1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TargetMachine and LLVMTargetMachine classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_TARGET_TARGETMACHINE_H
14 #define LLVM_TARGET_TARGETMACHINE_H
15
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/Pass.h"
20 #include "llvm/Support/CodeGen.h"
21 #include "llvm/Target/TargetOptions.h"
22 #include <string>
23
24 namespace llvm {
25
26 class Function;
27 class GlobalValue;
28 class MachineModuleInfoWrapperPass;
29 class Mangler;
30 class MCAsmInfo;
31 class MCContext;
32 class MCInstrInfo;
33 class MCRegisterInfo;
34 class MCSubtargetInfo;
35 class MCSymbol;
36 class raw_pwrite_stream;
37 class PassBuilder;
38 class PassManagerBuilder;
39 struct PerFunctionMIParsingState;
40 class SMDiagnostic;
41 class SMRange;
42 class Target;
43 class TargetIntrinsicInfo;
44 class TargetIRAnalysis;
45 class TargetTransformInfo;
46 class TargetLoweringObjectFile;
47 class TargetPassConfig;
48 class TargetSubtargetInfo;
49
50 // The old pass manager infrastructure is hidden in a legacy namespace now.
51 namespace legacy {
52 class PassManagerBase;
53 }
54 using legacy::PassManagerBase;
55
56 namespace yaml {
57 struct MachineFunctionInfo;
58 }
59
60 //===----------------------------------------------------------------------===//
61 ///
62 /// Primary interface to the complete machine description for the target
63 /// machine. All target-specific information should be accessible through this
64 /// interface.
65 ///
66 class TargetMachine {
67 protected: // Can only create subclasses.
68 TargetMachine(const Target &T, StringRef DataLayoutString,
69 const Triple &TargetTriple, StringRef CPU, StringRef FS,
70 const TargetOptions &Options);
71
72 /// The Target that this machine was created for.
73 const Target &TheTarget;
74
75 /// DataLayout for the target: keep ABI type size and alignment.
76 ///
77 /// The DataLayout is created based on the string representation provided
78 /// during construction. It is kept here only to avoid reparsing the string
79 /// but should not really be used during compilation, because it has an
80 /// internal cache that is context specific.
81 const DataLayout DL;
82
83 /// Triple string, CPU name, and target feature strings the TargetMachine
84 /// instance is created with.
85 Triple TargetTriple;
86 std::string TargetCPU;
87 std::string TargetFS;
88
89 Reloc::Model RM = Reloc::Static;
90 CodeModel::Model CMModel = CodeModel::Small;
91 CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
92
93 /// Contains target specific asm information.
94 std::unique_ptr<const MCAsmInfo> AsmInfo;
95 std::unique_ptr<const MCRegisterInfo> MRI;
96 std::unique_ptr<const MCInstrInfo> MII;
97 std::unique_ptr<const MCSubtargetInfo> STI;
98
99 unsigned RequireStructuredCFG : 1;
100 unsigned O0WantsFastISel : 1;
101
102 public:
103 const TargetOptions DefaultOptions;
104 mutable TargetOptions Options;
105
106 TargetMachine(const TargetMachine &) = delete;
107 void operator=(const TargetMachine &) = delete;
108 virtual ~TargetMachine();
109
getTarget()110 const Target &getTarget() const { return TheTarget; }
111
getTargetTriple()112 const Triple &getTargetTriple() const { return TargetTriple; }
getTargetCPU()113 StringRef getTargetCPU() const { return TargetCPU; }
getTargetFeatureString()114 StringRef getTargetFeatureString() const { return TargetFS; }
setTargetFeatureString(StringRef FS)115 void setTargetFeatureString(StringRef FS) { TargetFS = std::string(FS); }
116
117 /// Virtual method implemented by subclasses that returns a reference to that
118 /// target's TargetSubtargetInfo-derived member variable.
getSubtargetImpl(const Function &)119 virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
120 return nullptr;
121 }
getObjFileLowering()122 virtual TargetLoweringObjectFile *getObjFileLowering() const {
123 return nullptr;
124 }
125
126 /// Allocate and return a default initialized instance of the YAML
127 /// representation for the MachineFunctionInfo.
createDefaultFuncInfoYAML()128 virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
129 return nullptr;
130 }
131
132 /// Allocate and initialize an instance of the YAML representation of the
133 /// MachineFunctionInfo.
134 virtual yaml::MachineFunctionInfo *
convertFuncInfoToYAML(const MachineFunction & MF)135 convertFuncInfoToYAML(const MachineFunction &MF) const {
136 return nullptr;
137 }
138
139 /// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,PerFunctionMIParsingState & PFS,SMDiagnostic & Error,SMRange & SourceRange)140 virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
141 PerFunctionMIParsingState &PFS,
142 SMDiagnostic &Error,
143 SMRange &SourceRange) const {
144 return false;
145 }
146
147 /// This method returns a pointer to the specified type of
148 /// TargetSubtargetInfo. In debug builds, it verifies that the object being
149 /// returned is of the correct type.
getSubtarget(const Function & F)150 template <typename STC> const STC &getSubtarget(const Function &F) const {
151 return *static_cast<const STC*>(getSubtargetImpl(F));
152 }
153
154 /// Create a DataLayout.
createDataLayout()155 const DataLayout createDataLayout() const { return DL; }
156
157 /// Test if a DataLayout if compatible with the CodeGen for this target.
158 ///
159 /// The LLVM Module owns a DataLayout that is used for the target independent
160 /// optimizations and code generation. This hook provides a target specific
161 /// check on the validity of this DataLayout.
isCompatibleDataLayout(const DataLayout & Candidate)162 bool isCompatibleDataLayout(const DataLayout &Candidate) const {
163 return DL == Candidate;
164 }
165
166 /// Get the pointer size for this target.
167 ///
168 /// This is the only time the DataLayout in the TargetMachine is used.
getPointerSize(unsigned AS)169 unsigned getPointerSize(unsigned AS) const {
170 return DL.getPointerSize(AS);
171 }
172
getPointerSizeInBits(unsigned AS)173 unsigned getPointerSizeInBits(unsigned AS) const {
174 return DL.getPointerSizeInBits(AS);
175 }
176
getProgramPointerSize()177 unsigned getProgramPointerSize() const {
178 return DL.getPointerSize(DL.getProgramAddressSpace());
179 }
180
getAllocaPointerSize()181 unsigned getAllocaPointerSize() const {
182 return DL.getPointerSize(DL.getAllocaAddrSpace());
183 }
184
185 /// Reset the target options based on the function's attributes.
186 // FIXME: Remove TargetOptions that affect per-function code generation
187 // from TargetMachine.
188 void resetTargetOptions(const Function &F) const;
189
190 /// Return target specific asm information.
getMCAsmInfo()191 const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
192
getMCRegisterInfo()193 const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
getMCInstrInfo()194 const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
getMCSubtargetInfo()195 const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
196
197 /// If intrinsic information is available, return it. If not, return null.
getIntrinsicInfo()198 virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
199 return nullptr;
200 }
201
requiresStructuredCFG()202 bool requiresStructuredCFG() const { return RequireStructuredCFG; }
setRequiresStructuredCFG(bool Value)203 void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
204
205 /// Returns the code generation relocation model. The choices are static, PIC,
206 /// and dynamic-no-pic, and target default.
207 Reloc::Model getRelocationModel() const;
208
209 /// Returns the code model. The choices are small, kernel, medium, large, and
210 /// target default.
211 CodeModel::Model getCodeModel() const;
212
213 bool isPositionIndependent() const;
214
215 bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const;
216
217 /// Returns true if this target uses emulated TLS.
218 bool useEmulatedTLS() const;
219
220 /// Returns the TLS model which should be used for the given global variable.
221 TLSModel::Model getTLSModel(const GlobalValue *GV) const;
222
223 /// Returns the optimization level: None, Less, Default, or Aggressive.
224 CodeGenOpt::Level getOptLevel() const;
225
226 /// Overrides the optimization level.
227 void setOptLevel(CodeGenOpt::Level Level);
228
setFastISel(bool Enable)229 void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
getO0WantsFastISel()230 bool getO0WantsFastISel() { return O0WantsFastISel; }
setO0WantsFastISel(bool Enable)231 void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
setGlobalISel(bool Enable)232 void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
setGlobalISelAbort(GlobalISelAbortMode Mode)233 void setGlobalISelAbort(GlobalISelAbortMode Mode) {
234 Options.GlobalISelAbort = Mode;
235 }
setMachineOutliner(bool Enable)236 void setMachineOutliner(bool Enable) {
237 Options.EnableMachineOutliner = Enable;
238 }
setSupportsDefaultOutlining(bool Enable)239 void setSupportsDefaultOutlining(bool Enable) {
240 Options.SupportsDefaultOutlining = Enable;
241 }
setSupportsDebugEntryValues(bool Enable)242 void setSupportsDebugEntryValues(bool Enable) {
243 Options.SupportsDebugEntryValues = Enable;
244 }
245
getAIXExtendedAltivecABI()246 bool getAIXExtendedAltivecABI() const {
247 return Options.EnableAIXExtendedAltivecABI;
248 }
249
getUniqueSectionNames()250 bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
251
252 /// Return true if unique basic block section names must be generated.
getUniqueBasicBlockSectionNames()253 bool getUniqueBasicBlockSectionNames() const {
254 return Options.UniqueBasicBlockSectionNames;
255 }
256
257 /// Return true if data objects should be emitted into their own section,
258 /// corresponds to -fdata-sections.
getDataSections()259 bool getDataSections() const {
260 return Options.DataSections;
261 }
262
263 /// Return true if functions should be emitted into their own section,
264 /// corresponding to -ffunction-sections.
getFunctionSections()265 bool getFunctionSections() const {
266 return Options.FunctionSections;
267 }
268
269 /// Return true if visibility attribute should not be emitted in xcoff,
270 /// corresponding to -mignore-xcoff-visibility.
getIgnoreXCOFFVisibility()271 bool getIgnoreXCOFFVisibility() const {
272 return Options.IgnoreXCOFFVisibility;
273 }
274
275 /// If basic blocks should be emitted into their own section,
276 /// corresponding to -fbasic-block-sections.
getBBSectionsType()277 llvm::BasicBlockSection getBBSectionsType() const {
278 return Options.BBSections;
279 }
280
281 /// Get the list of functions and basic block ids that need unique sections.
getBBSectionsFuncListBuf()282 const MemoryBuffer *getBBSectionsFuncListBuf() const {
283 return Options.BBSectionsFuncListBuf.get();
284 }
285
286 /// Returns true if a cast between SrcAS and DestAS is a noop.
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS)287 virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
288 return false;
289 }
290
291 /// If the specified generic pointer could be assumed as a pointer to a
292 /// specific address space, return that address space.
293 ///
294 /// Under offloading programming, the offloading target may be passed with
295 /// values only prepared on the host side and could assume certain
296 /// properties.
getAssumedAddrSpace(const Value * V)297 virtual unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
298
299 /// Get a \c TargetIRAnalysis appropriate for the target.
300 ///
301 /// This is used to construct the new pass manager's target IR analysis pass,
302 /// set up appropriately for this target machine. Even the old pass manager
303 /// uses this to answer queries about the IR.
304 TargetIRAnalysis getTargetIRAnalysis();
305
306 /// Return a TargetTransformInfo for a given function.
307 ///
308 /// The returned TargetTransformInfo is specialized to the subtarget
309 /// corresponding to \p F.
310 virtual TargetTransformInfo getTargetTransformInfo(const Function &F);
311
312 /// Allow the target to modify the pass manager, e.g. by calling
313 /// PassManagerBuilder::addExtension.
adjustPassManager(PassManagerBuilder &)314 virtual void adjustPassManager(PassManagerBuilder &) {}
315
316 /// Allow the target to modify the pass pipeline with New Pass Manager
317 /// (similar to adjustPassManager for Legacy Pass manager).
registerPassBuilderCallbacks(PassBuilder &,bool DebugPassManager)318 virtual void registerPassBuilderCallbacks(PassBuilder &,
319 bool DebugPassManager) {}
320
321 /// Add passes to the specified pass manager to get the specified file
322 /// emitted. Typically this will involve several steps of code generation.
323 /// This method should return true if emission of this file type is not
324 /// supported, or false on success.
325 /// \p MMIWP is an optional parameter that, if set to non-nullptr,
326 /// will be used to set the MachineModuloInfo for this PM.
327 virtual bool
328 addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
329 raw_pwrite_stream *, CodeGenFileType,
330 bool /*DisableVerify*/ = true,
331 MachineModuleInfoWrapperPass *MMIWP = nullptr) {
332 return true;
333 }
334
335 /// Add passes to the specified pass manager to get machine code emitted with
336 /// the MCJIT. This method returns true if machine code is not supported. It
337 /// fills the MCContext Ctx pointer which can be used to build custom
338 /// MCStreamer.
339 ///
340 virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
341 raw_pwrite_stream &,
342 bool /*DisableVerify*/ = true) {
343 return true;
344 }
345
346 /// True if subtarget inserts the final scheduling pass on its own.
347 ///
348 /// Branch relaxation, which must happen after block placement, can
349 /// on some targets (e.g. SystemZ) expose additional post-RA
350 /// scheduling opportunities.
targetSchedulesPostRAScheduling()351 virtual bool targetSchedulesPostRAScheduling() const { return false; };
352
353 void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
354 Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
355 MCSymbol *getSymbol(const GlobalValue *GV) const;
356
357 /// The integer bit size to use for SjLj based exception handling.
358 static constexpr unsigned DefaultSjLjDataSize = 32;
getSjLjDataSize()359 virtual unsigned getSjLjDataSize() const { return DefaultSjLjDataSize; }
360 };
361
362 /// This class describes a target machine that is implemented with the LLVM
363 /// target-independent code generator.
364 ///
365 class LLVMTargetMachine : public TargetMachine {
366 protected: // Can only create subclasses.
367 LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
368 const Triple &TT, StringRef CPU, StringRef FS,
369 const TargetOptions &Options, Reloc::Model RM,
370 CodeModel::Model CM, CodeGenOpt::Level OL);
371
372 void initAsmInfo();
373
374 public:
375 /// Get a TargetTransformInfo implementation for the target.
376 ///
377 /// The TTI returned uses the common code generator to answer queries about
378 /// the IR.
379 TargetTransformInfo getTargetTransformInfo(const Function &F) override;
380
381 /// Create a pass configuration object to be used by addPassToEmitX methods
382 /// for generating a pipeline of CodeGen passes.
383 virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
384
385 /// Add passes to the specified pass manager to get the specified file
386 /// emitted. Typically this will involve several steps of code generation.
387 /// \p MMIWP is an optional parameter that, if set to non-nullptr,
388 /// will be used to set the MachineModuloInfo for this PM.
389 bool
390 addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
391 raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
392 bool DisableVerify = true,
393 MachineModuleInfoWrapperPass *MMIWP = nullptr) override;
394
395 /// Add passes to the specified pass manager to get machine code emitted with
396 /// the MCJIT. This method returns true if machine code is not supported. It
397 /// fills the MCContext Ctx pointer which can be used to build custom
398 /// MCStreamer.
399 bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
400 raw_pwrite_stream &Out,
401 bool DisableVerify = true) override;
402
403 /// Returns true if the target is expected to pass all machine verifier
404 /// checks. This is a stopgap measure to fix targets one by one. We will
405 /// remove this at some point and always enable the verifier when
406 /// EXPENSIVE_CHECKS is enabled.
isMachineVerifierClean()407 virtual bool isMachineVerifierClean() const { return true; }
408
409 /// Adds an AsmPrinter pass to the pipeline that prints assembly or
410 /// machine code from the MI representation.
411 bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
412 raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
413 MCContext &Context);
414
415 /// True if the target uses physical regs (as nearly all targets do). False
416 /// for stack machines such as WebAssembly and other virtual-register
417 /// machines. If true, all vregs must be allocated before PEI. If false, then
418 /// callee-save register spilling and scavenging are not needed or used. If
419 /// false, implicitly defined registers will still be assumed to be physical
420 /// registers, except that variadic defs will be allocated vregs.
usesPhysRegsForValues()421 virtual bool usesPhysRegsForValues() const { return true; }
422
423 /// True if the target wants to use interprocedural register allocation by
424 /// default. The -enable-ipra flag can be used to override this.
useIPRA()425 virtual bool useIPRA() const {
426 return false;
427 }
428 };
429
430 /// Helper method for getting the code model, returning Default if
431 /// CM does not have a value. The tiny and kernel models will produce
432 /// an error, so targets that support them or require more complex codemodel
433 /// selection logic should implement and call their own getEffectiveCodeModel.
getEffectiveCodeModel(Optional<CodeModel::Model> CM,CodeModel::Model Default)434 inline CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
435 CodeModel::Model Default) {
436 if (CM) {
437 // By default, targets do not support the tiny and kernel models.
438 if (*CM == CodeModel::Tiny)
439 report_fatal_error("Target does not support the tiny CodeModel", false);
440 if (*CM == CodeModel::Kernel)
441 report_fatal_error("Target does not support the kernel CodeModel", false);
442 return *CM;
443 }
444 return Default;
445 }
446
447 } // end namespace llvm
448
449 #endif // LLVM_TARGET_TARGETMACHINE_H
450