   template <typename _proto_TypeTraits,                                       \
1519             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1520             bool _is_packed>                                                  \
1521   inline typename _proto_TypeTraits::Repeated::MutableType AddExtension(      \
1522       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1523           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) {       \
1524     return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_);   \
1525   }                                                                           \
1526                                                                               \
1527   template <typename _proto_TypeTraits,                                       \
1528             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1529             bool _is_packed>                                                  \
1530   inline void AddExtension(                                                   \
1531       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1532           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id,         \
1533       typename _proto_TypeTraits::Repeated::ConstType value) {                \
1534     _proto_TypeTraits::Add(id.number(), _field_type, _is_packed, value,       \
1535                            &_extensions_);                                    \
1536   }                                                                           \
1537                                                                               \
1538   template <typename _proto_TypeTraits,                                       \
1539             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1540             bool _is_packed>                                                  \
1541   inline const typename _proto_TypeTraits::Repeated::RepeatedFieldType&       \
1542   GetRepeatedExtension(                                                       \
1543       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1544           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1545     return _proto_TypeTraits::GetRepeated(id.number(), _extensions_);         \
1546   }                                                                           \
1547                                                                               \
1548   template <typename _proto_TypeTraits,                                       \
1549             ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type,         \
1550             bool _is_packed>                                                  \
1551   inline typename _proto_TypeTraits::Repeated::RepeatedFieldType*             \
1552   MutableRepeatedExtension(                                                   \
1553       const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier<           \
1554           CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) {       \
1555     return _proto_TypeTraits::MutableRepeated(id.number(), _field_type,       \
1556                                               _is_packed, &_extensions_);     \
1557   }
1558 
1559 }  // namespace internal
1560 
1561 // Call this function to ensure that this extensions's reflection is linked into
1562 // the binary:
1563 //
1564 //   google::protobuf::LinkExtensionReflection(Foo::my_extension);
1565 //
1566 // This will ensure that the following lookup will succeed:
1567 //
1568 //   DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension");
1569 //
1570 // This is often relevant for parsing extensions in text mode.
1571 //
1572 // As a side-effect, it will also guarantee that anything else from the same
1573 // .proto file will also be available for lookup in the generated pool.
1574 //
1575 // This function does not actually register the extension, so it does not need
1576 // to be called before the lookup.  However it does need to occur in a function
1577 // that cannot be stripped from the binary (ie. it must be reachable from main).
1578 //
1579 // Best practice is to call this function as close as possible to where the
1580 // reflection is actually needed.  This function is very cheap to call, so you
1581 // should not need to worry about its runtime overhead except in tight loops (on
1582 // x86-64 it compiles into two "mov" instructions).
1583 template <typename ExtendeeType, typename TypeTraitsType,
1584           internal::FieldType field_type, bool is_packed>
LinkExtensionReflection(const google::protobuf::internal::ExtensionIdentifier<ExtendeeType,TypeTraitsType,field_type,is_packed> & extension)1585 void LinkExtensionReflection(
1586     const google::protobuf::internal::ExtensionIdentifier<
1587         ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) {
1588   const void* volatile unused = &extension;
1589   (void)&unused;  // Use address to avoid an extra load of volatile variable.
1590 }
1591 
1592 }  // namespace protobuf
1593 }  // namespace google
1594 
1595 #include <google/protobuf/port_undef.inc>
1596 
1597 #endif  // GOOGLE_PROTOBUF_EXTENSION_SET_H__
1598