• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the C++ related Decl classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTUnresolvedSet.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/LambdaCapture.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/ODRHash.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "clang/Basic/OperatorKinds.h"
36 #include "clang/Basic/PartialDiagnostic.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/None.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
51 
52 using namespace clang;
53 
54 //===----------------------------------------------------------------------===//
55 // Decl Allocation/Deallocation Method Implementations
56 //===----------------------------------------------------------------------===//
57 
anchor()58 void AccessSpecDecl::anchor() {}
59 
CreateDeserialized(ASTContext & C,unsigned ID)60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
61   return new (C, ID) AccessSpecDecl(EmptyShell());
62 }
63 
getFromExternalSource(ASTContext & C) const64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
65   ExternalASTSource *Source = C.getExternalSource();
66   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
67   assert(Source && "getFromExternalSource with no external source");
68 
69   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
70     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
71         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
72   Impl.Decls.setLazy(false);
73 }
74 
DefinitionData(CXXRecordDecl * D)75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
76     : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
77       Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
78       Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
79       HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
80       HasPrivateFields(false), HasProtectedFields(false),
81       HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
82       HasOnlyCMembers(true), HasInClassInitializer(false),
83       HasUninitializedReferenceMember(false), HasUninitializedFields(false),
84       HasInheritedConstructor(false), HasInheritedAssignment(false),
85       NeedOverloadResolutionForCopyConstructor(false),
86       NeedOverloadResolutionForMoveConstructor(false),
87       NeedOverloadResolutionForCopyAssignment(false),
88       NeedOverloadResolutionForMoveAssignment(false),
89       NeedOverloadResolutionForDestructor(false),
90       DefaultedCopyConstructorIsDeleted(false),
91       DefaultedMoveConstructorIsDeleted(false),
92       DefaultedCopyAssignmentIsDeleted(false),
93       DefaultedMoveAssignmentIsDeleted(false),
94       DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
95       HasTrivialSpecialMembersForCall(SMF_All),
96       DeclaredNonTrivialSpecialMembers(0),
97       DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
98       HasConstexprNonCopyMoveConstructor(false),
99       HasDefaultedDefaultConstructor(false),
100       DefaultedDefaultConstructorIsConstexpr(true),
101       HasConstexprDefaultConstructor(false),
102       DefaultedDestructorIsConstexpr(true),
103       HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true),
104       UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
105       ImplicitCopyConstructorCanHaveConstParamForVBase(true),
106       ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
107       ImplicitCopyAssignmentHasConstParam(true),
108       HasDeclaredCopyConstructorWithConstParam(false),
109       HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false),
110       IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
111       HasODRHash(false), Definition(D) {}
112 
getBasesSlowCase() const113 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
114   return Bases.get(Definition->getASTContext().getExternalSource());
115 }
116 
getVBasesSlowCase() const117 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
118   return VBases.get(Definition->getASTContext().getExternalSource());
119 }
120 
CXXRecordDecl(Kind K,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl)121 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
122                              DeclContext *DC, SourceLocation StartLoc,
123                              SourceLocation IdLoc, IdentifierInfo *Id,
124                              CXXRecordDecl *PrevDecl)
125     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
126       DefinitionData(PrevDecl ? PrevDecl->DefinitionData
127                               : nullptr) {}
128 
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl,bool DelayTypeCreation)129 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
130                                      DeclContext *DC, SourceLocation StartLoc,
131                                      SourceLocation IdLoc, IdentifierInfo *Id,
132                                      CXXRecordDecl *PrevDecl,
133                                      bool DelayTypeCreation) {
134   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
135                                       PrevDecl);
136   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
137 
138   // FIXME: DelayTypeCreation seems like such a hack
139   if (!DelayTypeCreation)
140     C.getTypeDeclType(R, PrevDecl);
141   return R;
142 }
143 
144 CXXRecordDecl *
CreateLambda(const ASTContext & C,DeclContext * DC,TypeSourceInfo * Info,SourceLocation Loc,bool Dependent,bool IsGeneric,LambdaCaptureDefault CaptureDefault)145 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
146                             TypeSourceInfo *Info, SourceLocation Loc,
147                             bool Dependent, bool IsGeneric,
148                             LambdaCaptureDefault CaptureDefault) {
149   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
150                                       nullptr, nullptr);
151   R->setBeingDefined(true);
152   R->DefinitionData =
153       new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
154                                           CaptureDefault);
155   R->setMayHaveOutOfDateDef(false);
156   R->setImplicit(true);
157   C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
158   return R;
159 }
160 
161 CXXRecordDecl *
CreateDeserialized(const ASTContext & C,unsigned ID)162 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
163   auto *R = new (C, ID) CXXRecordDecl(
164       CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
165       nullptr, nullptr);
166   R->setMayHaveOutOfDateDef(false);
167   return R;
168 }
169 
170 /// Determine whether a class has a repeated base class. This is intended for
171 /// use when determining if a class is standard-layout, so makes no attempt to
172 /// handle virtual bases.
hasRepeatedBaseClass(const CXXRecordDecl * StartRD)173 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
174   llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
175   SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
176   while (!WorkList.empty()) {
177     const CXXRecordDecl *RD = WorkList.pop_back_val();
178     for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
179       if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
180         if (!SeenBaseTypes.insert(B).second)
181           return true;
182         WorkList.push_back(B);
183       }
184     }
185   }
186   return false;
187 }
188 
189 void
setBases(CXXBaseSpecifier const * const * Bases,unsigned NumBases)190 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
191                         unsigned NumBases) {
192   ASTContext &C = getASTContext();
193 
194   if (!data().Bases.isOffset() && data().NumBases > 0)
195     C.Deallocate(data().getBases());
196 
197   if (NumBases) {
198     if (!C.getLangOpts().CPlusPlus17) {
199       // C++ [dcl.init.aggr]p1:
200       //   An aggregate is [...] a class with [...] no base classes [...].
201       data().Aggregate = false;
202     }
203 
204     // C++ [class]p4:
205     //   A POD-struct is an aggregate class...
206     data().PlainOldData = false;
207   }
208 
209   // The set of seen virtual base types.
210   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
211 
212   // The virtual bases of this class.
213   SmallVector<const CXXBaseSpecifier *, 8> VBases;
214 
215   data().Bases = new(C) CXXBaseSpecifier [NumBases];
216   data().NumBases = NumBases;
217   for (unsigned i = 0; i < NumBases; ++i) {
218     data().getBases()[i] = *Bases[i];
219     // Keep track of inherited vbases for this base class.
220     const CXXBaseSpecifier *Base = Bases[i];
221     QualType BaseType = Base->getType();
222     // Skip dependent types; we can't do any checking on them now.
223     if (BaseType->isDependentType())
224       continue;
225     auto *BaseClassDecl =
226         cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
227 
228     // C++2a [class]p7:
229     //   A standard-layout class is a class that:
230     //    [...]
231     //    -- has all non-static data members and bit-fields in the class and
232     //       its base classes first declared in the same class
233     if (BaseClassDecl->data().HasBasesWithFields ||
234         !BaseClassDecl->field_empty()) {
235       if (data().HasBasesWithFields)
236         // Two bases have members or bit-fields: not standard-layout.
237         data().IsStandardLayout = false;
238       data().HasBasesWithFields = true;
239     }
240 
241     // C++11 [class]p7:
242     //   A standard-layout class is a class that:
243     //     -- [...] has [...] at most one base class with non-static data
244     //        members
245     if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
246         BaseClassDecl->hasDirectFields()) {
247       if (data().HasBasesWithNonStaticDataMembers)
248         data().IsCXX11StandardLayout = false;
249       data().HasBasesWithNonStaticDataMembers = true;
250     }
251 
252     if (!BaseClassDecl->isEmpty()) {
253       // C++14 [meta.unary.prop]p4:
254       //   T is a class type [...] with [...] no base class B for which
255       //   is_empty<B>::value is false.
256       data().Empty = false;
257     }
258 
259     // C++1z [dcl.init.agg]p1:
260     //   An aggregate is a class with [...] no private or protected base classes
261     if (Base->getAccessSpecifier() != AS_public) {
262       data().Aggregate = false;
263 
264       // C++20 [temp.param]p7:
265       //   A structural type is [...] a literal class type with [...] all base
266       //   classes [...] public
267       data().StructuralIfLiteral = false;
268     }
269 
270     // C++ [class.virtual]p1:
271     //   A class that declares or inherits a virtual function is called a
272     //   polymorphic class.
273     if (BaseClassDecl->isPolymorphic()) {
274       data().Polymorphic = true;
275 
276       //   An aggregate is a class with [...] no virtual functions.
277       data().Aggregate = false;
278     }
279 
280     // C++0x [class]p7:
281     //   A standard-layout class is a class that: [...]
282     //    -- has no non-standard-layout base classes
283     if (!BaseClassDecl->isStandardLayout())
284       data().IsStandardLayout = false;
285     if (!BaseClassDecl->isCXX11StandardLayout())
286       data().IsCXX11StandardLayout = false;
287 
288     // Record if this base is the first non-literal field or base.
289     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
290       data().HasNonLiteralTypeFieldsOrBases = true;
291 
292     // Now go through all virtual bases of this base and add them.
293     for (const auto &VBase : BaseClassDecl->vbases()) {
294       // Add this base if it's not already in the list.
295       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
296         VBases.push_back(&VBase);
297 
298         // C++11 [class.copy]p8:
299         //   The implicitly-declared copy constructor for a class X will have
300         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
301         //   has a copy constructor whose first parameter is of type
302         //   'const B&' or 'const volatile B&' [...]
303         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
304           if (!VBaseDecl->hasCopyConstructorWithConstParam())
305             data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
306 
307         // C++1z [dcl.init.agg]p1:
308         //   An aggregate is a class with [...] no virtual base classes
309         data().Aggregate = false;
310       }
311     }
312 
313     if (Base->isVirtual()) {
314       // Add this base if it's not already in the list.
315       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
316         VBases.push_back(Base);
317 
318       // C++14 [meta.unary.prop] is_empty:
319       //   T is a class type, but not a union type, with ... no virtual base
320       //   classes
321       data().Empty = false;
322 
323       // C++1z [dcl.init.agg]p1:
324       //   An aggregate is a class with [...] no virtual base classes
325       data().Aggregate = false;
326 
327       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
328       //   A [default constructor, copy/move constructor, or copy/move assignment
329       //   operator for a class X] is trivial [...] if:
330       //    -- class X has [...] no virtual base classes
331       data().HasTrivialSpecialMembers &= SMF_Destructor;
332       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
333 
334       // C++0x [class]p7:
335       //   A standard-layout class is a class that: [...]
336       //    -- has [...] no virtual base classes
337       data().IsStandardLayout = false;
338       data().IsCXX11StandardLayout = false;
339 
340       // C++20 [dcl.constexpr]p3:
341       //   In the definition of a constexpr function [...]
342       //    -- if the function is a constructor or destructor,
343       //       its class shall not have any virtual base classes
344       data().DefaultedDefaultConstructorIsConstexpr = false;
345       data().DefaultedDestructorIsConstexpr = false;
346 
347       // C++1z [class.copy]p8:
348       //   The implicitly-declared copy constructor for a class X will have
349       //   the form 'X::X(const X&)' if each potentially constructed subobject
350       //   has a copy constructor whose first parameter is of type
351       //   'const B&' or 'const volatile B&' [...]
352       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
353         data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
354     } else {
355       // C++ [class.ctor]p5:
356       //   A default constructor is trivial [...] if:
357       //    -- all the direct base classes of its class have trivial default
358       //       constructors.
359       if (!BaseClassDecl->hasTrivialDefaultConstructor())
360         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
361 
362       // C++0x [class.copy]p13:
363       //   A copy/move constructor for class X is trivial if [...]
364       //    [...]
365       //    -- the constructor selected to copy/move each direct base class
366       //       subobject is trivial, and
367       if (!BaseClassDecl->hasTrivialCopyConstructor())
368         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
369 
370       if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
371         data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
372 
373       // If the base class doesn't have a simple move constructor, we'll eagerly
374       // declare it and perform overload resolution to determine which function
375       // it actually calls. If it does have a simple move constructor, this
376       // check is correct.
377       if (!BaseClassDecl->hasTrivialMoveConstructor())
378         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
379 
380       if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
381         data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
382 
383       // C++0x [class.copy]p27:
384       //   A copy/move assignment operator for class X is trivial if [...]
385       //    [...]
386       //    -- the assignment operator selected to copy/move each direct base
387       //       class subobject is trivial, and
388       if (!BaseClassDecl->hasTrivialCopyAssignment())
389         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
390       // If the base class doesn't have a simple move assignment, we'll eagerly
391       // declare it and perform overload resolution to determine which function
392       // it actually calls. If it does have a simple move assignment, this
393       // check is correct.
394       if (!BaseClassDecl->hasTrivialMoveAssignment())
395         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
396 
397       // C++11 [class.ctor]p6:
398       //   If that user-written default constructor would satisfy the
399       //   requirements of a constexpr constructor, the implicitly-defined
400       //   default constructor is constexpr.
401       if (!BaseClassDecl->hasConstexprDefaultConstructor())
402         data().DefaultedDefaultConstructorIsConstexpr = false;
403 
404       // C++1z [class.copy]p8:
405       //   The implicitly-declared copy constructor for a class X will have
406       //   the form 'X::X(const X&)' if each potentially constructed subobject
407       //   has a copy constructor whose first parameter is of type
408       //   'const B&' or 'const volatile B&' [...]
409       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
410         data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
411     }
412 
413     // C++ [class.ctor]p3:
414     //   A destructor is trivial if all the direct base classes of its class
415     //   have trivial destructors.
416     if (!BaseClassDecl->hasTrivialDestructor())
417       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
418 
419     if (!BaseClassDecl->hasTrivialDestructorForCall())
420       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
421 
422     if (!BaseClassDecl->hasIrrelevantDestructor())
423       data().HasIrrelevantDestructor = false;
424 
425     // C++11 [class.copy]p18:
426     //   The implicitly-declared copy assignment operator for a class X will
427     //   have the form 'X& X::operator=(const X&)' if each direct base class B
428     //   of X has a copy assignment operator whose parameter is of type 'const
429     //   B&', 'const volatile B&', or 'B' [...]
430     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
431       data().ImplicitCopyAssignmentHasConstParam = false;
432 
433     // A class has an Objective-C object member if... or any of its bases
434     // has an Objective-C object member.
435     if (BaseClassDecl->hasObjectMember())
436       setHasObjectMember(true);
437 
438     if (BaseClassDecl->hasVolatileMember())
439       setHasVolatileMember(true);
440 
441     if (BaseClassDecl->getArgPassingRestrictions() ==
442         RecordDecl::APK_CanNeverPassInRegs)
443       setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
444 
445     // Keep track of the presence of mutable fields.
446     if (BaseClassDecl->hasMutableFields())
447       data().HasMutableFields = true;
448 
449     if (BaseClassDecl->hasUninitializedReferenceMember())
450       data().HasUninitializedReferenceMember = true;
451 
452     if (!BaseClassDecl->allowConstDefaultInit())
453       data().HasUninitializedFields = true;
454 
455     addedClassSubobject(BaseClassDecl);
456   }
457 
458   // C++2a [class]p7:
459   //   A class S is a standard-layout class if it:
460   //     -- has at most one base class subobject of any given type
461   //
462   // Note that we only need to check this for classes with more than one base
463   // class. If there's only one base class, and it's standard layout, then
464   // we know there are no repeated base classes.
465   if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
466     data().IsStandardLayout = false;
467 
468   if (VBases.empty()) {
469     data().IsParsingBaseSpecifiers = false;
470     return;
471   }
472 
473   // Create base specifier for any direct or indirect virtual bases.
474   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
475   data().NumVBases = VBases.size();
476   for (int I = 0, E = VBases.size(); I != E; ++I) {
477     QualType Type = VBases[I]->getType();
478     if (!Type->isDependentType())
479       addedClassSubobject(Type->getAsCXXRecordDecl());
480     data().getVBases()[I] = *VBases[I];
481   }
482 
483   data().IsParsingBaseSpecifiers = false;
484 }
485 
getODRHash() const486 unsigned CXXRecordDecl::getODRHash() const {
487   assert(hasDefinition() && "ODRHash only for records with definitions");
488 
489   // Previously calculated hash is stored in DefinitionData.
490   if (DefinitionData->HasODRHash)
491     return DefinitionData->ODRHash;
492 
493   // Only calculate hash on first call of getODRHash per record.
494   ODRHash Hash;
495   Hash.AddCXXRecordDecl(getDefinition());
496   DefinitionData->HasODRHash = true;
497   DefinitionData->ODRHash = Hash.CalculateHash();
498 
499   return DefinitionData->ODRHash;
500 }
501 
addedClassSubobject(CXXRecordDecl * Subobj)502 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
503   // C++11 [class.copy]p11:
504   //   A defaulted copy/move constructor for a class X is defined as
505   //   deleted if X has:
506   //    -- a direct or virtual base class B that cannot be copied/moved [...]
507   //    -- a non-static data member of class type M (or array thereof)
508   //       that cannot be copied or moved [...]
509   if (!Subobj->hasSimpleCopyConstructor())
510     data().NeedOverloadResolutionForCopyConstructor = true;
511   if (!Subobj->hasSimpleMoveConstructor())
512     data().NeedOverloadResolutionForMoveConstructor = true;
513 
514   // C++11 [class.copy]p23:
515   //   A defaulted copy/move assignment operator for a class X is defined as
516   //   deleted if X has:
517   //    -- a direct or virtual base class B that cannot be copied/moved [...]
518   //    -- a non-static data member of class type M (or array thereof)
519   //        that cannot be copied or moved [...]
520   if (!Subobj->hasSimpleCopyAssignment())
521     data().NeedOverloadResolutionForCopyAssignment = true;
522   if (!Subobj->hasSimpleMoveAssignment())
523     data().NeedOverloadResolutionForMoveAssignment = true;
524 
525   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
526   //   A defaulted [ctor or dtor] for a class X is defined as
527   //   deleted if X has:
528   //    -- any direct or virtual base class [...] has a type with a destructor
529   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
530   //    -- any non-static data member has a type with a destructor
531   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
532   if (!Subobj->hasSimpleDestructor()) {
533     data().NeedOverloadResolutionForCopyConstructor = true;
534     data().NeedOverloadResolutionForMoveConstructor = true;
535     data().NeedOverloadResolutionForDestructor = true;
536   }
537 
538   // C++2a [dcl.constexpr]p4:
539   //   The definition of a constexpr destructor [shall] satisfy the
540   //   following requirement:
541   //   -- for every subobject of class type or (possibly multi-dimensional)
542   //      array thereof, that class type shall have a constexpr destructor
543   if (!Subobj->hasConstexprDestructor())
544     data().DefaultedDestructorIsConstexpr = false;
545 
546   // C++20 [temp.param]p7:
547   //   A structural type is [...] a literal class type [for which] the types
548   //   of all base classes and non-static data members are structural types or
549   //   (possibly multi-dimensional) array thereof
550   if (!Subobj->data().StructuralIfLiteral)
551     data().StructuralIfLiteral = false;
552 }
553 
hasConstexprDestructor() const554 bool CXXRecordDecl::hasConstexprDestructor() const {
555   auto *Dtor = getDestructor();
556   return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
557 }
558 
hasAnyDependentBases() const559 bool CXXRecordDecl::hasAnyDependentBases() const {
560   if (!isDependentContext())
561     return false;
562 
563   return !forallBases([](const CXXRecordDecl *) { return true; });
564 }
565 
isTriviallyCopyable() const566 bool CXXRecordDecl::isTriviallyCopyable() const {
567   // C++0x [class]p5:
568   //   A trivially copyable class is a class that:
569   //   -- has no non-trivial copy constructors,
570   if (hasNonTrivialCopyConstructor()) return false;
571   //   -- has no non-trivial move constructors,
572   if (hasNonTrivialMoveConstructor()) return false;
573   //   -- has no non-trivial copy assignment operators,
574   if (hasNonTrivialCopyAssignment()) return false;
575   //   -- has no non-trivial move assignment operators, and
576   if (hasNonTrivialMoveAssignment()) return false;
577   //   -- has a trivial destructor.
578   if (!hasTrivialDestructor()) return false;
579 
580   return true;
581 }
582 
markedVirtualFunctionPure()583 void CXXRecordDecl::markedVirtualFunctionPure() {
584   // C++ [class.abstract]p2:
585   //   A class is abstract if it has at least one pure virtual function.
586   data().Abstract = true;
587 }
588 
hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext & Ctx,const CXXRecordDecl * XFirst)589 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
590     ASTContext &Ctx, const CXXRecordDecl *XFirst) {
591   if (!getNumBases())
592     return false;
593 
594   llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
595   llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
596   SmallVector<const CXXRecordDecl*, 8> WorkList;
597 
598   // Visit a type that we have determined is an element of M(S).
599   auto Visit = [&](const CXXRecordDecl *RD) -> bool {
600     RD = RD->getCanonicalDecl();
601 
602     // C++2a [class]p8:
603     //   A class S is a standard-layout class if it [...] has no element of the
604     //   set M(S) of types as a base class.
605     //
606     // If we find a subobject of an empty type, it might also be a base class,
607     // so we'll need to walk the base classes to check.
608     if (!RD->data().HasBasesWithFields) {
609       // Walk the bases the first time, stopping if we find the type. Build a
610       // set of them so we don't need to walk them again.
611       if (Bases.empty()) {
612         bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
613           Base = Base->getCanonicalDecl();
614           if (RD == Base)
615             return false;
616           Bases.insert(Base);
617           return true;
618         });
619         if (RDIsBase)
620           return true;
621       } else {
622         if (Bases.count(RD))
623           return true;
624       }
625     }
626 
627     if (M.insert(RD).second)
628       WorkList.push_back(RD);
629     return false;
630   };
631 
632   if (Visit(XFirst))
633     return true;
634 
635   while (!WorkList.empty()) {
636     const CXXRecordDecl *X = WorkList.pop_back_val();
637 
638     // FIXME: We don't check the bases of X. That matches the standard, but
639     // that sure looks like a wording bug.
640 
641     //   -- If X is a non-union class type with a non-static data member
642     //      [recurse to each field] that is either of zero size or is the
643     //      first non-static data member of X
644     //   -- If X is a union type, [recurse to union members]
645     bool IsFirstField = true;
646     for (auto *FD : X->fields()) {
647       // FIXME: Should we really care about the type of the first non-static
648       // data member of a non-union if there are preceding unnamed bit-fields?
649       if (FD->isUnnamedBitfield())
650         continue;
651 
652       if (!IsFirstField && !FD->isZeroSize(Ctx))
653         continue;
654 
655       //   -- If X is n array type, [visit the element type]
656       QualType T = Ctx.getBaseElementType(FD->getType());
657       if (auto *RD = T->getAsCXXRecordDecl())
658         if (Visit(RD))
659           return true;
660 
661       if (!X->isUnion())
662         IsFirstField = false;
663     }
664   }
665 
666   return false;
667 }
668 
lambdaIsDefaultConstructibleAndAssignable() const669 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
670   assert(isLambda() && "not a lambda");
671 
672   // C++2a [expr.prim.lambda.capture]p11:
673   //   The closure type associated with a lambda-expression has no default
674   //   constructor if the lambda-expression has a lambda-capture and a
675   //   defaulted default constructor otherwise. It has a deleted copy
676   //   assignment operator if the lambda-expression has a lambda-capture and
677   //   defaulted copy and move assignment operators otherwise.
678   //
679   // C++17 [expr.prim.lambda]p21:
680   //   The closure type associated with a lambda-expression has no default
681   //   constructor and a deleted copy assignment operator.
682   if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0)
683     return false;
684   return getASTContext().getLangOpts().CPlusPlus20;
685 }
686 
addedMember(Decl * D)687 void CXXRecordDecl::addedMember(Decl *D) {
688   if (!D->isImplicit() &&
689       !isa<FieldDecl>(D) &&
690       !isa<IndirectFieldDecl>(D) &&
691       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
692         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
693     data().HasOnlyCMembers = false;
694 
695   // Ignore friends and invalid declarations.
696   if (D->getFriendObjectKind() || D->isInvalidDecl())
697     return;
698 
699   auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
700   if (FunTmpl)
701     D = FunTmpl->getTemplatedDecl();
702 
703   // FIXME: Pass NamedDecl* to addedMember?
704   Decl *DUnderlying = D;
705   if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
706     DUnderlying = ND->getUnderlyingDecl();
707     if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
708       DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
709   }
710 
711   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
712     if (Method->isVirtual()) {
713       // C++ [dcl.init.aggr]p1:
714       //   An aggregate is an array or a class with [...] no virtual functions.
715       data().Aggregate = false;
716 
717       // C++ [class]p4:
718       //   A POD-struct is an aggregate class...
719       data().PlainOldData = false;
720 
721       // C++14 [meta.unary.prop]p4:
722       //   T is a class type [...] with [...] no virtual member functions...
723       data().Empty = false;
724 
725       // C++ [class.virtual]p1:
726       //   A class that declares or inherits a virtual function is called a
727       //   polymorphic class.
728       data().Polymorphic = true;
729 
730       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
731       //   A [default constructor, copy/move constructor, or copy/move
732       //   assignment operator for a class X] is trivial [...] if:
733       //    -- class X has no virtual functions [...]
734       data().HasTrivialSpecialMembers &= SMF_Destructor;
735       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
736 
737       // C++0x [class]p7:
738       //   A standard-layout class is a class that: [...]
739       //    -- has no virtual functions
740       data().IsStandardLayout = false;
741       data().IsCXX11StandardLayout = false;
742     }
743   }
744 
745   // Notify the listener if an implicit member was added after the definition
746   // was completed.
747   if (!isBeingDefined() && D->isImplicit())
748     if (ASTMutationListener *L = getASTMutationListener())
749       L->AddedCXXImplicitMember(data().Definition, D);
750 
751   // The kind of special member this declaration is, if any.
752   unsigned SMKind = 0;
753 
754   // Handle constructors.
755   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
756     if (Constructor->isInheritingConstructor()) {
757       // Ignore constructor shadow declarations. They are lazily created and
758       // so shouldn't affect any properties of the class.
759     } else {
760       if (!Constructor->isImplicit()) {
761         // Note that we have a user-declared constructor.
762         data().UserDeclaredConstructor = true;
763 
764         // C++ [class]p4:
765         //   A POD-struct is an aggregate class [...]
766         // Since the POD bit is meant to be C++03 POD-ness, clear it even if
767         // the type is technically an aggregate in C++0x since it wouldn't be
768         // in 03.
769         data().PlainOldData = false;
770       }
771 
772       if (Constructor->isDefaultConstructor()) {
773         SMKind |= SMF_DefaultConstructor;
774 
775         if (Constructor->isUserProvided())
776           data().UserProvidedDefaultConstructor = true;
777         if (Constructor->isConstexpr())
778           data().HasConstexprDefaultConstructor = true;
779         if (Constructor->isDefaulted())
780           data().HasDefaultedDefaultConstructor = true;
781       }
782 
783       if (!FunTmpl) {
784         unsigned Quals;
785         if (Constructor->isCopyConstructor(Quals)) {
786           SMKind |= SMF_CopyConstructor;
787 
788           if (Quals & Qualifiers::Const)
789             data().HasDeclaredCopyConstructorWithConstParam = true;
790         } else if (Constructor->isMoveConstructor())
791           SMKind |= SMF_MoveConstructor;
792       }
793 
794       // C++11 [dcl.init.aggr]p1: DR1518
795       //   An aggregate is an array or a class with no user-provided [or]
796       //   explicit [...] constructors
797       // C++20 [dcl.init.aggr]p1:
798       //   An aggregate is an array or a class with no user-declared [...]
799       //   constructors
800       if (getASTContext().getLangOpts().CPlusPlus20
801               ? !Constructor->isImplicit()
802               : (Constructor->isUserProvided() || Constructor->isExplicit()))
803         data().Aggregate = false;
804     }
805   }
806 
807   // Handle constructors, including those inherited from base classes.
808   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
809     // Record if we see any constexpr constructors which are neither copy
810     // nor move constructors.
811     // C++1z [basic.types]p10:
812     //   [...] has at least one constexpr constructor or constructor template
813     //   (possibly inherited from a base class) that is not a copy or move
814     //   constructor [...]
815     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
816       data().HasConstexprNonCopyMoveConstructor = true;
817   }
818 
819   // Handle destructors.
820   if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
821     SMKind |= SMF_Destructor;
822 
823     if (DD->isUserProvided())
824       data().HasIrrelevantDestructor = false;
825     // If the destructor is explicitly defaulted and not trivial or not public
826     // or if the destructor is deleted, we clear HasIrrelevantDestructor in
827     // finishedDefaultedOrDeletedMember.
828 
829     // C++11 [class.dtor]p5:
830     //   A destructor is trivial if [...] the destructor is not virtual.
831     if (DD->isVirtual()) {
832       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
833       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
834     }
835   }
836 
837   // Handle member functions.
838   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
839     if (Method->isCopyAssignmentOperator()) {
840       SMKind |= SMF_CopyAssignment;
841 
842       const auto *ParamTy =
843           Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
844       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
845         data().HasDeclaredCopyAssignmentWithConstParam = true;
846     }
847 
848     if (Method->isMoveAssignmentOperator())
849       SMKind |= SMF_MoveAssignment;
850 
851     // Keep the list of conversion functions up-to-date.
852     if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
853       // FIXME: We use the 'unsafe' accessor for the access specifier here,
854       // because Sema may not have set it yet. That's really just a misdesign
855       // in Sema. However, LLDB *will* have set the access specifier correctly,
856       // and adds declarations after the class is technically completed,
857       // so completeDefinition()'s overriding of the access specifiers doesn't
858       // work.
859       AccessSpecifier AS = Conversion->getAccessUnsafe();
860 
861       if (Conversion->getPrimaryTemplate()) {
862         // We don't record specializations.
863       } else {
864         ASTContext &Ctx = getASTContext();
865         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
866         NamedDecl *Primary =
867             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
868         if (Primary->getPreviousDecl())
869           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
870                               Primary, AS);
871         else
872           Conversions.addDecl(Ctx, Primary, AS);
873       }
874     }
875 
876     if (SMKind) {
877       // If this is the first declaration of a special member, we no longer have
878       // an implicit trivial special member.
879       data().HasTrivialSpecialMembers &=
880           data().DeclaredSpecialMembers | ~SMKind;
881       data().HasTrivialSpecialMembersForCall &=
882           data().DeclaredSpecialMembers | ~SMKind;
883 
884       if (!Method->isImplicit() && !Method->isUserProvided()) {
885         // This method is user-declared but not user-provided. We can't work out
886         // whether it's trivial yet (not until we get to the end of the class).
887         // We'll handle this method in finishedDefaultedOrDeletedMember.
888       } else if (Method->isTrivial()) {
889         data().HasTrivialSpecialMembers |= SMKind;
890         data().HasTrivialSpecialMembersForCall |= SMKind;
891       } else if (Method->isTrivialForCall()) {
892         data().HasTrivialSpecialMembersForCall |= SMKind;
893         data().DeclaredNonTrivialSpecialMembers |= SMKind;
894       } else {
895         data().DeclaredNonTrivialSpecialMembers |= SMKind;
896         // If this is a user-provided function, do not set
897         // DeclaredNonTrivialSpecialMembersForCall here since we don't know
898         // yet whether the method would be considered non-trivial for the
899         // purpose of calls (attribute "trivial_abi" can be dropped from the
900         // class later, which can change the special method's triviality).
901         if (!Method->isUserProvided())
902           data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
903       }
904 
905       // Note when we have declared a declared special member, and suppress the
906       // implicit declaration of this special member.
907       data().DeclaredSpecialMembers |= SMKind;
908 
909       if (!Method->isImplicit()) {
910         data().UserDeclaredSpecialMembers |= SMKind;
911 
912         // C++03 [class]p4:
913         //   A POD-struct is an aggregate class that has [...] no user-defined
914         //   copy assignment operator and no user-defined destructor.
915         //
916         // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
917         // aggregates could not have any constructors, clear it even for an
918         // explicitly defaulted or deleted constructor.
919         // type is technically an aggregate in C++0x since it wouldn't be in 03.
920         //
921         // Also, a user-declared move assignment operator makes a class non-POD.
922         // This is an extension in C++03.
923         data().PlainOldData = false;
924       }
925     }
926 
927     return;
928   }
929 
930   // Handle non-static data members.
931   if (const auto *Field = dyn_cast<FieldDecl>(D)) {
932     ASTContext &Context = getASTContext();
933 
934     // C++2a [class]p7:
935     //   A standard-layout class is a class that:
936     //    [...]
937     //    -- has all non-static data members and bit-fields in the class and
938     //       its base classes first declared in the same class
939     if (data().HasBasesWithFields)
940       data().IsStandardLayout = false;
941 
942     // C++ [class.bit]p2:
943     //   A declaration for a bit-field that omits the identifier declares an
944     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
945     //   initialized.
946     if (Field->isUnnamedBitfield()) {
947       // C++ [meta.unary.prop]p4: [LWG2358]
948       //   T is a class type [...] with [...] no unnamed bit-fields of non-zero
949       //   length
950       if (data().Empty && !Field->isZeroLengthBitField(Context) &&
951           Context.getLangOpts().getClangABICompat() >
952               LangOptions::ClangABI::Ver6)
953         data().Empty = false;
954       return;
955     }
956 
957     // C++11 [class]p7:
958     //   A standard-layout class is a class that:
959     //    -- either has no non-static data members in the most derived class
960     //       [...] or has no base classes with non-static data members
961     if (data().HasBasesWithNonStaticDataMembers)
962       data().IsCXX11StandardLayout = false;
963 
964     // C++ [dcl.init.aggr]p1:
965     //   An aggregate is an array or a class (clause 9) with [...] no
966     //   private or protected non-static data members (clause 11).
967     //
968     // A POD must be an aggregate.
969     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
970       data().Aggregate = false;
971       data().PlainOldData = false;
972 
973       // C++20 [temp.param]p7:
974       //   A structural type is [...] a literal class type [for which] all
975       //   non-static data members are public
976       data().StructuralIfLiteral = false;
977     }
978 
979     // Track whether this is the first field. We use this when checking
980     // whether the class is standard-layout below.
981     bool IsFirstField = !data().HasPrivateFields &&
982                         !data().HasProtectedFields && !data().HasPublicFields;
983 
984     // C++0x [class]p7:
985     //   A standard-layout class is a class that:
986     //    [...]
987     //    -- has the same access control for all non-static data members,
988     switch (D->getAccess()) {
989     case AS_private:    data().HasPrivateFields = true;   break;
990     case AS_protected:  data().HasProtectedFields = true; break;
991     case AS_public:     data().HasPublicFields = true;    break;
992     case AS_none:       llvm_unreachable("Invalid access specifier");
993     };
994     if ((data().HasPrivateFields + data().HasProtectedFields +
995          data().HasPublicFields) > 1) {
996       data().IsStandardLayout = false;
997       data().IsCXX11StandardLayout = false;
998     }
999 
1000     // Keep track of the presence of mutable fields.
1001     if (Field->isMutable()) {
1002       data().HasMutableFields = true;
1003 
1004       // C++20 [temp.param]p7:
1005       //   A structural type is [...] a literal class type [for which] all
1006       //   non-static data members are public
1007       data().StructuralIfLiteral = false;
1008     }
1009 
1010     // C++11 [class.union]p8, DR1460:
1011     //   If X is a union, a non-static data member of X that is not an anonymous
1012     //   union is a variant member of X.
1013     if (isUnion() && !Field->isAnonymousStructOrUnion())
1014       data().HasVariantMembers = true;
1015 
1016     // C++0x [class]p9:
1017     //   A POD struct is a class that is both a trivial class and a
1018     //   standard-layout class, and has no non-static data members of type
1019     //   non-POD struct, non-POD union (or array of such types).
1020     //
1021     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
1022     // that does not explicitly have no lifetime makes the class a non-POD.
1023     QualType T = Context.getBaseElementType(Field->getType());
1024     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
1025       if (T.hasNonTrivialObjCLifetime()) {
1026         // Objective-C Automatic Reference Counting:
1027         //   If a class has a non-static data member of Objective-C pointer
1028         //   type (or array thereof), it is a non-POD type and its
1029         //   default constructor (if any), copy constructor, move constructor,
1030         //   copy assignment operator, move assignment operator, and destructor are
1031         //   non-trivial.
1032         setHasObjectMember(true);
1033         struct DefinitionData &Data = data();
1034         Data.PlainOldData = false;
1035         Data.HasTrivialSpecialMembers = 0;
1036 
1037         // __strong or __weak fields do not make special functions non-trivial
1038         // for the purpose of calls.
1039         Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
1040         if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
1041           data().HasTrivialSpecialMembersForCall = 0;
1042 
1043         // Structs with __weak fields should never be passed directly.
1044         if (LT == Qualifiers::OCL_Weak)
1045           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1046 
1047         Data.HasIrrelevantDestructor = false;
1048 
1049         if (isUnion()) {
1050           data().DefaultedCopyConstructorIsDeleted = true;
1051           data().DefaultedMoveConstructorIsDeleted = true;
1052           data().DefaultedCopyAssignmentIsDeleted = true;
1053           data().DefaultedMoveAssignmentIsDeleted = true;
1054           data().DefaultedDestructorIsDeleted = true;
1055           data().NeedOverloadResolutionForCopyConstructor = true;
1056           data().NeedOverloadResolutionForMoveConstructor = true;
1057           data().NeedOverloadResolutionForCopyAssignment = true;
1058           data().NeedOverloadResolutionForMoveAssignment = true;
1059           data().NeedOverloadResolutionForDestructor = true;
1060         }
1061       } else if (!Context.getLangOpts().ObjCAutoRefCount) {
1062         setHasObjectMember(true);
1063       }
1064     } else if (!T.isCXX98PODType(Context))
1065       data().PlainOldData = false;
1066 
1067     if (T->isReferenceType()) {
1068       if (!Field->hasInClassInitializer())
1069         data().HasUninitializedReferenceMember = true;
1070 
1071       // C++0x [class]p7:
1072       //   A standard-layout class is a class that:
1073       //    -- has no non-static data members of type [...] reference,
1074       data().IsStandardLayout = false;
1075       data().IsCXX11StandardLayout = false;
1076 
1077       // C++1z [class.copy.ctor]p10:
1078       //   A defaulted copy constructor for a class X is defined as deleted if X has:
1079       //    -- a non-static data member of rvalue reference type
1080       if (T->isRValueReferenceType())
1081         data().DefaultedCopyConstructorIsDeleted = true;
1082     }
1083 
1084     if (!Field->hasInClassInitializer() && !Field->isMutable()) {
1085       if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
1086         if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
1087           data().HasUninitializedFields = true;
1088       } else {
1089         data().HasUninitializedFields = true;
1090       }
1091     }
1092 
1093     // Record if this field is the first non-literal or volatile field or base.
1094     if (!T->isLiteralType(Context) || T.isVolatileQualified())
1095       data().HasNonLiteralTypeFieldsOrBases = true;
1096 
1097     if (Field->hasInClassInitializer() ||
1098         (Field->isAnonymousStructOrUnion() &&
1099          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1100       data().HasInClassInitializer = true;
1101 
1102       // C++11 [class]p5:
1103       //   A default constructor is trivial if [...] no non-static data member
1104       //   of its class has a brace-or-equal-initializer.
1105       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1106 
1107       // C++11 [dcl.init.aggr]p1:
1108       //   An aggregate is a [...] class with [...] no
1109       //   brace-or-equal-initializers for non-static data members.
1110       //
1111       // This rule was removed in C++14.
1112       if (!getASTContext().getLangOpts().CPlusPlus14)
1113         data().Aggregate = false;
1114 
1115       // C++11 [class]p10:
1116       //   A POD struct is [...] a trivial class.
1117       data().PlainOldData = false;
1118     }
1119 
1120     // C++11 [class.copy]p23:
1121     //   A defaulted copy/move assignment operator for a class X is defined
1122     //   as deleted if X has:
1123     //    -- a non-static data member of reference type
1124     if (T->isReferenceType()) {
1125       data().DefaultedCopyAssignmentIsDeleted = true;
1126       data().DefaultedMoveAssignmentIsDeleted = true;
1127     }
1128 
1129     // Bitfields of length 0 are also zero-sized, but we already bailed out for
1130     // those because they are always unnamed.
1131     bool IsZeroSize = Field->isZeroSize(Context);
1132 
1133     if (const auto *RecordTy = T->getAs<RecordType>()) {
1134       auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
1135       if (FieldRec->getDefinition()) {
1136         addedClassSubobject(FieldRec);
1137 
1138         // We may need to perform overload resolution to determine whether a
1139         // field can be moved if it's const or volatile qualified.
1140         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
1141           // We need to care about 'const' for the copy constructor because an
1142           // implicit copy constructor might be declared with a non-const
1143           // parameter.
1144           data().NeedOverloadResolutionForCopyConstructor = true;
1145           data().NeedOverloadResolutionForMoveConstructor = true;
1146           data().NeedOverloadResolutionForCopyAssignment = true;
1147           data().NeedOverloadResolutionForMoveAssignment = true;
1148         }
1149 
1150         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1151         //   A defaulted [special member] for a class X is defined as
1152         //   deleted if:
1153         //    -- X is a union-like class that has a variant member with a
1154         //       non-trivial [corresponding special member]
1155         if (isUnion()) {
1156           if (FieldRec->hasNonTrivialCopyConstructor())
1157             data().DefaultedCopyConstructorIsDeleted = true;
1158           if (FieldRec->hasNonTrivialMoveConstructor())
1159             data().DefaultedMoveConstructorIsDeleted = true;
1160           if (FieldRec->hasNonTrivialCopyAssignment())
1161             data().DefaultedCopyAssignmentIsDeleted = true;
1162           if (FieldRec->hasNonTrivialMoveAssignment())
1163             data().DefaultedMoveAssignmentIsDeleted = true;
1164           if (FieldRec->hasNonTrivialDestructor())
1165             data().DefaultedDestructorIsDeleted = true;
1166         }
1167 
1168         // For an anonymous union member, our overload resolution will perform
1169         // overload resolution for its members.
1170         if (Field->isAnonymousStructOrUnion()) {
1171           data().NeedOverloadResolutionForCopyConstructor |=
1172               FieldRec->data().NeedOverloadResolutionForCopyConstructor;
1173           data().NeedOverloadResolutionForMoveConstructor |=
1174               FieldRec->data().NeedOverloadResolutionForMoveConstructor;
1175           data().NeedOverloadResolutionForCopyAssignment |=
1176               FieldRec->data().NeedOverloadResolutionForCopyAssignment;
1177           data().NeedOverloadResolutionForMoveAssignment |=
1178               FieldRec->data().NeedOverloadResolutionForMoveAssignment;
1179           data().NeedOverloadResolutionForDestructor |=
1180               FieldRec->data().NeedOverloadResolutionForDestructor;
1181         }
1182 
1183         // C++0x [class.ctor]p5:
1184         //   A default constructor is trivial [...] if:
1185         //    -- for all the non-static data members of its class that are of
1186         //       class type (or array thereof), each such class has a trivial
1187         //       default constructor.
1188         if (!FieldRec->hasTrivialDefaultConstructor())
1189           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1190 
1191         // C++0x [class.copy]p13:
1192         //   A copy/move constructor for class X is trivial if [...]
1193         //    [...]
1194         //    -- for each non-static data member of X that is of class type (or
1195         //       an array thereof), the constructor selected to copy/move that
1196         //       member is trivial;
1197         if (!FieldRec->hasTrivialCopyConstructor())
1198           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
1199 
1200         if (!FieldRec->hasTrivialCopyConstructorForCall())
1201           data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
1202 
1203         // If the field doesn't have a simple move constructor, we'll eagerly
1204         // declare the move constructor for this class and we'll decide whether
1205         // it's trivial then.
1206         if (!FieldRec->hasTrivialMoveConstructor())
1207           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
1208 
1209         if (!FieldRec->hasTrivialMoveConstructorForCall())
1210           data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
1211 
1212         // C++0x [class.copy]p27:
1213         //   A copy/move assignment operator for class X is trivial if [...]
1214         //    [...]
1215         //    -- for each non-static data member of X that is of class type (or
1216         //       an array thereof), the assignment operator selected to
1217         //       copy/move that member is trivial;
1218         if (!FieldRec->hasTrivialCopyAssignment())
1219           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
1220         // If the field doesn't have a simple move assignment, we'll eagerly
1221         // declare the move assignment for this class and we'll decide whether
1222         // it's trivial then.
1223         if (!FieldRec->hasTrivialMoveAssignment())
1224           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
1225 
1226         if (!FieldRec->hasTrivialDestructor())
1227           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1228         if (!FieldRec->hasTrivialDestructorForCall())
1229           data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1230         if (!FieldRec->hasIrrelevantDestructor())
1231           data().HasIrrelevantDestructor = false;
1232         if (FieldRec->hasObjectMember())
1233           setHasObjectMember(true);
1234         if (FieldRec->hasVolatileMember())
1235           setHasVolatileMember(true);
1236         if (FieldRec->getArgPassingRestrictions() ==
1237             RecordDecl::APK_CanNeverPassInRegs)
1238           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1239 
1240         // C++0x [class]p7:
1241         //   A standard-layout class is a class that:
1242         //    -- has no non-static data members of type non-standard-layout
1243         //       class (or array of such types) [...]
1244         if (!FieldRec->isStandardLayout())
1245           data().IsStandardLayout = false;
1246         if (!FieldRec->isCXX11StandardLayout())
1247           data().IsCXX11StandardLayout = false;
1248 
1249         // C++2a [class]p7:
1250         //   A standard-layout class is a class that:
1251         //    [...]
1252         //    -- has no element of the set M(S) of types as a base class.
1253         if (data().IsStandardLayout &&
1254             (isUnion() || IsFirstField || IsZeroSize) &&
1255             hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
1256           data().IsStandardLayout = false;
1257 
1258         // C++11 [class]p7:
1259         //   A standard-layout class is a class that:
1260         //    -- has no base classes of the same type as the first non-static
1261         //       data member
1262         if (data().IsCXX11StandardLayout && IsFirstField) {
1263           // FIXME: We should check all base classes here, not just direct
1264           // base classes.
1265           for (const auto &BI : bases()) {
1266             if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
1267               data().IsCXX11StandardLayout = false;
1268               break;
1269             }
1270           }
1271         }
1272 
1273         // Keep track of the presence of mutable fields.
1274         if (FieldRec->hasMutableFields())
1275           data().HasMutableFields = true;
1276 
1277         if (Field->isMutable()) {
1278           // Our copy constructor/assignment might call something other than
1279           // the subobject's copy constructor/assignment if it's mutable and of
1280           // class type.
1281           data().NeedOverloadResolutionForCopyConstructor = true;
1282           data().NeedOverloadResolutionForCopyAssignment = true;
1283         }
1284 
1285         // C++11 [class.copy]p13:
1286         //   If the implicitly-defined constructor would satisfy the
1287         //   requirements of a constexpr constructor, the implicitly-defined
1288         //   constructor is constexpr.
1289         // C++11 [dcl.constexpr]p4:
1290         //    -- every constructor involved in initializing non-static data
1291         //       members [...] shall be a constexpr constructor
1292         if (!Field->hasInClassInitializer() &&
1293             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
1294           // The standard requires any in-class initializer to be a constant
1295           // expression. We consider this to be a defect.
1296           data().DefaultedDefaultConstructorIsConstexpr = false;
1297 
1298         // C++11 [class.copy]p8:
1299         //   The implicitly-declared copy constructor for a class X will have
1300         //   the form 'X::X(const X&)' if each potentially constructed subobject
1301         //   of a class type M (or array thereof) has a copy constructor whose
1302         //   first parameter is of type 'const M&' or 'const volatile M&'.
1303         if (!FieldRec->hasCopyConstructorWithConstParam())
1304           data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
1305 
1306         // C++11 [class.copy]p18:
1307         //   The implicitly-declared copy assignment oeprator for a class X will
1308         //   have the form 'X& X::operator=(const X&)' if [...] for all the
1309         //   non-static data members of X that are of a class type M (or array
1310         //   thereof), each such class type has a copy assignment operator whose
1311         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
1312         if (!FieldRec->hasCopyAssignmentWithConstParam())
1313           data().ImplicitCopyAssignmentHasConstParam = false;
1314 
1315         if (FieldRec->hasUninitializedReferenceMember() &&
1316             !Field->hasInClassInitializer())
1317           data().HasUninitializedReferenceMember = true;
1318 
1319         // C++11 [class.union]p8, DR1460:
1320         //   a non-static data member of an anonymous union that is a member of
1321         //   X is also a variant member of X.
1322         if (FieldRec->hasVariantMembers() &&
1323             Field->isAnonymousStructOrUnion())
1324           data().HasVariantMembers = true;
1325       }
1326     } else {
1327       // Base element type of field is a non-class type.
1328       if (!T->isLiteralType(Context) ||
1329           (!Field->hasInClassInitializer() && !isUnion() &&
1330            !Context.getLangOpts().CPlusPlus20))
1331         data().DefaultedDefaultConstructorIsConstexpr = false;
1332 
1333       // C++11 [class.copy]p23:
1334       //   A defaulted copy/move assignment operator for a class X is defined
1335       //   as deleted if X has:
1336       //    -- a non-static data member of const non-class type (or array
1337       //       thereof)
1338       if (T.isConstQualified()) {
1339         data().DefaultedCopyAssignmentIsDeleted = true;
1340         data().DefaultedMoveAssignmentIsDeleted = true;
1341       }
1342 
1343       // C++20 [temp.param]p7:
1344       //   A structural type is [...] a literal class type [for which] the
1345       //   types of all non-static data members are structural types or
1346       //   (possibly multidimensional) array thereof
1347       // We deal with class types elsewhere.
1348       if (!T->isStructuralType())
1349         data().StructuralIfLiteral = false;
1350     }
1351 
1352     // C++14 [meta.unary.prop]p4:
1353     //   T is a class type [...] with [...] no non-static data members other
1354     //   than subobjects of zero size
1355     if (data().Empty && !IsZeroSize)
1356       data().Empty = false;
1357   }
1358 
1359   // Handle using declarations of conversion functions.
1360   if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1361     if (Shadow->getDeclName().getNameKind()
1362           == DeclarationName::CXXConversionFunctionName) {
1363       ASTContext &Ctx = getASTContext();
1364       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1365     }
1366   }
1367 
1368   if (const auto *Using = dyn_cast<UsingDecl>(D)) {
1369     if (Using->getDeclName().getNameKind() ==
1370         DeclarationName::CXXConstructorName) {
1371       data().HasInheritedConstructor = true;
1372       // C++1z [dcl.init.aggr]p1:
1373       //  An aggregate is [...] a class [...] with no inherited constructors
1374       data().Aggregate = false;
1375     }
1376 
1377     if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1378       data().HasInheritedAssignment = true;
1379   }
1380 }
1381 
finishedDefaultedOrDeletedMember(CXXMethodDecl * D)1382 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1383   assert(!D->isImplicit() && !D->isUserProvided());
1384 
1385   // The kind of special member this declaration is, if any.
1386   unsigned SMKind = 0;
1387 
1388   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1389     if (Constructor->isDefaultConstructor()) {
1390       SMKind |= SMF_DefaultConstructor;
1391       if (Constructor->isConstexpr())
1392         data().HasConstexprDefaultConstructor = true;
1393     }
1394     if (Constructor->isCopyConstructor())
1395       SMKind |= SMF_CopyConstructor;
1396     else if (Constructor->isMoveConstructor())
1397       SMKind |= SMF_MoveConstructor;
1398     else if (Constructor->isConstexpr())
1399       // We may now know that the constructor is constexpr.
1400       data().HasConstexprNonCopyMoveConstructor = true;
1401   } else if (isa<CXXDestructorDecl>(D)) {
1402     SMKind |= SMF_Destructor;
1403     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1404       data().HasIrrelevantDestructor = false;
1405   } else if (D->isCopyAssignmentOperator())
1406     SMKind |= SMF_CopyAssignment;
1407   else if (D->isMoveAssignmentOperator())
1408     SMKind |= SMF_MoveAssignment;
1409 
1410   // Update which trivial / non-trivial special members we have.
1411   // addedMember will have skipped this step for this member.
1412   if (D->isTrivial())
1413     data().HasTrivialSpecialMembers |= SMKind;
1414   else
1415     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1416 }
1417 
setCaptures(ASTContext & Context,ArrayRef<LambdaCapture> Captures)1418 void CXXRecordDecl::setCaptures(ASTContext &Context,
1419                                 ArrayRef<LambdaCapture> Captures) {
1420   CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData();
1421 
1422   // Copy captures.
1423   Data.NumCaptures = Captures.size();
1424   Data.NumExplicitCaptures = 0;
1425   Data.Captures = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) *
1426                                                     Captures.size());
1427   LambdaCapture *ToCapture = Data.Captures;
1428   for (unsigned I = 0, N = Captures.size(); I != N; ++I) {
1429     if (Captures[I].isExplicit())
1430       ++Data.NumExplicitCaptures;
1431 
1432     *ToCapture++ = Captures[I];
1433   }
1434 
1435   if (!lambdaIsDefaultConstructibleAndAssignable())
1436     Data.DefaultedCopyAssignmentIsDeleted = true;
1437 }
1438 
setTrivialForCallFlags(CXXMethodDecl * D)1439 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
1440   unsigned SMKind = 0;
1441 
1442   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1443     if (Constructor->isCopyConstructor())
1444       SMKind = SMF_CopyConstructor;
1445     else if (Constructor->isMoveConstructor())
1446       SMKind = SMF_MoveConstructor;
1447   } else if (isa<CXXDestructorDecl>(D))
1448     SMKind = SMF_Destructor;
1449 
1450   if (D->isTrivialForCall())
1451     data().HasTrivialSpecialMembersForCall |= SMKind;
1452   else
1453     data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1454 }
1455 
isCLike() const1456 bool CXXRecordDecl::isCLike() const {
1457   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
1458       !TemplateOrInstantiation.isNull())
1459     return false;
1460   if (!hasDefinition())
1461     return true;
1462 
1463   return isPOD() && data().HasOnlyCMembers;
1464 }
1465 
isGenericLambda() const1466 bool CXXRecordDecl::isGenericLambda() const {
1467   if (!isLambda()) return false;
1468   return getLambdaData().IsGenericLambda;
1469 }
1470 
1471 #ifndef NDEBUG
allLookupResultsAreTheSame(const DeclContext::lookup_result & R)1472 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
1473   for (auto *D : R)
1474     if (!declaresSameEntity(D, R.front()))
1475       return false;
1476   return true;
1477 }
1478 #endif
1479 
getLambdaCallOperatorHelper(const CXXRecordDecl & RD)1480 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
1481   if (!RD.isLambda()) return nullptr;
1482   DeclarationName Name =
1483     RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1484   DeclContext::lookup_result Calls = RD.lookup(Name);
1485 
1486   assert(!Calls.empty() && "Missing lambda call operator!");
1487   assert(allLookupResultsAreTheSame(Calls) &&
1488          "More than one lambda call operator!");
1489   return Calls.front();
1490 }
1491 
getDependentLambdaCallOperator() const1492 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
1493   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1494   return  dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
1495 }
1496 
getLambdaCallOperator() const1497 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
1498   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1499 
1500   if (CallOp == nullptr)
1501     return nullptr;
1502 
1503   if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
1504     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1505 
1506   return cast<CXXMethodDecl>(CallOp);
1507 }
1508 
getLambdaStaticInvoker() const1509 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1510   CXXMethodDecl *CallOp = getLambdaCallOperator();
1511   CallingConv CC = CallOp->getType()->getAs<FunctionType>()->getCallConv();
1512   return getLambdaStaticInvoker(CC);
1513 }
1514 
1515 static DeclContext::lookup_result
getLambdaStaticInvokers(const CXXRecordDecl & RD)1516 getLambdaStaticInvokers(const CXXRecordDecl &RD) {
1517   assert(RD.isLambda() && "Must be a lambda");
1518   DeclarationName Name =
1519       &RD.getASTContext().Idents.get(getLambdaStaticInvokerName());
1520   return RD.lookup(Name);
1521 }
1522 
getInvokerAsMethod(NamedDecl * ND)1523 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) {
1524   if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND))
1525     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1526   return cast<CXXMethodDecl>(ND);
1527 }
1528 
getLambdaStaticInvoker(CallingConv CC) const1529 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const {
1530   if (!isLambda())
1531     return nullptr;
1532   DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this);
1533 
1534   for (NamedDecl *ND : Invoker) {
1535     const FunctionType *FTy =
1536         cast<ValueDecl>(ND->getAsFunction())->getType()->getAs<FunctionType>();
1537     if (FTy->getCallConv() == CC)
1538       return getInvokerAsMethod(ND);
1539   }
1540 
1541   return nullptr;
1542 }
1543 
getCaptureFields(llvm::DenseMap<const VarDecl *,FieldDecl * > & Captures,FieldDecl * & ThisCapture) const1544 void CXXRecordDecl::getCaptureFields(
1545        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1546        FieldDecl *&ThisCapture) const {
1547   Captures.clear();
1548   ThisCapture = nullptr;
1549 
1550   LambdaDefinitionData &Lambda = getLambdaData();
1551   RecordDecl::field_iterator Field = field_begin();
1552   for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1553        C != CEnd; ++C, ++Field) {
1554     if (C->capturesThis())
1555       ThisCapture = *Field;
1556     else if (C->capturesVariable())
1557       Captures[C->getCapturedVar()] = *Field;
1558   }
1559   assert(Field == field_end());
1560 }
1561 
1562 TemplateParameterList *
getGenericLambdaTemplateParameterList() const1563 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1564   if (!isGenericLambda()) return nullptr;
1565   CXXMethodDecl *CallOp = getLambdaCallOperator();
1566   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1567     return Tmpl->getTemplateParameters();
1568   return nullptr;
1569 }
1570 
1571 ArrayRef<NamedDecl *>
getLambdaExplicitTemplateParameters() const1572 CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
1573   TemplateParameterList *List = getGenericLambdaTemplateParameterList();
1574   if (!List)
1575     return {};
1576 
1577   assert(std::is_partitioned(List->begin(), List->end(),
1578                              [](const NamedDecl *D) { return !D->isImplicit(); })
1579          && "Explicit template params should be ordered before implicit ones");
1580 
1581   const auto ExplicitEnd = llvm::partition_point(
1582       *List, [](const NamedDecl *D) { return !D->isImplicit(); });
1583   return llvm::makeArrayRef(List->begin(), ExplicitEnd);
1584 }
1585 
getLambdaContextDecl() const1586 Decl *CXXRecordDecl::getLambdaContextDecl() const {
1587   assert(isLambda() && "Not a lambda closure type!");
1588   ExternalASTSource *Source = getParentASTContext().getExternalSource();
1589   return getLambdaData().ContextDecl.get(Source);
1590 }
1591 
GetConversionType(ASTContext & Context,NamedDecl * Conv)1592 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1593   QualType T =
1594       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1595           ->getConversionType();
1596   return Context.getCanonicalType(T);
1597 }
1598 
1599 /// Collect the visible conversions of a base class.
1600 ///
1601 /// \param Record a base class of the class we're considering
1602 /// \param InVirtual whether this base class is a virtual base (or a base
1603 ///   of a virtual base)
1604 /// \param Access the access along the inheritance path to this base
1605 /// \param ParentHiddenTypes the conversions provided by the inheritors
1606 ///   of this base
1607 /// \param Output the set to which to add conversions from non-virtual bases
1608 /// \param VOutput the set to which to add conversions from virtual bases
1609 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1610 ///   virtual base along some inheritance path
CollectVisibleConversions(ASTContext & Context,const CXXRecordDecl * Record,bool InVirtual,AccessSpecifier Access,const llvm::SmallPtrSet<CanQualType,8> & ParentHiddenTypes,ASTUnresolvedSet & Output,UnresolvedSetImpl & VOutput,llvm::SmallPtrSet<NamedDecl *,8> & HiddenVBaseCs)1611 static void CollectVisibleConversions(
1612     ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual,
1613     AccessSpecifier Access,
1614     const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1615     ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput,
1616     llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) {
1617   // The set of types which have conversions in this class or its
1618   // subclasses.  As an optimization, we don't copy the derived set
1619   // unless it might change.
1620   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1621   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1622 
1623   // Collect the direct conversions and figure out which conversions
1624   // will be hidden in the subclasses.
1625   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1626   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1627   if (ConvI != ConvE) {
1628     HiddenTypesBuffer = ParentHiddenTypes;
1629     HiddenTypes = &HiddenTypesBuffer;
1630 
1631     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1632       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1633       bool Hidden = ParentHiddenTypes.count(ConvType);
1634       if (!Hidden)
1635         HiddenTypesBuffer.insert(ConvType);
1636 
1637       // If this conversion is hidden and we're in a virtual base,
1638       // remember that it's hidden along some inheritance path.
1639       if (Hidden && InVirtual)
1640         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1641 
1642       // If this conversion isn't hidden, add it to the appropriate output.
1643       else if (!Hidden) {
1644         AccessSpecifier IAccess
1645           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1646 
1647         if (InVirtual)
1648           VOutput.addDecl(I.getDecl(), IAccess);
1649         else
1650           Output.addDecl(Context, I.getDecl(), IAccess);
1651       }
1652     }
1653   }
1654 
1655   // Collect information recursively from any base classes.
1656   for (const auto &I : Record->bases()) {
1657     const auto *RT = I.getType()->getAs<RecordType>();
1658     if (!RT) continue;
1659 
1660     AccessSpecifier BaseAccess
1661       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1662     bool BaseInVirtual = InVirtual || I.isVirtual();
1663 
1664     auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1665     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1666                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1667   }
1668 }
1669 
1670 /// Collect the visible conversions of a class.
1671 ///
1672 /// This would be extremely straightforward if it weren't for virtual
1673 /// bases.  It might be worth special-casing that, really.
CollectVisibleConversions(ASTContext & Context,const CXXRecordDecl * Record,ASTUnresolvedSet & Output)1674 static void CollectVisibleConversions(ASTContext &Context,
1675                                       const CXXRecordDecl *Record,
1676                                       ASTUnresolvedSet &Output) {
1677   // The collection of all conversions in virtual bases that we've
1678   // found.  These will be added to the output as long as they don't
1679   // appear in the hidden-conversions set.
1680   UnresolvedSet<8> VBaseCs;
1681 
1682   // The set of conversions in virtual bases that we've determined to
1683   // be hidden.
1684   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1685 
1686   // The set of types hidden by classes derived from this one.
1687   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1688 
1689   // Go ahead and collect the direct conversions and add them to the
1690   // hidden-types set.
1691   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1692   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1693   Output.append(Context, ConvI, ConvE);
1694   for (; ConvI != ConvE; ++ConvI)
1695     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1696 
1697   // Recursively collect conversions from base classes.
1698   for (const auto &I : Record->bases()) {
1699     const auto *RT = I.getType()->getAs<RecordType>();
1700     if (!RT) continue;
1701 
1702     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1703                               I.isVirtual(), I.getAccessSpecifier(),
1704                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1705   }
1706 
1707   // Add any unhidden conversions provided by virtual bases.
1708   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1709          I != E; ++I) {
1710     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1711       Output.addDecl(Context, I.getDecl(), I.getAccess());
1712   }
1713 }
1714 
1715 /// getVisibleConversionFunctions - get all conversion functions visible
1716 /// in current class; including conversion function templates.
1717 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
getVisibleConversionFunctions() const1718 CXXRecordDecl::getVisibleConversionFunctions() const {
1719   ASTContext &Ctx = getASTContext();
1720 
1721   ASTUnresolvedSet *Set;
1722   if (bases_begin() == bases_end()) {
1723     // If root class, all conversions are visible.
1724     Set = &data().Conversions.get(Ctx);
1725   } else {
1726     Set = &data().VisibleConversions.get(Ctx);
1727     // If visible conversion list is not evaluated, evaluate it.
1728     if (!data().ComputedVisibleConversions) {
1729       CollectVisibleConversions(Ctx, this, *Set);
1730       data().ComputedVisibleConversions = true;
1731     }
1732   }
1733   return llvm::make_range(Set->begin(), Set->end());
1734 }
1735 
removeConversion(const NamedDecl * ConvDecl)1736 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1737   // This operation is O(N) but extremely rare.  Sema only uses it to
1738   // remove UsingShadowDecls in a class that were followed by a direct
1739   // declaration, e.g.:
1740   //   class A : B {
1741   //     using B::operator int;
1742   //     operator int();
1743   //   };
1744   // This is uncommon by itself and even more uncommon in conjunction
1745   // with sufficiently large numbers of directly-declared conversions
1746   // that asymptotic behavior matters.
1747 
1748   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1749   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1750     if (Convs[I].getDecl() == ConvDecl) {
1751       Convs.erase(I);
1752       assert(llvm::find(Convs, ConvDecl) == Convs.end() &&
1753              "conversion was found multiple times in unresolved set");
1754       return;
1755     }
1756   }
1757 
1758   llvm_unreachable("conversion not found in set!");
1759 }
1760 
getInstantiatedFromMemberClass() const1761 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1762   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1763     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1764 
1765   return nullptr;
1766 }
1767 
getMemberSpecializationInfo() const1768 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1769   return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1770 }
1771 
1772 void
setInstantiationOfMemberClass(CXXRecordDecl * RD,TemplateSpecializationKind TSK)1773 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1774                                              TemplateSpecializationKind TSK) {
1775   assert(TemplateOrInstantiation.isNull() &&
1776          "Previous template or instantiation?");
1777   assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1778   TemplateOrInstantiation
1779     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1780 }
1781 
getDescribedClassTemplate() const1782 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1783   return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1784 }
1785 
setDescribedClassTemplate(ClassTemplateDecl * Template)1786 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1787   TemplateOrInstantiation = Template;
1788 }
1789 
getTemplateSpecializationKind() const1790 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1791   if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
1792     return Spec->getSpecializationKind();
1793 
1794   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1795     return MSInfo->getTemplateSpecializationKind();
1796 
1797   return TSK_Undeclared;
1798 }
1799 
1800 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK)1801 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1802   if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1803     Spec->setSpecializationKind(TSK);
1804     return;
1805   }
1806 
1807   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1808     MSInfo->setTemplateSpecializationKind(TSK);
1809     return;
1810   }
1811 
1812   llvm_unreachable("Not a class template or member class specialization");
1813 }
1814 
getTemplateInstantiationPattern() const1815 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1816   auto GetDefinitionOrSelf =
1817       [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1818     if (auto *Def = D->getDefinition())
1819       return Def;
1820     return D;
1821   };
1822 
1823   // If it's a class template specialization, find the template or partial
1824   // specialization from which it was instantiated.
1825   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1826     auto From = TD->getInstantiatedFrom();
1827     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1828       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1829         if (NewCTD->isMemberSpecialization())
1830           break;
1831         CTD = NewCTD;
1832       }
1833       return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1834     }
1835     if (auto *CTPSD =
1836             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1837       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1838         if (NewCTPSD->isMemberSpecialization())
1839           break;
1840         CTPSD = NewCTPSD;
1841       }
1842       return GetDefinitionOrSelf(CTPSD);
1843     }
1844   }
1845 
1846   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1847     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1848       const CXXRecordDecl *RD = this;
1849       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1850         RD = NewRD;
1851       return GetDefinitionOrSelf(RD);
1852     }
1853   }
1854 
1855   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1856          "couldn't find pattern for class template instantiation");
1857   return nullptr;
1858 }
1859 
getDestructor() const1860 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1861   ASTContext &Context = getASTContext();
1862   QualType ClassType = Context.getTypeDeclType(this);
1863 
1864   DeclarationName Name
1865     = Context.DeclarationNames.getCXXDestructorName(
1866                                           Context.getCanonicalType(ClassType));
1867 
1868   DeclContext::lookup_result R = lookup(Name);
1869 
1870   return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front());
1871 }
1872 
isAnyDestructorNoReturn() const1873 bool CXXRecordDecl::isAnyDestructorNoReturn() const {
1874   // Destructor is noreturn.
1875   if (const CXXDestructorDecl *Destructor = getDestructor())
1876     if (Destructor->isNoReturn())
1877       return true;
1878 
1879   // Check base classes destructor for noreturn.
1880   for (const auto &Base : bases())
1881     if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl())
1882       if (RD->isAnyDestructorNoReturn())
1883         return true;
1884 
1885   // Check fields for noreturn.
1886   for (const auto *Field : fields())
1887     if (const CXXRecordDecl *RD =
1888             Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
1889       if (RD->isAnyDestructorNoReturn())
1890         return true;
1891 
1892   // All destructors are not noreturn.
1893   return false;
1894 }
1895 
isDeclContextInNamespace(const DeclContext * DC)1896 static bool isDeclContextInNamespace(const DeclContext *DC) {
1897   while (!DC->isTranslationUnit()) {
1898     if (DC->isNamespace())
1899       return true;
1900     DC = DC->getParent();
1901   }
1902   return false;
1903 }
1904 
isInterfaceLike() const1905 bool CXXRecordDecl::isInterfaceLike() const {
1906   assert(hasDefinition() && "checking for interface-like without a definition");
1907   // All __interfaces are inheritently interface-like.
1908   if (isInterface())
1909     return true;
1910 
1911   // Interface-like types cannot have a user declared constructor, destructor,
1912   // friends, VBases, conversion functions, or fields.  Additionally, lambdas
1913   // cannot be interface types.
1914   if (isLambda() || hasUserDeclaredConstructor() ||
1915       hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1916       getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1917     return false;
1918 
1919   // No interface-like type can have a method with a definition.
1920   for (const auto *const Method : methods())
1921     if (Method->isDefined() && !Method->isImplicit())
1922       return false;
1923 
1924   // Check "Special" types.
1925   const auto *Uuid = getAttr<UuidAttr>();
1926   // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1927   // extern C++ block directly in the TU.  These are only valid if in one
1928   // of these two situations.
1929   if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
1930       !isDeclContextInNamespace(getDeclContext()) &&
1931       ((getName() == "IUnknown" &&
1932         Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
1933        (getName() == "IDispatch" &&
1934         Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
1935     if (getNumBases() > 0)
1936       return false;
1937     return true;
1938   }
1939 
1940   // FIXME: Any access specifiers is supposed to make this no longer interface
1941   // like.
1942 
1943   // If this isn't a 'special' type, it must have a single interface-like base.
1944   if (getNumBases() != 1)
1945     return false;
1946 
1947   const auto BaseSpec = *bases_begin();
1948   if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
1949     return false;
1950   const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
1951   if (Base->isInterface() || !Base->isInterfaceLike())
1952     return false;
1953   return true;
1954 }
1955 
completeDefinition()1956 void CXXRecordDecl::completeDefinition() {
1957   completeDefinition(nullptr);
1958 }
1959 
completeDefinition(CXXFinalOverriderMap * FinalOverriders)1960 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1961   RecordDecl::completeDefinition();
1962 
1963   // If the class may be abstract (but hasn't been marked as such), check for
1964   // any pure final overriders.
1965   if (mayBeAbstract()) {
1966     CXXFinalOverriderMap MyFinalOverriders;
1967     if (!FinalOverriders) {
1968       getFinalOverriders(MyFinalOverriders);
1969       FinalOverriders = &MyFinalOverriders;
1970     }
1971 
1972     bool Done = false;
1973     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1974                                      MEnd = FinalOverriders->end();
1975          M != MEnd && !Done; ++M) {
1976       for (OverridingMethods::iterator SO = M->second.begin(),
1977                                     SOEnd = M->second.end();
1978            SO != SOEnd && !Done; ++SO) {
1979         assert(SO->second.size() > 0 &&
1980                "All virtual functions have overriding virtual functions");
1981 
1982         // C++ [class.abstract]p4:
1983         //   A class is abstract if it contains or inherits at least one
1984         //   pure virtual function for which the final overrider is pure
1985         //   virtual.
1986         if (SO->second.front().Method->isPure()) {
1987           data().Abstract = true;
1988           Done = true;
1989           break;
1990         }
1991       }
1992     }
1993   }
1994 
1995   // Set access bits correctly on the directly-declared conversions.
1996   for (conversion_iterator I = conversion_begin(), E = conversion_end();
1997        I != E; ++I)
1998     I.setAccess((*I)->getAccess());
1999 }
2000 
mayBeAbstract() const2001 bool CXXRecordDecl::mayBeAbstract() const {
2002   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
2003       isDependentContext())
2004     return false;
2005 
2006   for (const auto &B : bases()) {
2007     const auto *BaseDecl =
2008         cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
2009     if (BaseDecl->isAbstract())
2010       return true;
2011   }
2012 
2013   return false;
2014 }
2015 
isEffectivelyFinal() const2016 bool CXXRecordDecl::isEffectivelyFinal() const {
2017   auto *Def = getDefinition();
2018   if (!Def)
2019     return false;
2020   if (Def->hasAttr<FinalAttr>())
2021     return true;
2022   if (const auto *Dtor = Def->getDestructor())
2023     if (Dtor->hasAttr<FinalAttr>())
2024       return true;
2025   return false;
2026 }
2027 
anchor()2028 void CXXDeductionGuideDecl::anchor() {}
2029 
isEquivalent(const ExplicitSpecifier Other) const2030 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
2031   if ((getKind() != Other.getKind() ||
2032        getKind() == ExplicitSpecKind::Unresolved)) {
2033     if (getKind() == ExplicitSpecKind::Unresolved &&
2034         Other.getKind() == ExplicitSpecKind::Unresolved) {
2035       ODRHash SelfHash, OtherHash;
2036       SelfHash.AddStmt(getExpr());
2037       OtherHash.AddStmt(Other.getExpr());
2038       return SelfHash.CalculateHash() == OtherHash.CalculateHash();
2039     } else
2040       return false;
2041   }
2042   return true;
2043 }
2044 
getFromDecl(FunctionDecl * Function)2045 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
2046   switch (Function->getDeclKind()) {
2047   case Decl::Kind::CXXConstructor:
2048     return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
2049   case Decl::Kind::CXXConversion:
2050     return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
2051   case Decl::Kind::CXXDeductionGuide:
2052     return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
2053   default:
2054     return {};
2055   }
2056 }
2057 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,ExplicitSpecifier ES,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,SourceLocation EndLocation)2058 CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create(
2059     ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2060     ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
2061     TypeSourceInfo *TInfo, SourceLocation EndLocation) {
2062   return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
2063                                            TInfo, EndLocation);
2064 }
2065 
CreateDeserialized(ASTContext & C,unsigned ID)2066 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
2067                                                                  unsigned ID) {
2068   return new (C, ID) CXXDeductionGuideDecl(
2069       C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
2070       QualType(), nullptr, SourceLocation());
2071 }
2072 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc)2073 RequiresExprBodyDecl *RequiresExprBodyDecl::Create(
2074     ASTContext &C, DeclContext *DC, SourceLocation StartLoc) {
2075   return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc);
2076 }
2077 
CreateDeserialized(ASTContext & C,unsigned ID)2078 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C,
2079                                                                unsigned ID) {
2080   return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation());
2081 }
2082 
anchor()2083 void CXXMethodDecl::anchor() {}
2084 
isStatic() const2085 bool CXXMethodDecl::isStatic() const {
2086   const CXXMethodDecl *MD = getCanonicalDecl();
2087 
2088   if (MD->getStorageClass() == SC_Static)
2089     return true;
2090 
2091   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
2092   return isStaticOverloadedOperator(OOK);
2093 }
2094 
recursivelyOverrides(const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)2095 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
2096                                  const CXXMethodDecl *BaseMD) {
2097   for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
2098     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
2099       return true;
2100     if (recursivelyOverrides(MD, BaseMD))
2101       return true;
2102   }
2103   return false;
2104 }
2105 
2106 CXXMethodDecl *
getCorrespondingMethodDeclaredInClass(const CXXRecordDecl * RD,bool MayBeBase)2107 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2108                                                      bool MayBeBase) {
2109   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
2110     return this;
2111 
2112   // Lookup doesn't work for destructors, so handle them separately.
2113   if (isa<CXXDestructorDecl>(this)) {
2114     CXXMethodDecl *MD = RD->getDestructor();
2115     if (MD) {
2116       if (recursivelyOverrides(MD, this))
2117         return MD;
2118       if (MayBeBase && recursivelyOverrides(this, MD))
2119         return MD;
2120     }
2121     return nullptr;
2122   }
2123 
2124   for (auto *ND : RD->lookup(getDeclName())) {
2125     auto *MD = dyn_cast<CXXMethodDecl>(ND);
2126     if (!MD)
2127       continue;
2128     if (recursivelyOverrides(MD, this))
2129       return MD;
2130     if (MayBeBase && recursivelyOverrides(this, MD))
2131       return MD;
2132   }
2133 
2134   return nullptr;
2135 }
2136 
2137 CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl * RD,bool MayBeBase)2138 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2139                                              bool MayBeBase) {
2140   if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
2141     return MD;
2142 
2143   llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders;
2144   auto AddFinalOverrider = [&](CXXMethodDecl *D) {
2145     // If this function is overridden by a candidate final overrider, it is not
2146     // a final overrider.
2147     for (CXXMethodDecl *OtherD : FinalOverriders) {
2148       if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D))
2149         return;
2150     }
2151 
2152     // Other candidate final overriders might be overridden by this function.
2153     FinalOverriders.erase(
2154         std::remove_if(FinalOverriders.begin(), FinalOverriders.end(),
2155                        [&](CXXMethodDecl *OtherD) {
2156                          return recursivelyOverrides(D, OtherD);
2157                        }),
2158         FinalOverriders.end());
2159 
2160     FinalOverriders.push_back(D);
2161   };
2162 
2163   for (const auto &I : RD->bases()) {
2164     const RecordType *RT = I.getType()->getAs<RecordType>();
2165     if (!RT)
2166       continue;
2167     const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
2168     if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base))
2169       AddFinalOverrider(D);
2170   }
2171 
2172   return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr;
2173 }
2174 
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInline,ConstexprSpecKind ConstexprKind,SourceLocation EndLocation,Expr * TrailingRequiresClause)2175 CXXMethodDecl *CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
2176                                      SourceLocation StartLoc,
2177                                      const DeclarationNameInfo &NameInfo,
2178                                      QualType T, TypeSourceInfo *TInfo,
2179                                      StorageClass SC, bool isInline,
2180                                      ConstexprSpecKind ConstexprKind,
2181                                      SourceLocation EndLocation,
2182                                      Expr *TrailingRequiresClause) {
2183   return new (C, RD)
2184       CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC,
2185                     isInline, ConstexprKind, EndLocation,
2186                     TrailingRequiresClause);
2187 }
2188 
CreateDeserialized(ASTContext & C,unsigned ID)2189 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2190   return new (C, ID)
2191       CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
2192                     DeclarationNameInfo(), QualType(), nullptr, SC_None, false,
2193                     ConstexprSpecKind::Unspecified, SourceLocation(), nullptr);
2194 }
2195 
getDevirtualizedMethod(const Expr * Base,bool IsAppleKext)2196 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
2197                                                      bool IsAppleKext) {
2198   assert(isVirtual() && "this method is expected to be virtual");
2199 
2200   // When building with -fapple-kext, all calls must go through the vtable since
2201   // the kernel linker can do runtime patching of vtables.
2202   if (IsAppleKext)
2203     return nullptr;
2204 
2205   // If the member function is marked 'final', we know that it can't be
2206   // overridden and can therefore devirtualize it unless it's pure virtual.
2207   if (hasAttr<FinalAttr>())
2208     return isPure() ? nullptr : this;
2209 
2210   // If Base is unknown, we cannot devirtualize.
2211   if (!Base)
2212     return nullptr;
2213 
2214   // If the base expression (after skipping derived-to-base conversions) is a
2215   // class prvalue, then we can devirtualize.
2216   Base = Base->getBestDynamicClassTypeExpr();
2217   if (Base->isRValue() && Base->getType()->isRecordType())
2218     return this;
2219 
2220   // If we don't even know what we would call, we can't devirtualize.
2221   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2222   if (!BestDynamicDecl)
2223     return nullptr;
2224 
2225   // There may be a method corresponding to MD in a derived class.
2226   CXXMethodDecl *DevirtualizedMethod =
2227       getCorrespondingMethodInClass(BestDynamicDecl);
2228 
2229   // If there final overrider in the dynamic type is ambiguous, we can't
2230   // devirtualize this call.
2231   if (!DevirtualizedMethod)
2232     return nullptr;
2233 
2234   // If that method is pure virtual, we can't devirtualize. If this code is
2235   // reached, the result would be UB, not a direct call to the derived class
2236   // function, and we can't assume the derived class function is defined.
2237   if (DevirtualizedMethod->isPure())
2238     return nullptr;
2239 
2240   // If that method is marked final, we can devirtualize it.
2241   if (DevirtualizedMethod->hasAttr<FinalAttr>())
2242     return DevirtualizedMethod;
2243 
2244   // Similarly, if the class itself or its destructor is marked 'final',
2245   // the class can't be derived from and we can therefore devirtualize the
2246   // member function call.
2247   if (BestDynamicDecl->isEffectivelyFinal())
2248     return DevirtualizedMethod;
2249 
2250   if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
2251     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2252       if (VD->getType()->isRecordType())
2253         // This is a record decl. We know the type and can devirtualize it.
2254         return DevirtualizedMethod;
2255 
2256     return nullptr;
2257   }
2258 
2259   // We can devirtualize calls on an object accessed by a class member access
2260   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2261   // a derived class object constructed in the same location.
2262   if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
2263     const ValueDecl *VD = ME->getMemberDecl();
2264     return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
2265   }
2266 
2267   // Likewise for calls on an object accessed by a (non-reference) pointer to
2268   // member access.
2269   if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2270     if (BO->isPtrMemOp()) {
2271       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2272       if (MPT->getPointeeType()->isRecordType())
2273         return DevirtualizedMethod;
2274     }
2275   }
2276 
2277   // We can't devirtualize the call.
2278   return nullptr;
2279 }
2280 
isUsualDeallocationFunction(SmallVectorImpl<const FunctionDecl * > & PreventedBy) const2281 bool CXXMethodDecl::isUsualDeallocationFunction(
2282     SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
2283   assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
2284   if (getOverloadedOperator() != OO_Delete &&
2285       getOverloadedOperator() != OO_Array_Delete)
2286     return false;
2287 
2288   // C++ [basic.stc.dynamic.deallocation]p2:
2289   //   A template instance is never a usual deallocation function,
2290   //   regardless of its signature.
2291   if (getPrimaryTemplate())
2292     return false;
2293 
2294   // C++ [basic.stc.dynamic.deallocation]p2:
2295   //   If a class T has a member deallocation function named operator delete
2296   //   with exactly one parameter, then that function is a usual (non-placement)
2297   //   deallocation function. [...]
2298   if (getNumParams() == 1)
2299     return true;
2300   unsigned UsualParams = 1;
2301 
2302   // C++ P0722:
2303   //   A destroying operator delete is a usual deallocation function if
2304   //   removing the std::destroying_delete_t parameter and changing the
2305   //   first parameter type from T* to void* results in the signature of
2306   //   a usual deallocation function.
2307   if (isDestroyingOperatorDelete())
2308     ++UsualParams;
2309 
2310   // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2311   //   [...] If class T does not declare such an operator delete but does
2312   //   declare a member deallocation function named operator delete with
2313   //   exactly two parameters, the second of which has type std::size_t (18.1),
2314   //   then this function is a usual deallocation function.
2315   //
2316   // C++17 says a usual deallocation function is one with the signature
2317   //   (void* [, size_t] [, std::align_val_t] [, ...])
2318   // and all such functions are usual deallocation functions. It's not clear
2319   // that allowing varargs functions was intentional.
2320   ASTContext &Context = getASTContext();
2321   if (UsualParams < getNumParams() &&
2322       Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
2323                                      Context.getSizeType()))
2324     ++UsualParams;
2325 
2326   if (UsualParams < getNumParams() &&
2327       getParamDecl(UsualParams)->getType()->isAlignValT())
2328     ++UsualParams;
2329 
2330   if (UsualParams != getNumParams())
2331     return false;
2332 
2333   // In C++17 onwards, all potential usual deallocation functions are actual
2334   // usual deallocation functions. Honor this behavior when post-C++14
2335   // deallocation functions are offered as extensions too.
2336   // FIXME(EricWF): Destrying Delete should be a language option. How do we
2337   // handle when destroying delete is used prior to C++17?
2338   if (Context.getLangOpts().CPlusPlus17 ||
2339       Context.getLangOpts().AlignedAllocation ||
2340       isDestroyingOperatorDelete())
2341     return true;
2342 
2343   // This function is a usual deallocation function if there are no
2344   // single-parameter deallocation functions of the same kind.
2345   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
2346   bool Result = true;
2347   for (const auto *D : R) {
2348     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2349       if (FD->getNumParams() == 1) {
2350         PreventedBy.push_back(FD);
2351         Result = false;
2352       }
2353     }
2354   }
2355   return Result;
2356 }
2357 
isCopyAssignmentOperator() const2358 bool CXXMethodDecl::isCopyAssignmentOperator() const {
2359   // C++0x [class.copy]p17:
2360   //  A user-declared copy assignment operator X::operator= is a non-static
2361   //  non-template member function of class X with exactly one parameter of
2362   //  type X, X&, const X&, volatile X& or const volatile X&.
2363   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
2364       /*non-static*/ isStatic() ||
2365       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2366       getNumParams() != 1)
2367     return false;
2368 
2369   QualType ParamType = getParamDecl(0)->getType();
2370   if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
2371     ParamType = Ref->getPointeeType();
2372 
2373   ASTContext &Context = getASTContext();
2374   QualType ClassType
2375     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2376   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2377 }
2378 
isMoveAssignmentOperator() const2379 bool CXXMethodDecl::isMoveAssignmentOperator() const {
2380   // C++0x [class.copy]p19:
2381   //  A user-declared move assignment operator X::operator= is a non-static
2382   //  non-template member function of class X with exactly one parameter of type
2383   //  X&&, const X&&, volatile X&&, or const volatile X&&.
2384   if (getOverloadedOperator() != OO_Equal || isStatic() ||
2385       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2386       getNumParams() != 1)
2387     return false;
2388 
2389   QualType ParamType = getParamDecl(0)->getType();
2390   if (!isa<RValueReferenceType>(ParamType))
2391     return false;
2392   ParamType = ParamType->getPointeeType();
2393 
2394   ASTContext &Context = getASTContext();
2395   QualType ClassType
2396     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2397   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2398 }
2399 
addOverriddenMethod(const CXXMethodDecl * MD)2400 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
2401   assert(MD->isCanonicalDecl() && "Method is not canonical!");
2402   assert(!MD->getParent()->isDependentContext() &&
2403          "Can't add an overridden method to a class template!");
2404   assert(MD->isVirtual() && "Method is not virtual!");
2405 
2406   getASTContext().addOverriddenMethod(this, MD);
2407 }
2408 
begin_overridden_methods() const2409 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
2410   if (isa<CXXConstructorDecl>(this)) return nullptr;
2411   return getASTContext().overridden_methods_begin(this);
2412 }
2413 
end_overridden_methods() const2414 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
2415   if (isa<CXXConstructorDecl>(this)) return nullptr;
2416   return getASTContext().overridden_methods_end(this);
2417 }
2418 
size_overridden_methods() const2419 unsigned CXXMethodDecl::size_overridden_methods() const {
2420   if (isa<CXXConstructorDecl>(this)) return 0;
2421   return getASTContext().overridden_methods_size(this);
2422 }
2423 
2424 CXXMethodDecl::overridden_method_range
overridden_methods() const2425 CXXMethodDecl::overridden_methods() const {
2426   if (isa<CXXConstructorDecl>(this))
2427     return overridden_method_range(nullptr, nullptr);
2428   return getASTContext().overridden_methods(this);
2429 }
2430 
getThisObjectType(ASTContext & C,const FunctionProtoType * FPT,const CXXRecordDecl * Decl)2431 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
2432                                   const CXXRecordDecl *Decl) {
2433   QualType ClassTy = C.getTypeDeclType(Decl);
2434   return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
2435 }
2436 
getThisType(const FunctionProtoType * FPT,const CXXRecordDecl * Decl)2437 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
2438                                     const CXXRecordDecl *Decl) {
2439   ASTContext &C = Decl->getASTContext();
2440   QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
2441   return C.getPointerType(ObjectTy);
2442 }
2443 
getThisObjectType(const FunctionProtoType * FPT,const CXXRecordDecl * Decl)2444 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT,
2445                                           const CXXRecordDecl *Decl) {
2446   ASTContext &C = Decl->getASTContext();
2447   return ::getThisObjectType(C, FPT, Decl);
2448 }
2449 
getThisType() const2450 QualType CXXMethodDecl::getThisType() const {
2451   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2452   // If the member function is declared const, the type of this is const X*,
2453   // if the member function is declared volatile, the type of this is
2454   // volatile X*, and if the member function is declared const volatile,
2455   // the type of this is const volatile X*.
2456   assert(isInstance() && "No 'this' for static methods!");
2457   return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(),
2458                                     getParent());
2459 }
2460 
getThisObjectType() const2461 QualType CXXMethodDecl::getThisObjectType() const {
2462   // Ditto getThisType.
2463   assert(isInstance() && "No 'this' for static methods!");
2464   return CXXMethodDecl::getThisObjectType(
2465       getType()->castAs<FunctionProtoType>(), getParent());
2466 }
2467 
hasInlineBody() const2468 bool CXXMethodDecl::hasInlineBody() const {
2469   // If this function is a template instantiation, look at the template from
2470   // which it was instantiated.
2471   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
2472   if (!CheckFn)
2473     CheckFn = this;
2474 
2475   const FunctionDecl *fn;
2476   return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
2477          (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
2478 }
2479 
isLambdaStaticInvoker() const2480 bool CXXMethodDecl::isLambdaStaticInvoker() const {
2481   const CXXRecordDecl *P = getParent();
2482   return P->isLambda() && getDeclName().isIdentifier() &&
2483          getName() == getLambdaStaticInvokerName();
2484 }
2485 
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,bool IsVirtual,SourceLocation L,Expr * Init,SourceLocation R,SourceLocation EllipsisLoc)2486 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2487                                        TypeSourceInfo *TInfo, bool IsVirtual,
2488                                        SourceLocation L, Expr *Init,
2489                                        SourceLocation R,
2490                                        SourceLocation EllipsisLoc)
2491     : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
2492       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
2493       IsWritten(false), SourceOrder(0) {}
2494 
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)2495 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2496                                        FieldDecl *Member,
2497                                        SourceLocation MemberLoc,
2498                                        SourceLocation L, Expr *Init,
2499                                        SourceLocation R)
2500     : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
2501       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2502       IsWritten(false), SourceOrder(0) {}
2503 
CXXCtorInitializer(ASTContext & Context,IndirectFieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)2504 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2505                                        IndirectFieldDecl *Member,
2506                                        SourceLocation MemberLoc,
2507                                        SourceLocation L, Expr *Init,
2508                                        SourceLocation R)
2509     : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
2510       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2511       IsWritten(false), SourceOrder(0) {}
2512 
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,SourceLocation L,Expr * Init,SourceLocation R)2513 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2514                                        TypeSourceInfo *TInfo,
2515                                        SourceLocation L, Expr *Init,
2516                                        SourceLocation R)
2517     : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2518       IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2519 
getID(const ASTContext & Context) const2520 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
2521   return Context.getAllocator()
2522                 .identifyKnownAlignedObject<CXXCtorInitializer>(this);
2523 }
2524 
getBaseClassLoc() const2525 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2526   if (isBaseInitializer())
2527     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2528   else
2529     return {};
2530 }
2531 
getBaseClass() const2532 const Type *CXXCtorInitializer::getBaseClass() const {
2533   if (isBaseInitializer())
2534     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2535   else
2536     return nullptr;
2537 }
2538 
getSourceLocation() const2539 SourceLocation CXXCtorInitializer::getSourceLocation() const {
2540   if (isInClassMemberInitializer())
2541     return getAnyMember()->getLocation();
2542 
2543   if (isAnyMemberInitializer())
2544     return getMemberLocation();
2545 
2546   if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
2547     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
2548 
2549   return {};
2550 }
2551 
getSourceRange() const2552 SourceRange CXXCtorInitializer::getSourceRange() const {
2553   if (isInClassMemberInitializer()) {
2554     FieldDecl *D = getAnyMember();
2555     if (Expr *I = D->getInClassInitializer())
2556       return I->getSourceRange();
2557     return {};
2558   }
2559 
2560   return SourceRange(getSourceLocation(), getRParenLoc());
2561 }
2562 
CXXConstructorDecl(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,ExplicitSpecifier ES,bool isInline,bool isImplicitlyDeclared,ConstexprSpecKind ConstexprKind,InheritedConstructor Inherited,Expr * TrailingRequiresClause)2563 CXXConstructorDecl::CXXConstructorDecl(
2564     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2565     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2566     ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
2567     ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited,
2568     Expr *TrailingRequiresClause)
2569     : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2570                     SC_None, isInline, ConstexprKind, SourceLocation(),
2571                     TrailingRequiresClause) {
2572   setNumCtorInitializers(0);
2573   setInheritingConstructor(static_cast<bool>(Inherited));
2574   setImplicit(isImplicitlyDeclared);
2575   CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
2576   if (Inherited)
2577     *getTrailingObjects<InheritedConstructor>() = Inherited;
2578   setExplicitSpecifier(ES);
2579 }
2580 
anchor()2581 void CXXConstructorDecl::anchor() {}
2582 
CreateDeserialized(ASTContext & C,unsigned ID,uint64_t AllocKind)2583 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2584                                                            unsigned ID,
2585                                                            uint64_t AllocKind) {
2586   bool hasTraillingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
2587   bool isInheritingConstructor =
2588       static_cast<bool>(AllocKind & TAKInheritsConstructor);
2589   unsigned Extra =
2590       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2591           isInheritingConstructor, hasTraillingExplicit);
2592   auto *Result = new (C, ID, Extra) CXXConstructorDecl(
2593       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2594       ExplicitSpecifier(), false, false, ConstexprSpecKind::Unspecified,
2595       InheritedConstructor(), nullptr);
2596   Result->setInheritingConstructor(isInheritingConstructor);
2597   Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
2598       hasTraillingExplicit;
2599   Result->setExplicitSpecifier(ExplicitSpecifier());
2600   return Result;
2601 }
2602 
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,ExplicitSpecifier ES,bool isInline,bool isImplicitlyDeclared,ConstexprSpecKind ConstexprKind,InheritedConstructor Inherited,Expr * TrailingRequiresClause)2603 CXXConstructorDecl *CXXConstructorDecl::Create(
2604     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2605     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2606     ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
2607     ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited,
2608     Expr *TrailingRequiresClause) {
2609   assert(NameInfo.getName().getNameKind()
2610          == DeclarationName::CXXConstructorName &&
2611          "Name must refer to a constructor");
2612   unsigned Extra =
2613       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2614           Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
2615   return new (C, RD, Extra)
2616       CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, ES, isInline,
2617                          isImplicitlyDeclared, ConstexprKind, Inherited,
2618                          TrailingRequiresClause);
2619 }
2620 
init_begin() const2621 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2622   return CtorInitializers.get(getASTContext().getExternalSource());
2623 }
2624 
getTargetConstructor() const2625 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2626   assert(isDelegatingConstructor() && "Not a delegating constructor!");
2627   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2628   if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
2629     return Construct->getConstructor();
2630 
2631   return nullptr;
2632 }
2633 
isDefaultConstructor() const2634 bool CXXConstructorDecl::isDefaultConstructor() const {
2635   // C++ [class.default.ctor]p1:
2636   //   A default constructor for a class X is a constructor of class X for
2637   //   which each parameter that is not a function parameter pack has a default
2638   //   argument (including the case of a constructor with no parameters)
2639   return getMinRequiredArguments() == 0;
2640 }
2641 
2642 bool
isCopyConstructor(unsigned & TypeQuals) const2643 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2644   return isCopyOrMoveConstructor(TypeQuals) &&
2645          getParamDecl(0)->getType()->isLValueReferenceType();
2646 }
2647 
isMoveConstructor(unsigned & TypeQuals) const2648 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2649   return isCopyOrMoveConstructor(TypeQuals) &&
2650          getParamDecl(0)->getType()->isRValueReferenceType();
2651 }
2652 
2653 /// Determine whether this is a copy or move constructor.
isCopyOrMoveConstructor(unsigned & TypeQuals) const2654 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2655   // C++ [class.copy]p2:
2656   //   A non-template constructor for class X is a copy constructor
2657   //   if its first parameter is of type X&, const X&, volatile X& or
2658   //   const volatile X&, and either there are no other parameters
2659   //   or else all other parameters have default arguments (8.3.6).
2660   // C++0x [class.copy]p3:
2661   //   A non-template constructor for class X is a move constructor if its
2662   //   first parameter is of type X&&, const X&&, volatile X&&, or
2663   //   const volatile X&&, and either there are no other parameters or else
2664   //   all other parameters have default arguments.
2665   if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr ||
2666       getDescribedFunctionTemplate() != nullptr)
2667     return false;
2668 
2669   const ParmVarDecl *Param = getParamDecl(0);
2670 
2671   // Do we have a reference type?
2672   const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
2673   if (!ParamRefType)
2674     return false;
2675 
2676   // Is it a reference to our class type?
2677   ASTContext &Context = getASTContext();
2678 
2679   CanQualType PointeeType
2680     = Context.getCanonicalType(ParamRefType->getPointeeType());
2681   CanQualType ClassTy
2682     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2683   if (PointeeType.getUnqualifiedType() != ClassTy)
2684     return false;
2685 
2686   // FIXME: other qualifiers?
2687 
2688   // We have a copy or move constructor.
2689   TypeQuals = PointeeType.getCVRQualifiers();
2690   return true;
2691 }
2692 
isConvertingConstructor(bool AllowExplicit) const2693 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2694   // C++ [class.conv.ctor]p1:
2695   //   A constructor declared without the function-specifier explicit
2696   //   that can be called with a single parameter specifies a
2697   //   conversion from the type of its first parameter to the type of
2698   //   its class. Such a constructor is called a converting
2699   //   constructor.
2700   if (isExplicit() && !AllowExplicit)
2701     return false;
2702 
2703   // FIXME: This has nothing to do with the definition of converting
2704   // constructor, but is convenient for how we use this function in overload
2705   // resolution.
2706   return getNumParams() == 0
2707              ? getType()->castAs<FunctionProtoType>()->isVariadic()
2708              : getMinRequiredArguments() <= 1;
2709 }
2710 
isSpecializationCopyingObject() const2711 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2712   if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr)
2713     return false;
2714 
2715   const ParmVarDecl *Param = getParamDecl(0);
2716 
2717   ASTContext &Context = getASTContext();
2718   CanQualType ParamType = Context.getCanonicalType(Param->getType());
2719 
2720   // Is it the same as our class type?
2721   CanQualType ClassTy
2722     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2723   if (ParamType.getUnqualifiedType() != ClassTy)
2724     return false;
2725 
2726   return true;
2727 }
2728 
anchor()2729 void CXXDestructorDecl::anchor() {}
2730 
2731 CXXDestructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2732 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2733   return new (C, ID) CXXDestructorDecl(
2734       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2735       false, false, ConstexprSpecKind::Unspecified, nullptr);
2736 }
2737 
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isImplicitlyDeclared,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)2738 CXXDestructorDecl *CXXDestructorDecl::Create(
2739     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2740     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2741     bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2742     Expr *TrailingRequiresClause) {
2743   assert(NameInfo.getName().getNameKind()
2744          == DeclarationName::CXXDestructorName &&
2745          "Name must refer to a destructor");
2746   return new (C, RD)
2747       CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline,
2748                         isImplicitlyDeclared, ConstexprKind,
2749                         TrailingRequiresClause);
2750 }
2751 
setOperatorDelete(FunctionDecl * OD,Expr * ThisArg)2752 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2753   auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2754   if (OD && !First->OperatorDelete) {
2755     First->OperatorDelete = OD;
2756     First->OperatorDeleteThisArg = ThisArg;
2757     if (auto *L = getASTMutationListener())
2758       L->ResolvedOperatorDelete(First, OD, ThisArg);
2759   }
2760 }
2761 
anchor()2762 void CXXConversionDecl::anchor() {}
2763 
2764 CXXConversionDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2765 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2766   return new (C, ID) CXXConversionDecl(
2767       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2768       false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
2769       SourceLocation(), nullptr);
2770 }
2771 
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,ExplicitSpecifier ES,ConstexprSpecKind ConstexprKind,SourceLocation EndLocation,Expr * TrailingRequiresClause)2772 CXXConversionDecl *CXXConversionDecl::Create(
2773     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2774     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2775     bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
2776     SourceLocation EndLocation, Expr *TrailingRequiresClause) {
2777   assert(NameInfo.getName().getNameKind()
2778          == DeclarationName::CXXConversionFunctionName &&
2779          "Name must refer to a conversion function");
2780   return new (C, RD)
2781       CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, ES,
2782                         ConstexprKind, EndLocation, TrailingRequiresClause);
2783 }
2784 
isLambdaToBlockPointerConversion() const2785 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2786   return isImplicit() && getParent()->isLambda() &&
2787          getConversionType()->isBlockPointerType();
2788 }
2789 
LinkageSpecDecl(DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs lang,bool HasBraces)2790 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2791                                  SourceLocation LangLoc, LanguageIDs lang,
2792                                  bool HasBraces)
2793     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2794       ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
2795   setLanguage(lang);
2796   LinkageSpecDeclBits.HasBraces = HasBraces;
2797 }
2798 
anchor()2799 void LinkageSpecDecl::anchor() {}
2800 
Create(ASTContext & C,DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs Lang,bool HasBraces)2801 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
2802                                          DeclContext *DC,
2803                                          SourceLocation ExternLoc,
2804                                          SourceLocation LangLoc,
2805                                          LanguageIDs Lang,
2806                                          bool HasBraces) {
2807   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2808 }
2809 
CreateDeserialized(ASTContext & C,unsigned ID)2810 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2811                                                      unsigned ID) {
2812   return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
2813                                      SourceLocation(), lang_c, false);
2814 }
2815 
anchor()2816 void UsingDirectiveDecl::anchor() {}
2817 
Create(ASTContext & C,DeclContext * DC,SourceLocation L,SourceLocation NamespaceLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Used,DeclContext * CommonAncestor)2818 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2819                                                SourceLocation L,
2820                                                SourceLocation NamespaceLoc,
2821                                            NestedNameSpecifierLoc QualifierLoc,
2822                                                SourceLocation IdentLoc,
2823                                                NamedDecl *Used,
2824                                                DeclContext *CommonAncestor) {
2825   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2826     Used = NS->getOriginalNamespace();
2827   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2828                                         IdentLoc, Used, CommonAncestor);
2829 }
2830 
CreateDeserialized(ASTContext & C,unsigned ID)2831 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2832                                                            unsigned ID) {
2833   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2834                                         SourceLocation(),
2835                                         NestedNameSpecifierLoc(),
2836                                         SourceLocation(), nullptr, nullptr);
2837 }
2838 
getNominatedNamespace()2839 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2840   if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2841     return NA->getNamespace();
2842   return cast_or_null<NamespaceDecl>(NominatedNamespace);
2843 }
2844 
NamespaceDecl(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)2845 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2846                              SourceLocation StartLoc, SourceLocation IdLoc,
2847                              IdentifierInfo *Id, NamespaceDecl *PrevDecl)
2848     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2849       redeclarable_base(C), LocStart(StartLoc),
2850       AnonOrFirstNamespaceAndInline(nullptr, Inline) {
2851   setPreviousDecl(PrevDecl);
2852 
2853   if (PrevDecl)
2854     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
2855 }
2856 
Create(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)2857 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2858                                      bool Inline, SourceLocation StartLoc,
2859                                      SourceLocation IdLoc, IdentifierInfo *Id,
2860                                      NamespaceDecl *PrevDecl) {
2861   return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
2862                                    PrevDecl);
2863 }
2864 
CreateDeserialized(ASTContext & C,unsigned ID)2865 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2866   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2867                                    SourceLocation(), nullptr, nullptr);
2868 }
2869 
getOriginalNamespace()2870 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2871   if (isFirstDecl())
2872     return this;
2873 
2874   return AnonOrFirstNamespaceAndInline.getPointer();
2875 }
2876 
getOriginalNamespace() const2877 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2878   if (isFirstDecl())
2879     return this;
2880 
2881   return AnonOrFirstNamespaceAndInline.getPointer();
2882 }
2883 
isOriginalNamespace() const2884 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2885 
getNextRedeclarationImpl()2886 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2887   return getNextRedeclaration();
2888 }
2889 
getPreviousDeclImpl()2890 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2891   return getPreviousDecl();
2892 }
2893 
getMostRecentDeclImpl()2894 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2895   return getMostRecentDecl();
2896 }
2897 
anchor()2898 void NamespaceAliasDecl::anchor() {}
2899 
getNextRedeclarationImpl()2900 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2901   return getNextRedeclaration();
2902 }
2903 
getPreviousDeclImpl()2904 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2905   return getPreviousDecl();
2906 }
2907 
getMostRecentDeclImpl()2908 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2909   return getMostRecentDecl();
2910 }
2911 
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)2912 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2913                                                SourceLocation UsingLoc,
2914                                                SourceLocation AliasLoc,
2915                                                IdentifierInfo *Alias,
2916                                            NestedNameSpecifierLoc QualifierLoc,
2917                                                SourceLocation IdentLoc,
2918                                                NamedDecl *Namespace) {
2919   // FIXME: Preserve the aliased namespace as written.
2920   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2921     Namespace = NS->getOriginalNamespace();
2922   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2923                                         QualifierLoc, IdentLoc, Namespace);
2924 }
2925 
2926 NamespaceAliasDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2927 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2928   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2929                                         SourceLocation(), nullptr,
2930                                         NestedNameSpecifierLoc(),
2931                                         SourceLocation(), nullptr);
2932 }
2933 
anchor()2934 void LifetimeExtendedTemporaryDecl::anchor() {}
2935 
2936 /// Retrieve the storage duration for the materialized temporary.
getStorageDuration() const2937 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const {
2938   const ValueDecl *ExtendingDecl = getExtendingDecl();
2939   if (!ExtendingDecl)
2940     return SD_FullExpression;
2941   // FIXME: This is not necessarily correct for a temporary materialized
2942   // within a default initializer.
2943   if (isa<FieldDecl>(ExtendingDecl))
2944     return SD_Automatic;
2945   // FIXME: This only works because storage class specifiers are not allowed
2946   // on decomposition declarations.
2947   if (isa<BindingDecl>(ExtendingDecl))
2948     return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic
2949                                                                  : SD_Static;
2950   return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
2951 }
2952 
getOrCreateValue(bool MayCreate) const2953 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const {
2954   assert(getStorageDuration() == SD_Static &&
2955          "don't need to cache the computed value for this temporary");
2956   if (MayCreate && !Value) {
2957     Value = (new (getASTContext()) APValue);
2958     getASTContext().addDestruction(Value);
2959   }
2960   assert(Value && "may not be null");
2961   return Value;
2962 }
2963 
anchor()2964 void UsingShadowDecl::anchor() {}
2965 
UsingShadowDecl(Kind K,ASTContext & C,DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target)2966 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
2967                                  SourceLocation Loc, UsingDecl *Using,
2968                                  NamedDecl *Target)
2969     : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()),
2970       redeclarable_base(C), UsingOrNextShadow(cast<NamedDecl>(Using)) {
2971   if (Target)
2972     setTargetDecl(Target);
2973   setImplicit();
2974 }
2975 
UsingShadowDecl(Kind K,ASTContext & C,EmptyShell Empty)2976 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
2977     : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
2978       redeclarable_base(C) {}
2979 
2980 UsingShadowDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2981 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2982   return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
2983 }
2984 
getUsingDecl() const2985 UsingDecl *UsingShadowDecl::getUsingDecl() const {
2986   const UsingShadowDecl *Shadow = this;
2987   while (const auto *NextShadow =
2988              dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2989     Shadow = NextShadow;
2990   return cast<UsingDecl>(Shadow->UsingOrNextShadow);
2991 }
2992 
anchor()2993 void ConstructorUsingShadowDecl::anchor() {}
2994 
2995 ConstructorUsingShadowDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target,bool IsVirtual)2996 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
2997                                    SourceLocation Loc, UsingDecl *Using,
2998                                    NamedDecl *Target, bool IsVirtual) {
2999   return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
3000                                                 IsVirtual);
3001 }
3002 
3003 ConstructorUsingShadowDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3004 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3005   return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
3006 }
3007 
getNominatedBaseClass() const3008 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
3009   return getUsingDecl()->getQualifier()->getAsRecordDecl();
3010 }
3011 
anchor()3012 void UsingDecl::anchor() {}
3013 
addShadowDecl(UsingShadowDecl * S)3014 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
3015   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
3016          "declaration already in set");
3017   assert(S->getUsingDecl() == this);
3018 
3019   if (FirstUsingShadow.getPointer())
3020     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
3021   FirstUsingShadow.setPointer(S);
3022 }
3023 
removeShadowDecl(UsingShadowDecl * S)3024 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
3025   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
3026          "declaration not in set");
3027   assert(S->getUsingDecl() == this);
3028 
3029   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
3030 
3031   if (FirstUsingShadow.getPointer() == S) {
3032     FirstUsingShadow.setPointer(
3033       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
3034     S->UsingOrNextShadow = this;
3035     return;
3036   }
3037 
3038   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
3039   while (Prev->UsingOrNextShadow != S)
3040     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
3041   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
3042   S->UsingOrNextShadow = this;
3043 }
3044 
Create(ASTContext & C,DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool HasTypename)3045 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
3046                              NestedNameSpecifierLoc QualifierLoc,
3047                              const DeclarationNameInfo &NameInfo,
3048                              bool HasTypename) {
3049   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
3050 }
3051 
CreateDeserialized(ASTContext & C,unsigned ID)3052 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3053   return new (C, ID) UsingDecl(nullptr, SourceLocation(),
3054                                NestedNameSpecifierLoc(), DeclarationNameInfo(),
3055                                false);
3056 }
3057 
getSourceRange() const3058 SourceRange UsingDecl::getSourceRange() const {
3059   SourceLocation Begin = isAccessDeclaration()
3060     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3061   return SourceRange(Begin, getNameInfo().getEndLoc());
3062 }
3063 
anchor()3064 void UsingPackDecl::anchor() {}
3065 
Create(ASTContext & C,DeclContext * DC,NamedDecl * InstantiatedFrom,ArrayRef<NamedDecl * > UsingDecls)3066 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
3067                                      NamedDecl *InstantiatedFrom,
3068                                      ArrayRef<NamedDecl *> UsingDecls) {
3069   size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
3070   return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
3071 }
3072 
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumExpansions)3073 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3074                                                  unsigned NumExpansions) {
3075   size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
3076   auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None);
3077   Result->NumExpansions = NumExpansions;
3078   auto *Trail = Result->getTrailingObjects<NamedDecl *>();
3079   for (unsigned I = 0; I != NumExpansions; ++I)
3080     new (Trail + I) NamedDecl*(nullptr);
3081   return Result;
3082 }
3083 
anchor()3084 void UnresolvedUsingValueDecl::anchor() {}
3085 
3086 UnresolvedUsingValueDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,SourceLocation EllipsisLoc)3087 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
3088                                  SourceLocation UsingLoc,
3089                                  NestedNameSpecifierLoc QualifierLoc,
3090                                  const DeclarationNameInfo &NameInfo,
3091                                  SourceLocation EllipsisLoc) {
3092   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
3093                                               QualifierLoc, NameInfo,
3094                                               EllipsisLoc);
3095 }
3096 
3097 UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3098 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3099   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
3100                                               SourceLocation(),
3101                                               NestedNameSpecifierLoc(),
3102                                               DeclarationNameInfo(),
3103                                               SourceLocation());
3104 }
3105 
getSourceRange() const3106 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
3107   SourceLocation Begin = isAccessDeclaration()
3108     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3109   return SourceRange(Begin, getNameInfo().getEndLoc());
3110 }
3111 
anchor()3112 void UnresolvedUsingTypenameDecl::anchor() {}
3113 
3114 UnresolvedUsingTypenameDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,DeclarationName TargetName,SourceLocation EllipsisLoc)3115 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
3116                                     SourceLocation UsingLoc,
3117                                     SourceLocation TypenameLoc,
3118                                     NestedNameSpecifierLoc QualifierLoc,
3119                                     SourceLocation TargetNameLoc,
3120                                     DeclarationName TargetName,
3121                                     SourceLocation EllipsisLoc) {
3122   return new (C, DC) UnresolvedUsingTypenameDecl(
3123       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
3124       TargetName.getAsIdentifierInfo(), EllipsisLoc);
3125 }
3126 
3127 UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3128 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3129   return new (C, ID) UnresolvedUsingTypenameDecl(
3130       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
3131       SourceLocation(), nullptr, SourceLocation());
3132 }
3133 
anchor()3134 void StaticAssertDecl::anchor() {}
3135 
Create(ASTContext & C,DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc,bool Failed)3136 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
3137                                            SourceLocation StaticAssertLoc,
3138                                            Expr *AssertExpr,
3139                                            StringLiteral *Message,
3140                                            SourceLocation RParenLoc,
3141                                            bool Failed) {
3142   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
3143                                       RParenLoc, Failed);
3144 }
3145 
CreateDeserialized(ASTContext & C,unsigned ID)3146 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
3147                                                        unsigned ID) {
3148   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
3149                                       nullptr, SourceLocation(), false);
3150 }
3151 
anchor()3152 void BindingDecl::anchor() {}
3153 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id)3154 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
3155                                  SourceLocation IdLoc, IdentifierInfo *Id) {
3156   return new (C, DC) BindingDecl(DC, IdLoc, Id);
3157 }
3158 
CreateDeserialized(ASTContext & C,unsigned ID)3159 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3160   return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
3161 }
3162 
getDecomposedDecl() const3163 ValueDecl *BindingDecl::getDecomposedDecl() const {
3164   ExternalASTSource *Source =
3165       Decomp.isOffset() ? getASTContext().getExternalSource() : nullptr;
3166   return cast_or_null<ValueDecl>(Decomp.get(Source));
3167 }
3168 
getHoldingVar() const3169 VarDecl *BindingDecl::getHoldingVar() const {
3170   Expr *B = getBinding();
3171   if (!B)
3172     return nullptr;
3173   auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
3174   if (!DRE)
3175     return nullptr;
3176 
3177   auto *VD = cast<VarDecl>(DRE->getDecl());
3178   assert(VD->isImplicit() && "holding var for binding decl not implicit");
3179   return VD;
3180 }
3181 
anchor()3182 void DecompositionDecl::anchor() {}
3183 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation LSquareLoc,QualType T,TypeSourceInfo * TInfo,StorageClass SC,ArrayRef<BindingDecl * > Bindings)3184 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
3185                                              SourceLocation StartLoc,
3186                                              SourceLocation LSquareLoc,
3187                                              QualType T, TypeSourceInfo *TInfo,
3188                                              StorageClass SC,
3189                                              ArrayRef<BindingDecl *> Bindings) {
3190   size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
3191   return new (C, DC, Extra)
3192       DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
3193 }
3194 
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumBindings)3195 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
3196                                                          unsigned ID,
3197                                                          unsigned NumBindings) {
3198   size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
3199   auto *Result = new (C, ID, Extra)
3200       DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
3201                         QualType(), nullptr, StorageClass(), None);
3202   // Set up and clean out the bindings array.
3203   Result->NumBindings = NumBindings;
3204   auto *Trail = Result->getTrailingObjects<BindingDecl *>();
3205   for (unsigned I = 0; I != NumBindings; ++I)
3206     new (Trail + I) BindingDecl*(nullptr);
3207   return Result;
3208 }
3209 
printName(llvm::raw_ostream & os) const3210 void DecompositionDecl::printName(llvm::raw_ostream &os) const {
3211   os << '[';
3212   bool Comma = false;
3213   for (const auto *B : bindings()) {
3214     if (Comma)
3215       os << ", ";
3216     B->printName(os);
3217     Comma = true;
3218   }
3219   os << ']';
3220 }
3221 
anchor()3222 void MSPropertyDecl::anchor() {}
3223 
Create(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL,IdentifierInfo * Getter,IdentifierInfo * Setter)3224 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
3225                                        SourceLocation L, DeclarationName N,
3226                                        QualType T, TypeSourceInfo *TInfo,
3227                                        SourceLocation StartL,
3228                                        IdentifierInfo *Getter,
3229                                        IdentifierInfo *Setter) {
3230   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
3231 }
3232 
CreateDeserialized(ASTContext & C,unsigned ID)3233 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3234                                                    unsigned ID) {
3235   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
3236                                     DeclarationName(), QualType(), nullptr,
3237                                     SourceLocation(), nullptr, nullptr);
3238 }
3239 
anchor()3240 void MSGuidDecl::anchor() {}
3241 
MSGuidDecl(DeclContext * DC,QualType T,Parts P)3242 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P)
3243     : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T),
3244       PartVal(P), APVal() {}
3245 
Create(const ASTContext & C,QualType T,Parts P)3246 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) {
3247   DeclContext *DC = C.getTranslationUnitDecl();
3248   return new (C, DC) MSGuidDecl(DC, T, P);
3249 }
3250 
CreateDeserialized(ASTContext & C,unsigned ID)3251 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3252   return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts());
3253 }
3254 
printName(llvm::raw_ostream & OS) const3255 void MSGuidDecl::printName(llvm::raw_ostream &OS) const {
3256   OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-",
3257                      PartVal.Part1, PartVal.Part2, PartVal.Part3);
3258   unsigned I = 0;
3259   for (uint8_t Byte : PartVal.Part4And5) {
3260     OS << llvm::format("%02" PRIx8, Byte);
3261     if (++I == 2)
3262       OS << '-';
3263   }
3264   OS << '}';
3265 }
3266 
3267 /// Determine if T is a valid 'struct _GUID' of the shape that we expect.
isValidStructGUID(ASTContext & Ctx,QualType T)3268 static bool isValidStructGUID(ASTContext &Ctx, QualType T) {
3269   // FIXME: We only need to check this once, not once each time we compute a
3270   // GUID APValue.
3271   using MatcherRef = llvm::function_ref<bool(QualType)>;
3272 
3273   auto IsInt = [&Ctx](unsigned N) {
3274     return [&Ctx, N](QualType T) {
3275       return T->isUnsignedIntegerOrEnumerationType() &&
3276              Ctx.getIntWidth(T) == N;
3277     };
3278   };
3279 
3280   auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) {
3281     return [&Ctx, Elem, N](QualType T) {
3282       const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T);
3283       return CAT && CAT->getSize() == N && Elem(CAT->getElementType());
3284     };
3285   };
3286 
3287   auto IsStruct = [](std::initializer_list<MatcherRef> Fields) {
3288     return [Fields](QualType T) {
3289       const RecordDecl *RD = T->getAsRecordDecl();
3290       if (!RD || RD->isUnion())
3291         return false;
3292       RD = RD->getDefinition();
3293       if (!RD)
3294         return false;
3295       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
3296         if (CXXRD->getNumBases())
3297           return false;
3298       auto MatcherIt = Fields.begin();
3299       for (const FieldDecl *FD : RD->fields()) {
3300         if (FD->isUnnamedBitfield()) continue;
3301         if (FD->isBitField() || MatcherIt == Fields.end() ||
3302             !(*MatcherIt)(FD->getType()))
3303           return false;
3304         ++MatcherIt;
3305       }
3306       return MatcherIt == Fields.end();
3307     };
3308   };
3309 
3310   // We expect an {i32, i16, i16, [8 x i8]}.
3311   return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T);
3312 }
3313 
getAsAPValue() const3314 APValue &MSGuidDecl::getAsAPValue() const {
3315   if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) {
3316     using llvm::APInt;
3317     using llvm::APSInt;
3318     APVal = APValue(APValue::UninitStruct(), 0, 4);
3319     APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true));
3320     APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true));
3321     APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true));
3322     APValue &Arr = APVal.getStructField(3) =
3323         APValue(APValue::UninitArray(), 8, 8);
3324     for (unsigned I = 0; I != 8; ++I) {
3325       Arr.getArrayInitializedElt(I) =
3326           APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true));
3327     }
3328     // Register this APValue to be destroyed if necessary. (Note that the
3329     // MSGuidDecl destructor is never run.)
3330     getASTContext().addDestruction(&APVal);
3331   }
3332 
3333   return APVal;
3334 }
3335 
getAccessName(AccessSpecifier AS)3336 static const char *getAccessName(AccessSpecifier AS) {
3337   switch (AS) {
3338     case AS_none:
3339       llvm_unreachable("Invalid access specifier!");
3340     case AS_public:
3341       return "public";
3342     case AS_private:
3343       return "private";
3344     case AS_protected:
3345       return "protected";
3346   }
3347   llvm_unreachable("Invalid access specifier!");
3348 }
3349 
operator <<(const StreamingDiagnostic & DB,AccessSpecifier AS)3350 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB,
3351                                              AccessSpecifier AS) {
3352   return DB << getAccessName(AS);
3353 }
3354