1 //===------ Simplify.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Simplify a SCoP by removing unnecessary statements and accesses.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "polly/Simplify.h"
14 #include "polly/ScopInfo.h"
15 #include "polly/ScopPass.h"
16 #include "polly/Support/GICHelper.h"
17 #include "polly/Support/ISLOStream.h"
18 #include "polly/Support/ISLTools.h"
19 #include "polly/Support/VirtualInstruction.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/Debug.h"
23 #define DEBUG_TYPE "polly-simplify"
24
25 using namespace llvm;
26 using namespace polly;
27
28 namespace {
29
30 #define TWO_STATISTICS(VARNAME, DESC) \
31 static llvm::Statistic VARNAME[2] = { \
32 {DEBUG_TYPE, #VARNAME "0", DESC " (first)"}, \
33 {DEBUG_TYPE, #VARNAME "1", DESC " (second)"}}
34
35 /// Number of max disjuncts we allow in removeOverwrites(). This is to avoid
36 /// that the analysis of accesses in a statement is becoming too complex. Chosen
37 /// to be relatively small because all the common cases should access only few
38 /// array elements per statement.
39 static int const SimplifyMaxDisjuncts = 4;
40
41 TWO_STATISTICS(ScopsProcessed, "Number of SCoPs processed");
42 TWO_STATISTICS(ScopsModified, "Number of SCoPs simplified");
43
44 TWO_STATISTICS(TotalEmptyDomainsRemoved,
45 "Number of statement with empty domains removed in any SCoP");
46 TWO_STATISTICS(TotalOverwritesRemoved, "Number of removed overwritten writes");
47 TWO_STATISTICS(TotalWritesCoalesced, "Number of writes coalesced with another");
48 TWO_STATISTICS(TotalRedundantWritesRemoved,
49 "Number of writes of same value removed in any SCoP");
50 TWO_STATISTICS(TotalEmptyPartialAccessesRemoved,
51 "Number of empty partial accesses removed");
52 TWO_STATISTICS(TotalDeadAccessesRemoved, "Number of dead accesses removed");
53 TWO_STATISTICS(TotalDeadInstructionsRemoved,
54 "Number of unused instructions removed");
55 TWO_STATISTICS(TotalStmtsRemoved, "Number of statements removed in any SCoP");
56
57 TWO_STATISTICS(NumValueWrites, "Number of scalar value writes after Simplify");
58 TWO_STATISTICS(
59 NumValueWritesInLoops,
60 "Number of scalar value writes nested in affine loops after Simplify");
61 TWO_STATISTICS(NumPHIWrites,
62 "Number of scalar phi writes after the first simplification");
63 TWO_STATISTICS(
64 NumPHIWritesInLoops,
65 "Number of scalar phi writes nested in affine loops after Simplify");
66 TWO_STATISTICS(NumSingletonWrites, "Number of singleton writes after Simplify");
67 TWO_STATISTICS(
68 NumSingletonWritesInLoops,
69 "Number of singleton writes nested in affine loops after Simplify");
70
isImplicitRead(MemoryAccess * MA)71 static bool isImplicitRead(MemoryAccess *MA) {
72 return MA->isRead() && MA->isOriginalScalarKind();
73 }
74
isExplicitAccess(MemoryAccess * MA)75 static bool isExplicitAccess(MemoryAccess *MA) {
76 return MA->isOriginalArrayKind();
77 }
78
isImplicitWrite(MemoryAccess * MA)79 static bool isImplicitWrite(MemoryAccess *MA) {
80 return MA->isWrite() && MA->isOriginalScalarKind();
81 }
82
83 /// Like isl::union_map::add_map, but may also return an underapproximated
84 /// result if getting too complex.
85 ///
86 /// This is implemented by adding disjuncts to the results until the limit is
87 /// reached.
underapproximatedAddMap(isl::union_map UMap,isl::map Map)88 static isl::union_map underapproximatedAddMap(isl::union_map UMap,
89 isl::map Map) {
90 if (UMap.is_null() || Map.is_null())
91 return {};
92
93 isl::map PrevMap = UMap.extract_map(Map.get_space());
94
95 // Fast path: If known that we cannot exceed the disjunct limit, just add
96 // them.
97 if (isl_map_n_basic_map(PrevMap.get()) + isl_map_n_basic_map(Map.get()) <=
98 SimplifyMaxDisjuncts)
99 return UMap.add_map(Map);
100
101 isl::map Result = isl::map::empty(PrevMap.get_space());
102 for (isl::basic_map BMap : PrevMap.get_basic_map_list()) {
103 if (Result.n_basic_map() > SimplifyMaxDisjuncts)
104 break;
105 Result = Result.unite(BMap);
106 }
107 for (isl::basic_map BMap : Map.get_basic_map_list()) {
108 if (isl_map_n_basic_map(Result.get()) > SimplifyMaxDisjuncts)
109 break;
110 Result = Result.unite(BMap);
111 }
112
113 isl::union_map UResult =
114 UMap.subtract(isl::map::universe(PrevMap.get_space()));
115 UResult.add_map(Result);
116
117 return UResult;
118 }
119 } // namespace
120
121 /// Return whether at least one simplification has been applied.
isModified() const122 bool SimplifyVisitor::isModified() const {
123 return EmptyDomainsRemoved > 0 || OverwritesRemoved > 0 ||
124 WritesCoalesced > 0 || RedundantWritesRemoved > 0 ||
125 EmptyPartialAccessesRemoved > 0 || DeadAccessesRemoved > 0 ||
126 DeadInstructionsRemoved > 0 || StmtsRemoved > 0;
127 }
128
129 /// Remove statements that are never executed due to their domains being
130 /// empty.
131 ///
132 /// In contrast to Scop::simplifySCoP, this removes based on the SCoP's
133 /// effective domain, i.e. including the SCoP's context as used by some other
134 /// simplification methods in this pass. This is necessary because the
135 /// analysis on empty domains is unreliable, e.g. remove a scalar value
136 /// definition MemoryAccesses, but not its use.
removeEmptyDomainStmts()137 void SimplifyVisitor::removeEmptyDomainStmts() {
138 size_t NumStmtsBefore = S->getSize();
139
140 S->removeStmts([](ScopStmt &Stmt) -> bool {
141 auto EffectiveDomain =
142 Stmt.getDomain().intersect_params(Stmt.getParent()->getContext());
143 return EffectiveDomain.is_empty();
144 });
145
146 assert(NumStmtsBefore >= S->getSize());
147 EmptyDomainsRemoved = NumStmtsBefore - S->getSize();
148 LLVM_DEBUG(dbgs() << "Removed " << EmptyDomainsRemoved << " (of "
149 << NumStmtsBefore << ") statements with empty domains \n");
150 TotalEmptyDomainsRemoved[CallNo] += EmptyDomainsRemoved;
151 }
152
153 /// Remove writes that are overwritten unconditionally later in the same
154 /// statement.
155 ///
156 /// There must be no read of the same value between the write (that is to be
157 /// removed) and the overwrite.
removeOverwrites()158 void SimplifyVisitor::removeOverwrites() {
159 for (auto &Stmt : *S) {
160 isl::set Domain = Stmt.getDomain();
161 isl::union_map WillBeOverwritten =
162 isl::union_map::empty(S->getParamSpace());
163
164 SmallVector<MemoryAccess *, 32> Accesses(getAccessesInOrder(Stmt));
165
166 // Iterate in reverse order, so the overwrite comes before the write that
167 // is to be removed.
168 for (auto *MA : reverse(Accesses)) {
169
170 // In region statements, the explicit accesses can be in blocks that are
171 // can be executed in any order. We therefore process only the implicit
172 // writes and stop after that.
173 if (Stmt.isRegionStmt() && isExplicitAccess(MA))
174 break;
175
176 auto AccRel = MA->getAccessRelation();
177 AccRel = AccRel.intersect_domain(Domain);
178 AccRel = AccRel.intersect_params(S->getContext());
179
180 // If a value is read in-between, do not consider it as overwritten.
181 if (MA->isRead()) {
182 // Invalidate all overwrites for the array it accesses to avoid too
183 // complex isl sets.
184 isl::map AccRelUniv = isl::map::universe(AccRel.get_space());
185 WillBeOverwritten = WillBeOverwritten.subtract(AccRelUniv);
186 continue;
187 }
188
189 // If all of a write's elements are overwritten, remove it.
190 isl::union_map AccRelUnion = AccRel;
191 if (AccRelUnion.is_subset(WillBeOverwritten)) {
192 LLVM_DEBUG(dbgs() << "Removing " << MA
193 << " which will be overwritten anyway\n");
194
195 Stmt.removeSingleMemoryAccess(MA);
196 OverwritesRemoved++;
197 TotalOverwritesRemoved[CallNo]++;
198 }
199
200 // Unconditional writes overwrite other values.
201 if (MA->isMustWrite()) {
202 // Avoid too complex isl sets. If necessary, throw away some of the
203 // knowledge.
204 WillBeOverwritten = underapproximatedAddMap(WillBeOverwritten, AccRel);
205 }
206 }
207 }
208 }
209
210 /// Combine writes that write the same value if possible.
211 ///
212 /// This function is able to combine:
213 /// - Partial writes with disjoint domain.
214 /// - Writes that write to the same array element.
215 ///
216 /// In all cases, both writes must write the same values.
coalesceWrites()217 void SimplifyVisitor::coalesceWrites() {
218 for (auto &Stmt : *S) {
219 isl::set Domain = Stmt.getDomain().intersect_params(S->getContext());
220
221 // We let isl do the lookup for the same-value condition. For this, we
222 // wrap llvm::Value into an isl::set such that isl can do the lookup in
223 // its hashtable implementation. llvm::Values are only compared within a
224 // ScopStmt, so the map can be local to this scope. TODO: Refactor with
225 // ZoneAlgorithm::makeValueSet()
226 SmallDenseMap<Value *, isl::set> ValueSets;
227 auto makeValueSet = [&ValueSets, this](Value *V) -> isl::set {
228 assert(V);
229 isl::set &Result = ValueSets[V];
230 if (Result.is_null()) {
231 isl::ctx Ctx = S->getIslCtx();
232 std::string Name = getIslCompatibleName(
233 "Val", V, ValueSets.size() - 1, std::string(), UseInstructionNames);
234 isl::id Id = isl::id::alloc(Ctx, Name, V);
235 Result = isl::set::universe(
236 isl::space(Ctx, 0, 0).set_tuple_id(isl::dim::set, Id));
237 }
238 return Result;
239 };
240
241 // List of all eligible (for coalescing) writes of the future.
242 // { [Domain[] -> Element[]] -> [Value[] -> MemoryAccess[]] }
243 isl::union_map FutureWrites = isl::union_map::empty(S->getParamSpace());
244
245 // Iterate over accesses from the last to the first.
246 SmallVector<MemoryAccess *, 32> Accesses(getAccessesInOrder(Stmt));
247 for (MemoryAccess *MA : reverse(Accesses)) {
248 // In region statements, the explicit accesses can be in blocks that can
249 // be executed in any order. We therefore process only the implicit
250 // writes and stop after that.
251 if (Stmt.isRegionStmt() && isExplicitAccess(MA))
252 break;
253
254 // { Domain[] -> Element[] }
255 isl::map AccRel = MA->getLatestAccessRelation().intersect_domain(Domain);
256
257 // { [Domain[] -> Element[]] }
258 isl::set AccRelWrapped = AccRel.wrap();
259
260 // { Value[] }
261 isl::set ValSet;
262
263 if (MA->isMustWrite() && (MA->isOriginalScalarKind() ||
264 isa<StoreInst>(MA->getAccessInstruction()))) {
265 // Normally, tryGetValueStored() should be used to determine which
266 // element is written, but it can return nullptr; For PHI accesses,
267 // getAccessValue() returns the PHI instead of the PHI's incoming
268 // value. In this case, where we only compare values of a single
269 // statement, this is fine, because within a statement, a PHI in a
270 // successor block has always the same value as the incoming write. We
271 // still preferably use the incoming value directly so we also catch
272 // direct uses of that.
273 Value *StoredVal = MA->tryGetValueStored();
274 if (!StoredVal)
275 StoredVal = MA->getAccessValue();
276 ValSet = makeValueSet(StoredVal);
277
278 // { Domain[] }
279 isl::set AccDomain = AccRel.domain();
280
281 // Parts of the statement's domain that is not written by this access.
282 isl::set UndefDomain = Domain.subtract(AccDomain);
283
284 // { Element[] }
285 isl::set ElementUniverse =
286 isl::set::universe(AccRel.get_space().range());
287
288 // { Domain[] -> Element[] }
289 isl::map UndefAnything =
290 isl::map::from_domain_and_range(UndefDomain, ElementUniverse);
291
292 // We are looking a compatible write access. The other write can
293 // access these elements...
294 isl::map AllowedAccesses = AccRel.unite(UndefAnything);
295
296 // ... and must write the same value.
297 // { [Domain[] -> Element[]] -> Value[] }
298 isl::map Filter =
299 isl::map::from_domain_and_range(AllowedAccesses.wrap(), ValSet);
300
301 // Lookup future write that fulfills these conditions.
302 // { [[Domain[] -> Element[]] -> Value[]] -> MemoryAccess[] }
303 isl::union_map Filtered =
304 FutureWrites.uncurry().intersect_domain(Filter.wrap());
305
306 // Iterate through the candidates.
307 for (isl::map Map : Filtered.get_map_list()) {
308 MemoryAccess *OtherMA = (MemoryAccess *)Map.get_space()
309 .get_tuple_id(isl::dim::out)
310 .get_user();
311
312 isl::map OtherAccRel =
313 OtherMA->getLatestAccessRelation().intersect_domain(Domain);
314
315 // The filter only guaranteed that some of OtherMA's accessed
316 // elements are allowed. Verify that it only accesses allowed
317 // elements. Otherwise, continue with the next candidate.
318 if (!OtherAccRel.is_subset(AllowedAccesses).is_true())
319 continue;
320
321 // The combined access relation.
322 // { Domain[] -> Element[] }
323 isl::map NewAccRel = AccRel.unite(OtherAccRel);
324 simplify(NewAccRel);
325
326 // Carry out the coalescing.
327 Stmt.removeSingleMemoryAccess(MA);
328 OtherMA->setNewAccessRelation(NewAccRel);
329
330 // We removed MA, OtherMA takes its role.
331 MA = OtherMA;
332
333 TotalWritesCoalesced[CallNo]++;
334 WritesCoalesced++;
335
336 // Don't look for more candidates.
337 break;
338 }
339 }
340
341 // Two writes cannot be coalesced if there is another access (to some of
342 // the written elements) between them. Remove all visited write accesses
343 // from the list of eligible writes. Don't just remove the accessed
344 // elements, but any MemoryAccess that touches any of the invalidated
345 // elements.
346 SmallPtrSet<MemoryAccess *, 2> TouchedAccesses;
347 for (isl::map Map :
348 FutureWrites.intersect_domain(AccRelWrapped).get_map_list()) {
349 MemoryAccess *MA = (MemoryAccess *)Map.get_space()
350 .range()
351 .unwrap()
352 .get_tuple_id(isl::dim::out)
353 .get_user();
354 TouchedAccesses.insert(MA);
355 }
356 isl::union_map NewFutureWrites =
357 isl::union_map::empty(FutureWrites.get_space());
358 for (isl::map FutureWrite : FutureWrites.get_map_list()) {
359 MemoryAccess *MA = (MemoryAccess *)FutureWrite.get_space()
360 .range()
361 .unwrap()
362 .get_tuple_id(isl::dim::out)
363 .get_user();
364 if (!TouchedAccesses.count(MA))
365 NewFutureWrites = NewFutureWrites.add_map(FutureWrite);
366 }
367 FutureWrites = NewFutureWrites;
368
369 if (MA->isMustWrite() && !ValSet.is_null()) {
370 // { MemoryAccess[] }
371 auto AccSet =
372 isl::set::universe(isl::space(S->getIslCtx(), 0, 0)
373 .set_tuple_id(isl::dim::set, MA->getId()));
374
375 // { Val[] -> MemoryAccess[] }
376 isl::map ValAccSet = isl::map::from_domain_and_range(ValSet, AccSet);
377
378 // { [Domain[] -> Element[]] -> [Value[] -> MemoryAccess[]] }
379 isl::map AccRelValAcc =
380 isl::map::from_domain_and_range(AccRelWrapped, ValAccSet.wrap());
381 FutureWrites = FutureWrites.add_map(AccRelValAcc);
382 }
383 }
384 }
385 }
386
387 /// Remove writes that just write the same value already stored in the
388 /// element.
removeRedundantWrites()389 void SimplifyVisitor::removeRedundantWrites() {
390 for (auto &Stmt : *S) {
391 SmallDenseMap<Value *, isl::set> ValueSets;
392 auto makeValueSet = [&ValueSets, this](Value *V) -> isl::set {
393 assert(V);
394 isl::set &Result = ValueSets[V];
395 if (Result.is_null()) {
396 isl_ctx *Ctx = S->getIslCtx().get();
397 std::string Name = getIslCompatibleName(
398 "Val", V, ValueSets.size() - 1, std::string(), UseInstructionNames);
399 isl::id Id = isl::manage(isl_id_alloc(Ctx, Name.c_str(), V));
400 Result = isl::set::universe(
401 isl::space(Ctx, 0, 0).set_tuple_id(isl::dim::set, Id));
402 }
403 return Result;
404 };
405
406 isl::set Domain = Stmt.getDomain();
407 Domain = Domain.intersect_params(S->getContext());
408
409 // List of element reads that still have the same value while iterating
410 // through the MemoryAccesses.
411 // { [Domain[] -> Element[]] -> Val[] }
412 isl::union_map Known = isl::union_map::empty(S->getParamSpace());
413
414 SmallVector<MemoryAccess *, 32> Accesses(getAccessesInOrder(Stmt));
415 for (MemoryAccess *MA : Accesses) {
416 // Is the memory access in a defined order relative to the other
417 // accesses? In region statements, only the first and the last accesses
418 // have defined order. Execution of those in the middle may depend on
419 // runtime conditions an therefore cannot be modified.
420 bool IsOrdered =
421 Stmt.isBlockStmt() || MA->isOriginalScalarKind() ||
422 (!S->getBoxedLoops().size() && MA->getAccessInstruction() &&
423 Stmt.getEntryBlock() == MA->getAccessInstruction()->getParent());
424
425 isl::map AccRel = MA->getAccessRelation();
426 AccRel = AccRel.intersect_domain(Domain);
427 isl::set AccRelWrapped = AccRel.wrap();
428
429 // Determine whether a write is redundant (stores only values that are
430 // already present in the written array elements) and remove it if this
431 // is the case.
432 if (IsOrdered && MA->isMustWrite() &&
433 (isa<StoreInst>(MA->getAccessInstruction()) ||
434 MA->isOriginalScalarKind())) {
435 Value *StoredVal = MA->tryGetValueStored();
436 if (!StoredVal)
437 StoredVal = MA->getAccessValue();
438
439 if (StoredVal) {
440 // Lookup in the set of known values.
441 isl::map AccRelStoredVal = isl::map::from_domain_and_range(
442 AccRelWrapped, makeValueSet(StoredVal));
443 if (isl::union_map(AccRelStoredVal).is_subset(Known)) {
444 LLVM_DEBUG(dbgs() << "Cleanup of " << MA << ":\n");
445 LLVM_DEBUG(dbgs() << " Scalar: " << *StoredVal << "\n");
446 LLVM_DEBUG(dbgs() << " AccRel: " << AccRel << "\n");
447
448 Stmt.removeSingleMemoryAccess(MA);
449
450 RedundantWritesRemoved++;
451 TotalRedundantWritesRemoved[CallNo]++;
452 }
453 }
454 }
455
456 // Update the know values set.
457 if (MA->isRead()) {
458 // Loaded values are the currently known values of the array element
459 // it was loaded from.
460 Value *LoadedVal = MA->getAccessValue();
461 if (LoadedVal && IsOrdered) {
462 isl::map AccRelVal = isl::map::from_domain_and_range(
463 AccRelWrapped, makeValueSet(LoadedVal));
464
465 Known = Known.add_map(AccRelVal);
466 }
467 } else if (MA->isWrite()) {
468 // Remove (possibly) overwritten values from the known elements set.
469 // We remove all elements of the accessed array to avoid too complex
470 // isl sets.
471 isl::set AccRelUniv = isl::set::universe(AccRelWrapped.get_space());
472 Known = Known.subtract_domain(AccRelUniv);
473
474 // At this point, we could add the written value of must-writes.
475 // However, writing same values is already handled by
476 // coalesceWrites().
477 }
478 }
479 }
480 }
481
482 /// Remove statements without side effects.
removeUnnecessaryStmts()483 void SimplifyVisitor::removeUnnecessaryStmts() {
484 auto NumStmtsBefore = S->getSize();
485 S->simplifySCoP(true);
486 assert(NumStmtsBefore >= S->getSize());
487 StmtsRemoved = NumStmtsBefore - S->getSize();
488 LLVM_DEBUG(dbgs() << "Removed " << StmtsRemoved << " (of " << NumStmtsBefore
489 << ") statements\n");
490 TotalStmtsRemoved[CallNo] += StmtsRemoved;
491 }
492
493 /// Remove accesses that have an empty domain.
removeEmptyPartialAccesses()494 void SimplifyVisitor::removeEmptyPartialAccesses() {
495 for (ScopStmt &Stmt : *S) {
496 // Defer the actual removal to not invalidate iterators.
497 SmallVector<MemoryAccess *, 8> DeferredRemove;
498
499 for (MemoryAccess *MA : Stmt) {
500 if (!MA->isWrite())
501 continue;
502
503 isl::map AccRel = MA->getAccessRelation();
504 if (!AccRel.is_empty().is_true())
505 continue;
506
507 LLVM_DEBUG(
508 dbgs() << "Removing " << MA
509 << " because it's a partial access that never occurs\n");
510 DeferredRemove.push_back(MA);
511 }
512
513 for (MemoryAccess *MA : DeferredRemove) {
514 Stmt.removeSingleMemoryAccess(MA);
515 EmptyPartialAccessesRemoved++;
516 TotalEmptyPartialAccessesRemoved[CallNo]++;
517 }
518 }
519 }
520
521 /// Mark all reachable instructions and access, and sweep those that are not
522 /// reachable.
markAndSweep(LoopInfo * LI)523 void SimplifyVisitor::markAndSweep(LoopInfo *LI) {
524 DenseSet<MemoryAccess *> UsedMA;
525 DenseSet<VirtualInstruction> UsedInsts;
526
527 // Get all reachable instructions and accesses.
528 markReachable(S, LI, UsedInsts, UsedMA);
529
530 // Remove all non-reachable accesses.
531 // We need get all MemoryAccesses first, in order to not invalidate the
532 // iterators when removing them.
533 SmallVector<MemoryAccess *, 64> AllMAs;
534 for (ScopStmt &Stmt : *S)
535 AllMAs.append(Stmt.begin(), Stmt.end());
536
537 for (MemoryAccess *MA : AllMAs) {
538 if (UsedMA.count(MA))
539 continue;
540 LLVM_DEBUG(dbgs() << "Removing " << MA
541 << " because its value is not used\n");
542 ScopStmt *Stmt = MA->getStatement();
543 Stmt->removeSingleMemoryAccess(MA);
544
545 DeadAccessesRemoved++;
546 TotalDeadAccessesRemoved[CallNo]++;
547 }
548
549 // Remove all non-reachable instructions.
550 for (ScopStmt &Stmt : *S) {
551 // Note that for region statements, we can only remove the non-terminator
552 // instructions of the entry block. All other instructions are not in the
553 // instructions list, but implicitly always part of the statement.
554
555 SmallVector<Instruction *, 32> AllInsts(Stmt.insts_begin(),
556 Stmt.insts_end());
557 SmallVector<Instruction *, 32> RemainInsts;
558
559 for (Instruction *Inst : AllInsts) {
560 auto It = UsedInsts.find({&Stmt, Inst});
561 if (It == UsedInsts.end()) {
562 LLVM_DEBUG(dbgs() << "Removing "; Inst->print(dbgs());
563 dbgs() << " because it is not used\n");
564 DeadInstructionsRemoved++;
565 TotalDeadInstructionsRemoved[CallNo]++;
566 continue;
567 }
568
569 RemainInsts.push_back(Inst);
570
571 // If instructions appear multiple times, keep only the first.
572 UsedInsts.erase(It);
573 }
574
575 // Set the new instruction list to be only those we did not remove.
576 Stmt.setInstructions(RemainInsts);
577 }
578 }
579
580 /// Print simplification statistics to @p OS.
printStatistics(llvm::raw_ostream & OS,int Indent) const581 void SimplifyVisitor::printStatistics(llvm::raw_ostream &OS, int Indent) const {
582 OS.indent(Indent) << "Statistics {\n";
583 OS.indent(Indent + 4) << "Empty domains removed: " << EmptyDomainsRemoved
584 << '\n';
585 OS.indent(Indent + 4) << "Overwrites removed: " << OverwritesRemoved << '\n';
586 OS.indent(Indent + 4) << "Partial writes coalesced: " << WritesCoalesced
587 << "\n";
588 OS.indent(Indent + 4) << "Redundant writes removed: "
589 << RedundantWritesRemoved << "\n";
590 OS.indent(Indent + 4) << "Accesses with empty domains removed: "
591 << EmptyPartialAccessesRemoved << "\n";
592 OS.indent(Indent + 4) << "Dead accesses removed: " << DeadAccessesRemoved
593 << '\n';
594 OS.indent(Indent + 4) << "Dead instructions removed: "
595 << DeadInstructionsRemoved << '\n';
596 OS.indent(Indent + 4) << "Stmts removed: " << StmtsRemoved << "\n";
597 OS.indent(Indent) << "}\n";
598 }
599
600 /// Print the current state of all MemoryAccesses to @p OS.
printAccesses(llvm::raw_ostream & OS,int Indent) const601 void SimplifyVisitor::printAccesses(llvm::raw_ostream &OS, int Indent) const {
602 OS.indent(Indent) << "After accesses {\n";
603 for (auto &Stmt : *S) {
604 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
605 for (auto *MA : Stmt)
606 MA->print(OS);
607 }
608 OS.indent(Indent) << "}\n";
609 }
610
visit(Scop & S,LoopInfo * LI)611 bool SimplifyVisitor::visit(Scop &S, LoopInfo *LI) {
612 // Reset statistics of last processed SCoP.
613 releaseMemory();
614 assert(!isModified());
615
616 // Prepare processing of this SCoP.
617 this->S = &S;
618 ScopsProcessed[CallNo]++;
619
620 LLVM_DEBUG(dbgs() << "Removing statements that are never executed...\n");
621 removeEmptyDomainStmts();
622
623 LLVM_DEBUG(dbgs() << "Removing partial writes that never happen...\n");
624 removeEmptyPartialAccesses();
625
626 LLVM_DEBUG(dbgs() << "Removing overwrites...\n");
627 removeOverwrites();
628
629 LLVM_DEBUG(dbgs() << "Coalesce partial writes...\n");
630 coalesceWrites();
631
632 LLVM_DEBUG(dbgs() << "Removing redundant writes...\n");
633 removeRedundantWrites();
634
635 LLVM_DEBUG(dbgs() << "Cleanup unused accesses...\n");
636 markAndSweep(LI);
637
638 LLVM_DEBUG(dbgs() << "Removing statements without side effects...\n");
639 removeUnnecessaryStmts();
640
641 if (isModified())
642 ScopsModified[CallNo]++;
643 LLVM_DEBUG(dbgs() << "\nFinal Scop:\n");
644 LLVM_DEBUG(dbgs() << S);
645
646 auto ScopStats = S.getStatistics();
647 NumValueWrites[CallNo] += ScopStats.NumValueWrites;
648 NumValueWritesInLoops[CallNo] += ScopStats.NumValueWritesInLoops;
649 NumPHIWrites[CallNo] += ScopStats.NumPHIWrites;
650 NumPHIWritesInLoops[CallNo] += ScopStats.NumPHIWritesInLoops;
651 NumSingletonWrites[CallNo] += ScopStats.NumSingletonWrites;
652 NumSingletonWritesInLoops[CallNo] += ScopStats.NumSingletonWritesInLoops;
653
654 return false;
655 }
656
printScop(raw_ostream & OS,Scop & S) const657 void SimplifyVisitor::printScop(raw_ostream &OS, Scop &S) const {
658 assert(&S == this->S &&
659 "Can only print analysis for the last processed SCoP");
660 printStatistics(OS);
661
662 if (!isModified()) {
663 OS << "SCoP could not be simplified\n";
664 return;
665 }
666 printAccesses(OS);
667 }
668
releaseMemory()669 void SimplifyVisitor::releaseMemory() {
670 S = nullptr;
671
672 EmptyDomainsRemoved = 0;
673 OverwritesRemoved = 0;
674 WritesCoalesced = 0;
675 RedundantWritesRemoved = 0;
676 EmptyPartialAccessesRemoved = 0;
677 DeadAccessesRemoved = 0;
678 DeadInstructionsRemoved = 0;
679 StmtsRemoved = 0;
680 }
681
682 namespace {
683 class SimplifyLegacyPass : public ScopPass {
684 public:
685 static char ID;
686 SimplifyVisitor Imp;
687
SimplifyLegacyPass(int CallNo=0)688 explicit SimplifyLegacyPass(int CallNo = 0) : ScopPass(ID), Imp(CallNo) {}
689
getAnalysisUsage(AnalysisUsage & AU) const690 virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
691 AU.addRequiredTransitive<ScopInfoRegionPass>();
692 AU.addRequired<LoopInfoWrapperPass>();
693 AU.setPreservesAll();
694 }
695
runOnScop(Scop & S)696 virtual bool runOnScop(Scop &S) override {
697 return Imp.visit(S, &getAnalysis<LoopInfoWrapperPass>().getLoopInfo());
698 }
699
printScop(raw_ostream & OS,Scop & S) const700 virtual void printScop(raw_ostream &OS, Scop &S) const override {
701 Imp.printScop(OS, S);
702 }
703
releaseMemory()704 virtual void releaseMemory() override { Imp.releaseMemory(); }
705 };
706
707 char SimplifyLegacyPass::ID;
708 } // anonymous namespace
709
710 namespace polly {
run(Scop & S,ScopAnalysisManager & SAM,ScopStandardAnalysisResults & SAR,SPMUpdater & U)711 llvm::PreservedAnalyses SimplifyPass::run(Scop &S, ScopAnalysisManager &SAM,
712 ScopStandardAnalysisResults &SAR,
713 SPMUpdater &U) {
714 if (!Imp.visit(S, &SAR.LI))
715 return llvm::PreservedAnalyses::all();
716
717 return llvm::PreservedAnalyses::none();
718 }
719
720 llvm::PreservedAnalyses
run(Scop & S,ScopAnalysisManager & SAM,ScopStandardAnalysisResults & SAR,SPMUpdater & U)721 SimplifyPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
722 ScopStandardAnalysisResults &SAR, SPMUpdater &U) {
723 bool Changed = Imp.visit(S, &SAR.LI);
724 Imp.printScop(OS, S);
725
726 if (!Changed)
727 return llvm::PreservedAnalyses::all();
728
729 return llvm::PreservedAnalyses::none();
730 }
731
getAccessesInOrder(ScopStmt & Stmt)732 SmallVector<MemoryAccess *, 32> getAccessesInOrder(ScopStmt &Stmt) {
733
734 SmallVector<MemoryAccess *, 32> Accesses;
735
736 for (MemoryAccess *MemAcc : Stmt)
737 if (isImplicitRead(MemAcc))
738 Accesses.push_back(MemAcc);
739
740 for (MemoryAccess *MemAcc : Stmt)
741 if (isExplicitAccess(MemAcc))
742 Accesses.push_back(MemAcc);
743
744 for (MemoryAccess *MemAcc : Stmt)
745 if (isImplicitWrite(MemAcc))
746 Accesses.push_back(MemAcc);
747
748 return Accesses;
749 }
750 } // namespace polly
751
createSimplifyPass(int CallNo)752 Pass *polly::createSimplifyPass(int CallNo) {
753 return new SimplifyLegacyPass(CallNo);
754 }
755
756 INITIALIZE_PASS_BEGIN(SimplifyLegacyPass, "polly-simplify", "Polly - Simplify",
757 false, false)
758 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
759 INITIALIZE_PASS_END(SimplifyLegacyPass, "polly-simplify", "Polly - Simplify",
760 false, false)
761