1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #pragma once
18
19 #include <android-base/unique_fd.h>
20 #include <cutils/ashmem.h>
21 #include <fmq/EventFlag.h>
22 #include <sys/mman.h>
23 #include <sys/user.h>
24 #include <utils/Log.h>
25 #include <utils/SystemClock.h>
26 #include <atomic>
27 #include <new>
28
29 using android::hardware::kSynchronizedReadWrite;
30 using android::hardware::kUnsynchronizedWrite;
31 using android::hardware::MQFlavor;
32
33 namespace android {
34
35 template <template <typename, MQFlavor> class MQDescriptorType, typename T, MQFlavor flavor>
36 struct MessageQueueBase {
37 typedef MQDescriptorType<T, flavor> Descriptor;
38
39 /**
40 * @param Desc MQDescriptor describing the FMQ.
41 * @param resetPointers bool indicating whether the read/write pointers
42 * should be reset or not.
43 */
44 MessageQueueBase(const Descriptor& Desc, bool resetPointers = true);
45
46 ~MessageQueueBase();
47
48 /**
49 * This constructor uses Ashmem shared memory to create an FMQ
50 * that can contain a maximum of 'numElementsInQueue' elements of type T.
51 *
52 * @param numElementsInQueue Capacity of the MessageQueue in terms of T.
53 * @param configureEventFlagWord Boolean that specifies if memory should
54 * also be allocated and mapped for an EventFlag word.
55 * @param bufferFd User-supplied file descriptor to map the memory for the ringbuffer
56 * By default, bufferFd=-1 means library will allocate ashmem region for ringbuffer.
57 * MessageQueue takes ownership of the file descriptor.
58 * @param bufferSize size of buffer in bytes that bufferFd represents. This
59 * size must be larger than or equal to (numElementsInQueue * sizeof(T)).
60 * Otherwise, operations will cause out-of-bounds memory access.
61 */
62
63 MessageQueueBase(size_t numElementsInQueue, bool configureEventFlagWord,
64 android::base::unique_fd bufferFd, size_t bufferSize);
65
66 MessageQueueBase(size_t numElementsInQueue, bool configureEventFlagWord = false)
67 : MessageQueueBase(numElementsInQueue, configureEventFlagWord, android::base::unique_fd(),
68 0) {}
69
70 /**
71 * @return Number of items of type T that can be written into the FMQ
72 * without a read.
73 */
74 size_t availableToWrite() const;
75
76 /**
77 * @return Number of items of type T that are waiting to be read from the
78 * FMQ.
79 */
80 size_t availableToRead() const;
81
82 /**
83 * Returns the size of type T in bytes.
84 *
85 * @param Size of T.
86 */
87 size_t getQuantumSize() const;
88
89 /**
90 * Returns the size of the FMQ in terms of the size of type T.
91 *
92 * @return Number of items of type T that will fit in the FMQ.
93 */
94 size_t getQuantumCount() const;
95
96 /**
97 * @return Whether the FMQ is configured correctly.
98 */
99 bool isValid() const;
100
101 /**
102 * Non-blocking write to FMQ.
103 *
104 * @param data Pointer to the object of type T to be written into the FMQ.
105 *
106 * @return Whether the write was successful.
107 */
108 bool write(const T* data);
109
110 /**
111 * Non-blocking read from FMQ.
112 *
113 * @param data Pointer to the memory where the object read from the FMQ is
114 * copied to.
115 *
116 * @return Whether the read was successful.
117 */
118 bool read(T* data);
119
120 /**
121 * Write some data into the FMQ without blocking.
122 *
123 * @param data Pointer to the array of items of type T.
124 * @param count Number of items in array.
125 *
126 * @return Whether the write was successful.
127 */
128 bool write(const T* data, size_t count);
129
130 /**
131 * Perform a blocking write of 'count' items into the FMQ using EventFlags.
132 * Does not support partial writes.
133 *
134 * If 'evFlag' is nullptr, it is checked whether there is an EventFlag object
135 * associated with the FMQ and it is used in that case.
136 *
137 * The application code must ensure that 'evFlag' used by the
138 * reader(s)/writer is based upon the same EventFlag word.
139 *
140 * The method will return false without blocking if any of the following
141 * conditions are true:
142 * - If 'evFlag' is nullptr and the FMQ does not own an EventFlag object.
143 * - If the 'readNotification' bit mask is zero.
144 * - If 'count' is greater than the FMQ size.
145 *
146 * If the there is insufficient space available to write into it, the
147 * EventFlag bit mask 'readNotification' is is waited upon.
148 *
149 * This method should only be used with a MessageQueue of the flavor
150 * 'kSynchronizedReadWrite'.
151 *
152 * Upon a successful write, wake is called on 'writeNotification' (if
153 * non-zero).
154 *
155 * @param data Pointer to the array of items of type T.
156 * @param count Number of items in array.
157 * @param readNotification The EventFlag bit mask to wait on if there is not
158 * enough space in FMQ to write 'count' items.
159 * @param writeNotification The EventFlag bit mask to call wake on
160 * a successful write. No wake is called if 'writeNotification' is zero.
161 * @param timeOutNanos Number of nanoseconds after which the blocking
162 * write attempt is aborted.
163 * @param evFlag The EventFlag object to be used for blocking. If nullptr,
164 * it is checked whether the FMQ owns an EventFlag object and that is used
165 * for blocking instead.
166 *
167 * @return Whether the write was successful.
168 */
169 bool writeBlocking(const T* data, size_t count, uint32_t readNotification,
170 uint32_t writeNotification, int64_t timeOutNanos = 0,
171 android::hardware::EventFlag* evFlag = nullptr);
172
173 bool writeBlocking(const T* data, size_t count, int64_t timeOutNanos = 0);
174
175 /**
176 * Read some data from the FMQ without blocking.
177 *
178 * @param data Pointer to the array to which read data is to be written.
179 * @param count Number of items to be read.
180 *
181 * @return Whether the read was successful.
182 */
183 bool read(T* data, size_t count);
184
185 /**
186 * Perform a blocking read operation of 'count' items from the FMQ. Does not
187 * perform a partial read.
188 *
189 * If 'evFlag' is nullptr, it is checked whether there is an EventFlag object
190 * associated with the FMQ and it is used in that case.
191 *
192 * The application code must ensure that 'evFlag' used by the
193 * reader(s)/writer is based upon the same EventFlag word.
194 *
195 * The method will return false without blocking if any of the following
196 * conditions are true:
197 * -If 'evFlag' is nullptr and the FMQ does not own an EventFlag object.
198 * -If the 'writeNotification' bit mask is zero.
199 * -If 'count' is greater than the FMQ size.
200 *
201 * This method should only be used with a MessageQueue of the flavor
202 * 'kSynchronizedReadWrite'.
203
204 * If FMQ does not contain 'count' items, the eventFlag bit mask
205 * 'writeNotification' is waited upon. Upon a successful read from the FMQ,
206 * wake is called on 'readNotification' (if non-zero).
207 *
208 * @param data Pointer to the array to which read data is to be written.
209 * @param count Number of items to be read.
210 * @param readNotification The EventFlag bit mask to call wake on after
211 * a successful read. No wake is called if 'readNotification' is zero.
212 * @param writeNotification The EventFlag bit mask to call a wait on
213 * if there is insufficient data in the FMQ to be read.
214 * @param timeOutNanos Number of nanoseconds after which the blocking
215 * read attempt is aborted.
216 * @param evFlag The EventFlag object to be used for blocking.
217 *
218 * @return Whether the read was successful.
219 */
220 bool readBlocking(T* data, size_t count, uint32_t readNotification, uint32_t writeNotification,
221 int64_t timeOutNanos = 0, android::hardware::EventFlag* evFlag = nullptr);
222
223 bool readBlocking(T* data, size_t count, int64_t timeOutNanos = 0);
224
225 /**
226 * Get a pointer to the MQDescriptor object that describes this FMQ.
227 *
228 * @return Pointer to the MQDescriptor associated with the FMQ.
229 */
getDescMessageQueueBase230 const Descriptor* getDesc() const { return mDesc.get(); }
231
232 /**
233 * Get a pointer to the EventFlag word if there is one associated with this FMQ.
234 *
235 * @return Pointer to an EventFlag word, will return nullptr if not
236 * configured. This method does not transfer ownership. The EventFlag
237 * word will be unmapped by the MessageQueue destructor.
238 */
getEventFlagWordMessageQueueBase239 std::atomic<uint32_t>* getEventFlagWord() const { return mEvFlagWord; }
240
241 /**
242 * Describes a memory region in the FMQ.
243 */
244 struct MemRegion {
MemRegionMessageQueueBase::MemRegion245 MemRegion() : MemRegion(nullptr, 0) {}
246
MemRegionMessageQueueBase::MemRegion247 MemRegion(T* base, size_t size) : address(base), length(size) {}
248
249 MemRegion& operator=(const MemRegion& other) {
250 address = other.address;
251 length = other.length;
252 return *this;
253 }
254
255 /**
256 * Gets a pointer to the base address of the MemRegion.
257 */
getAddressMessageQueueBase::MemRegion258 inline T* getAddress() const { return address; }
259
260 /**
261 * Gets the length of the MemRegion. This would equal to the number
262 * of items of type T that can be read from/written into the MemRegion.
263 */
getLengthMessageQueueBase::MemRegion264 inline size_t getLength() const { return length; }
265
266 /**
267 * Gets the length of the MemRegion in bytes.
268 */
getLengthInBytesMessageQueueBase::MemRegion269 inline size_t getLengthInBytes() const { return length * sizeof(T); }
270
271 private:
272 /* Base address */
273 T* address;
274
275 /*
276 * Number of items of type T that can be written to/read from the base
277 * address.
278 */
279 size_t length;
280 };
281
282 /**
283 * Describes the memory regions to be used for a read or write.
284 * The struct contains two MemRegion objects since the FMQ is a ring
285 * buffer and a read or write operation can wrap around. A single message
286 * of type T will never be broken between the two MemRegions.
287 */
288 struct MemTransaction {
MemTransactionMessageQueueBase::MemTransaction289 MemTransaction() : MemTransaction(MemRegion(), MemRegion()) {}
290
MemTransactionMessageQueueBase::MemTransaction291 MemTransaction(const MemRegion& regionFirst, const MemRegion& regionSecond)
292 : first(regionFirst), second(regionSecond) {}
293
294 MemTransaction& operator=(const MemTransaction& other) {
295 first = other.first;
296 second = other.second;
297 return *this;
298 }
299
300 /**
301 * Helper method to calculate the address for a particular index for
302 * the MemTransaction object.
303 *
304 * @param idx Index of the slot to be read/written. If the
305 * MemTransaction object is representing the memory region to read/write
306 * N items of type T, the valid range of idx is between 0 and N-1.
307 *
308 * @return Pointer to the slot idx. Will be nullptr for an invalid idx.
309 */
310 T* getSlot(size_t idx);
311
312 /**
313 * Helper method to write 'nMessages' items of type T into the memory
314 * regions described by the object starting from 'startIdx'. This method
315 * uses memcpy() and is not to meant to be used for a zero copy operation.
316 * Partial writes are not supported.
317 *
318 * @param data Pointer to the source buffer.
319 * @param nMessages Number of items of type T.
320 * @param startIdx The slot number to begin the write from. If the
321 * MemTransaction object is representing the memory region to read/write
322 * N items of type T, the valid range of startIdx is between 0 and N-1;
323 *
324 * @return Whether the write operation of size 'nMessages' succeeded.
325 */
326 bool copyTo(const T* data, size_t startIdx, size_t nMessages = 1);
327
328 /*
329 * Helper method to read 'nMessages' items of type T from the memory
330 * regions described by the object starting from 'startIdx'. This method uses
331 * memcpy() and is not meant to be used for a zero copy operation. Partial reads
332 * are not supported.
333 *
334 * @param data Pointer to the destination buffer.
335 * @param nMessages Number of items of type T.
336 * @param startIdx The slot number to begin the read from. If the
337 * MemTransaction object is representing the memory region to read/write
338 * N items of type T, the valid range of startIdx is between 0 and N-1.
339 *
340 * @return Whether the read operation of size 'nMessages' succeeded.
341 */
342 bool copyFrom(T* data, size_t startIdx, size_t nMessages = 1);
343
344 /**
345 * Returns a const reference to the first MemRegion in the
346 * MemTransaction object.
347 */
getFirstRegionMessageQueueBase::MemTransaction348 inline const MemRegion& getFirstRegion() const { return first; }
349
350 /**
351 * Returns a const reference to the second MemRegion in the
352 * MemTransaction object.
353 */
getSecondRegionMessageQueueBase::MemTransaction354 inline const MemRegion& getSecondRegion() const { return second; }
355
356 private:
357 /*
358 * Given a start index and the number of messages to be
359 * read/written, this helper method calculates the
360 * number of messages that should should be written to both the first
361 * and second MemRegions and the base addresses to be used for
362 * the read/write operation.
363 *
364 * Returns false if the 'startIdx' and 'nMessages' is
365 * invalid for the MemTransaction object.
366 */
367 bool inline getMemRegionInfo(size_t idx, size_t nMessages, size_t& firstCount,
368 size_t& secondCount, T** firstBaseAddress,
369 T** secondBaseAddress);
370 MemRegion first;
371 MemRegion second;
372 };
373
374 /**
375 * Get a MemTransaction object to write 'nMessages' items of type T.
376 * Once the write is performed using the information from MemTransaction,
377 * the write operation is to be committed using a call to commitWrite().
378 *
379 * @param nMessages Number of messages of type T.
380 * @param Pointer to MemTransaction struct that describes memory to write 'nMessages'
381 * items of type T. If a write of size 'nMessages' is not possible, the base
382 * addresses in the MemTransaction object would be set to nullptr.
383 *
384 * @return Whether it is possible to write 'nMessages' items of type T
385 * into the FMQ.
386 */
387 bool beginWrite(size_t nMessages, MemTransaction* memTx) const;
388
389 /**
390 * Commit a write of size 'nMessages'. To be only used after a call to beginWrite().
391 *
392 * @param nMessages number of messages of type T to be written.
393 *
394 * @return Whether the write operation of size 'nMessages' succeeded.
395 */
396 bool commitWrite(size_t nMessages);
397
398 /**
399 * Get a MemTransaction object to read 'nMessages' items of type T.
400 * Once the read is performed using the information from MemTransaction,
401 * the read operation is to be committed using a call to commitRead().
402 *
403 * @param nMessages Number of messages of type T.
404 * @param pointer to MemTransaction struct that describes memory to read 'nMessages'
405 * items of type T. If a read of size 'nMessages' is not possible, the base
406 * pointers in the MemTransaction object returned will be set to nullptr.
407 *
408 * @return bool Whether it is possible to read 'nMessages' items of type T
409 * from the FMQ.
410 */
411 bool beginRead(size_t nMessages, MemTransaction* memTx) const;
412
413 /**
414 * Commit a read of size 'nMessages'. To be only used after a call to beginRead().
415 * For the unsynchronized flavor of FMQ, this method will return a failure
416 * if a write overflow happened after beginRead() was invoked.
417 *
418 * @param nMessages number of messages of type T to be read.
419 *
420 * @return bool Whether the read operation of size 'nMessages' succeeded.
421 */
422 bool commitRead(size_t nMessages);
423
424 private:
425 size_t availableToWriteBytes() const;
426 size_t availableToReadBytes() const;
427
428 MessageQueueBase(const MessageQueueBase& other) = delete;
429 MessageQueueBase& operator=(const MessageQueueBase& other) = delete;
430
431 void* mapGrantorDescr(uint32_t grantorIdx);
432 void unmapGrantorDescr(void* address, uint32_t grantorIdx);
433 void initMemory(bool resetPointers);
434
435 enum DefaultEventNotification : uint32_t {
436 /*
437 * These are only used internally by the readBlocking()/writeBlocking()
438 * methods and hence once other bit combinations are not required.
439 */
440 FMQ_NOT_FULL = 0x01,
441 FMQ_NOT_EMPTY = 0x02
442 };
443 std::unique_ptr<Descriptor> mDesc;
444 uint8_t* mRing = nullptr;
445 /*
446 * TODO(b/31550092): Change to 32 bit read and write pointer counters.
447 */
448 std::atomic<uint64_t>* mReadPtr = nullptr;
449 std::atomic<uint64_t>* mWritePtr = nullptr;
450
451 std::atomic<uint32_t>* mEvFlagWord = nullptr;
452
453 /*
454 * This EventFlag object will be owned by the FMQ and will have the same
455 * lifetime.
456 */
457 android::hardware::EventFlag* mEventFlag = nullptr;
458 };
459
460 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
getSlot(size_t idx)461 T* MessageQueueBase<MQDescriptorType, T, flavor>::MemTransaction::getSlot(size_t idx) {
462 size_t firstRegionLength = first.getLength();
463 size_t secondRegionLength = second.getLength();
464
465 if (idx > firstRegionLength + secondRegionLength) {
466 return nullptr;
467 }
468
469 if (idx < firstRegionLength) {
470 return first.getAddress() + idx;
471 }
472
473 return second.getAddress() + idx - firstRegionLength;
474 }
475
476 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
getMemRegionInfo(size_t startIdx,size_t nMessages,size_t & firstCount,size_t & secondCount,T ** firstBaseAddress,T ** secondBaseAddress)477 bool MessageQueueBase<MQDescriptorType, T, flavor>::MemTransaction::getMemRegionInfo(
478 size_t startIdx, size_t nMessages, size_t& firstCount, size_t& secondCount,
479 T** firstBaseAddress, T** secondBaseAddress) {
480 size_t firstRegionLength = first.getLength();
481 size_t secondRegionLength = second.getLength();
482
483 if (startIdx + nMessages > firstRegionLength + secondRegionLength) {
484 /*
485 * Return false if 'nMessages' starting at 'startIdx' cannot be
486 * accommodated by the MemTransaction object.
487 */
488 return false;
489 }
490
491 /* Number of messages to be read/written to the first MemRegion. */
492 firstCount =
493 startIdx < firstRegionLength ? std::min(nMessages, firstRegionLength - startIdx) : 0;
494
495 /* Number of messages to be read/written to the second MemRegion. */
496 secondCount = nMessages - firstCount;
497
498 if (firstCount != 0) {
499 *firstBaseAddress = first.getAddress() + startIdx;
500 }
501
502 if (secondCount != 0) {
503 size_t secondStartIdx = startIdx > firstRegionLength ? startIdx - firstRegionLength : 0;
504 *secondBaseAddress = second.getAddress() + secondStartIdx;
505 }
506
507 return true;
508 }
509
510 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
copyFrom(T * data,size_t startIdx,size_t nMessages)511 bool MessageQueueBase<MQDescriptorType, T, flavor>::MemTransaction::copyFrom(T* data,
512 size_t startIdx,
513 size_t nMessages) {
514 if (data == nullptr) {
515 return false;
516 }
517
518 size_t firstReadCount = 0, secondReadCount = 0;
519 T *firstBaseAddress = nullptr, *secondBaseAddress = nullptr;
520
521 if (getMemRegionInfo(startIdx, nMessages, firstReadCount, secondReadCount, &firstBaseAddress,
522 &secondBaseAddress) == false) {
523 /*
524 * Returns false if 'startIdx' and 'nMessages' are invalid for this
525 * MemTransaction object.
526 */
527 return false;
528 }
529
530 if (firstReadCount != 0) {
531 memcpy(data, firstBaseAddress, firstReadCount * sizeof(T));
532 }
533
534 if (secondReadCount != 0) {
535 memcpy(data + firstReadCount, secondBaseAddress, secondReadCount * sizeof(T));
536 }
537
538 return true;
539 }
540
541 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
copyTo(const T * data,size_t startIdx,size_t nMessages)542 bool MessageQueueBase<MQDescriptorType, T, flavor>::MemTransaction::copyTo(const T* data,
543 size_t startIdx,
544 size_t nMessages) {
545 if (data == nullptr) {
546 return false;
547 }
548
549 size_t firstWriteCount = 0, secondWriteCount = 0;
550 T *firstBaseAddress = nullptr, *secondBaseAddress = nullptr;
551
552 if (getMemRegionInfo(startIdx, nMessages, firstWriteCount, secondWriteCount, &firstBaseAddress,
553 &secondBaseAddress) == false) {
554 /*
555 * Returns false if 'startIdx' and 'nMessages' are invalid for this
556 * MemTransaction object.
557 */
558 return false;
559 }
560
561 if (firstWriteCount != 0) {
562 memcpy(firstBaseAddress, data, firstWriteCount * sizeof(T));
563 }
564
565 if (secondWriteCount != 0) {
566 memcpy(secondBaseAddress, data + firstWriteCount, secondWriteCount * sizeof(T));
567 }
568
569 return true;
570 }
571
572 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
initMemory(bool resetPointers)573 void MessageQueueBase<MQDescriptorType, T, flavor>::initMemory(bool resetPointers) {
574 /*
575 * Verify that the Descriptor contains the minimum number of grantors
576 * the native_handle is valid and T matches quantum size.
577 */
578 if ((mDesc == nullptr) || !mDesc->isHandleValid() ||
579 (mDesc->countGrantors() < hardware::details::kMinGrantorCount)) {
580 return;
581 }
582 if (mDesc->getQuantum() != sizeof(T)) {
583 hardware::details::logError(
584 "Payload size differs between the queue instantiation and the "
585 "MQDescriptor.");
586 return;
587 }
588
589 const auto& grantors = mDesc->grantors();
590 for (const auto& grantor : grantors) {
591 if (hardware::details::isAlignedToWordBoundary(grantor.offset) == false) {
592 #ifdef __BIONIC__
593 __assert(__FILE__, __LINE__, "Grantor offsets need to be aligned");
594 #endif
595 }
596 }
597
598 if (flavor == kSynchronizedReadWrite) {
599 mReadPtr = reinterpret_cast<std::atomic<uint64_t>*>(
600 mapGrantorDescr(hardware::details::READPTRPOS));
601 } else {
602 /*
603 * The unsynchronized write flavor of the FMQ may have multiple readers
604 * and each reader would have their own read pointer counter.
605 */
606 mReadPtr = new (std::nothrow) std::atomic<uint64_t>;
607 }
608 if (mReadPtr == nullptr) {
609 #ifdef __BIONIC__
610 __assert(__FILE__, __LINE__, "mReadPtr is null");
611 #endif
612 }
613
614 mWritePtr = reinterpret_cast<std::atomic<uint64_t>*>(
615 mapGrantorDescr(hardware::details::WRITEPTRPOS));
616 if (mWritePtr == nullptr) {
617 #ifdef __BIONIC__
618 __assert(__FILE__, __LINE__, "mWritePtr is null");
619 #endif
620 }
621
622 if (resetPointers) {
623 mReadPtr->store(0, std::memory_order_release);
624 mWritePtr->store(0, std::memory_order_release);
625 } else if (flavor != kSynchronizedReadWrite) {
626 // Always reset the read pointer.
627 mReadPtr->store(0, std::memory_order_release);
628 }
629
630 mRing = reinterpret_cast<uint8_t*>(mapGrantorDescr(hardware::details::DATAPTRPOS));
631 if (mRing == nullptr) {
632 #ifdef __BIONIC__
633 __assert(__FILE__, __LINE__, "mRing is null");
634 #endif
635 }
636
637 if (mDesc->countGrantors() > hardware::details::EVFLAGWORDPOS) {
638 mEvFlagWord = static_cast<std::atomic<uint32_t>*>(
639 mapGrantorDescr(hardware::details::EVFLAGWORDPOS));
640 if (mEvFlagWord != nullptr) {
641 android::hardware::EventFlag::createEventFlag(mEvFlagWord, &mEventFlag);
642 } else {
643 #ifdef __BIONIC__
644 __assert(__FILE__, __LINE__, "mEvFlagWord is null");
645 #endif
646 }
647 }
648 }
649
650 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
MessageQueueBase(const Descriptor & Desc,bool resetPointers)651 MessageQueueBase<MQDescriptorType, T, flavor>::MessageQueueBase(const Descriptor& Desc,
652 bool resetPointers) {
653 mDesc = std::unique_ptr<Descriptor>(new (std::nothrow) Descriptor(Desc));
654 if (mDesc == nullptr) {
655 return;
656 }
657
658 initMemory(resetPointers);
659 }
660
661 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
MessageQueueBase(size_t numElementsInQueue,bool configureEventFlagWord,android::base::unique_fd bufferFd,size_t bufferSize)662 MessageQueueBase<MQDescriptorType, T, flavor>::MessageQueueBase(size_t numElementsInQueue,
663 bool configureEventFlagWord,
664 android::base::unique_fd bufferFd,
665 size_t bufferSize) {
666 // Check if the buffer size would not overflow size_t
667 if (numElementsInQueue > SIZE_MAX / sizeof(T)) {
668 hardware::details::logError("Requested message queue size too large. Size of elements: " +
669 std::to_string(sizeof(T)) +
670 ". Number of elements: " + std::to_string(numElementsInQueue));
671 return;
672 }
673 if (bufferFd != -1 && numElementsInQueue * sizeof(T) > bufferSize) {
674 hardware::details::logError("The supplied buffer size(" + std::to_string(bufferSize) +
675 ") is smaller than the required size(" +
676 std::to_string(numElementsInQueue * sizeof(T)) + ").");
677 return;
678 }
679 /*
680 * The FMQ needs to allocate memory for the ringbuffer as well as for the
681 * read and write pointer counters. If an EventFlag word is to be configured,
682 * we also need to allocate memory for the same/
683 */
684 size_t kQueueSizeBytes = numElementsInQueue * sizeof(T);
685 size_t kMetaDataSize = 2 * sizeof(android::hardware::details::RingBufferPosition);
686
687 if (configureEventFlagWord) {
688 kMetaDataSize += sizeof(std::atomic<uint32_t>);
689 }
690
691 /*
692 * Ashmem memory region size needs to be specified in page-aligned bytes.
693 * kQueueSizeBytes needs to be aligned to word boundary so that all offsets
694 * in the grantorDescriptor will be word aligned.
695 */
696 size_t kAshmemSizePageAligned;
697 if (bufferFd != -1) {
698 // Allocate read counter and write counter only. User-supplied memory will be used for the
699 // ringbuffer.
700 kAshmemSizePageAligned = (kMetaDataSize + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
701 } else {
702 // Allocate ringbuffer, read counter and write counter.
703 kAshmemSizePageAligned = (hardware::details::alignToWordBoundary(kQueueSizeBytes) +
704 kMetaDataSize + PAGE_SIZE - 1) &
705 ~(PAGE_SIZE - 1);
706 }
707
708 /*
709 * The native handle will contain the fds to be mapped.
710 */
711 int numFds = (bufferFd != -1) ? 2 : 1;
712 native_handle_t* mqHandle = native_handle_create(numFds, 0 /* numInts */);
713 if (mqHandle == nullptr) {
714 return;
715 }
716
717 /*
718 * Create an ashmem region to map the memory.
719 */
720 int ashmemFd = ashmem_create_region("MessageQueue", kAshmemSizePageAligned);
721 ashmem_set_prot_region(ashmemFd, PROT_READ | PROT_WRITE);
722 mqHandle->data[0] = ashmemFd;
723
724 if (bufferFd != -1) {
725 // Use user-supplied file descriptor for fdIndex 1
726 mqHandle->data[1] = bufferFd.get();
727 // release ownership of fd. mqHandle owns it now.
728 if (bufferFd.release() < 0) {
729 hardware::details::logError("Error releasing supplied bufferFd");
730 }
731
732 std::vector<android::hardware::GrantorDescriptor> grantors;
733 grantors.resize(configureEventFlagWord ? hardware::details::kMinGrantorCountForEvFlagSupport
734 : hardware::details::kMinGrantorCount);
735
736 size_t memSize[] = {
737 sizeof(hardware::details::RingBufferPosition), /* memory to be allocated for read
738 pointer counter */
739 sizeof(hardware::details::RingBufferPosition), /* memory to be allocated for write
740 pointer counter */
741 kQueueSizeBytes, /* memory to be allocated for data buffer */
742 sizeof(std::atomic<uint32_t>) /* memory to be allocated for EventFlag word */
743 };
744
745 for (size_t grantorPos = 0, offset = 0; grantorPos < grantors.size(); grantorPos++) {
746 uint32_t grantorFdIndex;
747 size_t grantorOffset;
748 if (grantorPos == hardware::details::DATAPTRPOS) {
749 grantorFdIndex = 1;
750 grantorOffset = 0;
751 } else {
752 grantorFdIndex = 0;
753 grantorOffset = offset;
754 offset += memSize[grantorPos];
755 }
756 grantors[grantorPos] = {
757 0 /* grantor flags */, grantorFdIndex,
758 static_cast<uint32_t>(hardware::details::alignToWordBoundary(grantorOffset)),
759 memSize[grantorPos]};
760 }
761
762 mDesc = std::unique_ptr<Descriptor>(new (std::nothrow)
763 Descriptor(grantors, mqHandle, sizeof(T)));
764 } else {
765 mDesc = std::unique_ptr<Descriptor>(new (std::nothrow) Descriptor(
766 kQueueSizeBytes, mqHandle, sizeof(T), configureEventFlagWord));
767 }
768 if (mDesc == nullptr) {
769 native_handle_close(mqHandle);
770 native_handle_delete(mqHandle);
771 return;
772 }
773 initMemory(true);
774 }
775
776 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
~MessageQueueBase()777 MessageQueueBase<MQDescriptorType, T, flavor>::~MessageQueueBase() {
778 if (flavor == kUnsynchronizedWrite && mReadPtr != nullptr) {
779 delete mReadPtr;
780 } else if (mReadPtr != nullptr) {
781 unmapGrantorDescr(mReadPtr, hardware::details::READPTRPOS);
782 }
783 if (mWritePtr != nullptr) {
784 unmapGrantorDescr(mWritePtr, hardware::details::WRITEPTRPOS);
785 }
786 if (mRing != nullptr) {
787 unmapGrantorDescr(mRing, hardware::details::DATAPTRPOS);
788 }
789 if (mEvFlagWord != nullptr) {
790 unmapGrantorDescr(mEvFlagWord, hardware::details::EVFLAGWORDPOS);
791 android::hardware::EventFlag::deleteEventFlag(&mEventFlag);
792 }
793 }
794
795 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
write(const T * data)796 bool MessageQueueBase<MQDescriptorType, T, flavor>::write(const T* data) {
797 return write(data, 1);
798 }
799
800 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
read(T * data)801 bool MessageQueueBase<MQDescriptorType, T, flavor>::read(T* data) {
802 return read(data, 1);
803 }
804
805 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
write(const T * data,size_t nMessages)806 bool MessageQueueBase<MQDescriptorType, T, flavor>::write(const T* data, size_t nMessages) {
807 MemTransaction tx;
808 return beginWrite(nMessages, &tx) && tx.copyTo(data, 0 /* startIdx */, nMessages) &&
809 commitWrite(nMessages);
810 }
811
812 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
writeBlocking(const T * data,size_t count,uint32_t readNotification,uint32_t writeNotification,int64_t timeOutNanos,android::hardware::EventFlag * evFlag)813 bool MessageQueueBase<MQDescriptorType, T, flavor>::writeBlocking(
814 const T* data, size_t count, uint32_t readNotification, uint32_t writeNotification,
815 int64_t timeOutNanos, android::hardware::EventFlag* evFlag) {
816 static_assert(flavor == kSynchronizedReadWrite,
817 "writeBlocking can only be used with the "
818 "kSynchronizedReadWrite flavor.");
819 /*
820 * If evFlag is null and the FMQ does not have its own EventFlag object
821 * return false;
822 * If the flavor is kSynchronizedReadWrite and the readNotification
823 * bit mask is zero return false;
824 * If the count is greater than queue size, return false
825 * to prevent blocking until timeOut.
826 */
827 if (evFlag == nullptr) {
828 evFlag = mEventFlag;
829 if (evFlag == nullptr) {
830 hardware::details::logError(
831 "writeBlocking failed: called on MessageQueue with no Eventflag"
832 "configured or provided");
833 return false;
834 }
835 }
836
837 if (readNotification == 0 || (count > getQuantumCount())) {
838 return false;
839 }
840
841 /*
842 * There is no need to wait for a readNotification if there is sufficient
843 * space to write is already present in the FMQ. The latter would be the case when
844 * read operations read more number of messages than write operations write.
845 * In other words, a single large read may clear the FMQ after multiple small
846 * writes. This would fail to clear a pending readNotification bit since
847 * EventFlag bits can only be cleared by a wait() call, however the bit would
848 * be correctly cleared by the next writeBlocking() call.
849 */
850
851 bool result = write(data, count);
852 if (result) {
853 if (writeNotification) {
854 evFlag->wake(writeNotification);
855 }
856 return result;
857 }
858
859 bool shouldTimeOut = timeOutNanos != 0;
860 int64_t prevTimeNanos = shouldTimeOut ? android::elapsedRealtimeNano() : 0;
861
862 while (true) {
863 /* It is not required to adjust 'timeOutNanos' if 'shouldTimeOut' is false */
864 if (shouldTimeOut) {
865 /*
866 * The current time and 'prevTimeNanos' are both CLOCK_BOOTTIME clock values(converted
867 * to Nanoseconds)
868 */
869 int64_t currentTimeNs = android::elapsedRealtimeNano();
870 /*
871 * Decrement 'timeOutNanos' to account for the time taken to complete the last
872 * iteration of the while loop.
873 */
874 timeOutNanos -= currentTimeNs - prevTimeNanos;
875 prevTimeNanos = currentTimeNs;
876
877 if (timeOutNanos <= 0) {
878 /*
879 * Attempt write in case a context switch happened outside of
880 * evFlag->wait().
881 */
882 result = write(data, count);
883 break;
884 }
885 }
886
887 /*
888 * wait() will return immediately if there was a pending read
889 * notification.
890 */
891 uint32_t efState = 0;
892 status_t status = evFlag->wait(readNotification, &efState, timeOutNanos,
893 true /* retry on spurious wake */);
894
895 if (status != android::TIMED_OUT && status != android::NO_ERROR) {
896 hardware::details::logError("Unexpected error code from EventFlag Wait status " +
897 std::to_string(status));
898 break;
899 }
900
901 if (status == android::TIMED_OUT) {
902 break;
903 }
904
905 /*
906 * If there is still insufficient space to write to the FMQ,
907 * keep waiting for another readNotification.
908 */
909 if ((efState & readNotification) && write(data, count)) {
910 result = true;
911 break;
912 }
913 }
914
915 if (result && writeNotification != 0) {
916 evFlag->wake(writeNotification);
917 }
918
919 return result;
920 }
921
922 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
writeBlocking(const T * data,size_t count,int64_t timeOutNanos)923 bool MessageQueueBase<MQDescriptorType, T, flavor>::writeBlocking(const T* data, size_t count,
924 int64_t timeOutNanos) {
925 return writeBlocking(data, count, FMQ_NOT_FULL, FMQ_NOT_EMPTY, timeOutNanos);
926 }
927
928 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
readBlocking(T * data,size_t count,uint32_t readNotification,uint32_t writeNotification,int64_t timeOutNanos,android::hardware::EventFlag * evFlag)929 bool MessageQueueBase<MQDescriptorType, T, flavor>::readBlocking(
930 T* data, size_t count, uint32_t readNotification, uint32_t writeNotification,
931 int64_t timeOutNanos, android::hardware::EventFlag* evFlag) {
932 static_assert(flavor == kSynchronizedReadWrite,
933 "readBlocking can only be used with the "
934 "kSynchronizedReadWrite flavor.");
935
936 /*
937 * If evFlag is null and the FMQ does not own its own EventFlag object
938 * return false;
939 * If the writeNotification bit mask is zero return false;
940 * If the count is greater than queue size, return false to prevent
941 * blocking until timeOut.
942 */
943 if (evFlag == nullptr) {
944 evFlag = mEventFlag;
945 if (evFlag == nullptr) {
946 hardware::details::logError(
947 "readBlocking failed: called on MessageQueue with no Eventflag"
948 "configured or provided");
949 return false;
950 }
951 }
952
953 if (writeNotification == 0 || count > getQuantumCount()) {
954 return false;
955 }
956
957 /*
958 * There is no need to wait for a write notification if sufficient
959 * data to read is already present in the FMQ. This would be the
960 * case when read operations read lesser number of messages than
961 * a write operation and multiple reads would be required to clear the queue
962 * after a single write operation. This check would fail to clear a pending
963 * writeNotification bit since EventFlag bits can only be cleared
964 * by a wait() call, however the bit would be correctly cleared by the next
965 * readBlocking() call.
966 */
967
968 bool result = read(data, count);
969 if (result) {
970 if (readNotification) {
971 evFlag->wake(readNotification);
972 }
973 return result;
974 }
975
976 bool shouldTimeOut = timeOutNanos != 0;
977 int64_t prevTimeNanos = shouldTimeOut ? android::elapsedRealtimeNano() : 0;
978
979 while (true) {
980 /* It is not required to adjust 'timeOutNanos' if 'shouldTimeOut' is false */
981 if (shouldTimeOut) {
982 /*
983 * The current time and 'prevTimeNanos' are both CLOCK_BOOTTIME clock values(converted
984 * to Nanoseconds)
985 */
986 int64_t currentTimeNs = android::elapsedRealtimeNano();
987 /*
988 * Decrement 'timeOutNanos' to account for the time taken to complete the last
989 * iteration of the while loop.
990 */
991 timeOutNanos -= currentTimeNs - prevTimeNanos;
992 prevTimeNanos = currentTimeNs;
993
994 if (timeOutNanos <= 0) {
995 /*
996 * Attempt read in case a context switch happened outside of
997 * evFlag->wait().
998 */
999 result = read(data, count);
1000 break;
1001 }
1002 }
1003
1004 /*
1005 * wait() will return immediately if there was a pending write
1006 * notification.
1007 */
1008 uint32_t efState = 0;
1009 status_t status = evFlag->wait(writeNotification, &efState, timeOutNanos,
1010 true /* retry on spurious wake */);
1011
1012 if (status != android::TIMED_OUT && status != android::NO_ERROR) {
1013 hardware::details::logError("Unexpected error code from EventFlag Wait status " +
1014 std::to_string(status));
1015 break;
1016 }
1017
1018 if (status == android::TIMED_OUT) {
1019 break;
1020 }
1021
1022 /*
1023 * If the data in FMQ is still insufficient, go back to waiting
1024 * for another write notification.
1025 */
1026 if ((efState & writeNotification) && read(data, count)) {
1027 result = true;
1028 break;
1029 }
1030 }
1031
1032 if (result && readNotification != 0) {
1033 evFlag->wake(readNotification);
1034 }
1035 return result;
1036 }
1037
1038 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
readBlocking(T * data,size_t count,int64_t timeOutNanos)1039 bool MessageQueueBase<MQDescriptorType, T, flavor>::readBlocking(T* data, size_t count,
1040 int64_t timeOutNanos) {
1041 return readBlocking(data, count, FMQ_NOT_FULL, FMQ_NOT_EMPTY, timeOutNanos);
1042 }
1043
1044 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
availableToWriteBytes()1045 size_t MessageQueueBase<MQDescriptorType, T, flavor>::availableToWriteBytes() const {
1046 return mDesc->getSize() - availableToReadBytes();
1047 }
1048
1049 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
availableToWrite()1050 size_t MessageQueueBase<MQDescriptorType, T, flavor>::availableToWrite() const {
1051 return availableToWriteBytes() / sizeof(T);
1052 }
1053
1054 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
availableToRead()1055 size_t MessageQueueBase<MQDescriptorType, T, flavor>::availableToRead() const {
1056 return availableToReadBytes() / sizeof(T);
1057 }
1058
1059 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
beginWrite(size_t nMessages,MemTransaction * result)1060 bool MessageQueueBase<MQDescriptorType, T, flavor>::beginWrite(size_t nMessages,
1061 MemTransaction* result) const {
1062 /*
1063 * If nMessages is greater than size of FMQ or in case of the synchronized
1064 * FMQ flavor, if there is not enough space to write nMessages, then return
1065 * result with null addresses.
1066 */
1067 if ((flavor == kSynchronizedReadWrite && (availableToWrite() < nMessages)) ||
1068 nMessages > getQuantumCount()) {
1069 *result = MemTransaction();
1070 return false;
1071 }
1072
1073 auto writePtr = mWritePtr->load(std::memory_order_relaxed);
1074 if (writePtr % sizeof(T) != 0) {
1075 hardware::details::logError(
1076 "The write pointer has become misaligned. Writing to the queue is no longer "
1077 "possible.");
1078 hardware::details::errorWriteLog(0x534e4554, "184963385");
1079 return false;
1080 }
1081 size_t writeOffset = writePtr % mDesc->getSize();
1082
1083 /*
1084 * From writeOffset, the number of messages that can be written
1085 * contiguously without wrapping around the ring buffer are calculated.
1086 */
1087 size_t contiguousMessages = (mDesc->getSize() - writeOffset) / sizeof(T);
1088
1089 if (contiguousMessages < nMessages) {
1090 /*
1091 * Wrap around is required. Both result.first and result.second are
1092 * populated.
1093 */
1094 *result = MemTransaction(
1095 MemRegion(reinterpret_cast<T*>(mRing + writeOffset), contiguousMessages),
1096 MemRegion(reinterpret_cast<T*>(mRing), nMessages - contiguousMessages));
1097 } else {
1098 /*
1099 * A wrap around is not required to write nMessages. Only result.first
1100 * is populated.
1101 */
1102 *result = MemTransaction(MemRegion(reinterpret_cast<T*>(mRing + writeOffset), nMessages),
1103 MemRegion());
1104 }
1105
1106 return true;
1107 }
1108
1109 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
1110 /*
1111 * Disable integer sanitization since integer overflow here is allowed
1112 * and legal.
1113 */
1114 __attribute__((no_sanitize("integer"))) bool
commitWrite(size_t nMessages)1115 MessageQueueBase<MQDescriptorType, T, flavor>::commitWrite(size_t nMessages) {
1116 size_t nBytesWritten = nMessages * sizeof(T);
1117 auto writePtr = mWritePtr->load(std::memory_order_relaxed);
1118 writePtr += nBytesWritten;
1119 mWritePtr->store(writePtr, std::memory_order_release);
1120 /*
1121 * This method cannot fail now since we are only incrementing the writePtr
1122 * counter.
1123 */
1124 return true;
1125 }
1126
1127 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
availableToReadBytes()1128 size_t MessageQueueBase<MQDescriptorType, T, flavor>::availableToReadBytes() const {
1129 /*
1130 * This method is invoked by implementations of both read() and write() and
1131 * hence requires a memory_order_acquired load for both mReadPtr and
1132 * mWritePtr.
1133 */
1134 return mWritePtr->load(std::memory_order_acquire) - mReadPtr->load(std::memory_order_acquire);
1135 }
1136
1137 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
read(T * data,size_t nMessages)1138 bool MessageQueueBase<MQDescriptorType, T, flavor>::read(T* data, size_t nMessages) {
1139 MemTransaction tx;
1140 return beginRead(nMessages, &tx) && tx.copyFrom(data, 0 /* startIdx */, nMessages) &&
1141 commitRead(nMessages);
1142 }
1143
1144 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
1145 /*
1146 * Disable integer sanitization since integer overflow here is allowed
1147 * and legal.
1148 */
1149 __attribute__((no_sanitize("integer"))) bool
beginRead(size_t nMessages,MemTransaction * result)1150 MessageQueueBase<MQDescriptorType, T, flavor>::beginRead(size_t nMessages,
1151 MemTransaction* result) const {
1152 *result = MemTransaction();
1153 /*
1154 * If it is detected that the data in the queue was overwritten
1155 * due to the reader process being too slow, the read pointer counter
1156 * is set to the same as the write pointer counter to indicate error
1157 * and the read returns false;
1158 * Need acquire/release memory ordering for mWritePtr.
1159 */
1160 auto writePtr = mWritePtr->load(std::memory_order_acquire);
1161 /*
1162 * A relaxed load is sufficient for mReadPtr since there will be no
1163 * stores to mReadPtr from a different thread.
1164 */
1165 auto readPtr = mReadPtr->load(std::memory_order_relaxed);
1166 if (writePtr % sizeof(T) != 0 || readPtr % sizeof(T) != 0) {
1167 hardware::details::logError(
1168 "The write or read pointer has become misaligned. Reading from the queue is no "
1169 "longer possible.");
1170 hardware::details::errorWriteLog(0x534e4554, "184963385");
1171 return false;
1172 }
1173
1174 if (writePtr - readPtr > mDesc->getSize()) {
1175 mReadPtr->store(writePtr, std::memory_order_release);
1176 return false;
1177 }
1178
1179 size_t nBytesDesired = nMessages * sizeof(T);
1180 /*
1181 * Return if insufficient data to read in FMQ.
1182 */
1183 if (writePtr - readPtr < nBytesDesired) {
1184 return false;
1185 }
1186
1187 size_t readOffset = readPtr % mDesc->getSize();
1188 /*
1189 * From readOffset, the number of messages that can be read contiguously
1190 * without wrapping around the ring buffer are calculated.
1191 */
1192 size_t contiguousMessages = (mDesc->getSize() - readOffset) / sizeof(T);
1193
1194 if (contiguousMessages < nMessages) {
1195 /*
1196 * A wrap around is required. Both result.first and result.second
1197 * are populated.
1198 */
1199 *result = MemTransaction(
1200 MemRegion(reinterpret_cast<T*>(mRing + readOffset), contiguousMessages),
1201 MemRegion(reinterpret_cast<T*>(mRing), nMessages - contiguousMessages));
1202 } else {
1203 /*
1204 * A wrap around is not required. Only result.first need to be
1205 * populated.
1206 */
1207 *result = MemTransaction(MemRegion(reinterpret_cast<T*>(mRing + readOffset), nMessages),
1208 MemRegion());
1209 }
1210
1211 return true;
1212 }
1213
1214 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
1215 /*
1216 * Disable integer sanitization since integer overflow here is allowed
1217 * and legal.
1218 */
1219 __attribute__((no_sanitize("integer"))) bool
commitRead(size_t nMessages)1220 MessageQueueBase<MQDescriptorType, T, flavor>::commitRead(size_t nMessages) {
1221 // TODO: Use a local copy of readPtr to avoid relazed mReadPtr loads.
1222 auto readPtr = mReadPtr->load(std::memory_order_relaxed);
1223 auto writePtr = mWritePtr->load(std::memory_order_acquire);
1224 /*
1225 * If the flavor is unsynchronized, it is possible that a write overflow may
1226 * have occurred between beginRead() and commitRead().
1227 */
1228 if (writePtr - readPtr > mDesc->getSize()) {
1229 mReadPtr->store(writePtr, std::memory_order_release);
1230 return false;
1231 }
1232
1233 size_t nBytesRead = nMessages * sizeof(T);
1234 readPtr += nBytesRead;
1235 mReadPtr->store(readPtr, std::memory_order_release);
1236 return true;
1237 }
1238
1239 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
getQuantumSize()1240 size_t MessageQueueBase<MQDescriptorType, T, flavor>::getQuantumSize() const {
1241 return mDesc->getQuantum();
1242 }
1243
1244 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
getQuantumCount()1245 size_t MessageQueueBase<MQDescriptorType, T, flavor>::getQuantumCount() const {
1246 return mDesc->getSize() / mDesc->getQuantum();
1247 }
1248
1249 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
isValid()1250 bool MessageQueueBase<MQDescriptorType, T, flavor>::isValid() const {
1251 return mRing != nullptr && mReadPtr != nullptr && mWritePtr != nullptr;
1252 }
1253
1254 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
mapGrantorDescr(uint32_t grantorIdx)1255 void* MessageQueueBase<MQDescriptorType, T, flavor>::mapGrantorDescr(uint32_t grantorIdx) {
1256 const native_handle_t* handle = mDesc->handle();
1257 auto grantors = mDesc->grantors();
1258 if (handle == nullptr) {
1259 hardware::details::logError("mDesc->handle is null");
1260 return nullptr;
1261 }
1262
1263 if (grantorIdx >= grantors.size()) {
1264 hardware::details::logError(std::string("grantorIdx must be less than ") +
1265 std::to_string(grantors.size()));
1266 return nullptr;
1267 }
1268
1269 int fdIndex = grantors[grantorIdx].fdIndex;
1270 /*
1271 * Offset for mmap must be a multiple of PAGE_SIZE.
1272 */
1273 int mapOffset = (grantors[grantorIdx].offset / PAGE_SIZE) * PAGE_SIZE;
1274 int mapLength = grantors[grantorIdx].offset - mapOffset + grantors[grantorIdx].extent;
1275
1276 void* address = mmap(0, mapLength, PROT_READ | PROT_WRITE, MAP_SHARED, handle->data[fdIndex],
1277 mapOffset);
1278 if (address == MAP_FAILED) {
1279 hardware::details::logError(std::string("mmap failed: ") + std::to_string(errno));
1280 return nullptr;
1281 }
1282 return reinterpret_cast<uint8_t*>(address) + (grantors[grantorIdx].offset - mapOffset);
1283 }
1284
1285 template <template <typename, MQFlavor> typename MQDescriptorType, typename T, MQFlavor flavor>
unmapGrantorDescr(void * address,uint32_t grantorIdx)1286 void MessageQueueBase<MQDescriptorType, T, flavor>::unmapGrantorDescr(void* address,
1287 uint32_t grantorIdx) {
1288 auto grantors = mDesc->grantors();
1289 if ((address == nullptr) || (grantorIdx >= grantors.size())) {
1290 return;
1291 }
1292
1293 int mapOffset = (grantors[grantorIdx].offset / PAGE_SIZE) * PAGE_SIZE;
1294 int mapLength = grantors[grantorIdx].offset - mapOffset + grantors[grantorIdx].extent;
1295 void* baseAddress =
1296 reinterpret_cast<uint8_t*>(address) - (grantors[grantorIdx].offset - mapOffset);
1297 if (baseAddress) munmap(baseAddress, mapLength);
1298 }
1299
1300 } // namespace hardware
1301