• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2021 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.android.internal.graphics.cam;
18 
19 import android.annotation.NonNull;
20 import android.util.MathUtils;
21 
22 /**
23  * The frame, or viewing conditions, where a color was seen. Used, along with a color, to create a
24  * color appearance model representing the color.
25  *
26  * <p>To convert a traditional color to a color appearance model, it requires knowing what
27  * conditions the color was observed in. Our perception of color depends on, for example, the tone
28  * of the light illuminating the color, how bright that light was, etc.
29  *
30  * <p>This class is modelled separately from the color appearance model itself because there are a
31  * number of calculations during the color => CAM conversion process that depend only on the viewing
32  * conditions. Caching those calculations in a Frame instance saves a significant amount of time.
33  */
34 public final class Frame {
35     // Standard viewing conditions assumed in RGB specification - Stokes, Anderson, Chandrasekar,
36     // Motta - A Standard Default Color Space for the Internet: sRGB, 1996.
37     //
38     // White point = D65
39     // Luminance of adapting field: 200 / Pi / 5, units are cd/m^2.
40     //   sRGB ambient illuminance = 64 lux (per sRGB spec). However, the spec notes this is
41     //     artificially low and based on monitors in 1990s. Use 200, the sRGB spec says this is the
42     //     real average, and a survey of lux values on Wikipedia confirms this is a comfortable
43     //     default: somewhere between a very dark overcast day and office lighting.
44     //   Per CAM16 introduction paper (Li et al, 2017) Ew = pi * lw, and La = lw * Yb/Yw
45     //   Ew = ambient environment luminance, in lux.
46     //   Yb/Yw is taken to be midgray, ~20% relative luminance (XYZ Y 18.4, CIELAB L* 50).
47     //   Therefore La = (Ew / pi) * .184
48     //   La = 200 / pi * .184
49     // Image surround to 10 degrees = ~20% relative luminance = CIELAB L* 50
50     //
51     // Not from sRGB standard:
52     // Surround = average, 2.0.
53     // Discounting illuminant = false, doesn't occur for self-luminous displays
54     public static final Frame DEFAULT =
55             Frame.make(
56                     CamUtils.WHITE_POINT_D65,
57                     (float) (200.0f / Math.PI * CamUtils.yFromLstar(50.0f) / 100.f), 50.0f, 2.0f,
58                     false);
59 
60     private final float mAw;
61     private final float mNbb;
62     private final float mNcb;
63     private final float mC;
64     private final float mNc;
65     private final float mN;
66     private final float[] mRgbD;
67     private final float mFl;
68     private final float mFlRoot;
69     private final float mZ;
70 
getAw()71     float getAw() {
72         return mAw;
73     }
74 
getN()75     float getN() {
76         return mN;
77     }
78 
getNbb()79     float getNbb() {
80         return mNbb;
81     }
82 
getNcb()83     float getNcb() {
84         return mNcb;
85     }
86 
getC()87     float getC() {
88         return mC;
89     }
90 
getNc()91     float getNc() {
92         return mNc;
93     }
94 
95     @NonNull
getRgbD()96     float[] getRgbD() {
97         return mRgbD;
98     }
99 
getFl()100     float getFl() {
101         return mFl;
102     }
103 
getFlRoot()104     float getFlRoot() {
105         return mFlRoot;
106     }
107 
getZ()108     float getZ() {
109         return mZ;
110     }
111 
Frame(float n, float aw, float nbb, float ncb, float c, float nc, float[] rgbD, float fl, float fLRoot, float z)112     private Frame(float n, float aw, float nbb, float ncb, float c, float nc, float[] rgbD,
113             float fl, float fLRoot, float z) {
114         mN = n;
115         mAw = aw;
116         mNbb = nbb;
117         mNcb = ncb;
118         mC = c;
119         mNc = nc;
120         mRgbD = rgbD;
121         mFl = fl;
122         mFlRoot = fLRoot;
123         mZ = z;
124     }
125 
126     /** Create a custom frame. */
127     @NonNull
make(@onNull float[] whitepoint, float adaptingLuminance, float backgroundLstar, float surround, boolean discountingIlluminant)128     public static Frame make(@NonNull float[] whitepoint, float adaptingLuminance,
129             float backgroundLstar, float surround, boolean discountingIlluminant) {
130         // Transform white point XYZ to 'cone'/'rgb' responses
131         float[][] matrix = CamUtils.XYZ_TO_CAM16RGB;
132         float[] xyz = whitepoint;
133         float rW = (xyz[0] * matrix[0][0]) + (xyz[1] * matrix[0][1]) + (xyz[2] * matrix[0][2]);
134         float gW = (xyz[0] * matrix[1][0]) + (xyz[1] * matrix[1][1]) + (xyz[2] * matrix[1][2]);
135         float bW = (xyz[0] * matrix[2][0]) + (xyz[1] * matrix[2][1]) + (xyz[2] * matrix[2][2]);
136 
137         // Scale input surround, domain (0, 2), to CAM16 surround, domain (0.8, 1.0)
138         float f = 0.8f + (surround / 10.0f);
139         // "Exponential non-linearity"
140         float c = (f >= 0.9) ? MathUtils.lerp(0.59f, 0.69f, ((f - 0.9f) * 10.0f)) : MathUtils.lerp(
141                 0.525f, 0.59f, ((f - 0.8f) * 10.0f));
142         // Calculate degree of adaptation to illuminant
143         float d = discountingIlluminant ? 1.0f : f * (1.0f - ((1.0f / 3.6f) * (float) Math.exp(
144                 (-adaptingLuminance - 42.0f) / 92.0f)));
145         // Per Li et al, if D is greater than 1 or less than 0, set it to 1 or 0.
146         d = (d > 1.0) ? 1.0f : (d < 0.0) ? 0.0f : d;
147         // Chromatic induction factor
148         float nc = f;
149 
150         // Cone responses to the whitepoint, adjusted for illuminant discounting.
151         //
152         // Why use 100.0 instead of the white point's relative luminance?
153         //
154         // Some papers and implementations, for both CAM02 and CAM16, use the Y
155         // value of the reference white instead of 100. Fairchild's Color Appearance
156         // Models (3rd edition) notes that this is in error: it was included in the
157         // CIE 2004a report on CIECAM02, but, later parts of the conversion process
158         // account for scaling of appearance relative to the white point relative
159         // luminance. This part should simply use 100 as luminance.
160         float[] rgbD = new float[]{d * (100.0f / rW) + 1.0f - d, d * (100.0f / gW) + 1.0f - d,
161                 d * (100.0f / bW) + 1.0f - d, };
162         // Luminance-level adaptation factor
163         float k = 1.0f / (5.0f * adaptingLuminance + 1.0f);
164         float k4 = k * k * k * k;
165         float k4F = 1.0f - k4;
166         float fl = (k4 * adaptingLuminance) + (0.1f * k4F * k4F * (float) Math.cbrt(
167                 5.0 * adaptingLuminance));
168 
169         // Intermediate factor, ratio of background relative luminance to white relative luminance
170         float n = CamUtils.yFromLstar(backgroundLstar) / whitepoint[1];
171 
172         // Base exponential nonlinearity
173         // note Schlomer 2018 has a typo and uses 1.58, the correct factor is 1.48
174         float z = 1.48f + (float) Math.sqrt(n);
175 
176         // Luminance-level induction factors
177         float nbb = 0.725f / (float) Math.pow(n, 0.2);
178         float ncb = nbb;
179 
180         // Discounted cone responses to the white point, adjusted for post-chromatic
181         // adaptation perceptual nonlinearities.
182         float[] rgbAFactors = new float[]{(float) Math.pow(fl * rgbD[0] * rW / 100.0, 0.42),
183                 (float) Math.pow(fl * rgbD[1] * gW / 100.0, 0.42), (float) Math.pow(
184                 fl * rgbD[2] * bW / 100.0, 0.42)};
185 
186         float[] rgbA = new float[]{(400.0f * rgbAFactors[0]) / (rgbAFactors[0] + 27.13f),
187                 (400.0f * rgbAFactors[1]) / (rgbAFactors[1] + 27.13f),
188                 (400.0f * rgbAFactors[2]) / (rgbAFactors[2] + 27.13f), };
189 
190         float aw = ((2.0f * rgbA[0]) + rgbA[1] + (0.05f * rgbA[2])) * nbb;
191 
192         return new Frame(n, aw, nbb, ncb, c, nc, rgbD, fl, (float) Math.pow(fl, 0.25), z);
193     }
194 }
195