• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.animation;
18 
19 import android.annotation.CallSuper;
20 import android.annotation.IntDef;
21 import android.annotation.Nullable;
22 import android.annotation.TestApi;
23 import android.compat.annotation.UnsupportedAppUsage;
24 import android.os.Build;
25 import android.os.Looper;
26 import android.os.Trace;
27 import android.util.AndroidRuntimeException;
28 import android.util.Log;
29 import android.view.animation.AccelerateDecelerateInterpolator;
30 import android.view.animation.Animation;
31 import android.view.animation.AnimationUtils;
32 import android.view.animation.LinearInterpolator;
33 
34 import java.lang.annotation.Retention;
35 import java.lang.annotation.RetentionPolicy;
36 import java.util.ArrayList;
37 import java.util.HashMap;
38 
39 /**
40  * This class provides a simple timing engine for running animations
41  * which calculate animated values and set them on target objects.
42  *
43  * <p>There is a single timing pulse that all animations use. It runs in a
44  * custom handler to ensure that property changes happen on the UI thread.</p>
45  *
46  * <p>By default, ValueAnimator uses non-linear time interpolation, via the
47  * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
48  * out of an animation. This behavior can be changed by calling
49  * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
50  *
51  * <p>Animators can be created from either code or resource files. Here is an example
52  * of a ValueAnimator resource file:</p>
53  *
54  * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
55  *
56  * <p>Starting from API 23, it is also possible to use a combination of {@link PropertyValuesHolder}
57  * and {@link Keyframe} resource tags to create a multi-step animation.
58  * Note that you can specify explicit fractional values (from 0 to 1) for
59  * each keyframe to determine when, in the overall duration, the animation should arrive at that
60  * value. Alternatively, you can leave the fractions off and the keyframes will be equally
61  * distributed within the total duration:</p>
62  *
63  * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
64  * ValueAnimatorKeyframeResources}
65  *
66  * <div class="special reference">
67  * <h3>Developer Guides</h3>
68  * <p>For more information about animating with {@code ValueAnimator}, read the
69  * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
70  * Animation</a> developer guide.</p>
71  * </div>
72  */
73 @SuppressWarnings("unchecked")
74 public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback {
75     private static final String TAG = "ValueAnimator";
76     private static final boolean DEBUG = false;
77 
78     /**
79      * Internal constants
80      */
81 
82     /**
83      * System-wide animation scale.
84      *
85      * <p>To check whether animations are enabled system-wise use {@link #areAnimatorsEnabled()}.
86      */
87     @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P)
88     private static float sDurationScale = 1.0f;
89 
90     /**
91      * Internal variables
92      * NOTE: This object implements the clone() method, making a deep copy of any referenced
93      * objects. As other non-trivial fields are added to this class, make sure to add logic
94      * to clone() to make deep copies of them.
95      */
96 
97     /**
98      * The first time that the animation's animateFrame() method is called. This time is used to
99      * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
100      * to animateFrame().
101      *
102      * Whenever mStartTime is set, you must also update mStartTimeCommitted.
103      */
104     long mStartTime = -1;
105 
106     /**
107      * When true, the start time has been firmly committed as a chosen reference point in
108      * time by which the progress of the animation will be evaluated.  When false, the
109      * start time may be updated when the first animation frame is committed so as
110      * to compensate for jank that may have occurred between when the start time was
111      * initialized and when the frame was actually drawn.
112      *
113      * This flag is generally set to false during the first frame of the animation
114      * when the animation playing state transitions from STOPPED to RUNNING or
115      * resumes after having been paused.  This flag is set to true when the start time
116      * is firmly committed and should not be further compensated for jank.
117      */
118     boolean mStartTimeCommitted;
119 
120     /**
121      * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
122      * to a value.
123      */
124     float mSeekFraction = -1;
125 
126     /**
127      * Set on the next frame after pause() is called, used to calculate a new startTime
128      * or delayStartTime which allows the animator to continue from the point at which
129      * it was paused. If negative, has not yet been set.
130      */
131     private long mPauseTime;
132 
133     /**
134      * Set when an animator is resumed. This triggers logic in the next frame which
135      * actually resumes the animator.
136      */
137     private boolean mResumed = false;
138 
139     // The time interpolator to be used if none is set on the animation
140     private static final TimeInterpolator sDefaultInterpolator =
141             new AccelerateDecelerateInterpolator();
142 
143     /**
144      * Flag to indicate whether this animator is playing in reverse mode, specifically
145      * by being started or interrupted by a call to reverse(). This flag is different than
146      * mPlayingBackwards, which indicates merely whether the current iteration of the
147      * animator is playing in reverse. It is used in corner cases to determine proper end
148      * behavior.
149      */
150     private boolean mReversing;
151 
152     /**
153      * Tracks the overall fraction of the animation, ranging from 0 to mRepeatCount + 1
154      */
155     private float mOverallFraction = 0f;
156 
157     /**
158      * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
159      * This is calculated by interpolating the fraction (range: [0, 1]) in the current iteration.
160      */
161     private float mCurrentFraction = 0f;
162 
163     /**
164      * Tracks the time (in milliseconds) when the last frame arrived.
165      */
166     private long mLastFrameTime = -1;
167 
168     /**
169      * Tracks the time (in milliseconds) when the first frame arrived. Note the frame may arrive
170      * during the start delay.
171      */
172     private long mFirstFrameTime = -1;
173 
174     /**
175      * Additional playing state to indicate whether an animator has been start()'d. There is
176      * some lag between a call to start() and the first animation frame. We should still note
177      * that the animation has been started, even if it's first animation frame has not yet
178      * happened, and reflect that state in isRunning().
179      * Note that delayed animations are different: they are not started until their first
180      * animation frame, which occurs after their delay elapses.
181      */
182     private boolean mRunning = false;
183 
184     /**
185      * Additional playing state to indicate whether an animator has been start()'d, whether or
186      * not there is a nonzero startDelay.
187      */
188     private boolean mStarted = false;
189 
190     /**
191      * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
192      * complex to keep track of since we notify listeners at different times depending on
193      * startDelay and whether start() was called before end().
194      */
195     private boolean mStartListenersCalled = false;
196 
197     /**
198      * Flag that denotes whether the animation is set up and ready to go. Used to
199      * set up animation that has not yet been started.
200      */
201     boolean mInitialized = false;
202 
203     /**
204      * Flag that tracks whether animation has been requested to end.
205      */
206     private boolean mAnimationEndRequested = false;
207 
208     //
209     // Backing variables
210     //
211 
212     // How long the animation should last in ms
213     @UnsupportedAppUsage
214     private long mDuration = 300;
215 
216     // The amount of time in ms to delay starting the animation after start() is called. Note
217     // that this start delay is unscaled. When there is a duration scale set on the animator, the
218     // scaling factor will be applied to this delay.
219     private long mStartDelay = 0;
220 
221     // The number of times the animation will repeat. The default is 0, which means the animation
222     // will play only once
223     private int mRepeatCount = 0;
224 
225     /**
226      * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
227      * animation will start from the beginning on every new cycle. REVERSE means the animation
228      * will reverse directions on each iteration.
229      */
230     private int mRepeatMode = RESTART;
231 
232     /**
233      * Whether or not the animator should register for its own animation callback to receive
234      * animation pulse.
235      */
236     private boolean mSelfPulse = true;
237 
238     /**
239      * Whether or not the animator has been requested to start without pulsing. This flag gets set
240      * in startWithoutPulsing(), and reset in start().
241      */
242     private boolean mSuppressSelfPulseRequested = false;
243 
244     /**
245      * The time interpolator to be used. The elapsed fraction of the animation will be passed
246      * through this interpolator to calculate the interpolated fraction, which is then used to
247      * calculate the animated values.
248      */
249     private TimeInterpolator mInterpolator = sDefaultInterpolator;
250 
251     /**
252      * The set of listeners to be sent events through the life of an animation.
253      */
254     ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
255 
256     /**
257      * The property/value sets being animated.
258      */
259     PropertyValuesHolder[] mValues;
260 
261     /**
262      * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
263      * by property name during calls to getAnimatedValue(String).
264      */
265     HashMap<String, PropertyValuesHolder> mValuesMap;
266 
267     /**
268      * If set to non-negative value, this will override {@link #sDurationScale}.
269      */
270     private float mDurationScale = -1f;
271 
272     /**
273      * Animation handler used to schedule updates for this animation.
274      */
275     private AnimationHandler mAnimationHandler;
276 
277     /**
278      * Public constants
279      */
280 
281     /** @hide */
282     @IntDef({RESTART, REVERSE})
283     @Retention(RetentionPolicy.SOURCE)
284     public @interface RepeatMode {}
285 
286     /**
287      * When the animation reaches the end and <code>repeatCount</code> is INFINITE
288      * or a positive value, the animation restarts from the beginning.
289      */
290     public static final int RESTART = 1;
291     /**
292      * When the animation reaches the end and <code>repeatCount</code> is INFINITE
293      * or a positive value, the animation reverses direction on every iteration.
294      */
295     public static final int REVERSE = 2;
296     /**
297      * This value used used with the {@link #setRepeatCount(int)} property to repeat
298      * the animation indefinitely.
299      */
300     public static final int INFINITE = -1;
301 
302     /**
303      * @hide
304      */
305     @UnsupportedAppUsage
306     @TestApi
setDurationScale(float durationScale)307     public static void setDurationScale(float durationScale) {
308         sDurationScale = durationScale;
309     }
310 
311     /**
312      * @hide
313      */
314     @UnsupportedAppUsage
315     @TestApi
getDurationScale()316     public static float getDurationScale() {
317         return sDurationScale;
318     }
319 
320     /**
321      * Returns whether animators are currently enabled, system-wide. By default, all
322      * animators are enabled. This can change if either the user sets a Developer Option
323      * to set the animator duration scale to 0 or by Battery Savery mode being enabled
324      * (which disables all animations).
325      *
326      * <p>Developers should not typically need to call this method, but should an app wish
327      * to show a different experience when animators are disabled, this return value
328      * can be used as a decider of which experience to offer.
329      *
330      * @return boolean Whether animators are currently enabled. The default value is
331      * <code>true</code>.
332      */
areAnimatorsEnabled()333     public static boolean areAnimatorsEnabled() {
334         return !(sDurationScale == 0);
335     }
336 
337     /**
338      * Creates a new ValueAnimator object. This default constructor is primarily for
339      * use internally; the factory methods which take parameters are more generally
340      * useful.
341      */
ValueAnimator()342     public ValueAnimator() {
343     }
344 
345     /**
346      * Constructs and returns a ValueAnimator that animates between int values. A single
347      * value implies that that value is the one being animated to. However, this is not typically
348      * useful in a ValueAnimator object because there is no way for the object to determine the
349      * starting value for the animation (unlike ObjectAnimator, which can derive that value
350      * from the target object and property being animated). Therefore, there should typically
351      * be two or more values.
352      *
353      * @param values A set of values that the animation will animate between over time.
354      * @return A ValueAnimator object that is set up to animate between the given values.
355      */
ofInt(int... values)356     public static ValueAnimator ofInt(int... values) {
357         ValueAnimator anim = new ValueAnimator();
358         anim.setIntValues(values);
359         return anim;
360     }
361 
362     /**
363      * Constructs and returns a ValueAnimator that animates between color values. A single
364      * value implies that that value is the one being animated to. However, this is not typically
365      * useful in a ValueAnimator object because there is no way for the object to determine the
366      * starting value for the animation (unlike ObjectAnimator, which can derive that value
367      * from the target object and property being animated). Therefore, there should typically
368      * be two or more values.
369      *
370      * @param values A set of values that the animation will animate between over time.
371      * @return A ValueAnimator object that is set up to animate between the given values.
372      */
ofArgb(int... values)373     public static ValueAnimator ofArgb(int... values) {
374         ValueAnimator anim = new ValueAnimator();
375         anim.setIntValues(values);
376         anim.setEvaluator(ArgbEvaluator.getInstance());
377         return anim;
378     }
379 
380     /**
381      * Constructs and returns a ValueAnimator that animates between float values. A single
382      * value implies that that value is the one being animated to. However, this is not typically
383      * useful in a ValueAnimator object because there is no way for the object to determine the
384      * starting value for the animation (unlike ObjectAnimator, which can derive that value
385      * from the target object and property being animated). Therefore, there should typically
386      * be two or more values.
387      *
388      * @param values A set of values that the animation will animate between over time.
389      * @return A ValueAnimator object that is set up to animate between the given values.
390      */
ofFloat(float... values)391     public static ValueAnimator ofFloat(float... values) {
392         ValueAnimator anim = new ValueAnimator();
393         anim.setFloatValues(values);
394         return anim;
395     }
396 
397     /**
398      * Constructs and returns a ValueAnimator that animates between the values
399      * specified in the PropertyValuesHolder objects.
400      *
401      * @param values A set of PropertyValuesHolder objects whose values will be animated
402      * between over time.
403      * @return A ValueAnimator object that is set up to animate between the given values.
404      */
ofPropertyValuesHolder(PropertyValuesHolder... values)405     public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
406         ValueAnimator anim = new ValueAnimator();
407         anim.setValues(values);
408         return anim;
409     }
410     /**
411      * Constructs and returns a ValueAnimator that animates between Object values. A single
412      * value implies that that value is the one being animated to. However, this is not typically
413      * useful in a ValueAnimator object because there is no way for the object to determine the
414      * starting value for the animation (unlike ObjectAnimator, which can derive that value
415      * from the target object and property being animated). Therefore, there should typically
416      * be two or more values.
417      *
418      * <p><strong>Note:</strong> The Object values are stored as references to the original
419      * objects, which means that changes to those objects after this method is called will
420      * affect the values on the animator. If the objects will be mutated externally after
421      * this method is called, callers should pass a copy of those objects instead.
422      *
423      * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
424      * factory method also takes a TypeEvaluator object that the ValueAnimator will use
425      * to perform that interpolation.
426      *
427      * @param evaluator A TypeEvaluator that will be called on each animation frame to
428      * provide the ncessry interpolation between the Object values to derive the animated
429      * value.
430      * @param values A set of values that the animation will animate between over time.
431      * @return A ValueAnimator object that is set up to animate between the given values.
432      */
ofObject(TypeEvaluator evaluator, Object... values)433     public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
434         ValueAnimator anim = new ValueAnimator();
435         anim.setObjectValues(values);
436         anim.setEvaluator(evaluator);
437         return anim;
438     }
439 
440     /**
441      * Sets int values that will be animated between. A single
442      * value implies that that value is the one being animated to. However, this is not typically
443      * useful in a ValueAnimator object because there is no way for the object to determine the
444      * starting value for the animation (unlike ObjectAnimator, which can derive that value
445      * from the target object and property being animated). Therefore, there should typically
446      * be two or more values.
447      *
448      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
449      * than one PropertyValuesHolder object, this method will set the values for the first
450      * of those objects.</p>
451      *
452      * @param values A set of values that the animation will animate between over time.
453      */
setIntValues(int... values)454     public void setIntValues(int... values) {
455         if (values == null || values.length == 0) {
456             return;
457         }
458         if (mValues == null || mValues.length == 0) {
459             setValues(PropertyValuesHolder.ofInt("", values));
460         } else {
461             PropertyValuesHolder valuesHolder = mValues[0];
462             valuesHolder.setIntValues(values);
463         }
464         // New property/values/target should cause re-initialization prior to starting
465         mInitialized = false;
466     }
467 
468     /**
469      * Sets float values that will be animated between. A single
470      * value implies that that value is the one being animated to. However, this is not typically
471      * useful in a ValueAnimator object because there is no way for the object to determine the
472      * starting value for the animation (unlike ObjectAnimator, which can derive that value
473      * from the target object and property being animated). Therefore, there should typically
474      * be two or more values.
475      *
476      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
477      * than one PropertyValuesHolder object, this method will set the values for the first
478      * of those objects.</p>
479      *
480      * @param values A set of values that the animation will animate between over time.
481      */
setFloatValues(float... values)482     public void setFloatValues(float... values) {
483         if (values == null || values.length == 0) {
484             return;
485         }
486         if (mValues == null || mValues.length == 0) {
487             setValues(PropertyValuesHolder.ofFloat("", values));
488         } else {
489             PropertyValuesHolder valuesHolder = mValues[0];
490             valuesHolder.setFloatValues(values);
491         }
492         // New property/values/target should cause re-initialization prior to starting
493         mInitialized = false;
494     }
495 
496     /**
497      * Sets the values to animate between for this animation. A single
498      * value implies that that value is the one being animated to. However, this is not typically
499      * useful in a ValueAnimator object because there is no way for the object to determine the
500      * starting value for the animation (unlike ObjectAnimator, which can derive that value
501      * from the target object and property being animated). Therefore, there should typically
502      * be two or more values.
503      *
504      * <p><strong>Note:</strong> The Object values are stored as references to the original
505      * objects, which means that changes to those objects after this method is called will
506      * affect the values on the animator. If the objects will be mutated externally after
507      * this method is called, callers should pass a copy of those objects instead.
508      *
509      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
510      * than one PropertyValuesHolder object, this method will set the values for the first
511      * of those objects.</p>
512      *
513      * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
514      * between these value objects. ValueAnimator only knows how to interpolate between the
515      * primitive types specified in the other setValues() methods.</p>
516      *
517      * @param values The set of values to animate between.
518      */
setObjectValues(Object... values)519     public void setObjectValues(Object... values) {
520         if (values == null || values.length == 0) {
521             return;
522         }
523         if (mValues == null || mValues.length == 0) {
524             setValues(PropertyValuesHolder.ofObject("", null, values));
525         } else {
526             PropertyValuesHolder valuesHolder = mValues[0];
527             valuesHolder.setObjectValues(values);
528         }
529         // New property/values/target should cause re-initialization prior to starting
530         mInitialized = false;
531     }
532 
533     /**
534      * Sets the values, per property, being animated between. This function is called internally
535      * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
536      * be constructed without values and this method can be called to set the values manually
537      * instead.
538      *
539      * @param values The set of values, per property, being animated between.
540      */
setValues(PropertyValuesHolder... values)541     public void setValues(PropertyValuesHolder... values) {
542         int numValues = values.length;
543         mValues = values;
544         mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
545         for (int i = 0; i < numValues; ++i) {
546             PropertyValuesHolder valuesHolder = values[i];
547             mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
548         }
549         // New property/values/target should cause re-initialization prior to starting
550         mInitialized = false;
551     }
552 
553     /**
554      * Returns the values that this ValueAnimator animates between. These values are stored in
555      * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
556      * of value objects instead.
557      *
558      * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
559      * values, per property, that define the animation.
560      */
getValues()561     public PropertyValuesHolder[] getValues() {
562         return mValues;
563     }
564 
565     /**
566      * This function is called immediately before processing the first animation
567      * frame of an animation. If there is a nonzero <code>startDelay</code>, the
568      * function is called after that delay ends.
569      * It takes care of the final initialization steps for the
570      * animation.
571      *
572      *  <p>Overrides of this method should call the superclass method to ensure
573      *  that internal mechanisms for the animation are set up correctly.</p>
574      */
575     @CallSuper
initAnimation()576     void initAnimation() {
577         if (!mInitialized) {
578             int numValues = mValues.length;
579             for (int i = 0; i < numValues; ++i) {
580                 mValues[i].init();
581             }
582             mInitialized = true;
583         }
584     }
585 
586     /**
587      * Sets the length of the animation. The default duration is 300 milliseconds.
588      *
589      * @param duration The length of the animation, in milliseconds. This value cannot
590      * be negative.
591      * @return ValueAnimator The object called with setDuration(). This return
592      * value makes it easier to compose statements together that construct and then set the
593      * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
594      */
595     @Override
setDuration(long duration)596     public ValueAnimator setDuration(long duration) {
597         if (duration < 0) {
598             throw new IllegalArgumentException("Animators cannot have negative duration: " +
599                     duration);
600         }
601         mDuration = duration;
602         return this;
603     }
604 
605     /**
606      * Overrides the global duration scale by a custom value.
607      *
608      * @param durationScale The duration scale to set; or {@code -1f} to use the global duration
609      *                      scale.
610      * @hide
611      */
overrideDurationScale(float durationScale)612     public void overrideDurationScale(float durationScale) {
613         mDurationScale = durationScale;
614     }
615 
resolveDurationScale()616     private float resolveDurationScale() {
617         return mDurationScale >= 0f ? mDurationScale : sDurationScale;
618     }
619 
getScaledDuration()620     private long getScaledDuration() {
621         return (long)(mDuration * resolveDurationScale());
622     }
623 
624     /**
625      * Gets the length of the animation. The default duration is 300 milliseconds.
626      *
627      * @return The length of the animation, in milliseconds.
628      */
629     @Override
getDuration()630     public long getDuration() {
631         return mDuration;
632     }
633 
634     @Override
getTotalDuration()635     public long getTotalDuration() {
636         if (mRepeatCount == INFINITE) {
637             return DURATION_INFINITE;
638         } else {
639             return mStartDelay + (mDuration * (mRepeatCount + 1));
640         }
641     }
642 
643     /**
644      * Sets the position of the animation to the specified point in time. This time should
645      * be between 0 and the total duration of the animation, including any repetition. If
646      * the animation has not yet been started, then it will not advance forward after it is
647      * set to this time; it will simply set the time to this value and perform any appropriate
648      * actions based on that time. If the animation is already running, then setCurrentPlayTime()
649      * will set the current playing time to this value and continue playing from that point.
650      *
651      * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
652      */
setCurrentPlayTime(long playTime)653     public void setCurrentPlayTime(long playTime) {
654         float fraction = mDuration > 0 ? (float) playTime / mDuration : 1;
655         setCurrentFraction(fraction);
656     }
657 
658     /**
659      * Sets the position of the animation to the specified fraction. This fraction should
660      * be between 0 and the total fraction of the animation, including any repetition. That is,
661      * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
662      * and a value of 2 at the end of a reversing animator that repeats once. If
663      * the animation has not yet been started, then it will not advance forward after it is
664      * set to this fraction; it will simply set the fraction to this value and perform any
665      * appropriate actions based on that fraction. If the animation is already running, then
666      * setCurrentFraction() will set the current fraction to this value and continue
667      * playing from that point. {@link Animator.AnimatorListener} events are not called
668      * due to changing the fraction; those events are only processed while the animation
669      * is running.
670      *
671      * @param fraction The fraction to which the animation is advanced or rewound. Values
672      * outside the range of 0 to the maximum fraction for the animator will be clamped to
673      * the correct range.
674      */
setCurrentFraction(float fraction)675     public void setCurrentFraction(float fraction) {
676         initAnimation();
677         fraction = clampFraction(fraction);
678         mStartTimeCommitted = true; // do not allow start time to be compensated for jank
679         if (isPulsingInternal()) {
680             long seekTime = (long) (getScaledDuration() * fraction);
681             long currentTime = AnimationUtils.currentAnimationTimeMillis();
682             // Only modify the start time when the animation is running. Seek fraction will ensure
683             // non-running animations skip to the correct start time.
684             mStartTime = currentTime - seekTime;
685         } else {
686             // If the animation loop hasn't started, or during start delay, the startTime will be
687             // adjusted once the delay has passed based on seek fraction.
688             mSeekFraction = fraction;
689         }
690         mOverallFraction = fraction;
691         final float currentIterationFraction = getCurrentIterationFraction(fraction, mReversing);
692         animateValue(currentIterationFraction);
693     }
694 
695     /**
696      * Calculates current iteration based on the overall fraction. The overall fraction will be
697      * in the range of [0, mRepeatCount + 1]. Both current iteration and fraction in the current
698      * iteration can be derived from it.
699      */
getCurrentIteration(float fraction)700     private int getCurrentIteration(float fraction) {
701         fraction = clampFraction(fraction);
702         // If the overall fraction is a positive integer, we consider the current iteration to be
703         // complete. In other words, the fraction for the current iteration would be 1, and the
704         // current iteration would be overall fraction - 1.
705         double iteration = Math.floor(fraction);
706         if (fraction == iteration && fraction > 0) {
707             iteration--;
708         }
709         return (int) iteration;
710     }
711 
712     /**
713      * Calculates the fraction of the current iteration, taking into account whether the animation
714      * should be played backwards. E.g. When the animation is played backwards in an iteration,
715      * the fraction for that iteration will go from 1f to 0f.
716      */
getCurrentIterationFraction(float fraction, boolean inReverse)717     private float getCurrentIterationFraction(float fraction, boolean inReverse) {
718         fraction = clampFraction(fraction);
719         int iteration = getCurrentIteration(fraction);
720         float currentFraction = fraction - iteration;
721         return shouldPlayBackward(iteration, inReverse) ? 1f - currentFraction : currentFraction;
722     }
723 
724     /**
725      * Clamps fraction into the correct range: [0, mRepeatCount + 1]. If repeat count is infinite,
726      * no upper bound will be set for the fraction.
727      *
728      * @param fraction fraction to be clamped
729      * @return fraction clamped into the range of [0, mRepeatCount + 1]
730      */
clampFraction(float fraction)731     private float clampFraction(float fraction) {
732         if (fraction < 0) {
733             fraction = 0;
734         } else if (mRepeatCount != INFINITE) {
735             fraction = Math.min(fraction, mRepeatCount + 1);
736         }
737         return fraction;
738     }
739 
740     /**
741      * Calculates the direction of animation playing (i.e. forward or backward), based on 1)
742      * whether the entire animation is being reversed, 2) repeat mode applied to the current
743      * iteration.
744      */
shouldPlayBackward(int iteration, boolean inReverse)745     private boolean shouldPlayBackward(int iteration, boolean inReverse) {
746         if (iteration > 0 && mRepeatMode == REVERSE &&
747                 (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
748             // if we were seeked to some other iteration in a reversing animator,
749             // figure out the correct direction to start playing based on the iteration
750             if (inReverse) {
751                 return (iteration % 2) == 0;
752             } else {
753                 return (iteration % 2) != 0;
754             }
755         } else {
756             return inReverse;
757         }
758     }
759 
760     /**
761      * Gets the current position of the animation in time, which is equal to the current
762      * time minus the time that the animation started. An animation that is not yet started will
763      * return a value of zero, unless the animation has has its play time set via
764      * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case
765      * it will return the time that was set.
766      *
767      * @return The current position in time of the animation.
768      */
getCurrentPlayTime()769     public long getCurrentPlayTime() {
770         if (!mInitialized || (!mStarted && mSeekFraction < 0)) {
771             return 0;
772         }
773         if (mSeekFraction >= 0) {
774             return (long) (mDuration * mSeekFraction);
775         }
776         float durationScale = resolveDurationScale();
777         if (durationScale == 0f) {
778             durationScale = 1f;
779         }
780         return (long) ((AnimationUtils.currentAnimationTimeMillis() - mStartTime) / durationScale);
781     }
782 
783     /**
784      * The amount of time, in milliseconds, to delay starting the animation after
785      * {@link #start()} is called.
786      *
787      * @return the number of milliseconds to delay running the animation
788      */
789     @Override
getStartDelay()790     public long getStartDelay() {
791         return mStartDelay;
792     }
793 
794     /**
795      * The amount of time, in milliseconds, to delay starting the animation after
796      * {@link #start()} is called. Note that the start delay should always be non-negative. Any
797      * negative start delay will be clamped to 0 on N and above.
798      *
799      * @param startDelay The amount of the delay, in milliseconds
800      */
801     @Override
setStartDelay(long startDelay)802     public void setStartDelay(long startDelay) {
803         // Clamp start delay to non-negative range.
804         if (startDelay < 0) {
805             Log.w(TAG, "Start delay should always be non-negative");
806             startDelay = 0;
807         }
808         mStartDelay = startDelay;
809     }
810 
811     /**
812      * The amount of time, in milliseconds, between each frame of the animation. This is a
813      * requested time that the animation will attempt to honor, but the actual delay between
814      * frames may be different, depending on system load and capabilities. This is a static
815      * function because the same delay will be applied to all animations, since they are all
816      * run off of a single timing loop.
817      *
818      * The frame delay may be ignored when the animation system uses an external timing
819      * source, such as the display refresh rate (vsync), to govern animations.
820      *
821      * Note that this method should be called from the same thread that {@link #start()} is
822      * called in order to check the frame delay for that animation. A runtime exception will be
823      * thrown if the calling thread does not have a Looper.
824      *
825      * @return the requested time between frames, in milliseconds
826      */
getFrameDelay()827     public static long getFrameDelay() {
828         return AnimationHandler.getInstance().getFrameDelay();
829     }
830 
831     /**
832      * The amount of time, in milliseconds, between each frame of the animation. This is a
833      * requested time that the animation will attempt to honor, but the actual delay between
834      * frames may be different, depending on system load and capabilities. This is a static
835      * function because the same delay will be applied to all animations, since they are all
836      * run off of a single timing loop.
837      *
838      * The frame delay may be ignored when the animation system uses an external timing
839      * source, such as the display refresh rate (vsync), to govern animations.
840      *
841      * Note that this method should be called from the same thread that {@link #start()} is
842      * called in order to have the new frame delay take effect on that animation. A runtime
843      * exception will be thrown if the calling thread does not have a Looper.
844      *
845      * @param frameDelay the requested time between frames, in milliseconds
846      */
setFrameDelay(long frameDelay)847     public static void setFrameDelay(long frameDelay) {
848         AnimationHandler.getInstance().setFrameDelay(frameDelay);
849     }
850 
851     /**
852      * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
853      * property being animated. This value is only sensible while the animation is running. The main
854      * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
855      * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
856      * is called during each animation frame, immediately after the value is calculated.
857      *
858      * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
859      * the single property being animated. If there are several properties being animated
860      * (specified by several PropertyValuesHolder objects in the constructor), this function
861      * returns the animated value for the first of those objects.
862      */
getAnimatedValue()863     public Object getAnimatedValue() {
864         if (mValues != null && mValues.length > 0) {
865             return mValues[0].getAnimatedValue();
866         }
867         // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
868         return null;
869     }
870 
871     /**
872      * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
873      * The main purpose for this read-only property is to retrieve the value from the
874      * <code>ValueAnimator</code> during a call to
875      * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
876      * is called during each animation frame, immediately after the value is calculated.
877      *
878      * @return animatedValue The value most recently calculated for the named property
879      * by this <code>ValueAnimator</code>.
880      */
getAnimatedValue(String propertyName)881     public Object getAnimatedValue(String propertyName) {
882         PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
883         if (valuesHolder != null) {
884             return valuesHolder.getAnimatedValue();
885         } else {
886             // At least avoid crashing if called with bogus propertyName
887             return null;
888         }
889     }
890 
891     /**
892      * Sets how many times the animation should be repeated. If the repeat
893      * count is 0, the animation is never repeated. If the repeat count is
894      * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
895      * into account. The repeat count is 0 by default.
896      *
897      * @param value the number of times the animation should be repeated
898      */
setRepeatCount(int value)899     public void setRepeatCount(int value) {
900         mRepeatCount = value;
901     }
902     /**
903      * Defines how many times the animation should repeat. The default value
904      * is 0.
905      *
906      * @return the number of times the animation should repeat, or {@link #INFINITE}
907      */
getRepeatCount()908     public int getRepeatCount() {
909         return mRepeatCount;
910     }
911 
912     /**
913      * Defines what this animation should do when it reaches the end. This
914      * setting is applied only when the repeat count is either greater than
915      * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
916      *
917      * @param value {@link #RESTART} or {@link #REVERSE}
918      */
setRepeatMode(@epeatMode int value)919     public void setRepeatMode(@RepeatMode int value) {
920         mRepeatMode = value;
921     }
922 
923     /**
924      * Defines what this animation should do when it reaches the end.
925      *
926      * @return either one of {@link #REVERSE} or {@link #RESTART}
927      */
928     @RepeatMode
getRepeatMode()929     public int getRepeatMode() {
930         return mRepeatMode;
931     }
932 
933     /**
934      * Adds a listener to the set of listeners that are sent update events through the life of
935      * an animation. This method is called on all listeners for every frame of the animation,
936      * after the values for the animation have been calculated.
937      *
938      * @param listener the listener to be added to the current set of listeners for this animation.
939      */
addUpdateListener(AnimatorUpdateListener listener)940     public void addUpdateListener(AnimatorUpdateListener listener) {
941         if (mUpdateListeners == null) {
942             mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
943         }
944         mUpdateListeners.add(listener);
945     }
946 
947     /**
948      * Removes all listeners from the set listening to frame updates for this animation.
949      */
removeAllUpdateListeners()950     public void removeAllUpdateListeners() {
951         if (mUpdateListeners == null) {
952             return;
953         }
954         mUpdateListeners.clear();
955         mUpdateListeners = null;
956     }
957 
958     /**
959      * Removes a listener from the set listening to frame updates for this animation.
960      *
961      * @param listener the listener to be removed from the current set of update listeners
962      * for this animation.
963      */
removeUpdateListener(AnimatorUpdateListener listener)964     public void removeUpdateListener(AnimatorUpdateListener listener) {
965         if (mUpdateListeners == null) {
966             return;
967         }
968         mUpdateListeners.remove(listener);
969         if (mUpdateListeners.size() == 0) {
970             mUpdateListeners = null;
971         }
972     }
973 
974 
975     /**
976      * The time interpolator used in calculating the elapsed fraction of this animation. The
977      * interpolator determines whether the animation runs with linear or non-linear motion,
978      * such as acceleration and deceleration. The default value is
979      * {@link android.view.animation.AccelerateDecelerateInterpolator}
980      *
981      * @param value the interpolator to be used by this animation. A value of <code>null</code>
982      * will result in linear interpolation.
983      */
984     @Override
setInterpolator(TimeInterpolator value)985     public void setInterpolator(TimeInterpolator value) {
986         if (value != null) {
987             mInterpolator = value;
988         } else {
989             mInterpolator = new LinearInterpolator();
990         }
991     }
992 
993     /**
994      * Returns the timing interpolator that this ValueAnimator uses.
995      *
996      * @return The timing interpolator for this ValueAnimator.
997      */
998     @Override
getInterpolator()999     public TimeInterpolator getInterpolator() {
1000         return mInterpolator;
1001     }
1002 
1003     /**
1004      * The type evaluator to be used when calculating the animated values of this animation.
1005      * The system will automatically assign a float or int evaluator based on the type
1006      * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
1007      * are not one of these primitive types, or if different evaluation is desired (such as is
1008      * necessary with int values that represent colors), a custom evaluator needs to be assigned.
1009      * For example, when running an animation on color values, the {@link ArgbEvaluator}
1010      * should be used to get correct RGB color interpolation.
1011      *
1012      * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
1013      * will be used for that set. If there are several sets of values being animated, which is
1014      * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
1015      * is assigned just to the first PropertyValuesHolder object.</p>
1016      *
1017      * @param value the evaluator to be used this animation
1018      */
setEvaluator(TypeEvaluator value)1019     public void setEvaluator(TypeEvaluator value) {
1020         if (value != null && mValues != null && mValues.length > 0) {
1021             mValues[0].setEvaluator(value);
1022         }
1023     }
1024 
notifyStartListeners()1025     private void notifyStartListeners() {
1026         if (mListeners != null && !mStartListenersCalled) {
1027             ArrayList<AnimatorListener> tmpListeners =
1028                     (ArrayList<AnimatorListener>) mListeners.clone();
1029             int numListeners = tmpListeners.size();
1030             for (int i = 0; i < numListeners; ++i) {
1031                 tmpListeners.get(i).onAnimationStart(this, mReversing);
1032             }
1033         }
1034         mStartListenersCalled = true;
1035     }
1036 
1037     /**
1038      * Start the animation playing. This version of start() takes a boolean flag that indicates
1039      * whether the animation should play in reverse. The flag is usually false, but may be set
1040      * to true if called from the reverse() method.
1041      *
1042      * <p>The animation started by calling this method will be run on the thread that called
1043      * this method. This thread should have a Looper on it (a runtime exception will be thrown if
1044      * this is not the case). Also, if the animation will animate
1045      * properties of objects in the view hierarchy, then the calling thread should be the UI
1046      * thread for that view hierarchy.</p>
1047      *
1048      * @param playBackwards Whether the ValueAnimator should start playing in reverse.
1049      */
start(boolean playBackwards)1050     private void start(boolean playBackwards) {
1051         if (Looper.myLooper() == null) {
1052             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1053         }
1054         mReversing = playBackwards;
1055         mSelfPulse = !mSuppressSelfPulseRequested;
1056         // Special case: reversing from seek-to-0 should act as if not seeked at all.
1057         if (playBackwards && mSeekFraction != -1 && mSeekFraction != 0) {
1058             if (mRepeatCount == INFINITE) {
1059                 // Calculate the fraction of the current iteration.
1060                 float fraction = (float) (mSeekFraction - Math.floor(mSeekFraction));
1061                 mSeekFraction = 1 - fraction;
1062             } else {
1063                 mSeekFraction = 1 + mRepeatCount - mSeekFraction;
1064             }
1065         }
1066         mStarted = true;
1067         mPaused = false;
1068         mRunning = false;
1069         mAnimationEndRequested = false;
1070         // Resets mLastFrameTime when start() is called, so that if the animation was running,
1071         // calling start() would put the animation in the
1072         // started-but-not-yet-reached-the-first-frame phase.
1073         mLastFrameTime = -1;
1074         mFirstFrameTime = -1;
1075         mStartTime = -1;
1076         addAnimationCallback(0);
1077 
1078         if (mStartDelay == 0 || mSeekFraction >= 0 || mReversing) {
1079             // If there's no start delay, init the animation and notify start listeners right away
1080             // to be consistent with the previous behavior. Otherwise, postpone this until the first
1081             // frame after the start delay.
1082             startAnimation();
1083             if (mSeekFraction == -1) {
1084                 // No seek, start at play time 0. Note that the reason we are not using fraction 0
1085                 // is because for animations with 0 duration, we want to be consistent with pre-N
1086                 // behavior: skip to the final value immediately.
1087                 setCurrentPlayTime(0);
1088             } else {
1089                 setCurrentFraction(mSeekFraction);
1090             }
1091         }
1092     }
1093 
startWithoutPulsing(boolean inReverse)1094     void startWithoutPulsing(boolean inReverse) {
1095         mSuppressSelfPulseRequested = true;
1096         if (inReverse) {
1097             reverse();
1098         } else {
1099             start();
1100         }
1101         mSuppressSelfPulseRequested = false;
1102     }
1103 
1104     @Override
start()1105     public void start() {
1106         start(false);
1107     }
1108 
1109     @Override
cancel()1110     public void cancel() {
1111         if (Looper.myLooper() == null) {
1112             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1113         }
1114 
1115         // If end has already been requested, through a previous end() or cancel() call, no-op
1116         // until animation starts again.
1117         if (mAnimationEndRequested) {
1118             return;
1119         }
1120 
1121         // Only cancel if the animation is actually running or has been started and is about
1122         // to run
1123         // Only notify listeners if the animator has actually started
1124         if ((mStarted || mRunning) && mListeners != null) {
1125             if (!mRunning) {
1126                 // If it's not yet running, then start listeners weren't called. Call them now.
1127                 notifyStartListeners();
1128             }
1129             ArrayList<AnimatorListener> tmpListeners =
1130                     (ArrayList<AnimatorListener>) mListeners.clone();
1131             for (AnimatorListener listener : tmpListeners) {
1132                 listener.onAnimationCancel(this);
1133             }
1134         }
1135         endAnimation();
1136 
1137     }
1138 
1139     @Override
end()1140     public void end() {
1141         if (Looper.myLooper() == null) {
1142             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1143         }
1144         if (!mRunning) {
1145             // Special case if the animation has not yet started; get it ready for ending
1146             startAnimation();
1147             mStarted = true;
1148         } else if (!mInitialized) {
1149             initAnimation();
1150         }
1151         animateValue(shouldPlayBackward(mRepeatCount, mReversing) ? 0f : 1f);
1152         endAnimation();
1153     }
1154 
1155     @Override
resume()1156     public void resume() {
1157         if (Looper.myLooper() == null) {
1158             throw new AndroidRuntimeException("Animators may only be resumed from the same " +
1159                     "thread that the animator was started on");
1160         }
1161         if (mPaused && !mResumed) {
1162             mResumed = true;
1163             if (mPauseTime > 0) {
1164                 addAnimationCallback(0);
1165             }
1166         }
1167         super.resume();
1168     }
1169 
1170     @Override
pause()1171     public void pause() {
1172         boolean previouslyPaused = mPaused;
1173         super.pause();
1174         if (!previouslyPaused && mPaused) {
1175             mPauseTime = -1;
1176             mResumed = false;
1177         }
1178     }
1179 
1180     @Override
isRunning()1181     public boolean isRunning() {
1182         return mRunning;
1183     }
1184 
1185     @Override
isStarted()1186     public boolean isStarted() {
1187         return mStarted;
1188     }
1189 
1190     /**
1191      * Plays the ValueAnimator in reverse. If the animation is already running,
1192      * it will stop itself and play backwards from the point reached when reverse was called.
1193      * If the animation is not currently running, then it will start from the end and
1194      * play backwards. This behavior is only set for the current animation; future playing
1195      * of the animation will use the default behavior of playing forward.
1196      */
1197     @Override
reverse()1198     public void reverse() {
1199         if (isPulsingInternal()) {
1200             long currentTime = AnimationUtils.currentAnimationTimeMillis();
1201             long currentPlayTime = currentTime - mStartTime;
1202             long timeLeft = getScaledDuration() - currentPlayTime;
1203             mStartTime = currentTime - timeLeft;
1204             mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1205             mReversing = !mReversing;
1206         } else if (mStarted) {
1207             mReversing = !mReversing;
1208             end();
1209         } else {
1210             start(true);
1211         }
1212     }
1213 
1214     /**
1215      * @hide
1216      */
1217     @Override
canReverse()1218     public boolean canReverse() {
1219         return true;
1220     }
1221 
1222     /**
1223      * Called internally to end an animation by removing it from the animations list. Must be
1224      * called on the UI thread.
1225      */
endAnimation()1226     private void endAnimation() {
1227         if (mAnimationEndRequested) {
1228             return;
1229         }
1230         removeAnimationCallback();
1231 
1232         mAnimationEndRequested = true;
1233         mPaused = false;
1234         boolean notify = (mStarted || mRunning) && mListeners != null;
1235         if (notify && !mRunning) {
1236             // If it's not yet running, then start listeners weren't called. Call them now.
1237             notifyStartListeners();
1238         }
1239         mRunning = false;
1240         mStarted = false;
1241         mStartListenersCalled = false;
1242         mLastFrameTime = -1;
1243         mFirstFrameTime = -1;
1244         mStartTime = -1;
1245         if (notify && mListeners != null) {
1246             ArrayList<AnimatorListener> tmpListeners =
1247                     (ArrayList<AnimatorListener>) mListeners.clone();
1248             int numListeners = tmpListeners.size();
1249             for (int i = 0; i < numListeners; ++i) {
1250                 tmpListeners.get(i).onAnimationEnd(this, mReversing);
1251             }
1252         }
1253         // mReversing needs to be reset *after* notifying the listeners for the end callbacks.
1254         mReversing = false;
1255         if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1256             Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1257                     System.identityHashCode(this));
1258         }
1259     }
1260 
1261     /**
1262      * Called internally to start an animation by adding it to the active animations list. Must be
1263      * called on the UI thread.
1264      */
startAnimation()1265     private void startAnimation() {
1266         if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1267             Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1268                     System.identityHashCode(this));
1269         }
1270 
1271         mAnimationEndRequested = false;
1272         initAnimation();
1273         mRunning = true;
1274         if (mSeekFraction >= 0) {
1275             mOverallFraction = mSeekFraction;
1276         } else {
1277             mOverallFraction = 0f;
1278         }
1279         if (mListeners != null) {
1280             notifyStartListeners();
1281         }
1282     }
1283 
1284     /**
1285      * Internal only: This tracks whether the animation has gotten on the animation loop. Note
1286      * this is different than {@link #isRunning()} in that the latter tracks the time after start()
1287      * is called (or after start delay if any), which may be before the animation loop starts.
1288      */
isPulsingInternal()1289     private boolean isPulsingInternal() {
1290         return mLastFrameTime >= 0;
1291     }
1292 
1293     /**
1294      * Returns the name of this animator for debugging purposes.
1295      */
getNameForTrace()1296     String getNameForTrace() {
1297         return "animator";
1298     }
1299 
1300     /**
1301      * Applies an adjustment to the animation to compensate for jank between when
1302      * the animation first ran and when the frame was drawn.
1303      * @hide
1304      */
commitAnimationFrame(long frameTime)1305     public void commitAnimationFrame(long frameTime) {
1306         if (!mStartTimeCommitted) {
1307             mStartTimeCommitted = true;
1308             long adjustment = frameTime - mLastFrameTime;
1309             if (adjustment > 0) {
1310                 mStartTime += adjustment;
1311                 if (DEBUG) {
1312                     Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1313                 }
1314             }
1315         }
1316     }
1317 
1318     /**
1319      * This internal function processes a single animation frame for a given animation. The
1320      * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1321      * elapsed duration, and therefore
1322      * the elapsed fraction, of the animation. The return value indicates whether the animation
1323      * should be ended (which happens when the elapsed time of the animation exceeds the
1324      * animation's duration, including the repeatCount).
1325      *
1326      * @param currentTime The current time, as tracked by the static timing handler
1327      * @return true if the animation's duration, including any repetitions due to
1328      * <code>repeatCount</code> has been exceeded and the animation should be ended.
1329      */
animateBasedOnTime(long currentTime)1330     boolean animateBasedOnTime(long currentTime) {
1331         boolean done = false;
1332         if (mRunning) {
1333             final long scaledDuration = getScaledDuration();
1334             final float fraction = scaledDuration > 0 ?
1335                     (float)(currentTime - mStartTime) / scaledDuration : 1f;
1336             final float lastFraction = mOverallFraction;
1337             final boolean newIteration = (int) fraction > (int) lastFraction;
1338             final boolean lastIterationFinished = (fraction >= mRepeatCount + 1) &&
1339                     (mRepeatCount != INFINITE);
1340             if (scaledDuration == 0) {
1341                 // 0 duration animator, ignore the repeat count and skip to the end
1342                 done = true;
1343             } else if (newIteration && !lastIterationFinished) {
1344                 // Time to repeat
1345                 if (mListeners != null) {
1346                     int numListeners = mListeners.size();
1347                     for (int i = 0; i < numListeners; ++i) {
1348                         mListeners.get(i).onAnimationRepeat(this);
1349                     }
1350                 }
1351             } else if (lastIterationFinished) {
1352                 done = true;
1353             }
1354             mOverallFraction = clampFraction(fraction);
1355             float currentIterationFraction = getCurrentIterationFraction(
1356                     mOverallFraction, mReversing);
1357             animateValue(currentIterationFraction);
1358         }
1359         return done;
1360     }
1361 
1362     /**
1363      * Internal use only.
1364      *
1365      * This method does not modify any fields of the animation. It should be called when seeking
1366      * in an AnimatorSet. When the last play time and current play time are of different repeat
1367      * iterations,
1368      * {@link android.view.animation.Animation.AnimationListener#onAnimationRepeat(Animation)}
1369      * will be called.
1370      */
1371     @Override
animateBasedOnPlayTime(long currentPlayTime, long lastPlayTime, boolean inReverse)1372     void animateBasedOnPlayTime(long currentPlayTime, long lastPlayTime, boolean inReverse) {
1373         if (currentPlayTime < 0 || lastPlayTime < 0) {
1374             throw new UnsupportedOperationException("Error: Play time should never be negative.");
1375         }
1376 
1377         initAnimation();
1378         // Check whether repeat callback is needed only when repeat count is non-zero
1379         if (mRepeatCount > 0) {
1380             int iteration = (int) (currentPlayTime / mDuration);
1381             int lastIteration = (int) (lastPlayTime / mDuration);
1382 
1383             // Clamp iteration to [0, mRepeatCount]
1384             iteration = Math.min(iteration, mRepeatCount);
1385             lastIteration = Math.min(lastIteration, mRepeatCount);
1386 
1387             if (iteration != lastIteration) {
1388                 if (mListeners != null) {
1389                     int numListeners = mListeners.size();
1390                     for (int i = 0; i < numListeners; ++i) {
1391                         mListeners.get(i).onAnimationRepeat(this);
1392                     }
1393                 }
1394             }
1395         }
1396 
1397         if (mRepeatCount != INFINITE && currentPlayTime >= (mRepeatCount + 1) * mDuration) {
1398             skipToEndValue(inReverse);
1399         } else {
1400             // Find the current fraction:
1401             float fraction = currentPlayTime / (float) mDuration;
1402             fraction = getCurrentIterationFraction(fraction, inReverse);
1403             animateValue(fraction);
1404         }
1405     }
1406 
1407     /**
1408      * Internal use only.
1409      * Skips the animation value to end/start, depending on whether the play direction is forward
1410      * or backward.
1411      *
1412      * @param inReverse whether the end value is based on a reverse direction. If yes, this is
1413      *                  equivalent to skip to start value in a forward playing direction.
1414      */
skipToEndValue(boolean inReverse)1415     void skipToEndValue(boolean inReverse) {
1416         initAnimation();
1417         float endFraction = inReverse ? 0f : 1f;
1418         if (mRepeatCount % 2 == 1 && mRepeatMode == REVERSE) {
1419             // This would end on fraction = 0
1420             endFraction = 0f;
1421         }
1422         animateValue(endFraction);
1423     }
1424 
1425     @Override
isInitialized()1426     boolean isInitialized() {
1427         return mInitialized;
1428     }
1429 
1430     /**
1431      * Processes a frame of the animation, adjusting the start time if needed.
1432      *
1433      * @param frameTime The frame time.
1434      * @return true if the animation has ended.
1435      * @hide
1436      */
doAnimationFrame(long frameTime)1437     public final boolean doAnimationFrame(long frameTime) {
1438         if (mStartTime < 0) {
1439             // First frame. If there is start delay, start delay count down will happen *after* this
1440             // frame.
1441             mStartTime = mReversing
1442                     ? frameTime
1443                     : frameTime + (long) (mStartDelay * resolveDurationScale());
1444         }
1445 
1446         // Handle pause/resume
1447         if (mPaused) {
1448             mPauseTime = frameTime;
1449             removeAnimationCallback();
1450             return false;
1451         } else if (mResumed) {
1452             mResumed = false;
1453             if (mPauseTime > 0) {
1454                 // Offset by the duration that the animation was paused
1455                 mStartTime += (frameTime - mPauseTime);
1456             }
1457         }
1458 
1459         if (!mRunning) {
1460             // If not running, that means the animation is in the start delay phase of a forward
1461             // running animation. In the case of reversing, we want to run start delay in the end.
1462             if (mStartTime > frameTime && mSeekFraction == -1) {
1463                 // This is when no seek fraction is set during start delay. If developers change the
1464                 // seek fraction during the delay, animation will start from the seeked position
1465                 // right away.
1466                 return false;
1467             } else {
1468                 // If mRunning is not set by now, that means non-zero start delay,
1469                 // no seeking, not reversing. At this point, start delay has passed.
1470                 mRunning = true;
1471                 startAnimation();
1472             }
1473         }
1474 
1475         if (mLastFrameTime < 0) {
1476             if (mSeekFraction >= 0) {
1477                 long seekTime = (long) (getScaledDuration() * mSeekFraction);
1478                 mStartTime = frameTime - seekTime;
1479                 mSeekFraction = -1;
1480             }
1481             mStartTimeCommitted = false; // allow start time to be compensated for jank
1482         }
1483         mLastFrameTime = frameTime;
1484         // The frame time might be before the start time during the first frame of
1485         // an animation.  The "current time" must always be on or after the start
1486         // time to avoid animating frames at negative time intervals.  In practice, this
1487         // is very rare and only happens when seeking backwards.
1488         final long currentTime = Math.max(frameTime, mStartTime);
1489         boolean finished = animateBasedOnTime(currentTime);
1490 
1491         if (finished) {
1492             endAnimation();
1493         }
1494         return finished;
1495     }
1496 
1497     @Override
pulseAnimationFrame(long frameTime)1498     boolean pulseAnimationFrame(long frameTime) {
1499         if (mSelfPulse) {
1500             // Pulse animation frame will *always* be after calling start(). If mSelfPulse isn't
1501             // set to false at this point, that means child animators did not call super's start().
1502             // This can happen when the Animator is just a non-animating wrapper around a real
1503             // functional animation. In this case, we can't really pulse a frame into the animation,
1504             // because the animation cannot necessarily be properly initialized (i.e. no start/end
1505             // values set).
1506             return false;
1507         }
1508         return doAnimationFrame(frameTime);
1509     }
1510 
addOneShotCommitCallback()1511     private void addOneShotCommitCallback() {
1512         if (!mSelfPulse) {
1513             return;
1514         }
1515         getAnimationHandler().addOneShotCommitCallback(this);
1516     }
1517 
removeAnimationCallback()1518     private void removeAnimationCallback() {
1519         if (!mSelfPulse) {
1520             return;
1521         }
1522         getAnimationHandler().removeCallback(this);
1523     }
1524 
addAnimationCallback(long delay)1525     private void addAnimationCallback(long delay) {
1526         if (!mSelfPulse) {
1527             return;
1528         }
1529         getAnimationHandler().addAnimationFrameCallback(this, delay);
1530     }
1531 
1532     /**
1533      * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1534      * the most recent frame update on the animation.
1535      *
1536      * @return Elapsed/interpolated fraction of the animation.
1537      */
getAnimatedFraction()1538     public float getAnimatedFraction() {
1539         return mCurrentFraction;
1540     }
1541 
1542     /**
1543      * This method is called with the elapsed fraction of the animation during every
1544      * animation frame. This function turns the elapsed fraction into an interpolated fraction
1545      * and then into an animated value (from the evaluator. The function is called mostly during
1546      * animation updates, but it is also called when the <code>end()</code>
1547      * function is called, to set the final value on the property.
1548      *
1549      * <p>Overrides of this method must call the superclass to perform the calculation
1550      * of the animated value.</p>
1551      *
1552      * @param fraction The elapsed fraction of the animation.
1553      */
1554     @CallSuper
1555     @UnsupportedAppUsage
animateValue(float fraction)1556     void animateValue(float fraction) {
1557         fraction = mInterpolator.getInterpolation(fraction);
1558         mCurrentFraction = fraction;
1559         int numValues = mValues.length;
1560         for (int i = 0; i < numValues; ++i) {
1561             mValues[i].calculateValue(fraction);
1562         }
1563         if (mUpdateListeners != null) {
1564             int numListeners = mUpdateListeners.size();
1565             for (int i = 0; i < numListeners; ++i) {
1566                 mUpdateListeners.get(i).onAnimationUpdate(this);
1567             }
1568         }
1569     }
1570 
1571     @Override
clone()1572     public ValueAnimator clone() {
1573         final ValueAnimator anim = (ValueAnimator) super.clone();
1574         if (mUpdateListeners != null) {
1575             anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1576         }
1577         anim.mSeekFraction = -1;
1578         anim.mReversing = false;
1579         anim.mInitialized = false;
1580         anim.mStarted = false;
1581         anim.mRunning = false;
1582         anim.mPaused = false;
1583         anim.mResumed = false;
1584         anim.mStartListenersCalled = false;
1585         anim.mStartTime = -1;
1586         anim.mStartTimeCommitted = false;
1587         anim.mAnimationEndRequested = false;
1588         anim.mPauseTime = -1;
1589         anim.mLastFrameTime = -1;
1590         anim.mFirstFrameTime = -1;
1591         anim.mOverallFraction = 0;
1592         anim.mCurrentFraction = 0;
1593         anim.mSelfPulse = true;
1594         anim.mSuppressSelfPulseRequested = false;
1595 
1596         PropertyValuesHolder[] oldValues = mValues;
1597         if (oldValues != null) {
1598             int numValues = oldValues.length;
1599             anim.mValues = new PropertyValuesHolder[numValues];
1600             anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1601             for (int i = 0; i < numValues; ++i) {
1602                 PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1603                 anim.mValues[i] = newValuesHolder;
1604                 anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1605             }
1606         }
1607         return anim;
1608     }
1609 
1610     /**
1611      * Implementors of this interface can add themselves as update listeners
1612      * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1613      * frame, after the current frame's values have been calculated for that
1614      * <code>ValueAnimator</code>.
1615      */
1616     public static interface AnimatorUpdateListener {
1617         /**
1618          * <p>Notifies the occurrence of another frame of the animation.</p>
1619          *
1620          * @param animation The animation which was repeated.
1621          */
onAnimationUpdate(ValueAnimator animation)1622         void onAnimationUpdate(ValueAnimator animation);
1623 
1624     }
1625 
1626     /**
1627      * Return the number of animations currently running.
1628      *
1629      * Used by StrictMode internally to annotate violations.
1630      * May be called on arbitrary threads!
1631      *
1632      * @hide
1633      */
getCurrentAnimationsCount()1634     public static int getCurrentAnimationsCount() {
1635         return AnimationHandler.getAnimationCount();
1636     }
1637 
1638     @Override
toString()1639     public String toString() {
1640         String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1641         if (mValues != null) {
1642             for (int i = 0; i < mValues.length; ++i) {
1643                 returnVal += "\n    " + mValues[i].toString();
1644             }
1645         }
1646         return returnVal;
1647     }
1648 
1649     /**
1650      * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1651      * the UI thread. This is a hint that informs the ValueAnimator that it is
1652      * OK to run the animation off-thread, however ValueAnimator may decide
1653      * that it must run the animation on the UI thread anyway. For example if there
1654      * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1655      * regardless of the value of this hint.</p>
1656      *
1657      * <p>Regardless of whether or not the animation runs asynchronously, all
1658      * listener callbacks will be called on the UI thread.</p>
1659      *
1660      * <p>To be able to use this hint the following must be true:</p>
1661      * <ol>
1662      * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1663      * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1664      *    to change values, duration, delay, etc... may be ignored.</li>
1665      * <li>Lifecycle callback events may be asynchronous. Events such as
1666      *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1667      *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1668      *    as they must be posted back to the UI thread, and any actions performed
1669      *    by those callbacks (such as starting new animations) will not happen
1670      *    in the same frame.</li>
1671      * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1672      *    may be asynchronous. It is guaranteed that all state changes that are
1673      *    performed on the UI thread in the same frame will be applied as a single
1674      *    atomic update, however that frame may be the current frame,
1675      *    the next frame, or some future frame. This will also impact the observed
1676      *    state of the Animator. For example, {@link #isStarted()} may still return true
1677      *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1678      *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1679      *    for this reason.</li>
1680      * </ol>
1681      * @hide
1682      */
1683     @Override
setAllowRunningAsynchronously(boolean mayRunAsync)1684     public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1685         // It is up to subclasses to support this, if they can.
1686     }
1687 
1688     /**
1689      * @return The {@link AnimationHandler} that will be used to schedule updates for this animator.
1690      * @hide
1691      */
getAnimationHandler()1692     public AnimationHandler getAnimationHandler() {
1693         return mAnimationHandler != null ? mAnimationHandler : AnimationHandler.getInstance();
1694     }
1695 
1696     /**
1697      * Sets the animation handler used to schedule updates for this animator or {@code null} to use
1698      * the default handler.
1699      * @hide
1700      */
setAnimationHandler(@ullable AnimationHandler animationHandler)1701     public void setAnimationHandler(@Nullable AnimationHandler animationHandler) {
1702         mAnimationHandler = animationHandler;
1703     }
1704 }
1705