• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_TEST_NO_LONGDOUBLE
11 #define EIGEN_TEST_FUNC cxx11_tensor_complex
12 #define EIGEN_USE_GPU
13 
14 #if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500
15 #include <cuda_fp16.h>
16 #endif
17 #include "main.h"
18 #include <unsupported/Eigen/CXX11/Tensor>
19 
20 using Eigen::Tensor;
21 
test_cuda_nullary()22 void test_cuda_nullary() {
23   Tensor<std::complex<float>, 1, 0, int> in1(2);
24   Tensor<std::complex<float>, 1, 0, int> in2(2);
25   in1.setRandom();
26   in2.setRandom();
27 
28   std::size_t float_bytes = in1.size() * sizeof(float);
29   std::size_t complex_bytes = in1.size() * sizeof(std::complex<float>);
30 
31   std::complex<float>* d_in1;
32   std::complex<float>* d_in2;
33   float* d_out2;
34   cudaMalloc((void**)(&d_in1), complex_bytes);
35   cudaMalloc((void**)(&d_in2), complex_bytes);
36   cudaMalloc((void**)(&d_out2), float_bytes);
37   cudaMemcpy(d_in1, in1.data(), complex_bytes, cudaMemcpyHostToDevice);
38   cudaMemcpy(d_in2, in2.data(), complex_bytes, cudaMemcpyHostToDevice);
39 
40   Eigen::CudaStreamDevice stream;
41   Eigen::GpuDevice gpu_device(&stream);
42 
43   Eigen::TensorMap<Eigen::Tensor<std::complex<float>, 1, 0, int>, Eigen::Aligned> gpu_in1(
44       d_in1, 2);
45   Eigen::TensorMap<Eigen::Tensor<std::complex<float>, 1, 0, int>, Eigen::Aligned> gpu_in2(
46       d_in2, 2);
47   Eigen::TensorMap<Eigen::Tensor<float, 1, 0, int>, Eigen::Aligned> gpu_out2(
48       d_out2, 2);
49 
50   gpu_in1.device(gpu_device) = gpu_in1.constant(std::complex<float>(3.14f, 2.7f));
51   gpu_out2.device(gpu_device) = gpu_in2.abs();
52 
53   Tensor<std::complex<float>, 1, 0, int> new1(2);
54   Tensor<float, 1, 0, int> new2(2);
55 
56   assert(cudaMemcpyAsync(new1.data(), d_in1, complex_bytes, cudaMemcpyDeviceToHost,
57                          gpu_device.stream()) == cudaSuccess);
58   assert(cudaMemcpyAsync(new2.data(), d_out2, float_bytes, cudaMemcpyDeviceToHost,
59                          gpu_device.stream()) == cudaSuccess);
60 
61   assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
62 
63   for (int i = 0; i < 2; ++i) {
64     VERIFY_IS_APPROX(new1(i), std::complex<float>(3.14f, 2.7f));
65     VERIFY_IS_APPROX(new2(i), std::abs(in2(i)));
66   }
67 
68   cudaFree(d_in1);
69   cudaFree(d_in2);
70   cudaFree(d_out2);
71 }
72 
73 
test_cuda_sum_reductions()74 static void test_cuda_sum_reductions() {
75 
76   Eigen::CudaStreamDevice stream;
77   Eigen::GpuDevice gpu_device(&stream);
78 
79   const int num_rows = internal::random<int>(1024, 5*1024);
80   const int num_cols = internal::random<int>(1024, 5*1024);
81 
82   Tensor<std::complex<float>, 2> in(num_rows, num_cols);
83   in.setRandom();
84 
85   Tensor<std::complex<float>, 0> full_redux;
86   full_redux = in.sum();
87 
88   std::size_t in_bytes = in.size() * sizeof(std::complex<float>);
89   std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>);
90   std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes));
91   std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes));
92   gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes);
93 
94   TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols);
95   TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr);
96 
97   out_gpu.device(gpu_device) = in_gpu.sum();
98 
99   Tensor<std::complex<float>, 0> full_redux_gpu;
100   gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes);
101   gpu_device.synchronize();
102 
103   // Check that the CPU and GPU reductions return the same result.
104   VERIFY_IS_APPROX(full_redux(), full_redux_gpu());
105 
106   gpu_device.deallocate(gpu_in_ptr);
107   gpu_device.deallocate(gpu_out_ptr);
108 }
109 
110 
test_cuda_product_reductions()111 static void test_cuda_product_reductions() {
112 
113   Eigen::CudaStreamDevice stream;
114   Eigen::GpuDevice gpu_device(&stream);
115 
116   const int num_rows = internal::random<int>(1024, 5*1024);
117   const int num_cols = internal::random<int>(1024, 5*1024);
118 
119   Tensor<std::complex<float>, 2> in(num_rows, num_cols);
120   in.setRandom();
121 
122   Tensor<std::complex<float>, 0> full_redux;
123   full_redux = in.prod();
124 
125   std::size_t in_bytes = in.size() * sizeof(std::complex<float>);
126   std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>);
127   std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes));
128   std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes));
129   gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes);
130 
131   TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols);
132   TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr);
133 
134   out_gpu.device(gpu_device) = in_gpu.prod();
135 
136   Tensor<std::complex<float>, 0> full_redux_gpu;
137   gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes);
138   gpu_device.synchronize();
139 
140   // Check that the CPU and GPU reductions return the same result.
141   VERIFY_IS_APPROX(full_redux(), full_redux_gpu());
142 
143   gpu_device.deallocate(gpu_in_ptr);
144   gpu_device.deallocate(gpu_out_ptr);
145 }
146 
147 
test_cxx11_tensor_complex()148 void test_cxx11_tensor_complex()
149 {
150   CALL_SUBTEST(test_cuda_nullary());
151   CALL_SUBTEST(test_cuda_sum_reductions());
152   CALL_SUBTEST(test_cuda_product_reductions());
153 }
154