1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
35 #include "llvm/Transforms/InstCombine/InstCombiner.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <utility>
41
42 using namespace llvm;
43 using namespace PatternMatch;
44
45 #define DEBUG_TYPE "instcombine"
46
47 /// The specific integer value is used in a context where it is known to be
48 /// non-zero. If this allows us to simplify the computation, do so and return
49 /// the new operand, otherwise return null.
simplifyValueKnownNonZero(Value * V,InstCombinerImpl & IC,Instruction & CxtI)50 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
51 Instruction &CxtI) {
52 // If V has multiple uses, then we would have to do more analysis to determine
53 // if this is safe. For example, the use could be in dynamically unreached
54 // code.
55 if (!V->hasOneUse()) return nullptr;
56
57 bool MadeChange = false;
58
59 // ((1 << A) >>u B) --> (1 << (A-B))
60 // Because V cannot be zero, we know that B is less than A.
61 Value *A = nullptr, *B = nullptr, *One = nullptr;
62 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
63 match(One, m_One())) {
64 A = IC.Builder.CreateSub(A, B);
65 return IC.Builder.CreateShl(One, A);
66 }
67
68 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
69 // inexact. Similarly for <<.
70 BinaryOperator *I = dyn_cast<BinaryOperator>(V);
71 if (I && I->isLogicalShift() &&
72 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
73 // We know that this is an exact/nuw shift and that the input is a
74 // non-zero context as well.
75 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
76 IC.replaceOperand(*I, 0, V2);
77 MadeChange = true;
78 }
79
80 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
81 I->setIsExact();
82 MadeChange = true;
83 }
84
85 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
86 I->setHasNoUnsignedWrap();
87 MadeChange = true;
88 }
89 }
90
91 // TODO: Lots more we could do here:
92 // If V is a phi node, we can call this on each of its operands.
93 // "select cond, X, 0" can simplify to "X".
94
95 return MadeChange ? V : nullptr;
96 }
97
98 // TODO: This is a specific form of a much more general pattern.
99 // We could detect a select with any binop identity constant, or we
100 // could use SimplifyBinOp to see if either arm of the select reduces.
101 // But that needs to be done carefully and/or while removing potential
102 // reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
foldMulSelectToNegate(BinaryOperator & I,InstCombiner::BuilderTy & Builder)103 static Value *foldMulSelectToNegate(BinaryOperator &I,
104 InstCombiner::BuilderTy &Builder) {
105 Value *Cond, *OtherOp;
106
107 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
108 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
109 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
110 m_Value(OtherOp))))
111 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp));
112
113 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
114 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
115 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
116 m_Value(OtherOp))))
117 return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp);
118
119 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
120 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
121 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
122 m_SpecificFP(-1.0))),
123 m_Value(OtherOp)))) {
124 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
125 Builder.setFastMathFlags(I.getFastMathFlags());
126 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
127 }
128
129 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
130 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
131 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
132 m_SpecificFP(1.0))),
133 m_Value(OtherOp)))) {
134 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
135 Builder.setFastMathFlags(I.getFastMathFlags());
136 return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
137 }
138
139 return nullptr;
140 }
141
visitMul(BinaryOperator & I)142 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
143 if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
144 SQ.getWithInstruction(&I)))
145 return replaceInstUsesWith(I, V);
146
147 if (SimplifyAssociativeOrCommutative(I))
148 return &I;
149
150 if (Instruction *X = foldVectorBinop(I))
151 return X;
152
153 if (Value *V = SimplifyUsingDistributiveLaws(I))
154 return replaceInstUsesWith(I, V);
155
156 // X * -1 == 0 - X
157 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
158 if (match(Op1, m_AllOnes())) {
159 BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
160 if (I.hasNoSignedWrap())
161 BO->setHasNoSignedWrap();
162 return BO;
163 }
164
165 // Also allow combining multiply instructions on vectors.
166 {
167 Value *NewOp;
168 Constant *C1, *C2;
169 const APInt *IVal;
170 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
171 m_Constant(C1))) &&
172 match(C1, m_APInt(IVal))) {
173 // ((X << C2)*C1) == (X * (C1 << C2))
174 Constant *Shl = ConstantExpr::getShl(C1, C2);
175 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
176 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
177 if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
178 BO->setHasNoUnsignedWrap();
179 if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
180 Shl->isNotMinSignedValue())
181 BO->setHasNoSignedWrap();
182 return BO;
183 }
184
185 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
186 // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
187 if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
188 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
189
190 if (I.hasNoUnsignedWrap())
191 Shl->setHasNoUnsignedWrap();
192 if (I.hasNoSignedWrap()) {
193 const APInt *V;
194 if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
195 Shl->setHasNoSignedWrap();
196 }
197
198 return Shl;
199 }
200 }
201 }
202
203 if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
204 // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
205 // The "* (1<<C)" thus becomes a potential shifting opportunity.
206 if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
207 return BinaryOperator::CreateMul(
208 NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
209 }
210
211 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
212 return FoldedMul;
213
214 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
215 return replaceInstUsesWith(I, FoldedMul);
216
217 // Simplify mul instructions with a constant RHS.
218 if (isa<Constant>(Op1)) {
219 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
220 Value *X;
221 Constant *C1;
222 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
223 Value *Mul = Builder.CreateMul(C1, Op1);
224 // Only go forward with the transform if C1*CI simplifies to a tidier
225 // constant.
226 if (!match(Mul, m_Mul(m_Value(), m_Value())))
227 return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
228 }
229 }
230
231 // abs(X) * abs(X) -> X * X
232 // nabs(X) * nabs(X) -> X * X
233 if (Op0 == Op1) {
234 Value *X, *Y;
235 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
236 if (SPF == SPF_ABS || SPF == SPF_NABS)
237 return BinaryOperator::CreateMul(X, X);
238
239 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
240 return BinaryOperator::CreateMul(X, X);
241 }
242
243 // -X * C --> X * -C
244 Value *X, *Y;
245 Constant *Op1C;
246 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
247 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
248
249 // -X * -Y --> X * Y
250 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
251 auto *NewMul = BinaryOperator::CreateMul(X, Y);
252 if (I.hasNoSignedWrap() &&
253 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
254 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
255 NewMul->setHasNoSignedWrap();
256 return NewMul;
257 }
258
259 // -X * Y --> -(X * Y)
260 // X * -Y --> -(X * Y)
261 if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
262 return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
263
264 // (X / Y) * Y = X - (X % Y)
265 // (X / Y) * -Y = (X % Y) - X
266 {
267 Value *Y = Op1;
268 BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
269 if (!Div || (Div->getOpcode() != Instruction::UDiv &&
270 Div->getOpcode() != Instruction::SDiv)) {
271 Y = Op0;
272 Div = dyn_cast<BinaryOperator>(Op1);
273 }
274 Value *Neg = dyn_castNegVal(Y);
275 if (Div && Div->hasOneUse() &&
276 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
277 (Div->getOpcode() == Instruction::UDiv ||
278 Div->getOpcode() == Instruction::SDiv)) {
279 Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
280
281 // If the division is exact, X % Y is zero, so we end up with X or -X.
282 if (Div->isExact()) {
283 if (DivOp1 == Y)
284 return replaceInstUsesWith(I, X);
285 return BinaryOperator::CreateNeg(X);
286 }
287
288 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
289 : Instruction::SRem;
290 Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
291 if (DivOp1 == Y)
292 return BinaryOperator::CreateSub(X, Rem);
293 return BinaryOperator::CreateSub(Rem, X);
294 }
295 }
296
297 /// i1 mul -> i1 and.
298 if (I.getType()->isIntOrIntVectorTy(1))
299 return BinaryOperator::CreateAnd(Op0, Op1);
300
301 // X*(1 << Y) --> X << Y
302 // (1 << Y)*X --> X << Y
303 {
304 Value *Y;
305 BinaryOperator *BO = nullptr;
306 bool ShlNSW = false;
307 if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
308 BO = BinaryOperator::CreateShl(Op1, Y);
309 ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
310 } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
311 BO = BinaryOperator::CreateShl(Op0, Y);
312 ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
313 }
314 if (BO) {
315 if (I.hasNoUnsignedWrap())
316 BO->setHasNoUnsignedWrap();
317 if (I.hasNoSignedWrap() && ShlNSW)
318 BO->setHasNoSignedWrap();
319 return BO;
320 }
321 }
322
323 // (zext bool X) * (zext bool Y) --> zext (and X, Y)
324 // (sext bool X) * (sext bool Y) --> zext (and X, Y)
325 // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
326 if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
327 (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
328 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
329 (Op0->hasOneUse() || Op1->hasOneUse())) {
330 Value *And = Builder.CreateAnd(X, Y, "mulbool");
331 return CastInst::Create(Instruction::ZExt, And, I.getType());
332 }
333 // (sext bool X) * (zext bool Y) --> sext (and X, Y)
334 // (zext bool X) * (sext bool Y) --> sext (and X, Y)
335 // Note: -1 * 1 == 1 * -1 == -1
336 if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
337 (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
338 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
339 (Op0->hasOneUse() || Op1->hasOneUse())) {
340 Value *And = Builder.CreateAnd(X, Y, "mulbool");
341 return CastInst::Create(Instruction::SExt, And, I.getType());
342 }
343
344 // (bool X) * Y --> X ? Y : 0
345 // Y * (bool X) --> X ? Y : 0
346 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
347 return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
348 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
349 return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
350
351 // (lshr X, 31) * Y --> (ashr X, 31) & Y
352 // Y * (lshr X, 31) --> (ashr X, 31) & Y
353 // TODO: We are not checking one-use because the elimination of the multiply
354 // is better for analysis?
355 // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
356 // more similar to what we're doing above.
357 const APInt *C;
358 if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
359 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
360 if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
361 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
362
363 if (Instruction *Ext = narrowMathIfNoOverflow(I))
364 return Ext;
365
366 bool Changed = false;
367 if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
368 Changed = true;
369 I.setHasNoSignedWrap(true);
370 }
371
372 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
373 Changed = true;
374 I.setHasNoUnsignedWrap(true);
375 }
376
377 return Changed ? &I : nullptr;
378 }
379
foldFPSignBitOps(BinaryOperator & I)380 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
381 BinaryOperator::BinaryOps Opcode = I.getOpcode();
382 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
383 "Expected fmul or fdiv");
384
385 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
386 Value *X, *Y;
387
388 // -X * -Y --> X * Y
389 // -X / -Y --> X / Y
390 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
391 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
392
393 // fabs(X) * fabs(X) -> X * X
394 // fabs(X) / fabs(X) -> X / X
395 if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
396 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
397
398 // fabs(X) * fabs(Y) --> fabs(X * Y)
399 // fabs(X) / fabs(Y) --> fabs(X / Y)
400 if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
401 (Op0->hasOneUse() || Op1->hasOneUse())) {
402 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
403 Builder.setFastMathFlags(I.getFastMathFlags());
404 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
405 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
406 Fabs->takeName(&I);
407 return replaceInstUsesWith(I, Fabs);
408 }
409
410 return nullptr;
411 }
412
visitFMul(BinaryOperator & I)413 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
414 if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
415 I.getFastMathFlags(),
416 SQ.getWithInstruction(&I)))
417 return replaceInstUsesWith(I, V);
418
419 if (SimplifyAssociativeOrCommutative(I))
420 return &I;
421
422 if (Instruction *X = foldVectorBinop(I))
423 return X;
424
425 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
426 return FoldedMul;
427
428 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
429 return replaceInstUsesWith(I, FoldedMul);
430
431 if (Instruction *R = foldFPSignBitOps(I))
432 return R;
433
434 // X * -1.0 --> -X
435 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
436 if (match(Op1, m_SpecificFP(-1.0)))
437 return UnaryOperator::CreateFNegFMF(Op0, &I);
438
439 // -X * C --> X * -C
440 Value *X, *Y;
441 Constant *C;
442 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
443 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
444
445 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
446 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
447 return replaceInstUsesWith(I, V);
448
449 if (I.hasAllowReassoc()) {
450 // Reassociate constant RHS with another constant to form constant
451 // expression.
452 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
453 Constant *C1;
454 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
455 // (C1 / X) * C --> (C * C1) / X
456 Constant *CC1 = ConstantExpr::getFMul(C, C1);
457 if (CC1->isNormalFP())
458 return BinaryOperator::CreateFDivFMF(CC1, X, &I);
459 }
460 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
461 // (X / C1) * C --> X * (C / C1)
462 Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
463 if (CDivC1->isNormalFP())
464 return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
465
466 // If the constant was a denormal, try reassociating differently.
467 // (X / C1) * C --> X / (C1 / C)
468 Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
469 if (Op0->hasOneUse() && C1DivC->isNormalFP())
470 return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
471 }
472
473 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
474 // canonicalized to 'fadd X, C'. Distributing the multiply may allow
475 // further folds and (X * C) + C2 is 'fma'.
476 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
477 // (X + C1) * C --> (X * C) + (C * C1)
478 Constant *CC1 = ConstantExpr::getFMul(C, C1);
479 Value *XC = Builder.CreateFMulFMF(X, C, &I);
480 return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
481 }
482 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
483 // (C1 - X) * C --> (C * C1) - (X * C)
484 Constant *CC1 = ConstantExpr::getFMul(C, C1);
485 Value *XC = Builder.CreateFMulFMF(X, C, &I);
486 return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
487 }
488 }
489
490 Value *Z;
491 if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
492 m_Value(Z)))) {
493 // Sink division: (X / Y) * Z --> (X * Z) / Y
494 Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
495 return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
496 }
497
498 // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
499 // nnan disallows the possibility of returning a number if both operands are
500 // negative (in that case, we should return NaN).
501 if (I.hasNoNaNs() &&
502 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
503 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
504 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
505 Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
506 return replaceInstUsesWith(I, Sqrt);
507 }
508
509 // The following transforms are done irrespective of the number of uses
510 // for the expression "1.0/sqrt(X)".
511 // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
512 // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
513 // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
514 // has the necessary (reassoc) fast-math-flags.
515 if (I.hasNoSignedZeros() &&
516 match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
517 match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X)
518 return BinaryOperator::CreateFDivFMF(X, Y, &I);
519 if (I.hasNoSignedZeros() &&
520 match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
521 match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X)
522 return BinaryOperator::CreateFDivFMF(X, Y, &I);
523
524 // Like the similar transform in instsimplify, this requires 'nsz' because
525 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
526 if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
527 Op0->hasNUses(2)) {
528 // Peek through fdiv to find squaring of square root:
529 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
530 if (match(Op0, m_FDiv(m_Value(X),
531 m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
532 Value *XX = Builder.CreateFMulFMF(X, X, &I);
533 return BinaryOperator::CreateFDivFMF(XX, Y, &I);
534 }
535 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
536 if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
537 m_Value(X)))) {
538 Value *XX = Builder.CreateFMulFMF(X, X, &I);
539 return BinaryOperator::CreateFDivFMF(Y, XX, &I);
540 }
541 }
542
543 // exp(X) * exp(Y) -> exp(X + Y)
544 // Match as long as at least one of exp has only one use.
545 if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
546 match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) &&
547 (Op0->hasOneUse() || Op1->hasOneUse())) {
548 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
549 Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
550 return replaceInstUsesWith(I, Exp);
551 }
552
553 // exp2(X) * exp2(Y) -> exp2(X + Y)
554 // Match as long as at least one of exp2 has only one use.
555 if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
556 match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) &&
557 (Op0->hasOneUse() || Op1->hasOneUse())) {
558 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
559 Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
560 return replaceInstUsesWith(I, Exp2);
561 }
562
563 // (X*Y) * X => (X*X) * Y where Y != X
564 // The purpose is two-fold:
565 // 1) to form a power expression (of X).
566 // 2) potentially shorten the critical path: After transformation, the
567 // latency of the instruction Y is amortized by the expression of X*X,
568 // and therefore Y is in a "less critical" position compared to what it
569 // was before the transformation.
570 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
571 Op1 != Y) {
572 Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
573 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
574 }
575 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
576 Op0 != Y) {
577 Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
578 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
579 }
580 }
581
582 // log2(X * 0.5) * Y = log2(X) * Y - Y
583 if (I.isFast()) {
584 IntrinsicInst *Log2 = nullptr;
585 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
586 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
587 Log2 = cast<IntrinsicInst>(Op0);
588 Y = Op1;
589 }
590 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
591 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
592 Log2 = cast<IntrinsicInst>(Op1);
593 Y = Op0;
594 }
595 if (Log2) {
596 Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
597 Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
598 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
599 }
600 }
601
602 return nullptr;
603 }
604
605 /// Fold a divide or remainder with a select instruction divisor when one of the
606 /// select operands is zero. In that case, we can use the other select operand
607 /// because div/rem by zero is undefined.
simplifyDivRemOfSelectWithZeroOp(BinaryOperator & I)608 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
609 SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
610 if (!SI)
611 return false;
612
613 int NonNullOperand;
614 if (match(SI->getTrueValue(), m_Zero()))
615 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
616 NonNullOperand = 2;
617 else if (match(SI->getFalseValue(), m_Zero()))
618 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
619 NonNullOperand = 1;
620 else
621 return false;
622
623 // Change the div/rem to use 'Y' instead of the select.
624 replaceOperand(I, 1, SI->getOperand(NonNullOperand));
625
626 // Okay, we know we replace the operand of the div/rem with 'Y' with no
627 // problem. However, the select, or the condition of the select may have
628 // multiple uses. Based on our knowledge that the operand must be non-zero,
629 // propagate the known value for the select into other uses of it, and
630 // propagate a known value of the condition into its other users.
631
632 // If the select and condition only have a single use, don't bother with this,
633 // early exit.
634 Value *SelectCond = SI->getCondition();
635 if (SI->use_empty() && SelectCond->hasOneUse())
636 return true;
637
638 // Scan the current block backward, looking for other uses of SI.
639 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
640 Type *CondTy = SelectCond->getType();
641 while (BBI != BBFront) {
642 --BBI;
643 // If we found an instruction that we can't assume will return, so
644 // information from below it cannot be propagated above it.
645 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
646 break;
647
648 // Replace uses of the select or its condition with the known values.
649 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
650 I != E; ++I) {
651 if (*I == SI) {
652 replaceUse(*I, SI->getOperand(NonNullOperand));
653 Worklist.push(&*BBI);
654 } else if (*I == SelectCond) {
655 replaceUse(*I, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
656 : ConstantInt::getFalse(CondTy));
657 Worklist.push(&*BBI);
658 }
659 }
660
661 // If we past the instruction, quit looking for it.
662 if (&*BBI == SI)
663 SI = nullptr;
664 if (&*BBI == SelectCond)
665 SelectCond = nullptr;
666
667 // If we ran out of things to eliminate, break out of the loop.
668 if (!SelectCond && !SI)
669 break;
670
671 }
672 return true;
673 }
674
675 /// True if the multiply can not be expressed in an int this size.
multiplyOverflows(const APInt & C1,const APInt & C2,APInt & Product,bool IsSigned)676 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
677 bool IsSigned) {
678 bool Overflow;
679 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
680 return Overflow;
681 }
682
683 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
isMultiple(const APInt & C1,const APInt & C2,APInt & Quotient,bool IsSigned)684 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
685 bool IsSigned) {
686 assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
687
688 // Bail if we will divide by zero.
689 if (C2.isNullValue())
690 return false;
691
692 // Bail if we would divide INT_MIN by -1.
693 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
694 return false;
695
696 APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
697 if (IsSigned)
698 APInt::sdivrem(C1, C2, Quotient, Remainder);
699 else
700 APInt::udivrem(C1, C2, Quotient, Remainder);
701
702 return Remainder.isMinValue();
703 }
704
705 /// This function implements the transforms common to both integer division
706 /// instructions (udiv and sdiv). It is called by the visitors to those integer
707 /// division instructions.
708 /// Common integer divide transforms
commonIDivTransforms(BinaryOperator & I)709 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
710 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
711 bool IsSigned = I.getOpcode() == Instruction::SDiv;
712 Type *Ty = I.getType();
713
714 // The RHS is known non-zero.
715 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
716 return replaceOperand(I, 1, V);
717
718 // Handle cases involving: [su]div X, (select Cond, Y, Z)
719 // This does not apply for fdiv.
720 if (simplifyDivRemOfSelectWithZeroOp(I))
721 return &I;
722
723 const APInt *C2;
724 if (match(Op1, m_APInt(C2))) {
725 Value *X;
726 const APInt *C1;
727
728 // (X / C1) / C2 -> X / (C1*C2)
729 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
730 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
731 APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
732 if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
733 return BinaryOperator::Create(I.getOpcode(), X,
734 ConstantInt::get(Ty, Product));
735 }
736
737 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
738 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
739 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
740
741 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
742 if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
743 auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
744 ConstantInt::get(Ty, Quotient));
745 NewDiv->setIsExact(I.isExact());
746 return NewDiv;
747 }
748
749 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
750 if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
751 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
752 ConstantInt::get(Ty, Quotient));
753 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
754 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
755 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
756 return Mul;
757 }
758 }
759
760 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
761 *C1 != C1->getBitWidth() - 1) ||
762 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
763 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
764 APInt C1Shifted = APInt::getOneBitSet(
765 C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
766
767 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
768 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
769 auto *BO = BinaryOperator::Create(I.getOpcode(), X,
770 ConstantInt::get(Ty, Quotient));
771 BO->setIsExact(I.isExact());
772 return BO;
773 }
774
775 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
776 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
777 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
778 ConstantInt::get(Ty, Quotient));
779 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
780 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
781 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
782 return Mul;
783 }
784 }
785
786 if (!C2->isNullValue()) // avoid X udiv 0
787 if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
788 return FoldedDiv;
789 }
790
791 if (match(Op0, m_One())) {
792 assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
793 if (IsSigned) {
794 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
795 // result is one, if Op1 is -1 then the result is minus one, otherwise
796 // it's zero.
797 Value *Inc = Builder.CreateAdd(Op1, Op0);
798 Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
799 return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
800 } else {
801 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
802 // result is one, otherwise it's zero.
803 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
804 }
805 }
806
807 // See if we can fold away this div instruction.
808 if (SimplifyDemandedInstructionBits(I))
809 return &I;
810
811 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
812 Value *X, *Z;
813 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
814 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
815 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
816 return BinaryOperator::Create(I.getOpcode(), X, Op1);
817
818 // (X << Y) / X -> 1 << Y
819 Value *Y;
820 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
821 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
822 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
823 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
824
825 // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
826 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
827 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
828 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
829 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
830 replaceOperand(I, 0, ConstantInt::get(Ty, 1));
831 replaceOperand(I, 1, Y);
832 return &I;
833 }
834 }
835
836 return nullptr;
837 }
838
839 static const unsigned MaxDepth = 6;
840
841 namespace {
842
843 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
844 const BinaryOperator &I,
845 InstCombinerImpl &IC);
846
847 /// Used to maintain state for visitUDivOperand().
848 struct UDivFoldAction {
849 /// Informs visitUDiv() how to fold this operand. This can be zero if this
850 /// action joins two actions together.
851 FoldUDivOperandCb FoldAction;
852
853 /// Which operand to fold.
854 Value *OperandToFold;
855
856 union {
857 /// The instruction returned when FoldAction is invoked.
858 Instruction *FoldResult;
859
860 /// Stores the LHS action index if this action joins two actions together.
861 size_t SelectLHSIdx;
862 };
863
UDivFoldAction__anon3e9fe1ff0111::UDivFoldAction864 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
865 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
UDivFoldAction__anon3e9fe1ff0111::UDivFoldAction866 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
867 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
868 };
869
870 } // end anonymous namespace
871
872 // X udiv 2^C -> X >> C
foldUDivPow2Cst(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombinerImpl & IC)873 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
874 const BinaryOperator &I,
875 InstCombinerImpl &IC) {
876 Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
877 if (!C1)
878 llvm_unreachable("Failed to constant fold udiv -> logbase2");
879 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
880 if (I.isExact())
881 LShr->setIsExact();
882 return LShr;
883 }
884
885 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
886 // X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
foldUDivShl(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombinerImpl & IC)887 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
888 InstCombinerImpl &IC) {
889 Value *ShiftLeft;
890 if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
891 ShiftLeft = Op1;
892
893 Constant *CI;
894 Value *N;
895 if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
896 llvm_unreachable("match should never fail here!");
897 Constant *Log2Base = ConstantExpr::getExactLogBase2(CI);
898 if (!Log2Base)
899 llvm_unreachable("getLogBase2 should never fail here!");
900 N = IC.Builder.CreateAdd(N, Log2Base);
901 if (Op1 != ShiftLeft)
902 N = IC.Builder.CreateZExt(N, Op1->getType());
903 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
904 if (I.isExact())
905 LShr->setIsExact();
906 return LShr;
907 }
908
909 // Recursively visits the possible right hand operands of a udiv
910 // instruction, seeing through select instructions, to determine if we can
911 // replace the udiv with something simpler. If we find that an operand is not
912 // able to simplify the udiv, we abort the entire transformation.
visitUDivOperand(Value * Op0,Value * Op1,const BinaryOperator & I,SmallVectorImpl<UDivFoldAction> & Actions,unsigned Depth=0)913 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
914 SmallVectorImpl<UDivFoldAction> &Actions,
915 unsigned Depth = 0) {
916 // FIXME: assert that Op1 isn't/doesn't contain undef.
917
918 // Check to see if this is an unsigned division with an exact power of 2,
919 // if so, convert to a right shift.
920 if (match(Op1, m_Power2())) {
921 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
922 return Actions.size();
923 }
924
925 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
926 if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
927 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
928 Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
929 return Actions.size();
930 }
931
932 // The remaining tests are all recursive, so bail out if we hit the limit.
933 if (Depth++ == MaxDepth)
934 return 0;
935
936 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
937 // FIXME: missed optimization: if one of the hands of select is/contains
938 // undef, just directly pick the other one.
939 // FIXME: can both hands contain undef?
940 if (size_t LHSIdx =
941 visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
942 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
943 Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
944 return Actions.size();
945 }
946
947 return 0;
948 }
949
950 /// If we have zero-extended operands of an unsigned div or rem, we may be able
951 /// to narrow the operation (sink the zext below the math).
narrowUDivURem(BinaryOperator & I,InstCombiner::BuilderTy & Builder)952 static Instruction *narrowUDivURem(BinaryOperator &I,
953 InstCombiner::BuilderTy &Builder) {
954 Instruction::BinaryOps Opcode = I.getOpcode();
955 Value *N = I.getOperand(0);
956 Value *D = I.getOperand(1);
957 Type *Ty = I.getType();
958 Value *X, *Y;
959 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
960 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
961 // udiv (zext X), (zext Y) --> zext (udiv X, Y)
962 // urem (zext X), (zext Y) --> zext (urem X, Y)
963 Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
964 return new ZExtInst(NarrowOp, Ty);
965 }
966
967 Constant *C;
968 if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
969 (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
970 // If the constant is the same in the smaller type, use the narrow version.
971 Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
972 if (ConstantExpr::getZExt(TruncC, Ty) != C)
973 return nullptr;
974
975 // udiv (zext X), C --> zext (udiv X, C')
976 // urem (zext X), C --> zext (urem X, C')
977 // udiv C, (zext X) --> zext (udiv C', X)
978 // urem C, (zext X) --> zext (urem C', X)
979 Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
980 : Builder.CreateBinOp(Opcode, TruncC, X);
981 return new ZExtInst(NarrowOp, Ty);
982 }
983
984 return nullptr;
985 }
986
visitUDiv(BinaryOperator & I)987 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
988 if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
989 SQ.getWithInstruction(&I)))
990 return replaceInstUsesWith(I, V);
991
992 if (Instruction *X = foldVectorBinop(I))
993 return X;
994
995 // Handle the integer div common cases
996 if (Instruction *Common = commonIDivTransforms(I))
997 return Common;
998
999 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1000 Value *X;
1001 const APInt *C1, *C2;
1002 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1003 // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1004 bool Overflow;
1005 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1006 if (!Overflow) {
1007 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1008 BinaryOperator *BO = BinaryOperator::CreateUDiv(
1009 X, ConstantInt::get(X->getType(), C2ShlC1));
1010 if (IsExact)
1011 BO->setIsExact();
1012 return BO;
1013 }
1014 }
1015
1016 // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1017 // TODO: Could use isKnownNegative() to handle non-constant values.
1018 Type *Ty = I.getType();
1019 if (match(Op1, m_Negative())) {
1020 Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1021 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1022 }
1023 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1024 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1025 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1026 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1027 }
1028
1029 if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1030 return NarrowDiv;
1031
1032 // If the udiv operands are non-overflowing multiplies with a common operand,
1033 // then eliminate the common factor:
1034 // (A * B) / (A * X) --> B / X (and commuted variants)
1035 // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1036 // TODO: If -reassociation handled this generally, we could remove this.
1037 Value *A, *B;
1038 if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1039 if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1040 match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1041 return BinaryOperator::CreateUDiv(B, X);
1042 if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1043 match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1044 return BinaryOperator::CreateUDiv(A, X);
1045 }
1046
1047 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1048 SmallVector<UDivFoldAction, 6> UDivActions;
1049 if (visitUDivOperand(Op0, Op1, I, UDivActions))
1050 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1051 FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1052 Value *ActionOp1 = UDivActions[i].OperandToFold;
1053 Instruction *Inst;
1054 if (Action)
1055 Inst = Action(Op0, ActionOp1, I, *this);
1056 else {
1057 // This action joins two actions together. The RHS of this action is
1058 // simply the last action we processed, we saved the LHS action index in
1059 // the joining action.
1060 size_t SelectRHSIdx = i - 1;
1061 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1062 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1063 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1064 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1065 SelectLHS, SelectRHS);
1066 }
1067
1068 // If this is the last action to process, return it to the InstCombiner.
1069 // Otherwise, we insert it before the UDiv and record it so that we may
1070 // use it as part of a joining action (i.e., a SelectInst).
1071 if (e - i != 1) {
1072 Inst->insertBefore(&I);
1073 UDivActions[i].FoldResult = Inst;
1074 } else
1075 return Inst;
1076 }
1077
1078 return nullptr;
1079 }
1080
visitSDiv(BinaryOperator & I)1081 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1082 if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1083 SQ.getWithInstruction(&I)))
1084 return replaceInstUsesWith(I, V);
1085
1086 if (Instruction *X = foldVectorBinop(I))
1087 return X;
1088
1089 // Handle the integer div common cases
1090 if (Instruction *Common = commonIDivTransforms(I))
1091 return Common;
1092
1093 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1094 Type *Ty = I.getType();
1095 Value *X;
1096 // sdiv Op0, -1 --> -Op0
1097 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1098 if (match(Op1, m_AllOnes()) ||
1099 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1100 return BinaryOperator::CreateNeg(Op0);
1101
1102 // X / INT_MIN --> X == INT_MIN
1103 if (match(Op1, m_SignMask()))
1104 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1105
1106 // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
1107 // sdiv exact X, -1<<C --> -(ashr exact X, C)
1108 if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) ||
1109 match(Op1, m_NegatedPower2()))) {
1110 bool DivisorWasNegative = match(Op1, m_NegatedPower2());
1111 if (DivisorWasNegative)
1112 Op1 = ConstantExpr::getNeg(cast<Constant>(Op1));
1113 auto *AShr = BinaryOperator::CreateExactAShr(
1114 Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName());
1115 if (!DivisorWasNegative)
1116 return AShr;
1117 Builder.Insert(AShr);
1118 AShr->setName(I.getName() + ".neg");
1119 return BinaryOperator::CreateNeg(AShr, I.getName());
1120 }
1121
1122 const APInt *Op1C;
1123 if (match(Op1, m_APInt(Op1C))) {
1124 // If the dividend is sign-extended and the constant divisor is small enough
1125 // to fit in the source type, shrink the division to the narrower type:
1126 // (sext X) sdiv C --> sext (X sdiv C)
1127 Value *Op0Src;
1128 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1129 Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1130
1131 // In the general case, we need to make sure that the dividend is not the
1132 // minimum signed value because dividing that by -1 is UB. But here, we
1133 // know that the -1 divisor case is already handled above.
1134
1135 Constant *NarrowDivisor =
1136 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1137 Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1138 return new SExtInst(NarrowOp, Ty);
1139 }
1140
1141 // -X / C --> X / -C (if the negation doesn't overflow).
1142 // TODO: This could be enhanced to handle arbitrary vector constants by
1143 // checking if all elements are not the min-signed-val.
1144 if (!Op1C->isMinSignedValue() &&
1145 match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1146 Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1147 Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1148 BO->setIsExact(I.isExact());
1149 return BO;
1150 }
1151 }
1152
1153 // -X / Y --> -(X / Y)
1154 Value *Y;
1155 if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1156 return BinaryOperator::CreateNSWNeg(
1157 Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1158
1159 // abs(X) / X --> X > -1 ? 1 : -1
1160 // X / abs(X) --> X > -1 ? 1 : -1
1161 if (match(&I, m_c_BinOp(
1162 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1163 m_Deferred(X)))) {
1164 Constant *NegOne = ConstantInt::getAllOnesValue(Ty);
1165 Value *Cond = Builder.CreateICmpSGT(X, NegOne);
1166 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne);
1167 }
1168
1169 // If the sign bits of both operands are zero (i.e. we can prove they are
1170 // unsigned inputs), turn this into a udiv.
1171 APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits()));
1172 if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1173 if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1174 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1175 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1176 BO->setIsExact(I.isExact());
1177 return BO;
1178 }
1179
1180 if (match(Op1, m_NegatedPower2())) {
1181 // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1182 // -> -(X udiv (1 << C)) -> -(X u>> C)
1183 return BinaryOperator::CreateNeg(Builder.Insert(foldUDivPow2Cst(
1184 Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this)));
1185 }
1186
1187 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1188 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1189 // Safe because the only negative value (1 << Y) can take on is
1190 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1191 // the sign bit set.
1192 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1193 BO->setIsExact(I.isExact());
1194 return BO;
1195 }
1196 }
1197
1198 return nullptr;
1199 }
1200
1201 /// Remove negation and try to convert division into multiplication.
foldFDivConstantDivisor(BinaryOperator & I)1202 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1203 Constant *C;
1204 if (!match(I.getOperand(1), m_Constant(C)))
1205 return nullptr;
1206
1207 // -X / C --> X / -C
1208 Value *X;
1209 if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1210 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1211
1212 // If the constant divisor has an exact inverse, this is always safe. If not,
1213 // then we can still create a reciprocal if fast-math-flags allow it and the
1214 // constant is a regular number (not zero, infinite, or denormal).
1215 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1216 return nullptr;
1217
1218 // Disallow denormal constants because we don't know what would happen
1219 // on all targets.
1220 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1221 // denorms are flushed?
1222 auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1223 if (!RecipC->isNormalFP())
1224 return nullptr;
1225
1226 // X / C --> X * (1 / C)
1227 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1228 }
1229
1230 /// Remove negation and try to reassociate constant math.
foldFDivConstantDividend(BinaryOperator & I)1231 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1232 Constant *C;
1233 if (!match(I.getOperand(0), m_Constant(C)))
1234 return nullptr;
1235
1236 // C / -X --> -C / X
1237 Value *X;
1238 if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1239 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1240
1241 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1242 return nullptr;
1243
1244 // Try to reassociate C / X expressions where X includes another constant.
1245 Constant *C2, *NewC = nullptr;
1246 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1247 // C / (X * C2) --> (C / C2) / X
1248 NewC = ConstantExpr::getFDiv(C, C2);
1249 } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1250 // C / (X / C2) --> (C * C2) / X
1251 NewC = ConstantExpr::getFMul(C, C2);
1252 }
1253 // Disallow denormal constants because we don't know what would happen
1254 // on all targets.
1255 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1256 // denorms are flushed?
1257 if (!NewC || !NewC->isNormalFP())
1258 return nullptr;
1259
1260 return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1261 }
1262
visitFDiv(BinaryOperator & I)1263 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
1264 if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1265 I.getFastMathFlags(),
1266 SQ.getWithInstruction(&I)))
1267 return replaceInstUsesWith(I, V);
1268
1269 if (Instruction *X = foldVectorBinop(I))
1270 return X;
1271
1272 if (Instruction *R = foldFDivConstantDivisor(I))
1273 return R;
1274
1275 if (Instruction *R = foldFDivConstantDividend(I))
1276 return R;
1277
1278 if (Instruction *R = foldFPSignBitOps(I))
1279 return R;
1280
1281 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1282 if (isa<Constant>(Op0))
1283 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1284 if (Instruction *R = FoldOpIntoSelect(I, SI))
1285 return R;
1286
1287 if (isa<Constant>(Op1))
1288 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1289 if (Instruction *R = FoldOpIntoSelect(I, SI))
1290 return R;
1291
1292 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1293 Value *X, *Y;
1294 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1295 (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1296 // (X / Y) / Z => X / (Y * Z)
1297 Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1298 return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1299 }
1300 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1301 (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1302 // Z / (X / Y) => (Y * Z) / X
1303 Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1304 return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1305 }
1306 // Z / (1.0 / Y) => (Y * Z)
1307 //
1308 // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1309 // m_OneUse check is avoided because even in the case of the multiple uses
1310 // for 1.0/Y, the number of instructions remain the same and a division is
1311 // replaced by a multiplication.
1312 if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1313 return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1314 }
1315
1316 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1317 // sin(X) / cos(X) -> tan(X)
1318 // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1319 Value *X;
1320 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1321 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1322 bool IsCot =
1323 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1324 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1325
1326 if ((IsTan || IsCot) &&
1327 hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1328 IRBuilder<> B(&I);
1329 IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1330 B.setFastMathFlags(I.getFastMathFlags());
1331 AttributeList Attrs =
1332 cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1333 Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1334 LibFunc_tanl, B, Attrs);
1335 if (IsCot)
1336 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1337 return replaceInstUsesWith(I, Res);
1338 }
1339 }
1340
1341 // X / (X * Y) --> 1.0 / Y
1342 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1343 // We can ignore the possibility that X is infinity because INF/INF is NaN.
1344 Value *X, *Y;
1345 if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1346 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1347 replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1348 replaceOperand(I, 1, Y);
1349 return &I;
1350 }
1351
1352 // X / fabs(X) -> copysign(1.0, X)
1353 // fabs(X) / X -> copysign(1.0, X)
1354 if (I.hasNoNaNs() && I.hasNoInfs() &&
1355 (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1356 match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1357 Value *V = Builder.CreateBinaryIntrinsic(
1358 Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1359 return replaceInstUsesWith(I, V);
1360 }
1361 return nullptr;
1362 }
1363
1364 /// This function implements the transforms common to both integer remainder
1365 /// instructions (urem and srem). It is called by the visitors to those integer
1366 /// remainder instructions.
1367 /// Common integer remainder transforms
commonIRemTransforms(BinaryOperator & I)1368 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
1369 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1370
1371 // The RHS is known non-zero.
1372 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1373 return replaceOperand(I, 1, V);
1374
1375 // Handle cases involving: rem X, (select Cond, Y, Z)
1376 if (simplifyDivRemOfSelectWithZeroOp(I))
1377 return &I;
1378
1379 if (isa<Constant>(Op1)) {
1380 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1381 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1382 if (Instruction *R = FoldOpIntoSelect(I, SI))
1383 return R;
1384 } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1385 const APInt *Op1Int;
1386 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1387 (I.getOpcode() == Instruction::URem ||
1388 !Op1Int->isMinSignedValue())) {
1389 // foldOpIntoPhi will speculate instructions to the end of the PHI's
1390 // predecessor blocks, so do this only if we know the srem or urem
1391 // will not fault.
1392 if (Instruction *NV = foldOpIntoPhi(I, PN))
1393 return NV;
1394 }
1395 }
1396
1397 // See if we can fold away this rem instruction.
1398 if (SimplifyDemandedInstructionBits(I))
1399 return &I;
1400 }
1401 }
1402
1403 return nullptr;
1404 }
1405
visitURem(BinaryOperator & I)1406 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
1407 if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1408 SQ.getWithInstruction(&I)))
1409 return replaceInstUsesWith(I, V);
1410
1411 if (Instruction *X = foldVectorBinop(I))
1412 return X;
1413
1414 if (Instruction *common = commonIRemTransforms(I))
1415 return common;
1416
1417 if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1418 return NarrowRem;
1419
1420 // X urem Y -> X and Y-1, where Y is a power of 2,
1421 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1422 Type *Ty = I.getType();
1423 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1424 // This may increase instruction count, we don't enforce that Y is a
1425 // constant.
1426 Constant *N1 = Constant::getAllOnesValue(Ty);
1427 Value *Add = Builder.CreateAdd(Op1, N1);
1428 return BinaryOperator::CreateAnd(Op0, Add);
1429 }
1430
1431 // 1 urem X -> zext(X != 1)
1432 if (match(Op0, m_One())) {
1433 Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1434 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1435 }
1436
1437 // X urem C -> X < C ? X : X - C, where C >= signbit.
1438 if (match(Op1, m_Negative())) {
1439 Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1440 Value *Sub = Builder.CreateSub(Op0, Op1);
1441 return SelectInst::Create(Cmp, Op0, Sub);
1442 }
1443
1444 // If the divisor is a sext of a boolean, then the divisor must be max
1445 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1446 // max unsigned value. In that case, the remainder is 0:
1447 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1448 Value *X;
1449 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1450 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1451 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1452 }
1453
1454 return nullptr;
1455 }
1456
visitSRem(BinaryOperator & I)1457 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
1458 if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1459 SQ.getWithInstruction(&I)))
1460 return replaceInstUsesWith(I, V);
1461
1462 if (Instruction *X = foldVectorBinop(I))
1463 return X;
1464
1465 // Handle the integer rem common cases
1466 if (Instruction *Common = commonIRemTransforms(I))
1467 return Common;
1468
1469 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1470 {
1471 const APInt *Y;
1472 // X % -Y -> X % Y
1473 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1474 return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1475 }
1476
1477 // -X srem Y --> -(X srem Y)
1478 Value *X, *Y;
1479 if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1480 return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1481
1482 // If the sign bits of both operands are zero (i.e. we can prove they are
1483 // unsigned inputs), turn this into a urem.
1484 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1485 if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1486 MaskedValueIsZero(Op0, Mask, 0, &I)) {
1487 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1488 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1489 }
1490
1491 // If it's a constant vector, flip any negative values positive.
1492 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1493 Constant *C = cast<Constant>(Op1);
1494 unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
1495
1496 bool hasNegative = false;
1497 bool hasMissing = false;
1498 for (unsigned i = 0; i != VWidth; ++i) {
1499 Constant *Elt = C->getAggregateElement(i);
1500 if (!Elt) {
1501 hasMissing = true;
1502 break;
1503 }
1504
1505 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1506 if (RHS->isNegative())
1507 hasNegative = true;
1508 }
1509
1510 if (hasNegative && !hasMissing) {
1511 SmallVector<Constant *, 16> Elts(VWidth);
1512 for (unsigned i = 0; i != VWidth; ++i) {
1513 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
1514 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1515 if (RHS->isNegative())
1516 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1517 }
1518 }
1519
1520 Constant *NewRHSV = ConstantVector::get(Elts);
1521 if (NewRHSV != C) // Don't loop on -MININT
1522 return replaceOperand(I, 1, NewRHSV);
1523 }
1524 }
1525
1526 return nullptr;
1527 }
1528
visitFRem(BinaryOperator & I)1529 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
1530 if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1531 I.getFastMathFlags(),
1532 SQ.getWithInstruction(&I)))
1533 return replaceInstUsesWith(I, V);
1534
1535 if (Instruction *X = foldVectorBinop(I))
1536 return X;
1537
1538 return nullptr;
1539 }
1540