• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This file defines a set of templates that efficiently compute a dominator
12 /// tree over a generic graph. This is used typically in LLVM for fast
13 /// dominance queries on the CFG, but is fully generic w.r.t. the underlying
14 /// graph types.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_SUPPORT_GENERICDOMTREE_H
19 #define LLVM_SUPPORT_GENERICDOMTREE_H
20 
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DepthFirstIterator.h"
23 #include "llvm/ADT/GraphTraits.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 
31 namespace llvm {
32 
33 /// \brief Base class that other, more interesting dominator analyses
34 /// inherit from.
35 template <class NodeT> class DominatorBase {
36 protected:
37   std::vector<NodeT *> Roots;
38   bool IsPostDominators;
DominatorBase(bool isPostDom)39   explicit DominatorBase(bool isPostDom)
40       : Roots(), IsPostDominators(isPostDom) {}
DominatorBase(DominatorBase && Arg)41   DominatorBase(DominatorBase &&Arg)
42       : Roots(std::move(Arg.Roots)),
43         IsPostDominators(std::move(Arg.IsPostDominators)) {
44     Arg.Roots.clear();
45   }
46   DominatorBase &operator=(DominatorBase &&RHS) {
47     Roots = std::move(RHS.Roots);
48     IsPostDominators = std::move(RHS.IsPostDominators);
49     RHS.Roots.clear();
50     return *this;
51   }
52 
53 public:
54   /// getRoots - Return the root blocks of the current CFG.  This may include
55   /// multiple blocks if we are computing post dominators.  For forward
56   /// dominators, this will always be a single block (the entry node).
57   ///
getRoots()58   const std::vector<NodeT *> &getRoots() const { return Roots; }
59 
60   /// isPostDominator - Returns true if analysis based of postdoms
61   ///
isPostDominator()62   bool isPostDominator() const { return IsPostDominators; }
63 };
64 
65 template <class NodeT> class DominatorTreeBase;
66 struct PostDominatorTree;
67 
68 /// \brief Base class for the actual dominator tree node.
69 template <class NodeT> class DomTreeNodeBase {
70   NodeT *TheBB;
71   DomTreeNodeBase<NodeT> *IDom;
72   std::vector<DomTreeNodeBase<NodeT> *> Children;
73   mutable int DFSNumIn, DFSNumOut;
74 
75   template <class N> friend class DominatorTreeBase;
76   friend struct PostDominatorTree;
77 
78 public:
79   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
80   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
81       const_iterator;
82 
begin()83   iterator begin() { return Children.begin(); }
end()84   iterator end() { return Children.end(); }
begin()85   const_iterator begin() const { return Children.begin(); }
end()86   const_iterator end() const { return Children.end(); }
87 
getBlock()88   NodeT *getBlock() const { return TheBB; }
getIDom()89   DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
getChildren()90   const std::vector<DomTreeNodeBase<NodeT> *> &getChildren() const {
91     return Children;
92   }
93 
DomTreeNodeBase(NodeT * BB,DomTreeNodeBase<NodeT> * iDom)94   DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
95       : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) {}
96 
97   std::unique_ptr<DomTreeNodeBase<NodeT>>
addChild(std::unique_ptr<DomTreeNodeBase<NodeT>> C)98   addChild(std::unique_ptr<DomTreeNodeBase<NodeT>> C) {
99     Children.push_back(C.get());
100     return C;
101   }
102 
getNumChildren()103   size_t getNumChildren() const { return Children.size(); }
104 
clearAllChildren()105   void clearAllChildren() { Children.clear(); }
106 
compare(const DomTreeNodeBase<NodeT> * Other)107   bool compare(const DomTreeNodeBase<NodeT> *Other) const {
108     if (getNumChildren() != Other->getNumChildren())
109       return true;
110 
111     SmallPtrSet<const NodeT *, 4> OtherChildren;
112     for (const DomTreeNodeBase *I : *Other) {
113       const NodeT *Nd = I->getBlock();
114       OtherChildren.insert(Nd);
115     }
116 
117     for (const DomTreeNodeBase *I : *this) {
118       const NodeT *N = I->getBlock();
119       if (OtherChildren.count(N) == 0)
120         return true;
121     }
122     return false;
123   }
124 
setIDom(DomTreeNodeBase<NodeT> * NewIDom)125   void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
126     assert(IDom && "No immediate dominator?");
127     if (IDom != NewIDom) {
128       typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
129           std::find(IDom->Children.begin(), IDom->Children.end(), this);
130       assert(I != IDom->Children.end() &&
131              "Not in immediate dominator children set!");
132       // I am no longer your child...
133       IDom->Children.erase(I);
134 
135       // Switch to new dominator
136       IDom = NewIDom;
137       IDom->Children.push_back(this);
138     }
139   }
140 
141   /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes
142   /// in the dominator tree. They are only guaranteed valid if
143   /// updateDFSNumbers() has been called.
getDFSNumIn()144   unsigned getDFSNumIn() const { return DFSNumIn; }
getDFSNumOut()145   unsigned getDFSNumOut() const { return DFSNumOut; }
146 
147 private:
148   // Return true if this node is dominated by other. Use this only if DFS info
149   // is valid.
DominatedBy(const DomTreeNodeBase<NodeT> * other)150   bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
151     return this->DFSNumIn >= other->DFSNumIn &&
152            this->DFSNumOut <= other->DFSNumOut;
153   }
154 };
155 
156 template <class NodeT>
157 raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) {
158   if (Node->getBlock())
159     Node->getBlock()->printAsOperand(o, false);
160   else
161     o << " <<exit node>>";
162 
163   o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
164 
165   return o << "\n";
166 }
167 
168 template <class NodeT>
PrintDomTree(const DomTreeNodeBase<NodeT> * N,raw_ostream & o,unsigned Lev)169 void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
170                   unsigned Lev) {
171   o.indent(2 * Lev) << "[" << Lev << "] " << N;
172   for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
173                                                        E = N->end();
174        I != E; ++I)
175     PrintDomTree<NodeT>(*I, o, Lev + 1);
176 }
177 
178 // The calculate routine is provided in a separate header but referenced here.
179 template <class FuncT, class N>
180 void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT,
181                FuncT &F);
182 
183 /// \brief Core dominator tree base class.
184 ///
185 /// This class is a generic template over graph nodes. It is instantiated for
186 /// various graphs in the LLVM IR or in the code generator.
187 template <class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> {
188   DominatorTreeBase(const DominatorTreeBase &) = delete;
189   DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
190 
dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> * A,const DomTreeNodeBase<NodeT> * B)191   bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
192                                const DomTreeNodeBase<NodeT> *B) const {
193     assert(A != B);
194     assert(isReachableFromEntry(B));
195     assert(isReachableFromEntry(A));
196 
197     const DomTreeNodeBase<NodeT> *IDom;
198     while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
199       B = IDom; // Walk up the tree
200     return IDom != nullptr;
201   }
202 
203   /// \brief Wipe this tree's state without releasing any resources.
204   ///
205   /// This is essentially a post-move helper only. It leaves the object in an
206   /// assignable and destroyable state, but otherwise invalid.
wipe()207   void wipe() {
208     DomTreeNodes.clear();
209     IDoms.clear();
210     Vertex.clear();
211     Info.clear();
212     RootNode = nullptr;
213   }
214 
215 protected:
216   typedef DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>
217       DomTreeNodeMapType;
218   DomTreeNodeMapType DomTreeNodes;
219   DomTreeNodeBase<NodeT> *RootNode;
220 
221   mutable bool DFSInfoValid;
222   mutable unsigned int SlowQueries;
223   // Information record used during immediate dominators computation.
224   struct InfoRec {
225     unsigned DFSNum;
226     unsigned Parent;
227     unsigned Semi;
228     NodeT *Label;
229 
InfoRecInfoRec230     InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(nullptr) {}
231   };
232 
233   DenseMap<NodeT *, NodeT *> IDoms;
234 
235   // Vertex - Map the DFS number to the NodeT*
236   std::vector<NodeT *> Vertex;
237 
238   // Info - Collection of information used during the computation of idoms.
239   DenseMap<NodeT *, InfoRec> Info;
240 
reset()241   void reset() {
242     DomTreeNodes.clear();
243     IDoms.clear();
244     this->Roots.clear();
245     Vertex.clear();
246     RootNode = nullptr;
247     DFSInfoValid = false;
248     SlowQueries = 0;
249   }
250 
251   // NewBB is split and now it has one successor. Update dominator tree to
252   // reflect this change.
253   template <class N, class GraphT>
Split(DominatorTreeBase<typename GraphT::NodeType> & DT,typename GraphT::NodeType * NewBB)254   void Split(DominatorTreeBase<typename GraphT::NodeType> &DT,
255              typename GraphT::NodeType *NewBB) {
256     assert(std::distance(GraphT::child_begin(NewBB),
257                          GraphT::child_end(NewBB)) == 1 &&
258            "NewBB should have a single successor!");
259     typename GraphT::NodeType *NewBBSucc = *GraphT::child_begin(NewBB);
260 
261     std::vector<typename GraphT::NodeType *> PredBlocks;
262     typedef GraphTraits<Inverse<N>> InvTraits;
263     for (typename InvTraits::ChildIteratorType
264              PI = InvTraits::child_begin(NewBB),
265              PE = InvTraits::child_end(NewBB);
266          PI != PE; ++PI)
267       PredBlocks.push_back(*PI);
268 
269     assert(!PredBlocks.empty() && "No predblocks?");
270 
271     bool NewBBDominatesNewBBSucc = true;
272     for (typename InvTraits::ChildIteratorType
273              PI = InvTraits::child_begin(NewBBSucc),
274              E = InvTraits::child_end(NewBBSucc);
275          PI != E; ++PI) {
276       typename InvTraits::NodeType *ND = *PI;
277       if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
278           DT.isReachableFromEntry(ND)) {
279         NewBBDominatesNewBBSucc = false;
280         break;
281       }
282     }
283 
284     // Find NewBB's immediate dominator and create new dominator tree node for
285     // NewBB.
286     NodeT *NewBBIDom = nullptr;
287     unsigned i = 0;
288     for (i = 0; i < PredBlocks.size(); ++i)
289       if (DT.isReachableFromEntry(PredBlocks[i])) {
290         NewBBIDom = PredBlocks[i];
291         break;
292       }
293 
294     // It's possible that none of the predecessors of NewBB are reachable;
295     // in that case, NewBB itself is unreachable, so nothing needs to be
296     // changed.
297     if (!NewBBIDom)
298       return;
299 
300     for (i = i + 1; i < PredBlocks.size(); ++i) {
301       if (DT.isReachableFromEntry(PredBlocks[i]))
302         NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
303     }
304 
305     // Create the new dominator tree node... and set the idom of NewBB.
306     DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
307 
308     // If NewBB strictly dominates other blocks, then it is now the immediate
309     // dominator of NewBBSucc.  Update the dominator tree as appropriate.
310     if (NewBBDominatesNewBBSucc) {
311       DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
312       DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
313     }
314   }
315 
316 public:
DominatorTreeBase(bool isPostDom)317   explicit DominatorTreeBase(bool isPostDom)
318       : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
319 
DominatorTreeBase(DominatorTreeBase && Arg)320   DominatorTreeBase(DominatorTreeBase &&Arg)
321       : DominatorBase<NodeT>(
322             std::move(static_cast<DominatorBase<NodeT> &>(Arg))),
323         DomTreeNodes(std::move(Arg.DomTreeNodes)),
324         RootNode(std::move(Arg.RootNode)),
325         DFSInfoValid(std::move(Arg.DFSInfoValid)),
326         SlowQueries(std::move(Arg.SlowQueries)), IDoms(std::move(Arg.IDoms)),
327         Vertex(std::move(Arg.Vertex)), Info(std::move(Arg.Info)) {
328     Arg.wipe();
329   }
330   DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
331     DominatorBase<NodeT>::operator=(
332         std::move(static_cast<DominatorBase<NodeT> &>(RHS)));
333     DomTreeNodes = std::move(RHS.DomTreeNodes);
334     RootNode = std::move(RHS.RootNode);
335     DFSInfoValid = std::move(RHS.DFSInfoValid);
336     SlowQueries = std::move(RHS.SlowQueries);
337     IDoms = std::move(RHS.IDoms);
338     Vertex = std::move(RHS.Vertex);
339     Info = std::move(RHS.Info);
340     RHS.wipe();
341     return *this;
342   }
343 
344   /// compare - Return false if the other dominator tree base matches this
345   /// dominator tree base. Otherwise return true.
compare(const DominatorTreeBase & Other)346   bool compare(const DominatorTreeBase &Other) const {
347 
348     const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
349     if (DomTreeNodes.size() != OtherDomTreeNodes.size())
350       return true;
351 
352     for (const auto &DomTreeNode : this->DomTreeNodes) {
353       NodeT *BB = DomTreeNode.first;
354       typename DomTreeNodeMapType::const_iterator OI =
355           OtherDomTreeNodes.find(BB);
356       if (OI == OtherDomTreeNodes.end())
357         return true;
358 
359       DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second;
360       DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
361 
362       if (MyNd.compare(&OtherNd))
363         return true;
364     }
365 
366     return false;
367   }
368 
releaseMemory()369   void releaseMemory() { reset(); }
370 
371   /// getNode - return the (Post)DominatorTree node for the specified basic
372   /// block.  This is the same as using operator[] on this class.  The result
373   /// may (but is not required to) be null for a forward (backwards)
374   /// statically unreachable block.
getNode(NodeT * BB)375   DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
376     auto I = DomTreeNodes.find(BB);
377     if (I != DomTreeNodes.end())
378       return I->second.get();
379     return nullptr;
380   }
381 
382   /// See getNode.
383   DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); }
384 
385   /// getRootNode - This returns the entry node for the CFG of the function.  If
386   /// this tree represents the post-dominance relations for a function, however,
387   /// this root may be a node with the block == NULL.  This is the case when
388   /// there are multiple exit nodes from a particular function.  Consumers of
389   /// post-dominance information must be capable of dealing with this
390   /// possibility.
391   ///
getRootNode()392   DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
getRootNode()393   const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
394 
395   /// Get all nodes dominated by R, including R itself.
getDescendants(NodeT * R,SmallVectorImpl<NodeT * > & Result)396   void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
397     Result.clear();
398     const DomTreeNodeBase<NodeT> *RN = getNode(R);
399     if (!RN)
400       return; // If R is unreachable, it will not be present in the DOM tree.
401     SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
402     WL.push_back(RN);
403 
404     while (!WL.empty()) {
405       const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
406       Result.push_back(N->getBlock());
407       WL.append(N->begin(), N->end());
408     }
409   }
410 
411   /// properlyDominates - Returns true iff A dominates B and A != B.
412   /// Note that this is not a constant time operation!
413   ///
properlyDominates(const DomTreeNodeBase<NodeT> * A,const DomTreeNodeBase<NodeT> * B)414   bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
415                          const DomTreeNodeBase<NodeT> *B) const {
416     if (!A || !B)
417       return false;
418     if (A == B)
419       return false;
420     return dominates(A, B);
421   }
422 
423   bool properlyDominates(const NodeT *A, const NodeT *B) const;
424 
425   /// isReachableFromEntry - Return true if A is dominated by the entry
426   /// block of the function containing it.
isReachableFromEntry(const NodeT * A)427   bool isReachableFromEntry(const NodeT *A) const {
428     assert(!this->isPostDominator() &&
429            "This is not implemented for post dominators");
430     return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
431   }
432 
isReachableFromEntry(const DomTreeNodeBase<NodeT> * A)433   bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
434 
435   /// dominates - Returns true iff A dominates B.  Note that this is not a
436   /// constant time operation!
437   ///
dominates(const DomTreeNodeBase<NodeT> * A,const DomTreeNodeBase<NodeT> * B)438   bool dominates(const DomTreeNodeBase<NodeT> *A,
439                  const DomTreeNodeBase<NodeT> *B) const {
440     // A node trivially dominates itself.
441     if (B == A)
442       return true;
443 
444     // An unreachable node is dominated by anything.
445     if (!isReachableFromEntry(B))
446       return true;
447 
448     // And dominates nothing.
449     if (!isReachableFromEntry(A))
450       return false;
451 
452     // Compare the result of the tree walk and the dfs numbers, if expensive
453     // checks are enabled.
454 #ifdef EXPENSIVE_CHECKS
455     assert((!DFSInfoValid ||
456             (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
457            "Tree walk disagrees with dfs numbers!");
458 #endif
459 
460     if (DFSInfoValid)
461       return B->DominatedBy(A);
462 
463     // If we end up with too many slow queries, just update the
464     // DFS numbers on the theory that we are going to keep querying.
465     SlowQueries++;
466     if (SlowQueries > 32) {
467       updateDFSNumbers();
468       return B->DominatedBy(A);
469     }
470 
471     return dominatedBySlowTreeWalk(A, B);
472   }
473 
474   bool dominates(const NodeT *A, const NodeT *B) const;
475 
getRoot()476   NodeT *getRoot() const {
477     assert(this->Roots.size() == 1 && "Should always have entry node!");
478     return this->Roots[0];
479   }
480 
481   /// findNearestCommonDominator - Find nearest common dominator basic block
482   /// for basic block A and B. If there is no such block then return NULL.
findNearestCommonDominator(NodeT * A,NodeT * B)483   NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
484     assert(A->getParent() == B->getParent() &&
485            "Two blocks are not in same function");
486 
487     // If either A or B is a entry block then it is nearest common dominator
488     // (for forward-dominators).
489     if (!this->isPostDominator()) {
490       NodeT &Entry = A->getParent()->front();
491       if (A == &Entry || B == &Entry)
492         return &Entry;
493     }
494 
495     // If B dominates A then B is nearest common dominator.
496     if (dominates(B, A))
497       return B;
498 
499     // If A dominates B then A is nearest common dominator.
500     if (dominates(A, B))
501       return A;
502 
503     DomTreeNodeBase<NodeT> *NodeA = getNode(A);
504     DomTreeNodeBase<NodeT> *NodeB = getNode(B);
505 
506     // If we have DFS info, then we can avoid all allocations by just querying
507     // it from each IDom. Note that because we call 'dominates' twice above, we
508     // expect to call through this code at most 16 times in a row without
509     // building valid DFS information. This is important as below is a *very*
510     // slow tree walk.
511     if (DFSInfoValid) {
512       DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
513       while (IDomA) {
514         if (NodeB->DominatedBy(IDomA))
515           return IDomA->getBlock();
516         IDomA = IDomA->getIDom();
517       }
518       return nullptr;
519     }
520 
521     // Collect NodeA dominators set.
522     SmallPtrSet<DomTreeNodeBase<NodeT> *, 16> NodeADoms;
523     NodeADoms.insert(NodeA);
524     DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
525     while (IDomA) {
526       NodeADoms.insert(IDomA);
527       IDomA = IDomA->getIDom();
528     }
529 
530     // Walk NodeB immediate dominators chain and find common dominator node.
531     DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
532     while (IDomB) {
533       if (NodeADoms.count(IDomB) != 0)
534         return IDomB->getBlock();
535 
536       IDomB = IDomB->getIDom();
537     }
538 
539     return nullptr;
540   }
541 
findNearestCommonDominator(const NodeT * A,const NodeT * B)542   const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
543     // Cast away the const qualifiers here. This is ok since
544     // const is re-introduced on the return type.
545     return findNearestCommonDominator(const_cast<NodeT *>(A),
546                                       const_cast<NodeT *>(B));
547   }
548 
549   //===--------------------------------------------------------------------===//
550   // API to update (Post)DominatorTree information based on modifications to
551   // the CFG...
552 
553   /// addNewBlock - Add a new node to the dominator tree information.  This
554   /// creates a new node as a child of DomBB dominator node,linking it into
555   /// the children list of the immediate dominator.
addNewBlock(NodeT * BB,NodeT * DomBB)556   DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
557     assert(getNode(BB) == nullptr && "Block already in dominator tree!");
558     DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
559     assert(IDomNode && "Not immediate dominator specified for block!");
560     DFSInfoValid = false;
561     return (DomTreeNodes[BB] = IDomNode->addChild(
562                 llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
563   }
564 
565   /// changeImmediateDominator - This method is used to update the dominator
566   /// tree information when a node's immediate dominator changes.
567   ///
changeImmediateDominator(DomTreeNodeBase<NodeT> * N,DomTreeNodeBase<NodeT> * NewIDom)568   void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
569                                 DomTreeNodeBase<NodeT> *NewIDom) {
570     assert(N && NewIDom && "Cannot change null node pointers!");
571     DFSInfoValid = false;
572     N->setIDom(NewIDom);
573   }
574 
changeImmediateDominator(NodeT * BB,NodeT * NewBB)575   void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
576     changeImmediateDominator(getNode(BB), getNode(NewBB));
577   }
578 
579   /// eraseNode - Removes a node from the dominator tree. Block must not
580   /// dominate any other blocks. Removes node from its immediate dominator's
581   /// children list. Deletes dominator node associated with basic block BB.
eraseNode(NodeT * BB)582   void eraseNode(NodeT *BB) {
583     DomTreeNodeBase<NodeT> *Node = getNode(BB);
584     assert(Node && "Removing node that isn't in dominator tree.");
585     assert(Node->getChildren().empty() && "Node is not a leaf node.");
586 
587     // Remove node from immediate dominator's children list.
588     DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
589     if (IDom) {
590       typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
591           std::find(IDom->Children.begin(), IDom->Children.end(), Node);
592       assert(I != IDom->Children.end() &&
593              "Not in immediate dominator children set!");
594       // I am no longer your child...
595       IDom->Children.erase(I);
596     }
597 
598     DomTreeNodes.erase(BB);
599   }
600 
601   /// splitBlock - BB is split and now it has one successor. Update dominator
602   /// tree to reflect this change.
splitBlock(NodeT * NewBB)603   void splitBlock(NodeT *NewBB) {
604     if (this->IsPostDominators)
605       this->Split<Inverse<NodeT *>, GraphTraits<Inverse<NodeT *>>>(*this,
606                                                                    NewBB);
607     else
608       this->Split<NodeT *, GraphTraits<NodeT *>>(*this, NewBB);
609   }
610 
611   /// print - Convert to human readable form
612   ///
print(raw_ostream & o)613   void print(raw_ostream &o) const {
614     o << "=============================--------------------------------\n";
615     if (this->isPostDominator())
616       o << "Inorder PostDominator Tree: ";
617     else
618       o << "Inorder Dominator Tree: ";
619     if (!this->DFSInfoValid)
620       o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
621     o << "\n";
622 
623     // The postdom tree can have a null root if there are no returns.
624     if (getRootNode())
625       PrintDomTree<NodeT>(getRootNode(), o, 1);
626   }
627 
628 protected:
629   template <class GraphT>
630   friend typename GraphT::NodeType *
631   Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
632        typename GraphT::NodeType *V, unsigned LastLinked);
633 
634   template <class GraphT>
635   friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType> &DT,
636                           typename GraphT::NodeType *V, unsigned N);
637 
638   template <class FuncT, class N>
639   friend void
640   Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT, FuncT &F);
641 
642 
getNodeForBlock(NodeT * BB)643   DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
644     if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
645       return Node;
646 
647     // Haven't calculated this node yet?  Get or calculate the node for the
648     // immediate dominator.
649     NodeT *IDom = getIDom(BB);
650 
651     assert(IDom || this->DomTreeNodes[nullptr]);
652     DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
653 
654     // Add a new tree node for this NodeT, and link it as a child of
655     // IDomNode
656     return (this->DomTreeNodes[BB] = IDomNode->addChild(
657                 llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
658   }
659 
getIDom(NodeT * BB)660   NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); }
661 
addRoot(NodeT * BB)662   void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
663 
664 public:
665   /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
666   /// dominator tree in dfs order.
updateDFSNumbers()667   void updateDFSNumbers() const {
668 
669     if (DFSInfoValid) {
670       SlowQueries = 0;
671       return;
672     }
673 
674     unsigned DFSNum = 0;
675 
676     SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
677                           typename DomTreeNodeBase<NodeT>::const_iterator>,
678                 32> WorkStack;
679 
680     const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
681 
682     if (!ThisRoot)
683       return;
684 
685     // Even in the case of multiple exits that form the post dominator root
686     // nodes, do not iterate over all exits, but start from the virtual root
687     // node. Otherwise bbs, that are not post dominated by any exit but by the
688     // virtual root node, will never be assigned a DFS number.
689     WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
690     ThisRoot->DFSNumIn = DFSNum++;
691 
692     while (!WorkStack.empty()) {
693       const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
694       typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
695           WorkStack.back().second;
696 
697       // If we visited all of the children of this node, "recurse" back up the
698       // stack setting the DFOutNum.
699       if (ChildIt == Node->end()) {
700         Node->DFSNumOut = DFSNum++;
701         WorkStack.pop_back();
702       } else {
703         // Otherwise, recursively visit this child.
704         const DomTreeNodeBase<NodeT> *Child = *ChildIt;
705         ++WorkStack.back().second;
706 
707         WorkStack.push_back(std::make_pair(Child, Child->begin()));
708         Child->DFSNumIn = DFSNum++;
709       }
710     }
711 
712     SlowQueries = 0;
713     DFSInfoValid = true;
714   }
715 
716   /// recalculate - compute a dominator tree for the given function
recalculate(FT & F)717   template <class FT> void recalculate(FT &F) {
718     typedef GraphTraits<FT *> TraitsTy;
719     reset();
720     this->Vertex.push_back(nullptr);
721 
722     if (!this->IsPostDominators) {
723       // Initialize root
724       NodeT *entry = TraitsTy::getEntryNode(&F);
725       addRoot(entry);
726 
727       Calculate<FT, NodeT *>(*this, F);
728     } else {
729       // Initialize the roots list
730       for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
731                                              E = TraitsTy::nodes_end(&F);
732            I != E; ++I)
733         if (TraitsTy::child_begin(&*I) == TraitsTy::child_end(&*I))
734           addRoot(&*I);
735 
736       Calculate<FT, Inverse<NodeT *>>(*this, F);
737     }
738   }
739 };
740 
741 // These two functions are declared out of line as a workaround for building
742 // with old (< r147295) versions of clang because of pr11642.
743 template <class NodeT>
dominates(const NodeT * A,const NodeT * B)744 bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
745   if (A == B)
746     return true;
747 
748   // Cast away the const qualifiers here. This is ok since
749   // this function doesn't actually return the values returned
750   // from getNode.
751   return dominates(getNode(const_cast<NodeT *>(A)),
752                    getNode(const_cast<NodeT *>(B)));
753 }
754 template <class NodeT>
properlyDominates(const NodeT * A,const NodeT * B)755 bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A,
756                                                  const NodeT *B) const {
757   if (A == B)
758     return false;
759 
760   // Cast away the const qualifiers here. This is ok since
761   // this function doesn't actually return the values returned
762   // from getNode.
763   return dominates(getNode(const_cast<NodeT *>(A)),
764                    getNode(const_cast<NodeT *>(B)));
765 }
766 
767 }
768 
769 #endif
770