1 /// \file
2 /// Provides a number of useful functions that are roughly equivalent
3 /// to java HashTable and List for the purposes of Antlr 3 C runtime.
4 /// Also useable by the C programmer for things like symbol tables pointers
5 /// and so on.
6 ///
7 ///
8
9 // [The "BSD licence"]
10 // Copyright (c) 2005-2009 Jim Idle, Temporal Wave LLC
11 // http://www.temporal-wave.com
12 // http://www.linkedin.com/in/jimidle
13 //
14 // All rights reserved.
15 //
16 // Redistribution and use in source and binary forms, with or without
17 // modification, are permitted provided that the following conditions
18 // are met:
19 // 1. Redistributions of source code must retain the above copyright
20 // notice, this list of conditions and the following disclaimer.
21 // 2. Redistributions in binary form must reproduce the above copyright
22 // notice, this list of conditions and the following disclaimer in the
23 // documentation and/or other materials provided with the distribution.
24 // 3. The name of the author may not be used to endorse or promote products
25 // derived from this software without specific prior written permission.
26 //
27 // THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
28 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
29 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 // IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
31 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
32 // NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
36 // THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37
38 #include <antlr3.h>
39
40 #include "antlr3collections.h"
41
42 // Interface functions for hash table
43 //
44
45 // String based keys
46 //
47 static void antlr3HashDelete (pANTLR3_HASH_TABLE table, void * key);
48 static void * antlr3HashGet (pANTLR3_HASH_TABLE table, void * key);
49 static pANTLR3_HASH_ENTRY antlr3HashRemove (pANTLR3_HASH_TABLE table, void * key);
50 static ANTLR3_INT32 antlr3HashPut (pANTLR3_HASH_TABLE table, void * key, void * element, void (ANTLR3_CDECL *freeptr)(void *));
51
52 // Integer based keys (Lists and so on)
53 //
54 static void antlr3HashDeleteI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key);
55 static void * antlr3HashGetI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key);
56 static pANTLR3_HASH_ENTRY antlr3HashRemoveI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key);
57 static ANTLR3_INT32 antlr3HashPutI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key, void * element, void (ANTLR3_CDECL *freeptr)(void *));
58
59 static void antlr3HashFree (pANTLR3_HASH_TABLE table);
60 static ANTLR3_UINT32 antlr3HashSize (pANTLR3_HASH_TABLE table);
61
62 // -----------
63
64 // Interface functions for enumeration
65 //
66 static int antlr3EnumNext (pANTLR3_HASH_ENUM en, pANTLR3_HASH_KEY * key, void ** data);
67 static void antlr3EnumFree (pANTLR3_HASH_ENUM en);
68
69 // Interface functions for List
70 //
71 static void antlr3ListFree (pANTLR3_LIST list);
72 static void antlr3ListDelete(pANTLR3_LIST list, ANTLR3_INTKEY key);
73 static void * antlr3ListGet (pANTLR3_LIST list, ANTLR3_INTKEY key);
74 static ANTLR3_INT32 antlr3ListPut (pANTLR3_LIST list, ANTLR3_INTKEY key, void * element, void (ANTLR3_CDECL *freeptr)(void *));
75 static ANTLR3_INT32 antlr3ListAdd (pANTLR3_LIST list, void * element, void (ANTLR3_CDECL *freeptr)(void *));
76 static void * antlr3ListRemove(pANTLR3_LIST list, ANTLR3_INTKEY key);
77 static ANTLR3_UINT32 antlr3ListSize (pANTLR3_LIST list);
78
79 // Interface functions for Stack
80 //
81 static void antlr3StackFree (pANTLR3_STACK stack);
82 static void * antlr3StackPop (pANTLR3_STACK stack);
83 static void * antlr3StackGet (pANTLR3_STACK stack, ANTLR3_INTKEY key);
84 static ANTLR3_BOOLEAN antlr3StackPush (pANTLR3_STACK stack, void * element, void (ANTLR3_CDECL *freeptr)(void *));
85 static ANTLR3_UINT32 antlr3StackSize (pANTLR3_STACK stack);
86 static void * antlr3StackPeek (pANTLR3_STACK stack);
87
88 // Interface functions for vectors
89 //
90 static void ANTLR3_CDECL antlr3VectorFree (pANTLR3_VECTOR vector);
91 static void antlr3VectorDel (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry);
92 static void * antlr3VectorGet (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry);
93 static void * antrl3VectorRemove (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry);
94 static void antlr3VectorClear (pANTLR3_VECTOR vector);
95 static ANTLR3_UINT32 antlr3VectorAdd (pANTLR3_VECTOR vector, void * element, void (ANTLR3_CDECL *freeptr)(void *));
96 static ANTLR3_UINT32 antlr3VectorSet (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry, void * element, void (ANTLR3_CDECL *freeptr)(void *), ANTLR3_BOOLEAN freeExisting);
97 static ANTLR3_UINT32 antlr3VectorSize (pANTLR3_VECTOR vector);
98 static ANTLR3_BOOLEAN antlr3VectorSwap (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry1, ANTLR3_UINT32 entry2);
99
100 static ANTLR3_BOOLEAN newPool (pANTLR3_VECTOR_FACTORY factory);
101 static void closeVectorFactory (pANTLR3_VECTOR_FACTORY factory);
102 static pANTLR3_VECTOR newVector (pANTLR3_VECTOR_FACTORY factory);
103 static void returnVector (pANTLR3_VECTOR_FACTORY factory, pANTLR3_VECTOR vector);
104
105
106 // Interface functions for int TRIE
107 //
108 static pANTLR3_TRIE_ENTRY intTrieGet (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key);
109 static ANTLR3_BOOLEAN intTrieDel (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key);
110 static ANTLR3_BOOLEAN intTrieAdd (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key, ANTLR3_UINT32 type, ANTLR3_INTKEY intType, void * data, void (ANTLR3_CDECL *freeptr)(void *));
111 static void intTrieFree (pANTLR3_INT_TRIE trie);
112
113
114 // Interface functions for topological sorter
115 //
116 static void addEdge (pANTLR3_TOPO topo, ANTLR3_UINT32 edge, ANTLR3_UINT32 dependency);
117 static pANTLR3_UINT32 sortToArray (pANTLR3_TOPO topo);
118 static void sortVector (pANTLR3_TOPO topo, pANTLR3_VECTOR v);
119 static void freeTopo (pANTLR3_TOPO topo);
120
121 // Local function to advance enumeration structure pointers
122 //
123 static void antlr3EnumNextEntry(pANTLR3_HASH_ENUM en);
124
125 pANTLR3_HASH_TABLE
antlr3HashTableNew(ANTLR3_UINT32 sizeHint)126 antlr3HashTableNew(ANTLR3_UINT32 sizeHint)
127 {
128 // All we have to do is create the hashtable tracking structure
129 // and allocate memory for the requested number of buckets.
130 //
131 pANTLR3_HASH_TABLE table;
132
133 ANTLR3_UINT32 bucket; // Used to traverse the buckets
134
135 table = (pANTLR3_HASH_TABLE)ANTLR3_MALLOC(sizeof(ANTLR3_HASH_TABLE));
136
137 // Error out if no memory left
138 if (table == NULL)
139 {
140 return NULL;
141 }
142
143 // Allocate memory for the buckets
144 //
145 table->buckets = (pANTLR3_HASH_BUCKET) ANTLR3_MALLOC((size_t) (sizeof(ANTLR3_HASH_BUCKET) * sizeHint));
146
147 if (table->buckets == NULL)
148 {
149 ANTLR3_FREE((void *)table);
150 return NULL;
151 }
152
153 // Modulo of the table, (bucket count).
154 //
155 table->modulo = sizeHint;
156
157 table->count = 0; /* Nothing in there yet ( I hope) */
158
159 /* Initialize the buckets to empty
160 */
161 for (bucket = 0; bucket < sizeHint; bucket++)
162 {
163 table->buckets[bucket].entries = NULL;
164 }
165
166 /* Exclude duplicate entries by default
167 */
168 table->allowDups = ANTLR3_FALSE;
169
170 /* Assume that keys should by strduped before they are
171 * entered in the table.
172 */
173 table->doStrdup = ANTLR3_TRUE;
174
175 /* Install the interface
176 */
177
178 table->get = antlr3HashGet;
179 table->put = antlr3HashPut;
180 table->del = antlr3HashDelete;
181 table->remove = antlr3HashRemove;
182
183 table->getI = antlr3HashGetI;
184 table->putI = antlr3HashPutI;
185 table->delI = antlr3HashDeleteI;
186 table->removeI = antlr3HashRemoveI;
187
188 table->size = antlr3HashSize;
189 table->free = antlr3HashFree;
190
191 return table;
192 }
193
194 static void
antlr3HashFree(pANTLR3_HASH_TABLE table)195 antlr3HashFree(pANTLR3_HASH_TABLE table)
196 {
197 ANTLR3_UINT32 bucket; /* Used to traverse the buckets */
198
199 pANTLR3_HASH_BUCKET thisBucket;
200 pANTLR3_HASH_ENTRY entry;
201 pANTLR3_HASH_ENTRY nextEntry;
202
203 /* Free the table, all buckets and all entries, and all the
204 * keys and data (if the table exists)
205 */
206 if (table != NULL)
207 {
208 for (bucket = 0; bucket < table->modulo; bucket++)
209 {
210 thisBucket = &(table->buckets[bucket]);
211
212 /* Allow sparse tables, though we don't create them as such at present
213 */
214 if ( thisBucket != NULL)
215 {
216 entry = thisBucket->entries;
217
218 /* Search all entries in the bucket and free them up
219 */
220 while (entry != NULL)
221 {
222 /* Save next entry - we do not want to access memory in entry after we
223 * have freed it.
224 */
225 nextEntry = entry->nextEntry;
226
227 /* Free any data pointer, this only happens if the user supplied
228 * a pointer to a routine that knwos how to free the structure they
229 * added to the table.
230 */
231 if (entry->free != NULL)
232 {
233 entry->free(entry->data);
234 }
235
236 /* Free the key memory - we know that we allocated this
237 */
238 if (entry->keybase.type == ANTLR3_HASH_TYPE_STR && entry->keybase.key.sKey != NULL)
239 {
240 ANTLR3_FREE(entry->keybase.key.sKey);
241 }
242
243 /* Free this entry
244 */
245 ANTLR3_FREE(entry);
246 entry = nextEntry; /* Load next pointer to see if we shoud free it */
247 }
248 /* Invalidate the current pointer
249 */
250 thisBucket->entries = NULL;
251 }
252 }
253
254 /* Now we can free the bucket memory
255 */
256 ANTLR3_FREE(table->buckets);
257 }
258
259 /* Now we free teh memory for the table itself
260 */
261 ANTLR3_FREE(table);
262 }
263
264 /** return the current size of the hash table
265 */
antlr3HashSize(pANTLR3_HASH_TABLE table)266 static ANTLR3_UINT32 antlr3HashSize (pANTLR3_HASH_TABLE table)
267 {
268 return table->count;
269 }
270
271 /** Remove a numeric keyed entry from a hash table if it exists,
272 * no error if it does not exist.
273 */
antlr3HashRemoveI(pANTLR3_HASH_TABLE table,ANTLR3_INTKEY key)274 static pANTLR3_HASH_ENTRY antlr3HashRemoveI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key)
275 {
276 ANTLR3_UINT32 hash;
277 pANTLR3_HASH_BUCKET bucket;
278 pANTLR3_HASH_ENTRY entry;
279 pANTLR3_HASH_ENTRY * nextPointer;
280
281 /* First we need to know the hash of the provided key
282 */
283 hash = (ANTLR3_UINT32)(key % (ANTLR3_INTKEY)(table->modulo));
284
285 /* Knowing the hash, we can find the bucket
286 */
287 bucket = table->buckets + hash;
288
289 /* Now, we traverse the entries in the bucket until
290 * we find the key or the end of the entries in the bucket.
291 * We track the element prior to the one we are examining
292 * as we need to set its next pointer to the next pointer
293 * of the entry we are deleting (if we find it).
294 */
295 entry = bucket->entries; /* Entry to examine */
296 nextPointer = & bucket->entries; /* Where to put the next pointer of the deleted entry */
297
298 while (entry != NULL)
299 {
300 /* See if this is the entry we wish to delete
301 */
302 if (entry->keybase.key.iKey == key)
303 {
304 /* It was the correct entry, so we set the next pointer
305 * of the previous entry to the next pointer of this
306 * located one, which takes it out of the chain.
307 */
308 (*nextPointer) = entry->nextEntry;
309
310 table->count--;
311
312 return entry;
313 }
314 else
315 {
316 /* We found an entry but it wasn't the one that was wanted, so
317 * move to the next one, if any.
318 */
319 nextPointer = & (entry->nextEntry); /* Address of the next pointer in the current entry */
320 entry = entry->nextEntry; /* Address of the next element in the bucket (if any) */
321 }
322 }
323
324 return NULL; /* Not found */
325 }
326
327 /** Remove the element in the hash table for a particular
328 * key value, if it exists - no error if it does not.
329 */
330 static pANTLR3_HASH_ENTRY
antlr3HashRemove(pANTLR3_HASH_TABLE table,void * key)331 antlr3HashRemove(pANTLR3_HASH_TABLE table, void * key)
332 {
333 ANTLR3_UINT32 hash;
334 pANTLR3_HASH_BUCKET bucket;
335 pANTLR3_HASH_ENTRY entry;
336 pANTLR3_HASH_ENTRY * nextPointer;
337
338 /* First we need to know the hash of the provided key
339 */
340 hash = antlr3Hash(key, (ANTLR3_UINT32)strlen((const char *)key));
341
342 /* Knowing the hash, we can find the bucket
343 */
344 bucket = table->buckets + (hash % table->modulo);
345
346 /* Now, we traverse the entries in the bucket until
347 * we find the key or the end of the entires in the bucket.
348 * We track the element prior to the one we are exmaining
349 * as we need to set its next pointer to the next pointer
350 * of the entry we are deleting (if we find it).
351 */
352 entry = bucket->entries; /* Entry to examine */
353 nextPointer = & bucket->entries; /* Where to put the next pointer of the deleted entry */
354
355 while (entry != NULL)
356 {
357 /* See if this is the entry we wish to delete
358 */
359 if (strcmp((const char *)key, (const char *)entry->keybase.key.sKey) == 0)
360 {
361 /* It was the correct entry, so we set the next pointer
362 * of the previous entry to the next pointer of this
363 * located one, which takes it out of the chain.
364 */
365 (*nextPointer) = entry->nextEntry;
366
367 /* Release the key - if we allocated that
368 */
369 if (table->doStrdup == ANTLR3_TRUE)
370 {
371 ANTLR3_FREE(entry->keybase.key.sKey);
372 }
373 entry->keybase.key.sKey = NULL;
374
375 table->count--;
376
377 return entry;
378 }
379 else
380 {
381 /* We found an entry but it wasn't the one that was wanted, so
382 * move to the next one, if any.
383 */
384 nextPointer = & (entry->nextEntry); /* Address of the next pointer in the current entry */
385 entry = entry->nextEntry; /* Address of the next element in the bucket (if any) */
386 }
387 }
388
389 return NULL; /* Not found */
390 }
391
392 /** Takes the element with the supplied key out of the list, and deletes the data
393 * calling the supplied free() routine if any.
394 */
395 static void
antlr3HashDeleteI(pANTLR3_HASH_TABLE table,ANTLR3_INTKEY key)396 antlr3HashDeleteI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key)
397 {
398 pANTLR3_HASH_ENTRY entry;
399
400 entry = antlr3HashRemoveI(table, key);
401
402 /* Now we can free the elements and the entry in order
403 */
404 if (entry != NULL && entry->free != NULL)
405 {
406 /* Call programmer supplied function to release this entry data
407 */
408 entry->free(entry->data);
409 entry->data = NULL;
410 }
411 /* Finally release the space for this entry block.
412 */
413 ANTLR3_FREE(entry);
414 }
415
416 /** Takes the element with the supplied key out of the list, and deletes the data
417 * calling the supplied free() routine if any.
418 */
419 static void
antlr3HashDelete(pANTLR3_HASH_TABLE table,void * key)420 antlr3HashDelete (pANTLR3_HASH_TABLE table, void * key)
421 {
422 pANTLR3_HASH_ENTRY entry;
423
424 entry = antlr3HashRemove(table, key);
425
426 /* Now we can free the elements and the entry in order
427 */
428 if (entry != NULL && entry->free != NULL)
429 {
430 /* Call programmer supplied function to release this entry data
431 */
432 entry->free(entry->data);
433 entry->data = NULL;
434 }
435 /* Finally release the space for this entry block.
436 */
437 ANTLR3_FREE(entry);
438 }
439
440 /** Return the element pointer in the hash table for a particular
441 * key value, or NULL if it don't exist (or was itself NULL).
442 */
443 static void *
antlr3HashGetI(pANTLR3_HASH_TABLE table,ANTLR3_INTKEY key)444 antlr3HashGetI(pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key)
445 {
446 ANTLR3_UINT32 hash;
447 pANTLR3_HASH_BUCKET bucket;
448 pANTLR3_HASH_ENTRY entry;
449
450 /* First we need to know the hash of the provided key
451 */
452 hash = (ANTLR3_UINT32)(key % (ANTLR3_INTKEY)(table->modulo));
453
454 /* Knowing the hash, we can find the bucket
455 */
456 bucket = table->buckets + hash;
457
458 /* Now we can inspect the key at each entry in the bucket
459 * and see if we have a match.
460 */
461 entry = bucket->entries;
462
463 while (entry != NULL)
464 {
465 if (entry->keybase.key.iKey == key)
466 {
467 /* Match was found, return the data pointer for this entry
468 */
469 return entry->data;
470 }
471 entry = entry->nextEntry;
472 }
473
474 /* If we got here, then we did not find the key
475 */
476 return NULL;
477 }
478
479 /** Return the element pointer in the hash table for a particular
480 * key value, or NULL if it don't exist (or was itself NULL).
481 */
482 static void *
antlr3HashGet(pANTLR3_HASH_TABLE table,void * key)483 antlr3HashGet(pANTLR3_HASH_TABLE table, void * key)
484 {
485 ANTLR3_UINT32 hash;
486 pANTLR3_HASH_BUCKET bucket;
487 pANTLR3_HASH_ENTRY entry;
488
489
490 /* First we need to know the hash of the provided key
491 */
492 hash = antlr3Hash(key, (ANTLR3_UINT32)strlen((const char *)key));
493
494 /* Knowing the hash, we can find the bucket
495 */
496 bucket = table->buckets + (hash % table->modulo);
497
498 /* Now we can inspect the key at each entry in the bucket
499 * and see if we have a match.
500 */
501 entry = bucket->entries;
502
503 while (entry != NULL)
504 {
505 if (strcmp((const char *)key, (const char *)entry->keybase.key.sKey) == 0)
506 {
507 /* Match was found, return the data pointer for this entry
508 */
509 return entry->data;
510 }
511 entry = entry->nextEntry;
512 }
513
514 /* If we got here, then we did not find the key
515 */
516 return NULL;
517 }
518
519 /** Add the element pointer in to the table, based upon the
520 * hash of the provided key.
521 */
522 static ANTLR3_INT32
antlr3HashPutI(pANTLR3_HASH_TABLE table,ANTLR3_INTKEY key,void * element,void (ANTLR3_CDECL * freeptr)(void *))523 antlr3HashPutI(pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key, void * element, void (ANTLR3_CDECL *freeptr)(void *))
524 {
525 ANTLR3_UINT32 hash;
526 pANTLR3_HASH_BUCKET bucket;
527 pANTLR3_HASH_ENTRY entry;
528 pANTLR3_HASH_ENTRY * newPointer;
529
530 /* First we need to know the hash of the provided key
531 */
532 hash = (ANTLR3_UINT32)(key % (ANTLR3_INTKEY)(table->modulo));
533
534 /* Knowing the hash, we can find the bucket
535 */
536 bucket = table->buckets + hash;
537
538 /* Knowing the bucket, we can traverse the entries until we
539 * we find a NULL pointer or we find that this is already
540 * in the table and duplicates were not allowed.
541 */
542 newPointer = &bucket->entries;
543
544 while (*newPointer != NULL)
545 {
546 /* The value at new pointer is pointing to an existing entry.
547 * If duplicates are allowed then we don't care what it is, but
548 * must reject this add if the key is the same as the one we are
549 * supplied with.
550 */
551 if (table->allowDups == ANTLR3_FALSE)
552 {
553 if ((*newPointer)->keybase.key.iKey == key)
554 {
555 return ANTLR3_ERR_HASHDUP;
556 }
557 }
558
559 /* Point to the next entry pointer of the current entry we
560 * are traversing, if it is NULL we will create our new
561 * structure and point this to it.
562 */
563 newPointer = &((*newPointer)->nextEntry);
564 }
565
566 /* newPointer is now pointing at the pointer where we need to
567 * add our new entry, so let's crate the entry and add it in.
568 */
569 entry = (pANTLR3_HASH_ENTRY)ANTLR3_MALLOC((size_t)sizeof(ANTLR3_HASH_ENTRY));
570
571 if (entry == NULL)
572 {
573 return ANTLR3_ERR_NOMEM;
574 }
575
576 entry->data = element; /* Install the data element supplied */
577 entry->free = freeptr; /* Function that knows how to release the entry */
578 entry->keybase.type = ANTLR3_HASH_TYPE_INT; /* Indicate the key type stored here for when we free */
579 entry->keybase.key.iKey = key; /* Record the key value */
580 entry->nextEntry = NULL; /* Ensure that the forward pointer ends the chain */
581
582 *newPointer = entry; /* Install the next entry in this bucket */
583
584 table->count++;
585
586 return ANTLR3_SUCCESS;
587 }
588
589
590 /** Add the element pointer in to the table, based upon the
591 * hash of the provided key.
592 */
593 static ANTLR3_INT32
antlr3HashPut(pANTLR3_HASH_TABLE table,void * key,void * element,void (ANTLR3_CDECL * freeptr)(void *))594 antlr3HashPut(pANTLR3_HASH_TABLE table, void * key, void * element, void (ANTLR3_CDECL *freeptr)(void *))
595 {
596 ANTLR3_UINT32 hash;
597 pANTLR3_HASH_BUCKET bucket;
598 pANTLR3_HASH_ENTRY entry;
599 pANTLR3_HASH_ENTRY * newPointer;
600
601 /* First we need to know the hash of the provided key
602 */
603 hash = antlr3Hash(key, (ANTLR3_UINT32)strlen((const char *)key));
604
605 /* Knowing the hash, we can find the bucket
606 */
607 bucket = table->buckets + (hash % table->modulo);
608
609 /* Knowign the bucket, we can traverse the entries until we
610 * we find a NULL pointer ofr we find that this is already
611 * in the table and duplicates were not allowed.
612 */
613 newPointer = &bucket->entries;
614
615 while (*newPointer != NULL)
616 {
617 /* The value at new pointer is pointing to an existing entry.
618 * If duplicates are allowed then we don't care what it is, but
619 * must reject this add if the key is the same as the one we are
620 * supplied with.
621 */
622 if (table->allowDups == ANTLR3_FALSE)
623 {
624 if (strcmp((const char*) key, (const char *)(*newPointer)->keybase.key.sKey) == 0)
625 {
626 return ANTLR3_ERR_HASHDUP;
627 }
628 }
629
630 /* Point to the next entry pointer of the current entry we
631 * are traversing, if it is NULL we will create our new
632 * structure and point this to it.
633 */
634 newPointer = &((*newPointer)->nextEntry);
635 }
636
637 /* newPointer is now poiting at the pointer where we need to
638 * add our new entry, so let's crate the entry and add it in.
639 */
640 entry = (pANTLR3_HASH_ENTRY)ANTLR3_MALLOC((size_t)sizeof(ANTLR3_HASH_ENTRY));
641
642 if (entry == NULL)
643 {
644 return ANTLR3_ERR_NOMEM;
645 }
646
647 entry->data = element; /* Install the data element supplied */
648 entry->free = freeptr; /* Function that knows how to release the entry */
649 entry->keybase.type = ANTLR3_HASH_TYPE_STR; /* Indicate the key type stored here for free() */
650 if (table->doStrdup == ANTLR3_TRUE)
651 {
652 entry->keybase.key.sKey = ANTLR3_STRDUP(key); /* Record the key value */
653 }
654 else
655 {
656 entry->keybase.key.sKey = (pANTLR3_UINT8)key; /* Record the key value */
657 }
658 entry->nextEntry = NULL; /* Ensure that the forward pointer ends the chain */
659
660 *newPointer = entry; /* Install the next entry in this bucket */
661
662 table->count++;
663
664 return ANTLR3_SUCCESS;
665 }
666
667 /** \brief Creates an enumeration structure to traverse the hash table.
668 *
669 * \param table Table to enumerate
670 * \return Pointer to enumeration structure.
671 */
672 pANTLR3_HASH_ENUM
antlr3EnumNew(pANTLR3_HASH_TABLE table)673 antlr3EnumNew (pANTLR3_HASH_TABLE table)
674 {
675 pANTLR3_HASH_ENUM en;
676
677 /* Allocate structure memory
678 */
679 en = (pANTLR3_HASH_ENUM) ANTLR3_MALLOC((size_t)sizeof(ANTLR3_HASH_ENUM));
680
681 /* Check that the allocation was good
682 */
683 if (en == NULL)
684 {
685 return (pANTLR3_HASH_ENUM) ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
686 }
687
688 /* Initialize the start pointers
689 */
690 en->table = table;
691 en->bucket = 0; /* First bucket */
692 en->entry = en->table->buckets->entries; /* First entry to return */
693
694 /* Special case in that the first bucket may not have anything in it
695 * but the antlr3EnumNext() function expects that the en->entry is
696 * set to the next valid pointer. Hence if it is not a valid element
697 * pointer, attempt to find the next one that is, (table may be empty
698 * of course.
699 */
700 if (en->entry == NULL)
701 {
702 antlr3EnumNextEntry(en);
703 }
704
705 /* Install the interface
706 */
707 en->free = antlr3EnumFree;
708 en->next = antlr3EnumNext;
709
710 /* All is good
711 */
712 return en;
713 }
714
715 /** \brief Return the next entry in the hashtable being traversed by the supplied
716 * enumeration.
717 *
718 * \param[in] en Pointer to the enumeration tracking structure
719 * \param key Pointer to void pointer, where the key pointer is returned.
720 * \param data Pointer to void pointer where the data pointer is returned.
721 * \return
722 * - ANTLR3_SUCCESS if there was a next key
723 * - ANTLR3_FAIL if there were no more keys
724 *
725 * \remark
726 * No checking of input structure is performed!
727 */
728 static int
antlr3EnumNext(pANTLR3_HASH_ENUM en,pANTLR3_HASH_KEY * key,void ** data)729 antlr3EnumNext (pANTLR3_HASH_ENUM en, pANTLR3_HASH_KEY * key, void ** data)
730 {
731 /* If the current entry is valid, then use it
732 */
733 if (en->bucket >= en->table->modulo)
734 {
735 /* Already exhausted the table
736 */
737 return ANTLR3_FAIL;
738 }
739
740 /* Pointers are already set to the current entry to return, or
741 * we would not be at this point in the logic flow.
742 */
743 *key = &(en->entry->keybase);
744 *data = en->entry->data;
745
746 /* Return pointers are set up, so now we move the element
747 * pointer to the next in the table (if any).
748 */
749 antlr3EnumNextEntry(en);
750
751 return ANTLR3_SUCCESS;
752 }
753
754 /** \brief Local function to advance the entry pointer of an enumeration
755 * structure to the next valid entry (if there is one).
756 *
757 * \param[in] enum Pointer to ANTLR3 enumeration structure returned by antlr3EnumNew()
758 *
759 * \remark
760 * - The function always leaves the pointers pointing at a valid entry if there
761 * is one, so if the entry pointer is NULL when this function exits, there were
762 * no more entries in the table.
763 */
764 static void
antlr3EnumNextEntry(pANTLR3_HASH_ENUM en)765 antlr3EnumNextEntry(pANTLR3_HASH_ENUM en)
766 {
767 pANTLR3_HASH_BUCKET bucket;
768
769 /* See if the current entry pointer is valid first of all
770 */
771 if (en->entry != NULL)
772 {
773 /* Current entry was a valid point, see if there is another
774 * one in the chain.
775 */
776 if (en->entry->nextEntry != NULL)
777 {
778 /* Next entry in the enumeration is just the next entry
779 * in the chain.
780 */
781 en->entry = en->entry->nextEntry;
782 return;
783 }
784 }
785
786 /* There were no more entries in the current bucket, if there are
787 * more buckets then chase them until we find an entry.
788 */
789 en->bucket++;
790
791 while (en->bucket < en->table->modulo)
792 {
793 /* There was one more bucket, see if it has any elements in it
794 */
795 bucket = en->table->buckets + en->bucket;
796
797 if (bucket->entries != NULL)
798 {
799 /* There was an entry in this bucket, so we can use it
800 * for the next entry in the enumeration.
801 */
802 en->entry = bucket->entries;
803 return;
804 }
805
806 /* There was nothing in the bucket we just examined, move to the
807 * next one.
808 */
809 en->bucket++;
810 }
811
812 /* Here we have exhausted all buckets and the enumeration pointer will
813 * have its bucket count = table->modulo which signifies that we are done.
814 */
815 }
816
817 /** \brief Frees up the memory structures that represent a hash table
818 * enumeration.
819 * \param[in] enum Pointer to ANTLR3 enumeration structure returned by antlr3EnumNew()
820 */
821 static void
antlr3EnumFree(pANTLR3_HASH_ENUM en)822 antlr3EnumFree (pANTLR3_HASH_ENUM en)
823 {
824 /* Nothing to check, we just free it.
825 */
826 ANTLR3_FREE(en);
827 }
828
829 /** Given an input key of arbitrary length, return a hash value of
830 * it. This can then be used (with suitable modulo) to index other
831 * structures.
832 */
833 ANTLR3_API ANTLR3_UINT32
antlr3Hash(void * key,ANTLR3_UINT32 keylen)834 antlr3Hash(void * key, ANTLR3_UINT32 keylen)
835 {
836 /* Accumulate the hash value of the key
837 */
838 ANTLR3_UINT32 hash;
839 pANTLR3_UINT8 keyPtr;
840 ANTLR3_UINT32 i1;
841
842 hash = 0;
843 keyPtr = (pANTLR3_UINT8) key;
844
845 /* Iterate the key and accumulate the hash
846 */
847 while(keylen > 0)
848 {
849 hash = (hash << 4) + (*(keyPtr++));
850
851 if ((i1=hash&0xf0000000) != 0)
852 {
853 hash = hash ^ (i1 >> 24);
854 hash = hash ^ i1;
855 }
856 keylen--;
857 }
858
859 return hash;
860 }
861
862 ANTLR3_API pANTLR3_LIST
antlr3ListNew(ANTLR3_UINT32 sizeHint)863 antlr3ListNew (ANTLR3_UINT32 sizeHint)
864 {
865 pANTLR3_LIST list;
866
867 /* Allocate memory
868 */
869 list = (pANTLR3_LIST)ANTLR3_MALLOC((size_t)sizeof(ANTLR3_LIST));
870
871 if (list == NULL)
872 {
873 return (pANTLR3_LIST)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
874 }
875
876 /* Now we need to add a new table
877 */
878 list->table = antlr3HashTableNew(sizeHint);
879
880 if (list->table == (pANTLR3_HASH_TABLE)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM))
881 {
882 return (pANTLR3_LIST)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
883 }
884
885 /* Allocation was good, install interface
886 */
887 list->free = antlr3ListFree;
888 list->del = antlr3ListDelete;
889 list->get = antlr3ListGet;
890 list->add = antlr3ListAdd;
891 list->remove = antlr3ListRemove;
892 list->put = antlr3ListPut;
893 list->size = antlr3ListSize;
894
895 return list;
896 }
897
antlr3ListSize(pANTLR3_LIST list)898 static ANTLR3_UINT32 antlr3ListSize (pANTLR3_LIST list)
899 {
900 return list->table->size(list->table);
901 }
902
903 static void
antlr3ListFree(pANTLR3_LIST list)904 antlr3ListFree (pANTLR3_LIST list)
905 {
906 /* Free the hashtable that stores the list
907 */
908 list->table->free(list->table);
909
910 /* Free the allocation for the list itself
911 */
912 ANTLR3_FREE(list);
913 }
914
915 static void
antlr3ListDelete(pANTLR3_LIST list,ANTLR3_INTKEY key)916 antlr3ListDelete (pANTLR3_LIST list, ANTLR3_INTKEY key)
917 {
918 list->table->delI(list->table, key);
919 }
920
921 static void *
antlr3ListGet(pANTLR3_LIST list,ANTLR3_INTKEY key)922 antlr3ListGet (pANTLR3_LIST list, ANTLR3_INTKEY key)
923 {
924 return list->table->getI(list->table, key);
925 }
926
927 /** Add the supplied element to the list, at the next available key
928 */
antlr3ListAdd(pANTLR3_LIST list,void * element,void (ANTLR3_CDECL * freeptr)(void *))929 static ANTLR3_INT32 antlr3ListAdd (pANTLR3_LIST list, void * element, void (ANTLR3_CDECL *freeptr)(void *))
930 {
931 ANTLR3_INTKEY key;
932
933 key = list->table->size(list->table) + 1;
934 return list->put(list, key, element, freeptr);
935 }
936
937 /** Remove from the list, but don't free the element, just send it back to the
938 * caller.
939 */
940 static void *
antlr3ListRemove(pANTLR3_LIST list,ANTLR3_INTKEY key)941 antlr3ListRemove (pANTLR3_LIST list, ANTLR3_INTKEY key)
942 {
943 pANTLR3_HASH_ENTRY entry;
944
945 entry = list->table->removeI(list->table, key);
946
947 if (entry != NULL)
948 {
949 return entry->data;
950 }
951 else
952 {
953 return NULL;
954 }
955 }
956
957 static ANTLR3_INT32
antlr3ListPut(pANTLR3_LIST list,ANTLR3_INTKEY key,void * element,void (ANTLR3_CDECL * freeptr)(void *))958 antlr3ListPut (pANTLR3_LIST list, ANTLR3_INTKEY key, void * element, void (ANTLR3_CDECL *freeptr)(void *))
959 {
960 return list->table->putI(list->table, key, element, freeptr);
961 }
962
963 ANTLR3_API pANTLR3_STACK
antlr3StackNew(ANTLR3_UINT32 sizeHint)964 antlr3StackNew (ANTLR3_UINT32 sizeHint)
965 {
966 pANTLR3_STACK stack;
967
968 /* Allocate memory
969 */
970 stack = (pANTLR3_STACK)ANTLR3_MALLOC((size_t)sizeof(ANTLR3_STACK));
971
972 if (stack == NULL)
973 {
974 return (pANTLR3_STACK)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
975 }
976
977 /* Now we need to add a new table
978 */
979 stack->vector = antlr3VectorNew(sizeHint);
980 stack->top = NULL;
981
982 if (stack->vector == (pANTLR3_VECTOR)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM))
983 {
984 return (pANTLR3_STACK)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
985 }
986
987 /* Looks good, now add the interface
988 */
989 stack->get = antlr3StackGet;
990 stack->free = antlr3StackFree;
991 stack->pop = antlr3StackPop;
992 stack->push = antlr3StackPush;
993 stack->size = antlr3StackSize;
994 stack->peek = antlr3StackPeek;
995
996 return stack;
997 }
998
antlr3StackSize(pANTLR3_STACK stack)999 static ANTLR3_UINT32 antlr3StackSize (pANTLR3_STACK stack)
1000 {
1001 return stack->vector->count;
1002 }
1003
1004
1005 static void
antlr3StackFree(pANTLR3_STACK stack)1006 antlr3StackFree (pANTLR3_STACK stack)
1007 {
1008 /* Free the list that supports the stack
1009 */
1010 stack->vector->free(stack->vector);
1011 stack->vector = NULL;
1012 stack->top = NULL;
1013
1014 ANTLR3_FREE(stack);
1015 }
1016
1017 static void *
antlr3StackPop(pANTLR3_STACK stack)1018 antlr3StackPop (pANTLR3_STACK stack)
1019 {
1020 // Delete the element that is currently at the top of the stack
1021 //
1022 stack->vector->del(stack->vector, stack->vector->count - 1);
1023
1024 // And get the element that is the now the top of the stack (if anything)
1025 // NOTE! This is not quite like a 'real' stack, which would normally return you
1026 // the current top of the stack, then remove it from the stack.
1027 // TODO: Review this, it is correct for follow sets which is what this was done for
1028 // but is not as obvious when using it as a 'real'stack.
1029 //
1030 stack->top = stack->vector->get(stack->vector, stack->vector->count - 1);
1031 return stack->top;
1032 }
1033
1034 static void *
antlr3StackGet(pANTLR3_STACK stack,ANTLR3_INTKEY key)1035 antlr3StackGet (pANTLR3_STACK stack, ANTLR3_INTKEY key)
1036 {
1037 return stack->vector->get(stack->vector, (ANTLR3_UINT32)key);
1038 }
1039
1040 static void *
antlr3StackPeek(pANTLR3_STACK stack)1041 antlr3StackPeek (pANTLR3_STACK stack)
1042 {
1043 return stack->top;
1044 }
1045
1046 static ANTLR3_BOOLEAN
antlr3StackPush(pANTLR3_STACK stack,void * element,void (ANTLR3_CDECL * freeptr)(void *))1047 antlr3StackPush (pANTLR3_STACK stack, void * element, void (ANTLR3_CDECL *freeptr)(void *))
1048 {
1049 stack->top = element;
1050 return (ANTLR3_BOOLEAN)(stack->vector->add(stack->vector, element, freeptr));
1051 }
1052
1053 ANTLR3_API pANTLR3_VECTOR
antlr3VectorNew(ANTLR3_UINT32 sizeHint)1054 antlr3VectorNew (ANTLR3_UINT32 sizeHint)
1055 {
1056 pANTLR3_VECTOR vector;
1057
1058
1059 // Allocate memory for the vector structure itself
1060 //
1061 vector = (pANTLR3_VECTOR) ANTLR3_MALLOC((size_t)(sizeof(ANTLR3_VECTOR)));
1062
1063 if (vector == NULL)
1064 {
1065 return (pANTLR3_VECTOR)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
1066 }
1067
1068 // Now fill in the defaults
1069 //
1070 antlr3SetVectorApi(vector, sizeHint);
1071
1072 // And everything is hunky dory
1073 //
1074 return vector;
1075 }
1076
1077 ANTLR3_API void
antlr3SetVectorApi(pANTLR3_VECTOR vector,ANTLR3_UINT32 sizeHint)1078 antlr3SetVectorApi (pANTLR3_VECTOR vector, ANTLR3_UINT32 sizeHint)
1079 {
1080 ANTLR3_UINT32 initialSize;
1081
1082 // Allow vectors to be guessed by ourselves, so input size can be zero
1083 //
1084 if (sizeHint > ANTLR3_VECTOR_INTERNAL_SIZE)
1085 {
1086 initialSize = sizeHint;
1087 }
1088 else
1089 {
1090 initialSize = ANTLR3_VECTOR_INTERNAL_SIZE;
1091 }
1092
1093 if (sizeHint > ANTLR3_VECTOR_INTERNAL_SIZE)
1094 {
1095 vector->elements = (pANTLR3_VECTOR_ELEMENT)ANTLR3_MALLOC((size_t)(sizeof(ANTLR3_VECTOR_ELEMENT) * initialSize));
1096 }
1097 else
1098 {
1099 vector->elements = vector->internal;
1100 }
1101
1102 if (vector->elements == NULL)
1103 {
1104 ANTLR3_FREE(vector);
1105 return;
1106 }
1107
1108 // Memory allocated successfully
1109 //
1110 vector->count = 0; // No entries yet of course
1111 vector->elementsSize = initialSize; // Available entries
1112
1113 // Now we can install the API
1114 //
1115 vector->add = antlr3VectorAdd;
1116 vector->del = antlr3VectorDel;
1117 vector->get = antlr3VectorGet;
1118 vector->free = antlr3VectorFree;
1119 vector->set = antlr3VectorSet;
1120 vector->remove = antrl3VectorRemove;
1121 vector->clear = antlr3VectorClear;
1122 vector->size = antlr3VectorSize;
1123 vector->swap = antlr3VectorSwap;
1124
1125 // Assume that this is not a factory made vector
1126 //
1127 vector->factoryMade = ANTLR3_FALSE;
1128 }
1129
1130 // Clear the entries in a vector.
1131 // Clearing the vector leaves its capacity the same but
1132 // it walks the entries first to see if any of them
1133 // have a free routine that must be called.
1134 //
1135 static void
antlr3VectorClear(pANTLR3_VECTOR vector)1136 antlr3VectorClear (pANTLR3_VECTOR vector)
1137 {
1138 ANTLR3_UINT32 entry;
1139
1140 // We must traverse every entry in the vector and if it has
1141 // a pointer to a free function then we call it with the
1142 // the entry pointer
1143 //
1144 for (entry = 0; entry < vector->count; entry++)
1145 {
1146 if (vector->elements[entry].freeptr != NULL)
1147 {
1148 vector->elements[entry].freeptr(vector->elements[entry].element);
1149 }
1150 vector->elements[entry].freeptr = NULL;
1151 vector->elements[entry].element = NULL;
1152 }
1153
1154 // Having called any free pointers, we just reset the entry count
1155 // back to zero.
1156 //
1157 vector->count = 0;
1158 }
1159
1160 static
antlr3VectorFree(pANTLR3_VECTOR vector)1161 void ANTLR3_CDECL antlr3VectorFree (pANTLR3_VECTOR vector)
1162 {
1163 ANTLR3_UINT32 entry;
1164
1165 // We must traverse every entry in the vector and if it has
1166 // a pointer to a free function then we call it with the
1167 // the entry pointer
1168 //
1169 for (entry = 0; entry < vector->count; entry++)
1170 {
1171 if (vector->elements[entry].freeptr != NULL)
1172 {
1173 vector->elements[entry].freeptr(vector->elements[entry].element);
1174 }
1175 vector->elements[entry].freeptr = NULL;
1176 vector->elements[entry].element = NULL;
1177 }
1178
1179 if (vector->factoryMade == ANTLR3_FALSE)
1180 {
1181 // The entries are freed, so free the element allocation
1182 //
1183 if (vector->elementsSize > ANTLR3_VECTOR_INTERNAL_SIZE)
1184 {
1185 ANTLR3_FREE(vector->elements);
1186 }
1187 vector->elements = NULL;
1188
1189 // Finally, free the allocation for the vector itself
1190 //
1191 ANTLR3_FREE(vector);
1192 }
1193 }
1194
antlr3VectorDel(pANTLR3_VECTOR vector,ANTLR3_UINT32 entry)1195 static void antlr3VectorDel (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry)
1196 {
1197 // Check this is a valid request first
1198 //
1199 if (entry >= vector->count)
1200 {
1201 return;
1202 }
1203
1204 // Valid request, check for free pointer and call it if present
1205 //
1206 if (vector->elements[entry].freeptr != NULL)
1207 {
1208 vector->elements[entry].freeptr(vector->elements[entry].element);
1209 vector->elements[entry].freeptr = NULL;
1210 }
1211
1212 if (entry == vector->count - 1)
1213 {
1214 // Ensure the pointer is never reused by accident, but otherwise just
1215 // decrement the pointer.
1216 //
1217 vector->elements[entry].element = NULL;
1218 }
1219 else
1220 {
1221 // Need to shuffle trailing pointers back over the deleted entry
1222 //
1223 ANTLR3_MEMMOVE(vector->elements + entry, vector->elements + entry + 1, sizeof(ANTLR3_VECTOR_ELEMENT) * (vector->count - entry - 1));
1224 }
1225
1226 // One less entry in the vector now
1227 //
1228 vector->count--;
1229 }
1230
antlr3VectorGet(pANTLR3_VECTOR vector,ANTLR3_UINT32 entry)1231 static void * antlr3VectorGet (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry)
1232 {
1233 // Ensure this is a valid request
1234 //
1235 if (entry < vector->count)
1236 {
1237 return vector->elements[entry].element;
1238 }
1239 else
1240 {
1241 // I know nothing, Mr. Fawlty!
1242 //
1243 return NULL;
1244 }
1245 }
1246
1247 /// Remove the entry from the vector, but do not free any entry, even if it has
1248 /// a free pointer.
1249 ///
antrl3VectorRemove(pANTLR3_VECTOR vector,ANTLR3_UINT32 entry)1250 static void * antrl3VectorRemove (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry)
1251 {
1252 void * element;
1253
1254 // Check this is a valid request first
1255 //
1256 if (entry >= vector->count)
1257 {
1258 return NULL;
1259 }
1260
1261 // Valid request, return the sorted pointer
1262 //
1263
1264 element = vector->elements[entry].element;
1265
1266 if (entry == vector->count - 1)
1267 {
1268 // Ensure the pointer is never reused by accident, but otherwise just
1269 // decrement the pointer.
1270 ///
1271 vector->elements[entry].element = NULL;
1272 vector->elements[entry].freeptr = NULL;
1273 }
1274 else
1275 {
1276 // Need to shuffle trailing pointers back over the deleted entry
1277 //
1278 ANTLR3_MEMMOVE(vector->elements + entry, vector->elements + entry + 1, sizeof(ANTLR3_VECTOR_ELEMENT) * (vector->count - entry - 1));
1279 }
1280
1281 // One less entry in the vector now
1282 //
1283 vector->count--;
1284
1285 return element;
1286 }
1287
1288 static ANTLR3_BOOLEAN
antlr3VectorResize(pANTLR3_VECTOR vector,ANTLR3_UINT32 hint)1289 antlr3VectorResize (pANTLR3_VECTOR vector, ANTLR3_UINT32 hint)
1290 {
1291 ANTLR3_UINT32 newSize;
1292
1293 // Need to resize the element pointers. We double the allocation
1294 // we already have unless asked for a specific increase.
1295 //
1296 if (hint == 0 || hint < vector->elementsSize)
1297 {
1298 newSize = vector->elementsSize * 2;
1299 }
1300 else
1301 {
1302 newSize = hint * 2;
1303 }
1304
1305 // Now we know how many we need, so we see if we have just expanded
1306 // past the built in vector elements or were already past that
1307 //
1308 if (vector->elementsSize > ANTLR3_VECTOR_INTERNAL_SIZE)
1309 {
1310 // We were already larger than the internal size, so we just
1311 // use realloc so that the pointers are copied for us
1312 //
1313 pANTLR3_VECTOR_ELEMENT newElements = (pANTLR3_VECTOR_ELEMENT)ANTLR3_REALLOC(vector->elements, (sizeof(ANTLR3_VECTOR_ELEMENT)* newSize));
1314 if (newElements == NULL)
1315 {
1316 // realloc failed, but the old allocation is still there
1317 return ANTLR3_FALSE;
1318 }
1319 vector->elements = newElements;
1320 }
1321 else
1322 {
1323 // The current size was less than or equal to the internal array size and as we always start
1324 // with a size that is at least the maximum internal size, then we must need to allocate new memory
1325 // for external pointers. We don't want to take the time to calculate if a requested element
1326 // is part of the internal or external entries, so we copy the internal ones to the new space
1327 //
1328 vector->elements = (pANTLR3_VECTOR_ELEMENT)ANTLR3_MALLOC((sizeof(ANTLR3_VECTOR_ELEMENT)* newSize));
1329 if (vector->elements == NULL)
1330 {
1331 // malloc failed
1332 return ANTLR3_FALSE;
1333 }
1334 ANTLR3_MEMCPY(vector->elements, vector->internal, ANTLR3_VECTOR_INTERNAL_SIZE * sizeof(ANTLR3_VECTOR_ELEMENT));
1335 }
1336
1337 vector->elementsSize = newSize;
1338 return ANTLR3_TRUE;
1339 }
1340
1341 /// Add the supplied pointer and freeing function pointer to the list,
1342 /// expanding the vector if needed.
1343 ///
antlr3VectorAdd(pANTLR3_VECTOR vector,void * element,void (ANTLR3_CDECL * freeptr)(void *))1344 static ANTLR3_UINT32 antlr3VectorAdd (pANTLR3_VECTOR vector, void * element, void (ANTLR3_CDECL *freeptr)(void *))
1345 {
1346 // Do we need to resize the vector table?
1347 //
1348 if (vector->count == vector->elementsSize)
1349 {
1350 // Give no hint, we let it add 1024 or double it
1351 if (!antlr3VectorResize(vector, 0))
1352 {
1353 // Resize failed
1354 return 0;
1355 }
1356 }
1357
1358 // Insert the new entry
1359 //
1360 vector->elements[vector->count].element = element;
1361 vector->elements[vector->count].freeptr = freeptr;
1362
1363 vector->count++; // One more element counted
1364
1365 return (ANTLR3_UINT32)(vector->count);
1366
1367 }
1368
1369 /// Replace the element at the specified entry point with the supplied
1370 /// entry.
1371 ///
1372 static ANTLR3_UINT32
antlr3VectorSet(pANTLR3_VECTOR vector,ANTLR3_UINT32 entry,void * element,void (ANTLR3_CDECL * freeptr)(void *),ANTLR3_BOOLEAN freeExisting)1373 antlr3VectorSet (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry, void * element, void (ANTLR3_CDECL *freeptr)(void *), ANTLR3_BOOLEAN freeExisting)
1374 {
1375
1376 // If the vector is currently not big enough, then we expand it
1377 //
1378 if (entry >= vector->elementsSize)
1379 {
1380 // We will get at least this many
1381 if (!antlr3VectorResize(vector, entry))
1382 {
1383 // Resize failed
1384 return 0;
1385 }
1386 }
1387
1388 // Valid request, replace the current one, freeing any prior entry if told to
1389 //
1390 if ( entry < vector->count // If actually replacing an element
1391 && freeExisting // And told to free any existing element
1392 && vector->elements[entry].freeptr != NULL // And the existing element has a free pointer
1393 )
1394 {
1395 vector->elements[entry].freeptr(vector->elements[entry].element);
1396 }
1397
1398 // Install the new pointers
1399 //
1400 vector->elements[entry].freeptr = freeptr;
1401 vector->elements[entry].element = element;
1402
1403 if (entry >= vector->count)
1404 {
1405 vector->count = entry + 1;
1406 }
1407 return (ANTLR3_UINT32)(entry); // Indicates the replacement was successful
1408
1409 }
1410
1411 /// Replace the element at the specified entry point with the supplied
1412 /// entry.
1413 ///
1414 static ANTLR3_BOOLEAN
antlr3VectorSwap(pANTLR3_VECTOR vector,ANTLR3_UINT32 entry1,ANTLR3_UINT32 entry2)1415 antlr3VectorSwap (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry1, ANTLR3_UINT32 entry2)
1416 {
1417
1418 void * tempEntry;
1419 void (ANTLR3_CDECL *freeptr)(void *);
1420
1421 // If the vector is currently not big enough, then we do nothing
1422 //
1423 if (entry1 >= vector->elementsSize || entry2 >= vector->elementsSize)
1424 {
1425 return ANTLR3_FALSE;
1426 }
1427
1428 // Valid request, swap them
1429 //
1430 tempEntry = vector->elements[entry1].element;
1431 freeptr = vector->elements[entry1].freeptr;
1432
1433 // Install the new pointers
1434 //
1435 vector->elements[entry1].freeptr = vector->elements[entry2].freeptr;
1436 vector->elements[entry1].element = vector->elements[entry2].element;
1437
1438 vector->elements[entry2].freeptr = freeptr;
1439 vector->elements[entry2].element = tempEntry;
1440
1441 return ANTLR3_TRUE;
1442
1443 }
1444
antlr3VectorSize(pANTLR3_VECTOR vector)1445 static ANTLR3_UINT32 antlr3VectorSize (pANTLR3_VECTOR vector)
1446 {
1447 return vector->count;
1448 }
1449
1450 #ifdef ANTLR3_WINDOWS
1451 #pragma warning (push)
1452 #pragma warning (disable : 4100)
1453 #endif
1454 /// Vector factory creation
1455 ///
1456 ANTLR3_API pANTLR3_VECTOR_FACTORY
antlr3VectorFactoryNew(ANTLR3_UINT32 sizeHint)1457 antlr3VectorFactoryNew (ANTLR3_UINT32 sizeHint)
1458 {
1459 pANTLR3_VECTOR_FACTORY factory;
1460
1461 // Allocate memory for the factory
1462 //
1463 factory = (pANTLR3_VECTOR_FACTORY)ANTLR3_MALLOC((size_t)(sizeof(ANTLR3_VECTOR_FACTORY)));
1464
1465 if (factory == NULL)
1466 {
1467 return NULL;
1468 }
1469
1470 // Factory memory is good, so create a new vector pool
1471 //
1472 factory->pools = NULL;
1473 factory->thisPool = -1;
1474
1475 newPool(factory);
1476
1477 // Initialize the API, ignore the hint as this algorithm does
1478 // a better job really.
1479 //
1480 antlr3SetVectorApi(&(factory->unTruc), ANTLR3_VECTOR_INTERNAL_SIZE);
1481
1482 factory->unTruc.factoryMade = ANTLR3_TRUE;
1483
1484 // Install the factory API
1485 //
1486 factory->close = closeVectorFactory;
1487 factory->newVector = newVector;
1488 factory->returnVector = returnVector;
1489
1490 // Create a stack to accumulate reusable vectors
1491 //
1492 factory->freeStack = antlr3StackNew(16);
1493 return factory;
1494 }
1495 #ifdef ANTLR3_WINDOWS
1496 #pragma warning (pop)
1497 #endif
1498
1499 static void
returnVector(pANTLR3_VECTOR_FACTORY factory,pANTLR3_VECTOR vector)1500 returnVector (pANTLR3_VECTOR_FACTORY factory, pANTLR3_VECTOR vector)
1501 {
1502 // First we need to clear out anything that is still in the vector
1503 //
1504 vector->clear(vector);
1505
1506 // We have a free stack available so we can add the vector we were
1507 // given into the free chain. The vector has to have come from this
1508 // factory, so we already know how to release its memory when it
1509 // dies by virtue of the factory being closed.
1510 //
1511 factory->freeStack->push(factory->freeStack, vector, NULL);
1512
1513 // TODO: remove this line once happy printf("Returned vector %08X to the pool, stack size is %d\n", vector, factory->freeStack->size(factory->freeStack));
1514 }
1515
1516 static ANTLR3_BOOLEAN
newPool(pANTLR3_VECTOR_FACTORY factory)1517 newPool(pANTLR3_VECTOR_FACTORY factory)
1518 {
1519 pANTLR3_VECTOR *newPools;
1520
1521 /* Increment factory count
1522 */
1523 ++factory->thisPool;
1524
1525 /* Ensure we have enough pointers allocated
1526 */
1527 newPools = (pANTLR3_VECTOR *)
1528 ANTLR3_REALLOC( (void *)factory->pools, /* Current pools pointer (starts at NULL) */
1529 (ANTLR3_UINT32)((factory->thisPool + 1) * sizeof(pANTLR3_VECTOR *)) /* Memory for new pool pointers */
1530 );
1531 if (newPools == NULL)
1532 {
1533 // realloc failed, but we still have the old allocation
1534 --factory->thisPool;
1535 return ANTLR3_FALSE;
1536 }
1537 factory->pools = newPools;
1538
1539 /* Allocate a new pool for the factory
1540 */
1541 factory->pools[factory->thisPool] =
1542 (pANTLR3_VECTOR)
1543 ANTLR3_MALLOC((size_t)(sizeof(ANTLR3_VECTOR) * ANTLR3_FACTORY_VPOOL_SIZE));
1544 if (factory->pools[factory->thisPool] == NULL)
1545 {
1546 // malloc failed
1547 --factory->thisPool;
1548 return ANTLR3_FALSE;
1549 }
1550
1551
1552 /* Reset the counters
1553 */
1554 factory->nextVector = 0;
1555
1556 /* Done
1557 */
1558 return ANTLR3_TRUE;
1559 }
1560
1561 static void
closeVectorFactory(pANTLR3_VECTOR_FACTORY factory)1562 closeVectorFactory (pANTLR3_VECTOR_FACTORY factory)
1563 {
1564 pANTLR3_VECTOR pool;
1565 ANTLR3_INT32 poolCount;
1566 ANTLR3_UINT32 limit;
1567 ANTLR3_UINT32 vector;
1568 pANTLR3_VECTOR check;
1569
1570 // First see if we have a free chain stack to release?
1571 //
1572 if (factory->freeStack != NULL)
1573 {
1574 factory->freeStack->free(factory->freeStack);
1575 }
1576
1577 /* We iterate the vector pools one at a time
1578 */
1579 for (poolCount = 0; poolCount <= factory->thisPool; poolCount++)
1580 {
1581 /* Pointer to current pool
1582 */
1583 pool = factory->pools[poolCount];
1584
1585 /* Work out how many tokens we need to check in this pool.
1586 */
1587 limit = (poolCount == factory->thisPool ? factory->nextVector : ANTLR3_FACTORY_VPOOL_SIZE);
1588
1589 /* Marginal condition, we might be at the start of a brand new pool
1590 * where the nextToken is 0 and nothing has been allocated.
1591 */
1592 if (limit > 0)
1593 {
1594 /* We have some vectors allocated from this pool
1595 */
1596 for (vector = 0; vector < limit; vector++)
1597 {
1598 /* Next one in the chain
1599 */
1600 check = pool + vector;
1601
1602 // Call the free function on each of the vectors in the pool,
1603 // which in turn will cause any elements it holds that also have a free
1604 // pointer to be freed. However, because any vector may be in any other
1605 // vector, we don't free the element allocations yet. We do that in a
1606 // a specific pass, coming up next. The vector free function knows that
1607 // this is a factory allocated pool vector and so it won't free things it
1608 // should not.
1609 //
1610 check->free(check);
1611 }
1612 }
1613 }
1614
1615 /* We iterate the vector pools one at a time once again, but this time
1616 * we are going to free up any allocated element pointers. Note that we are doing this
1617 * so that we do not try to release vectors twice. When building ASTs we just copy
1618 * the vectors all over the place and they may be embedded in this vector pool
1619 * numerous times.
1620 */
1621 for (poolCount = 0; poolCount <= factory->thisPool; poolCount++)
1622 {
1623 /* Pointer to current pool
1624 */
1625 pool = factory->pools[poolCount];
1626
1627 /* Work out how many tokens we need to check in this pool.
1628 */
1629 limit = (poolCount == factory->thisPool ? factory->nextVector : ANTLR3_FACTORY_VPOOL_SIZE);
1630
1631 /* Marginal condition, we might be at the start of a brand new pool
1632 * where the nextToken is 0 and nothing has been allocated.
1633 */
1634 if (limit > 0)
1635 {
1636 /* We have some vectors allocated from this pool
1637 */
1638 for (vector = 0; vector < limit; vector++)
1639 {
1640 /* Next one in the chain
1641 */
1642 check = pool + vector;
1643
1644 // Anything in here should be factory made, but we do this just
1645 // to triple check. We just free up the elements if they were
1646 // allocated beyond the internal size.
1647 //
1648 if (check->factoryMade == ANTLR3_TRUE && check->elementsSize > ANTLR3_VECTOR_INTERNAL_SIZE)
1649 {
1650 ANTLR3_FREE(check->elements);
1651 check->elements = NULL;
1652 }
1653 }
1654 }
1655
1656 // We can now free this pool allocation as we have called free on every element in every vector
1657 // and freed any memory for pointers the grew beyond the internal size limit.
1658 //
1659 ANTLR3_FREE(factory->pools[poolCount]);
1660 factory->pools[poolCount] = NULL;
1661 }
1662
1663 /* All the pools are deallocated we can free the pointers to the pools
1664 * now.
1665 */
1666 ANTLR3_FREE(factory->pools);
1667
1668 /* Finally, we can free the space for the factory itself
1669 */
1670 ANTLR3_FREE(factory);
1671
1672 }
1673
1674 static pANTLR3_VECTOR
newVector(pANTLR3_VECTOR_FACTORY factory)1675 newVector(pANTLR3_VECTOR_FACTORY factory)
1676 {
1677 pANTLR3_VECTOR vector;
1678
1679 // If we have anything on the re claim stack, reuse it
1680 //
1681 vector = (pANTLR3_VECTOR)factory->freeStack->peek(factory->freeStack);
1682
1683 if (vector != NULL)
1684 {
1685 // Cool we got something we could reuse
1686 //
1687 factory->freeStack->pop(factory->freeStack);
1688
1689 // TODO: remove this line once happy printf("Reused vector %08X from stack, size is now %d\n", vector, factory->freeStack->size(factory->freeStack));
1690 return vector;
1691
1692 }
1693
1694 // See if we need a new vector pool before allocating a new
1695 // one
1696 //
1697 if (factory->nextVector >= ANTLR3_FACTORY_VPOOL_SIZE)
1698 {
1699 // We ran out of vectors in the current pool, so we need a new pool
1700 //
1701 if (!newPool(factory))
1702 {
1703 // new pool creation failed
1704 return NULL;
1705 }
1706 }
1707
1708 // Assuming everything went well (we are trying for performance here so doing minimal
1709 // error checking. Then we can work out what the pointer is to the next vector.
1710 //
1711 vector = factory->pools[factory->thisPool] + factory->nextVector;
1712 factory->nextVector++;
1713
1714 // We have our token pointer now, so we can initialize it to the predefined model.
1715 //
1716 antlr3SetVectorApi(vector, ANTLR3_VECTOR_INTERNAL_SIZE);
1717 vector->factoryMade = ANTLR3_TRUE;
1718
1719 // We know that the pool vectors are created at the default size, which means they
1720 // will start off using their internal entry pointers. We must initialize our pool vector
1721 // to point to its own internal entry table and not the pre-made one.
1722 //
1723 vector->elements = vector->internal;
1724
1725 // TODO: remove this line once happy printf("Used a new vector at %08X from the pools as nothing on the reusue stack\n", vector);
1726
1727 // And we are done
1728 //
1729 return vector;
1730 }
1731
1732 /** Array of left most significant bit positions for an 8 bit
1733 * element provides an efficient way to find the highest bit
1734 * that is set in an n byte value (n>0). Assuming the values will all hit the data cache,
1735 * coding without conditional elements should allow branch
1736 * prediction to work well and of course a parallel instruction cache
1737 * will whip through this. Otherwise we must loop shifting a one
1738 * bit and masking. The values we tend to be placing in out integer
1739 * patricia trie are usually a lot lower than the 64 bits we
1740 * allow for the key allows. Hence there is a lot of redundant looping and
1741 * shifting in a while loop. Whereas, the lookup table is just
1742 * a few ands and indirect lookups, while testing for 0. This
1743 * is likely to be done in parallel on many processors available
1744 * when I wrote this. If this code survives as long as yacc, then
1745 * I may already be dead by the time you read this and maybe there is
1746 * a single machine instruction to perform the operation. What
1747 * else are you going to do with all those transistors? Jim 2007
1748 *
1749 * The table is probably obvious but it is just the number 0..7
1750 * of the MSB in each integer value 0..256
1751 */
1752 static ANTLR3_UINT8 bitIndex[256] =
1753 {
1754 0, // 0 - Just for padding
1755 0, // 1
1756 1, 1, // 2..3
1757 2, 2, 2, 2, // 4..7
1758 3, 3, 3, 3, 3, 3, 3, 3, // 8+
1759 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, // 16+
1760 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, // 32+
1761 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1762 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, // 64+
1763 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1764 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1765 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1766 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 128+
1767 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1768 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1769 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1770 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1771 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1772 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1773 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
1774 };
1775
1776 /** Rather than use the bit index of a trie node to shift
1777 * 0x01 left that many times, then & with the result, it is
1778 * faster to use the bit index as an index into this table
1779 * which holds precomputed masks for any of the 64 bits
1780 * we need to mask off singly. The data values will stay in
1781 * cache while ever a trie is in heavy use, such as in
1782 * memoization. It is also pretty enough to be ASCII art.
1783 */
1784 static ANTLR3_UINT64 bitMask[64] =
1785 {
1786 0x0000000000000001ULL, 0x0000000000000002ULL, 0x0000000000000004ULL, 0x0000000000000008ULL,
1787 0x0000000000000010ULL, 0x0000000000000020ULL, 0x0000000000000040ULL, 0x0000000000000080ULL,
1788 0x0000000000000100ULL, 0x0000000000000200ULL, 0x0000000000000400ULL, 0x0000000000000800ULL,
1789 0x0000000000001000ULL, 0x0000000000002000ULL, 0x0000000000004000ULL, 0x0000000000008000ULL,
1790 0x0000000000010000ULL, 0x0000000000020000ULL, 0x0000000000040000ULL, 0x0000000000080000ULL,
1791 0x0000000000100000ULL, 0x0000000000200000ULL, 0x0000000000400000ULL, 0x0000000000800000ULL,
1792 0x0000000001000000ULL, 0x0000000002000000ULL, 0x0000000004000000ULL, 0x0000000008000000ULL,
1793 0x0000000010000000ULL, 0x0000000020000000ULL, 0x0000000040000000ULL, 0x0000000080000000ULL,
1794 0x0000000100000000ULL, 0x0000000200000000ULL, 0x0000000400000000ULL, 0x0000000800000000ULL,
1795 0x0000001000000000ULL, 0x0000002000000000ULL, 0x0000004000000000ULL, 0x0000008000000000ULL,
1796 0x0000010000000000ULL, 0x0000020000000000ULL, 0x0000040000000000ULL, 0x0000080000000000ULL,
1797 0x0000100000000000ULL, 0x0000200000000000ULL, 0x0000400000000000ULL, 0x0000800000000000ULL,
1798 0x0001000000000000ULL, 0x0002000000000000ULL, 0x0004000000000000ULL, 0x0008000000000000ULL,
1799 0x0010000000000000ULL, 0x0020000000000000ULL, 0x0040000000000000ULL, 0x0080000000000000ULL,
1800 0x0100000000000000ULL, 0x0200000000000000ULL, 0x0400000000000000ULL, 0x0800000000000000ULL,
1801 0x1000000000000000ULL, 0x2000000000000000ULL, 0x4000000000000000ULL, 0x8000000000000000ULL
1802 };
1803
1804 /* INT TRIE Implementation of depth 64 bits, being the number of bits
1805 * in a 64 bit integer.
1806 */
1807
1808 pANTLR3_INT_TRIE
antlr3IntTrieNew(ANTLR3_UINT32 depth)1809 antlr3IntTrieNew(ANTLR3_UINT32 depth)
1810 {
1811 pANTLR3_INT_TRIE trie;
1812
1813 trie = (pANTLR3_INT_TRIE) ANTLR3_CALLOC(1, sizeof(ANTLR3_INT_TRIE)); /* Base memory required */
1814
1815 if (trie == NULL)
1816 {
1817 return (pANTLR3_INT_TRIE) ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
1818 }
1819
1820 /* Now we need to allocate the root node. This makes it easier
1821 * to use the tree as we don't have to do anything special
1822 * for the root node.
1823 */
1824 trie->root = (pANTLR3_INT_TRIE_NODE) ANTLR3_CALLOC(1, sizeof(ANTLR3_INT_TRIE));
1825
1826 if (trie->root == NULL)
1827 {
1828 ANTLR3_FREE(trie);
1829 return (pANTLR3_INT_TRIE) ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
1830 }
1831
1832 trie->add = intTrieAdd;
1833 trie->del = intTrieDel;
1834 trie->free = intTrieFree;
1835 trie->get = intTrieGet;
1836
1837 /* Now we seed the root node with the index being the
1838 * highest left most bit we want to test, which limits the
1839 * keys in the trie. This is the trie 'depth'. The limit for
1840 * this implementation is 63 (bits 0..63).
1841 */
1842 trie->root->bitNum = depth;
1843
1844 /* And as we have nothing in here yet, we set both child pointers
1845 * of the root node to point back to itself.
1846 */
1847 trie->root->leftN = trie->root;
1848 trie->root->rightN = trie->root;
1849 trie->count = 0;
1850
1851 /* Finally, note that the key for this root node is 0 because
1852 * we use calloc() to initialise it.
1853 */
1854
1855 return trie;
1856 }
1857
1858 /** Search the int Trie and return a pointer to the first bucket indexed
1859 * by the key if it is contained in the trie, otherwise NULL.
1860 */
1861 static pANTLR3_TRIE_ENTRY
intTrieGet(pANTLR3_INT_TRIE trie,ANTLR3_INTKEY key)1862 intTrieGet (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key)
1863 {
1864 pANTLR3_INT_TRIE_NODE thisNode;
1865 pANTLR3_INT_TRIE_NODE nextNode;
1866
1867 if (trie->count == 0)
1868 {
1869 return NULL; /* Nothing in this trie yet */
1870 }
1871 /* Starting at the root node in the trie, compare the bit index
1872 * of the current node with its next child node (starts left from root).
1873 * When the bit index of the child node is greater than the bit index of the current node
1874 * then by definition (as the bit index decreases as we descent the trie)
1875 * we have reached a 'backward' pointer. A backward pointer means we
1876 * have reached the only node that can be reached by the bits given us so far
1877 * and it must either be the key we are looking for, or if not then it
1878 * means the entry was not in the trie, and we return NULL. A backward pointer
1879 * points back in to the tree structure rather than down (deeper) within the
1880 * tree branches.
1881 */
1882 thisNode = trie->root; /* Start at the root node */
1883 nextNode = thisNode->leftN; /* Examine the left node from the root */
1884
1885 /* While we are descending the tree nodes...
1886 */
1887 while (thisNode->bitNum > nextNode->bitNum)
1888 {
1889 /* Next node now becomes the new 'current' node
1890 */
1891 thisNode = nextNode;
1892
1893 /* We now test the bit indicated by the bitmap in the next node
1894 * in the key we are searching for. The new next node is the
1895 * right node if that bit is set and the left node it is not.
1896 */
1897 if (key & bitMask[nextNode->bitNum])
1898 {
1899 nextNode = nextNode->rightN; /* 1 is right */
1900 }
1901 else
1902 {
1903 nextNode = nextNode->leftN; /* 0 is left */
1904 }
1905 }
1906
1907 /* Here we have reached a node where the bitMap index is lower than
1908 * its parent. This means it is pointing backward in the tree and
1909 * must therefore be a terminal node, being the only point than can
1910 * be reached with the bits seen so far. It is either the actual key
1911 * we wanted, or if that key is not in the trie it is another key
1912 * that is currently the only one that can be reached by those bits.
1913 * That situation would obviously change if the key was to be added
1914 * to the trie.
1915 *
1916 * Hence it only remains to test whether this is actually the key or not.
1917 */
1918 if (nextNode->key == key)
1919 {
1920 /* This was the key, so return the entry pointer
1921 */
1922 return nextNode->buckets;
1923 }
1924 else
1925 {
1926 return NULL; /* That key is not in the trie (note that we set the pointer to -1 if no payload) */
1927 }
1928 }
1929
1930
1931 static ANTLR3_BOOLEAN
intTrieDel(pANTLR3_INT_TRIE trie,ANTLR3_INTKEY key)1932 intTrieDel (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key)
1933 {
1934 pANTLR3_INT_TRIE_NODE p;
1935
1936 p=trie->root;
1937
1938 return ANTLR3_FALSE;
1939 }
1940
1941 /** Add an entry into the INT trie.
1942 * Basically we descend the trie as we do when searching it, which will
1943 * locate the only node in the trie that can be reached by the bit pattern of the
1944 * key. If the key is actually at that node, then if the trie accepts duplicates
1945 * we add the supplied data in a new chained bucket to that data node. If it does
1946 * not accept duplicates then we merely return FALSE in case the caller wants to know
1947 * whether the key was already in the trie.
1948 * If the node we locate is not the key we are looking to add, then we insert a new node
1949 * into the trie with a bit index of the leftmost differing bit and the left or right
1950 * node pointing to itself or the data node we are inserting 'before'.
1951 */
1952 static ANTLR3_BOOLEAN
intTrieAdd(pANTLR3_INT_TRIE trie,ANTLR3_INTKEY key,ANTLR3_UINT32 type,ANTLR3_INTKEY intVal,void * data,void (ANTLR3_CDECL * freeptr)(void *))1953 intTrieAdd (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key, ANTLR3_UINT32 type, ANTLR3_INTKEY intVal, void * data, void (ANTLR3_CDECL *freeptr)(void *))
1954 {
1955 pANTLR3_INT_TRIE_NODE thisNode;
1956 pANTLR3_INT_TRIE_NODE nextNode;
1957 pANTLR3_INT_TRIE_NODE entNode;
1958 ANTLR3_UINT32 depth;
1959 pANTLR3_TRIE_ENTRY newEnt;
1960 pANTLR3_TRIE_ENTRY nextEnt;
1961 ANTLR3_INTKEY xorKey;
1962
1963 /* Cache the bit depth of this trie, which is always the highest index,
1964 * which is in the root node
1965 */
1966 depth = trie->root->bitNum;
1967
1968 thisNode = trie->root; /* Start with the root node */
1969 nextNode = trie->root->leftN; /* And assume we start to the left */
1970
1971 /* Now find the only node that can be currently reached by the bits in the
1972 * key we are being asked to insert.
1973 */
1974 while (thisNode->bitNum > nextNode->bitNum)
1975 {
1976 /* Still descending the structure, next node becomes current.
1977 */
1978 thisNode = nextNode;
1979
1980 if (key & bitMask[nextNode->bitNum])
1981 {
1982 /* Bit at the required index was 1, so travers the right node from here
1983 */
1984 nextNode = nextNode->rightN;
1985 }
1986 else
1987 {
1988 /* Bit at the required index was 0, so we traverse to the left
1989 */
1990 nextNode = nextNode->leftN;
1991 }
1992 }
1993 /* Here we have located the only node that can be reached by the
1994 * bits in the requested key. It could in fact be that key or the node
1995 * we need to use to insert the new key.
1996 */
1997 if (nextNode->key == key)
1998 {
1999 /* We have located an exact match, but we will only append to the bucket chain
2000 * if this trie accepts duplicate keys.
2001 */
2002 if (trie->allowDups ==ANTLR3_TRUE)
2003 {
2004 /* Yes, we are accepting duplicates
2005 */
2006 newEnt = (pANTLR3_TRIE_ENTRY)ANTLR3_CALLOC(1, sizeof(ANTLR3_TRIE_ENTRY));
2007
2008 if (newEnt == NULL)
2009 {
2010 /* Out of memory, all we can do is return the fact that the insert failed.
2011 */
2012 return ANTLR3_FALSE;
2013 }
2014
2015 /* Otherwise insert this in the chain
2016 */
2017 newEnt->type = type;
2018 newEnt->freeptr = freeptr;
2019 if (type == ANTLR3_HASH_TYPE_STR)
2020 {
2021 newEnt->data.ptr = data;
2022 }
2023 else
2024 {
2025 newEnt->data.intVal = intVal;
2026 }
2027
2028 /* We want to be able to traverse the stored elements in the order that they were
2029 * added as duplicate keys. We might need to revise this opinion if we end up having many duplicate keys
2030 * as perhaps reverse order is just as good, so long as it is ordered.
2031 */
2032 nextEnt = nextNode->buckets;
2033 while (nextEnt->next != NULL)
2034 {
2035 nextEnt = nextEnt->next;
2036 }
2037 nextEnt->next = newEnt;
2038
2039 trie->count++;
2040 return ANTLR3_TRUE;
2041 }
2042 else
2043 {
2044 /* We found the key is already there and we are not allowed duplicates in this
2045 * trie.
2046 */
2047 return ANTLR3_FALSE;
2048 }
2049 }
2050
2051 /* Here we have discovered the only node that can be reached by the bits in the key
2052 * but we have found that this node is not the key we need to insert. We must find the
2053 * the leftmost bit by which the current key for that node and the new key we are going
2054 * to insert, differ. While this nested series of ifs may look a bit strange, experimentation
2055 * showed that it allows a machine code path that works well with predicated execution
2056 */
2057 xorKey = (key ^ nextNode->key); /* Gives 1 bits only where they differ then we find the left most 1 bit*/
2058
2059 /* Most common case is a 32 bit key really
2060 */
2061 #ifdef ANTLR3_USE_64BIT
2062 if (xorKey & 0xFFFFFFFF00000000)
2063 {
2064 if (xorKey & 0xFFFF000000000000)
2065 {
2066 if (xorKey & 0xFF00000000000000)
2067 {
2068 depth = 56 + bitIndex[((xorKey & 0xFF00000000000000)>>56)];
2069 }
2070 else
2071 {
2072 depth = 48 + bitIndex[((xorKey & 0x00FF000000000000)>>48)];
2073 }
2074 }
2075 else
2076 {
2077 if (xorKey & 0x0000FF0000000000)
2078 {
2079 depth = 40 + bitIndex[((xorKey & 0x0000FF0000000000)>>40)];
2080 }
2081 else
2082 {
2083 depth = 32 + bitIndex[((xorKey & 0x000000FF00000000)>>32)];
2084 }
2085 }
2086 }
2087 else
2088 #endif
2089 {
2090 if (xorKey & 0x00000000FFFF0000)
2091 {
2092 if (xorKey & 0x00000000FF000000)
2093 {
2094 depth = 24 + bitIndex[((xorKey & 0x00000000FF000000)>>24)];
2095 }
2096 else
2097 {
2098 depth = 16 + bitIndex[((xorKey & 0x0000000000FF0000)>>16)];
2099 }
2100 }
2101 else
2102 {
2103 if (xorKey & 0x000000000000FF00)
2104 {
2105 depth = 8 + bitIndex[((xorKey & 0x0000000000000FF00)>>8)];
2106 }
2107 else
2108 {
2109 depth = bitIndex[xorKey & 0x00000000000000FF];
2110 }
2111 }
2112 }
2113
2114 /* We have located the leftmost differing bit, indicated by the depth variable. So, we know what
2115 * bit index we are to insert the new entry at. There are two cases, being where the two keys
2116 * differ at a bit position that is not currently part of the bit testing, where they differ on a bit
2117 * that is currently being skipped in the indexed comparisons, and where they differ on a bit
2118 * that is merely lower down in the current bit search. If the bit index went bit 4, bit 2 and they differ
2119 * at bit 3, then we have the "skipped" bit case. But if that chain was Bit 4, Bit 2 and they differ at bit 1
2120 * then we have the easy bit <pun>.
2121 *
2122 * So, set up to descend the tree again, but this time looking for the insert point
2123 * according to whether we skip the bit that differs or not.
2124 */
2125 thisNode = trie->root;
2126 entNode = trie->root->leftN;
2127
2128 /* Note the slight difference in the checks here to cover both cases
2129 */
2130 while (thisNode->bitNum > entNode->bitNum && entNode->bitNum > depth)
2131 {
2132 /* Still descending the structure, next node becomes current.
2133 */
2134 thisNode = entNode;
2135
2136 if (key & bitMask[entNode->bitNum])
2137 {
2138 /* Bit at the required index was 1, so traverse the right node from here
2139 */
2140 entNode = entNode->rightN;
2141 }
2142 else
2143 {
2144 /* Bit at the required index was 0, so we traverse to the left
2145 */
2146 entNode = entNode->leftN;
2147 }
2148 }
2149
2150 /* We have located the correct insert point for this new key, so we need
2151 * to allocate our entry and insert it etc.
2152 */
2153 nextNode = (pANTLR3_INT_TRIE_NODE)ANTLR3_CALLOC(1, sizeof(ANTLR3_INT_TRIE_NODE));
2154 if (nextNode == NULL)
2155 {
2156 /* All that work and no memory - bummer.
2157 */
2158 return ANTLR3_FALSE;
2159 }
2160
2161 /* Build a new entry block for the new node
2162 */
2163 newEnt = (pANTLR3_TRIE_ENTRY)ANTLR3_CALLOC(1, sizeof(ANTLR3_TRIE_ENTRY));
2164
2165 if (newEnt == NULL)
2166 {
2167 /* Out of memory, all we can do is return the fact that the insert failed.
2168 */
2169 return ANTLR3_FALSE;
2170 }
2171
2172 /* Otherwise enter this in our new node
2173 */
2174 newEnt->type = type;
2175 newEnt->freeptr = freeptr;
2176 if (type == ANTLR3_HASH_TYPE_STR)
2177 {
2178 newEnt->data.ptr = data;
2179 }
2180 else
2181 {
2182 newEnt->data.intVal = intVal;
2183 }
2184 /* Install it
2185 */
2186 nextNode->buckets = newEnt;
2187 nextNode->key = key;
2188 nextNode->bitNum = depth;
2189
2190 /* Work out the right and left pointers for this new node, which involve
2191 * terminating with the current found node either right or left according
2192 * to whether the current index bit is 1 or 0
2193 */
2194 if (key & bitMask[depth])
2195 {
2196 nextNode->leftN = entNode; /* Terminates at previous position */
2197 nextNode->rightN = nextNode; /* Terminates with itself */
2198 }
2199 else
2200 {
2201 nextNode->rightN = entNode; /* Terminates at previous position */
2202 nextNode->leftN = nextNode; /* Terminates with itself */
2203 }
2204
2205 /* Finally, we need to change the pointers at the node we located
2206 * for inserting. If the key bit at its index is set then the right
2207 * pointer for that node becomes the newly created node, otherwise the left
2208 * pointer does.
2209 */
2210 if (key & bitMask[thisNode->bitNum] )
2211 {
2212 thisNode->rightN = nextNode;
2213 }
2214 else
2215 {
2216 thisNode->leftN = nextNode;
2217 }
2218
2219 /* Et voila
2220 */
2221 trie->count++;
2222 return ANTLR3_TRUE;
2223
2224 }
2225 /** Release memory allocated to this tree.
2226 * Basic algorithm is that we do a depth first left descent and free
2227 * up any nodes that are not backward pointers.
2228 */
2229 static void
freeIntNode(pANTLR3_INT_TRIE_NODE node)2230 freeIntNode(pANTLR3_INT_TRIE_NODE node)
2231 {
2232 pANTLR3_TRIE_ENTRY thisEntry;
2233 pANTLR3_TRIE_ENTRY nextEntry;
2234
2235 /* If this node has a left pointer that is not a back pointer
2236 * then recursively call to free this
2237 */
2238 if (node->bitNum > node->leftN->bitNum)
2239 {
2240 /* We have a left node that needs descending, so do it.
2241 */
2242 freeIntNode(node->leftN);
2243 }
2244
2245 /* The left nodes from here should now be dealt with, so
2246 * we need to descend any right nodes that are not back pointers
2247 */
2248 if (node->bitNum > node->rightN->bitNum)
2249 {
2250 /* There are some right nodes to descend and deal with.
2251 */
2252 freeIntNode(node->rightN);
2253 }
2254
2255 /* Now all the children are dealt with, we can destroy
2256 * this node too
2257 */
2258 thisEntry = node->buckets;
2259
2260 while (thisEntry != NULL)
2261 {
2262 nextEntry = thisEntry->next;
2263
2264 /* Do we need to call a custom free pointer for this string entry?
2265 */
2266 if (thisEntry->type == ANTLR3_HASH_TYPE_STR && thisEntry->freeptr != NULL)
2267 {
2268 thisEntry->freeptr(thisEntry->data.ptr);
2269 }
2270
2271 /* Now free the data for this bucket entry
2272 */
2273 ANTLR3_FREE(thisEntry);
2274 thisEntry = nextEntry; /* See if there are any more to free */
2275 }
2276
2277 /* The bucket entry is now gone, so we can free the memory for
2278 * the entry itself.
2279 */
2280 ANTLR3_FREE(node);
2281
2282 /* And that should be it for everything under this node and itself
2283 */
2284 }
2285
2286 /** Called to free all nodes and the structure itself.
2287 */
2288 static void
intTrieFree(pANTLR3_INT_TRIE trie)2289 intTrieFree (pANTLR3_INT_TRIE trie)
2290 {
2291 /* Descend from the root and free all the nodes
2292 */
2293 freeIntNode(trie->root);
2294
2295 /* the nodes are all gone now, so we need only free the memory
2296 * for the structure itself
2297 */
2298 ANTLR3_FREE(trie);
2299 }
2300
2301
2302 /**
2303 * Allocate and initialize a new ANTLR3 topological sorter, which can be
2304 * used to define edges that identify numerical node indexes that depend on other
2305 * numerical node indexes, which can then be sorted topologically such that
2306 * any node is sorted after all its dependent nodes.
2307 *
2308 * Use:
2309 *
2310 * /verbatim
2311
2312 pANTLR3_TOPO topo;
2313 topo = antlr3NewTopo();
2314
2315 if (topo == NULL) { out of memory }
2316
2317 topo->addEdge(topo, 3, 0); // Node 3 depends on node 0
2318 topo->addEdge(topo, 0, 1); // Node - depends on node 1
2319 topo->sortVector(topo, myVector); // Sort the vector in place (node numbers are the vector entry numbers)
2320
2321 * /verbatim
2322 */
2323 ANTLR3_API pANTLR3_TOPO
antlr3TopoNew()2324 antlr3TopoNew()
2325 {
2326 pANTLR3_TOPO topo = (pANTLR3_TOPO)ANTLR3_MALLOC(sizeof(ANTLR3_TOPO));
2327
2328 if (topo == NULL)
2329 {
2330 return NULL;
2331 }
2332
2333 // Initialize variables
2334 //
2335
2336 topo->visited = NULL; // Don't know how big it is yet
2337 topo->limit = 1; // No edges added yet
2338 topo->edges = NULL; // No edges added yet
2339 topo->sorted = NULL; // Nothing sorted at the start
2340 topo->cycle = NULL; // No cycles at the start
2341 topo->cycleMark = 0; // No cycles at the start
2342 topo->hasCycle = ANTLR3_FALSE; // No cycle at the start
2343
2344 // API
2345 //
2346 topo->addEdge = addEdge;
2347 topo->sortToArray = sortToArray;
2348 topo->sortVector = sortVector;
2349 topo->free = freeTopo;
2350
2351 return topo;
2352 }
2353 // Topological sorter
2354 //
2355 static void
addEdge(pANTLR3_TOPO topo,ANTLR3_UINT32 edge,ANTLR3_UINT32 dependency)2356 addEdge (pANTLR3_TOPO topo, ANTLR3_UINT32 edge, ANTLR3_UINT32 dependency)
2357 {
2358 ANTLR3_UINT32 i;
2359 ANTLR3_UINT32 maxEdge;
2360 pANTLR3_BITSET edgeDeps;
2361
2362 if (edge>dependency)
2363 {
2364 maxEdge = edge;
2365 }
2366 else
2367 {
2368 maxEdge = dependency;
2369 }
2370 // We need to add an edge to says that the node indexed by 'edge' is
2371 // dependent on the node indexed by 'dependency'
2372 //
2373
2374 // First see if we have enough room in the edges array to add the edge?
2375 //
2376 if (topo->edges == NULL)
2377 {
2378 // We don't have any edges yet, so create an array to hold them
2379 //
2380 topo->edges = (pANTLR3_BITSET*)ANTLR3_CALLOC(sizeof(pANTLR3_BITSET) * (maxEdge + 1), 1);
2381 if (topo->edges == NULL)
2382 {
2383 return;
2384 }
2385
2386 // Set the limit to what we have now
2387 //
2388 topo->limit = maxEdge + 1;
2389 }
2390 else if (topo->limit <= maxEdge)
2391 {
2392 // WE have some edges but not enough
2393 //
2394 topo->edges = (pANTLR3_BITSET*)ANTLR3_REALLOC(topo->edges, sizeof(pANTLR3_BITSET) * (maxEdge + 1));
2395 if (topo->edges == NULL)
2396 {
2397 return;
2398 }
2399
2400 // Initialize the new bitmaps to ;indicate we have no edges defined yet
2401 //
2402 for (i = topo->limit; i <= maxEdge; i++)
2403 {
2404 *((topo->edges) + i) = NULL;
2405 }
2406
2407 // Set the limit to what we have now
2408 //
2409 topo->limit = maxEdge + 1;
2410 }
2411
2412 // If the edge was flagged as depending on itself, then we just
2413 // do nothing as it means this routine was just called to add it
2414 // in to the list of nodes.
2415 //
2416 if (edge == dependency)
2417 {
2418 return;
2419 }
2420
2421 // Pick up the bit map for the requested edge
2422 //
2423 edgeDeps = *((topo->edges) + edge);
2424
2425 if (edgeDeps == NULL)
2426 {
2427 // No edges are defined yet for this node
2428 //
2429 edgeDeps = antlr3BitsetNew(0);
2430 *((topo->edges) + edge) = edgeDeps;
2431 if (edgeDeps == NULL )
2432 {
2433 return; // Out of memory
2434 }
2435 }
2436
2437 // Set the bit in the bitmap that corresponds to the requested
2438 // dependency.
2439 //
2440 edgeDeps->add(edgeDeps, dependency);
2441
2442 // And we are all set
2443 //
2444 return;
2445 }
2446
2447
2448 /**
2449 * Given a starting node, descend its dependent nodes (ones that it has edges
2450 * to) until we find one without edges. Having found a node without edges, we have
2451 * discovered the bottom of a depth first search, which we can then ascend, adding
2452 * the nodes in order from the bottom, which gives us the dependency order.
2453 */
2454 static void
DFS(pANTLR3_TOPO topo,ANTLR3_UINT32 node)2455 DFS(pANTLR3_TOPO topo, ANTLR3_UINT32 node)
2456 {
2457 pANTLR3_BITSET edges;
2458
2459 // Guard against a revisit and check for cycles
2460 //
2461 if (topo->hasCycle == ANTLR3_TRUE)
2462 {
2463 return; // We don't do anything else if we found a cycle
2464 }
2465
2466 if (topo->visited->isMember(topo->visited, node))
2467 {
2468 // Check to see if we found a cycle. To do this we search the
2469 // current cycle stack and see if we find this node already in the stack.
2470 //
2471 ANTLR3_UINT32 i;
2472
2473 for (i=0; i<topo->cycleMark; i++)
2474 {
2475 if (topo->cycle[i] == node)
2476 {
2477 // Stop! We found a cycle in the input, so rejig the cycle
2478 // stack so that it only contains the cycle and set the cycle flag
2479 // which will tell the caller what happened
2480 //
2481 ANTLR3_UINT32 l;
2482
2483 for (l = i; l < topo->cycleMark; l++)
2484 {
2485 topo->cycle[l - i] = topo->cycle[l]; // Move to zero base in the cycle list
2486 }
2487
2488 // Recalculate the limit
2489 //
2490 topo->cycleMark -= i;
2491
2492 // Signal disaster
2493 //
2494 topo->hasCycle = ANTLR3_TRUE;
2495 }
2496 }
2497 return;
2498 }
2499
2500 // So far, no cycles have been found and we have not visited this node yet,
2501 // so this node needs to go into the cycle stack before we continue
2502 // then we will take it out of the stack once we have descended all its
2503 // dependencies.
2504 //
2505 topo->cycle[topo->cycleMark++] = node;
2506
2507 // First flag that we have visited this node
2508 //
2509 topo->visited->add(topo->visited, node);
2510
2511 // Now, if this node has edges, then we want to ensure we visit
2512 // them all before we drop through and add this node into the sorted
2513 // list.
2514 //
2515 edges = *((topo->edges) + node);
2516 if (edges != NULL)
2517 {
2518 // We have some edges, so visit each of the edge nodes
2519 // that have not already been visited.
2520 //
2521 ANTLR3_UINT32 numBits; // How many bits are in the set
2522 ANTLR3_UINT32 i;
2523 ANTLR3_UINT32 range;
2524
2525 numBits = edges->numBits(edges);
2526 range = edges->size(edges); // Number of set bits
2527
2528 // Stop if we exahust the bit list or have checked the
2529 // number of edges that this node refers to (so we don't
2530 // check bits at the end that cannot possibly be set).
2531 //
2532 for (i=0; i<= numBits && range > 0; i++)
2533 {
2534 if (edges->isMember(edges, i))
2535 {
2536 range--; // About to check another one
2537
2538 // Found an edge, make sure we visit and descend it
2539 //
2540 DFS(topo, i);
2541 }
2542 }
2543 }
2544
2545 // At this point we will have visited all the dependencies
2546 // of this node and they will be ordered (even if there are cycles)
2547 // So we just add the node into the sorted list at the
2548 // current index position.
2549 //
2550 topo->sorted[topo->limit++] = node;
2551
2552 // Remove this node from the cycle list if we have not detected a cycle
2553 //
2554 if (topo->hasCycle == ANTLR3_FALSE)
2555 {
2556 topo->cycleMark--;
2557 }
2558
2559 return;
2560 }
2561
2562 static pANTLR3_UINT32
sortToArray(pANTLR3_TOPO topo)2563 sortToArray (pANTLR3_TOPO topo)
2564 {
2565 ANTLR3_UINT32 v;
2566 ANTLR3_UINT32 oldLimit;
2567
2568 // Guard against being called with no edges defined
2569 //
2570 if (topo->edges == NULL)
2571 {
2572 return NULL;
2573 }
2574 // First we need a vector to populate with enough
2575 // entries to accommodate the sorted list and another to accommodate
2576 // the maximum cycle we could detect which is all nodes such as 0->1->2->3->0
2577 //
2578 topo->sorted = (pANTLR3_UINT32)ANTLR3_MALLOC(topo->limit * sizeof(ANTLR3_UINT32));
2579 if (topo->sorted == NULL)
2580 {
2581 return NULL;
2582 }
2583 topo->cycle = (pANTLR3_UINT32)ANTLR3_MALLOC(topo->limit * sizeof(ANTLR3_UINT32));
2584 if (topo->cycle == NULL)
2585 {
2586 return NULL;
2587 }
2588
2589 // Next we need an empty bitset to show whether we have visited a node
2590 // or not. This is the bit that gives us linear time of course as we are essentially
2591 // dropping through the nodes in depth first order and when we get to a node that
2592 // has no edges, we pop back up the stack adding the nodes we traversed in reverse
2593 // order.
2594 //
2595 topo->visited = antlr3BitsetNew(0);
2596
2597 // Now traverse the nodes as if we were just going left to right, but
2598 // then descend each node unless it has already been visited.
2599 //
2600 oldLimit = topo->limit; // Number of nodes to traverse linearly
2601 topo->limit = 0; // Next entry in the sorted table
2602
2603 for (v = 0; v < oldLimit; v++)
2604 {
2605 // If we did not already visit this node, then descend it until we
2606 // get a node without edges or arrive at a node we have already visited.
2607 //
2608 if (topo->visited->isMember(topo->visited, v) == ANTLR3_FALSE)
2609 {
2610 // We have not visited this one so descend it
2611 //
2612 DFS(topo, v);
2613 }
2614
2615 // Break the loop if we detect a cycle as we have no need to go any
2616 // further
2617 //
2618 if (topo->hasCycle == ANTLR3_TRUE)
2619 {
2620 break;
2621 }
2622 }
2623
2624 // Reset the limit to the number we recorded as if we hit a
2625 // cycle, then limit will have stopped at the node where we
2626 // discovered the cycle, but in order to free the edge bitmaps
2627 // we need to know how many we may have allocated and traverse them all.
2628 //
2629 topo->limit = oldLimit;
2630
2631 // Having traversed all the nodes we were given, we
2632 // are guaranteed to have ordered all the nodes or detected a
2633 // cycle.
2634 //
2635 return topo->sorted;
2636 }
2637
2638 static void
sortVector(pANTLR3_TOPO topo,pANTLR3_VECTOR v)2639 sortVector (pANTLR3_TOPO topo, pANTLR3_VECTOR v)
2640 {
2641 // To sort a vector, we first perform the
2642 // sort to an array, then use the results to reorder the vector
2643 // we are given. This is just a convenience routine that allows you to
2644 // sort the children of a tree node into topological order before or
2645 // during an AST walk. This can be useful for optimizations that require
2646 // dag reorders and also when the input stream defines things that are
2647 // interdependent and you want to walk the list of the generated trees
2648 // for those things in topological order so you can ignore the interdependencies
2649 // at that point.
2650 //
2651 ANTLR3_UINT32 i;
2652
2653 // Used as a lookup index to find the current location in the vector of
2654 // the vector entry that was originally at position [0], [1], [2] etc
2655 //
2656 pANTLR3_UINT32 vIndex;
2657
2658 // Sort into an array, then we can use the array that is
2659 // stored in the topo
2660 //
2661 if (topo->sortToArray(topo) == 0)
2662 {
2663 return; // There were no edges
2664 }
2665
2666 if (topo->hasCycle == ANTLR3_TRUE)
2667 {
2668 return; // Do nothing if we detected a cycle
2669 }
2670
2671 // Ensure that the vector we are sorting is at least as big as the
2672 // the input sequence we were asked to sort. It does not matter if it is
2673 // bigger as that probably just means that nodes numbered higher than the
2674 // limit had no dependencies and so can be left alone.
2675 //
2676 if (topo->limit > v->count)
2677 {
2678 // We can only sort the entries that we have dude! The caller is
2679 // responsible for ensuring the vector is the correct one and is the
2680 // correct size etc.
2681 //
2682 topo->limit = v->count;
2683 }
2684 // We need to know the locations of each of the entries
2685 // in the vector as we don't want to duplicate them in a new vector. We
2686 // just use an indirection table to get the vector entry for a particular sequence
2687 // according to where we moved it last. Then we can just swap vector entries until
2688 // we are done :-)
2689 //
2690 vIndex = (pANTLR3_UINT32)ANTLR3_MALLOC(topo->limit * sizeof(ANTLR3_UINT32));
2691 if (vIndex == NULL)
2692 {
2693 // malloc failed
2694 return;
2695 }
2696
2697 // Start index, each vector entry is located where you think it is
2698 //
2699 for (i = 0; i < topo->limit; i++)
2700 {
2701 vIndex[i] = i;
2702 }
2703
2704 // Now we traverse the sorted array and moved the entries of
2705 // the vector around according to the sort order and the indirection
2706 // table we just created. The index telsl us where in the vector the
2707 // original element entry n is now located via vIndex[n].
2708 //
2709 for (i=0; i < topo->limit; i++)
2710 {
2711 ANTLR3_UINT32 ind;
2712
2713 // If the vector entry at i is already the one that it
2714 // should be, then we skip moving it of course.
2715 //
2716 if (vIndex[topo->sorted[i]] == i)
2717 {
2718 continue;
2719 }
2720
2721 // The vector entry at i, should be replaced with the
2722 // vector entry indicated by topo->sorted[i]. The vector entry
2723 // at topo->sorted[i] may have already been swapped out though, so we
2724 // find where it is now and move it from there to i.
2725 //
2726 ind = vIndex[topo->sorted[i]];
2727 v->swap(v, i, ind);
2728
2729 // Update our index. The element at i is now the one we wanted
2730 // to be sorted here and the element we swapped out is now the
2731 // element that was at i just before we swapped it. If you are lost now
2732 // don't worry about it, we are just reindexing on the fly is all.
2733 //
2734 vIndex[topo->sorted[i]] = i;
2735 vIndex[i] = ind;
2736 }
2737
2738 // Having traversed all the entries, we have sorted the vector in place.
2739 //
2740 ANTLR3_FREE(vIndex);
2741 return;
2742 }
2743
2744 static void
freeTopo(pANTLR3_TOPO topo)2745 freeTopo (pANTLR3_TOPO topo)
2746 {
2747 ANTLR3_UINT32 i;
2748
2749 // Free the result vector
2750 //
2751 if (topo->sorted != NULL)
2752 {
2753 ANTLR3_FREE(topo->sorted);
2754 topo->sorted = NULL;
2755 }
2756
2757 // Free the visited map
2758 //
2759 if (topo->visited != NULL)
2760 {
2761
2762 topo->visited->free(topo->visited);
2763 topo->visited = NULL;
2764 }
2765
2766 // Free any edgemaps
2767 //
2768 if (topo->edges != NULL)
2769 {
2770 pANTLR3_BITSET edgeList;
2771
2772
2773 for (i=0; i<topo->limit; i++)
2774 {
2775 edgeList = *((topo->edges) + i);
2776 if (edgeList != NULL)
2777 {
2778 edgeList->free(edgeList);
2779 }
2780 }
2781
2782 ANTLR3_FREE(topo->edges);
2783 }
2784 topo->edges = NULL;
2785
2786 // Free any cycle map
2787 //
2788 if (topo->cycle != NULL)
2789 {
2790 ANTLR3_FREE(topo->cycle);
2791 }
2792
2793 ANTLR3_FREE(topo);
2794 }
2795