• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_AST_DECL_H
14 #define LLVM_CLANG_AST_DECL_H
15 
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTContextAllocate.h"
18 #include "clang/AST/DeclAccessPair.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclarationName.h"
21 #include "clang/AST/ExternalASTSource.h"
22 #include "clang/AST/NestedNameSpecifier.h"
23 #include "clang/AST/Redeclarable.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/AddressSpaces.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/IdentifierTable.h"
28 #include "clang/Basic/LLVM.h"
29 #include "clang/Basic/Linkage.h"
30 #include "clang/Basic/OperatorKinds.h"
31 #include "clang/Basic/PartialDiagnostic.h"
32 #include "clang/Basic/PragmaKinds.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/Specifiers.h"
35 #include "clang/Basic/Visibility.h"
36 #include "llvm/ADT/APSInt.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/Optional.h"
39 #include "llvm/ADT/PointerIntPair.h"
40 #include "llvm/ADT/PointerUnion.h"
41 #include "llvm/ADT/StringRef.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/TrailingObjects.h"
46 #include <cassert>
47 #include <cstddef>
48 #include <cstdint>
49 #include <string>
50 #include <utility>
51 
52 namespace clang {
53 
54 class ASTContext;
55 struct ASTTemplateArgumentListInfo;
56 class Attr;
57 class CompoundStmt;
58 class DependentFunctionTemplateSpecializationInfo;
59 class EnumDecl;
60 class Expr;
61 class FunctionTemplateDecl;
62 class FunctionTemplateSpecializationInfo;
63 class FunctionTypeLoc;
64 class LabelStmt;
65 class MemberSpecializationInfo;
66 class Module;
67 class NamespaceDecl;
68 class ParmVarDecl;
69 class RecordDecl;
70 class Stmt;
71 class StringLiteral;
72 class TagDecl;
73 class TemplateArgumentList;
74 class TemplateArgumentListInfo;
75 class TemplateParameterList;
76 class TypeAliasTemplateDecl;
77 class TypeLoc;
78 class UnresolvedSetImpl;
79 class VarTemplateDecl;
80 
81 /// The top declaration context.
82 class TranslationUnitDecl : public Decl, public DeclContext {
83   ASTContext &Ctx;
84 
85   /// The (most recently entered) anonymous namespace for this
86   /// translation unit, if one has been created.
87   NamespaceDecl *AnonymousNamespace = nullptr;
88 
89   explicit TranslationUnitDecl(ASTContext &ctx);
90 
91   virtual void anchor();
92 
93 public:
getASTContext()94   ASTContext &getASTContext() const { return Ctx; }
95 
getAnonymousNamespace()96   NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
setAnonymousNamespace(NamespaceDecl * D)97   void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
98 
99   static TranslationUnitDecl *Create(ASTContext &C);
100 
101   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)102   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)103   static bool classofKind(Kind K) { return K == TranslationUnit; }
castToDeclContext(const TranslationUnitDecl * D)104   static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
105     return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
106   }
castFromDeclContext(const DeclContext * DC)107   static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
108     return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
109   }
110 };
111 
112 /// Represents a `#pragma comment` line. Always a child of
113 /// TranslationUnitDecl.
114 class PragmaCommentDecl final
115     : public Decl,
116       private llvm::TrailingObjects<PragmaCommentDecl, char> {
117   friend class ASTDeclReader;
118   friend class ASTDeclWriter;
119   friend TrailingObjects;
120 
121   PragmaMSCommentKind CommentKind;
122 
PragmaCommentDecl(TranslationUnitDecl * TU,SourceLocation CommentLoc,PragmaMSCommentKind CommentKind)123   PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
124                     PragmaMSCommentKind CommentKind)
125       : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
126 
127   virtual void anchor();
128 
129 public:
130   static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
131                                    SourceLocation CommentLoc,
132                                    PragmaMSCommentKind CommentKind,
133                                    StringRef Arg);
134   static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
135                                                unsigned ArgSize);
136 
getCommentKind()137   PragmaMSCommentKind getCommentKind() const { return CommentKind; }
138 
getArg()139   StringRef getArg() const { return getTrailingObjects<char>(); }
140 
141   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)142   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)143   static bool classofKind(Kind K) { return K == PragmaComment; }
144 };
145 
146 /// Represents a `#pragma detect_mismatch` line. Always a child of
147 /// TranslationUnitDecl.
148 class PragmaDetectMismatchDecl final
149     : public Decl,
150       private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
151   friend class ASTDeclReader;
152   friend class ASTDeclWriter;
153   friend TrailingObjects;
154 
155   size_t ValueStart;
156 
PragmaDetectMismatchDecl(TranslationUnitDecl * TU,SourceLocation Loc,size_t ValueStart)157   PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
158                            size_t ValueStart)
159       : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
160 
161   virtual void anchor();
162 
163 public:
164   static PragmaDetectMismatchDecl *Create(const ASTContext &C,
165                                           TranslationUnitDecl *DC,
166                                           SourceLocation Loc, StringRef Name,
167                                           StringRef Value);
168   static PragmaDetectMismatchDecl *
169   CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
170 
getName()171   StringRef getName() const { return getTrailingObjects<char>(); }
getValue()172   StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
173 
174   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)175   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)176   static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
177 };
178 
179 /// Declaration context for names declared as extern "C" in C++. This
180 /// is neither the semantic nor lexical context for such declarations, but is
181 /// used to check for conflicts with other extern "C" declarations. Example:
182 ///
183 /// \code
184 ///   namespace N { extern "C" void f(); } // #1
185 ///   void N::f() {}                       // #2
186 ///   namespace M { extern "C" void f(); } // #3
187 /// \endcode
188 ///
189 /// The semantic context of #1 is namespace N and its lexical context is the
190 /// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
191 /// context is the TU. However, both declarations are also visible in the
192 /// extern "C" context.
193 ///
194 /// The declaration at #3 finds it is a redeclaration of \c N::f through
195 /// lookup in the extern "C" context.
196 class ExternCContextDecl : public Decl, public DeclContext {
ExternCContextDecl(TranslationUnitDecl * TU)197   explicit ExternCContextDecl(TranslationUnitDecl *TU)
198     : Decl(ExternCContext, TU, SourceLocation()),
199       DeclContext(ExternCContext) {}
200 
201   virtual void anchor();
202 
203 public:
204   static ExternCContextDecl *Create(const ASTContext &C,
205                                     TranslationUnitDecl *TU);
206 
207   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)208   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)209   static bool classofKind(Kind K) { return K == ExternCContext; }
castToDeclContext(const ExternCContextDecl * D)210   static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
211     return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
212   }
castFromDeclContext(const DeclContext * DC)213   static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
214     return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
215   }
216 };
217 
218 /// This represents a decl that may have a name.  Many decls have names such
219 /// as ObjCMethodDecl, but not \@class, etc.
220 ///
221 /// Note that not every NamedDecl is actually named (e.g., a struct might
222 /// be anonymous), and not every name is an identifier.
223 class NamedDecl : public Decl {
224   /// The name of this declaration, which is typically a normal
225   /// identifier but may also be a special kind of name (C++
226   /// constructor, Objective-C selector, etc.)
227   DeclarationName Name;
228 
229   virtual void anchor();
230 
231 private:
232   NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
233 
234 protected:
NamedDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N)235   NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
236       : Decl(DK, DC, L), Name(N) {}
237 
238 public:
239   /// Get the identifier that names this declaration, if there is one.
240   ///
241   /// This will return NULL if this declaration has no name (e.g., for
242   /// an unnamed class) or if the name is a special name (C++ constructor,
243   /// Objective-C selector, etc.).
getIdentifier()244   IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
245 
246   /// Get the name of identifier for this declaration as a StringRef.
247   ///
248   /// This requires that the declaration have a name and that it be a simple
249   /// identifier.
getName()250   StringRef getName() const {
251     assert(Name.isIdentifier() && "Name is not a simple identifier");
252     return getIdentifier() ? getIdentifier()->getName() : "";
253   }
254 
255   /// Get a human-readable name for the declaration, even if it is one of the
256   /// special kinds of names (C++ constructor, Objective-C selector, etc).
257   ///
258   /// Creating this name requires expensive string manipulation, so it should
259   /// be called only when performance doesn't matter. For simple declarations,
260   /// getNameAsCString() should suffice.
261   //
262   // FIXME: This function should be renamed to indicate that it is not just an
263   // alternate form of getName(), and clients should move as appropriate.
264   //
265   // FIXME: Deprecated, move clients to getName().
getNameAsString()266   std::string getNameAsString() const { return Name.getAsString(); }
267 
268   /// Pretty-print the unqualified name of this declaration. Can be overloaded
269   /// by derived classes to provide a more user-friendly name when appropriate.
270   virtual void printName(raw_ostream &os) const;
271 
272   /// Get the actual, stored name of the declaration, which may be a special
273   /// name.
274   ///
275   /// Note that generally in diagnostics, the non-null \p NamedDecl* itself
276   /// should be sent into the diagnostic instead of using the result of
277   /// \p getDeclName().
278   ///
279   /// A \p DeclarationName in a diagnostic will just be streamed to the output,
280   /// which will directly result in a call to \p DeclarationName::print.
281   ///
282   /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
283   /// \p DeclarationName::print, but with two customisation points along the
284   /// way (\p getNameForDiagnostic and \p printName). These are used to print
285   /// the template arguments if any, and to provide a user-friendly name for
286   /// some entities (such as unnamed variables and anonymous records).
getDeclName()287   DeclarationName getDeclName() const { return Name; }
288 
289   /// Set the name of this declaration.
setDeclName(DeclarationName N)290   void setDeclName(DeclarationName N) { Name = N; }
291 
292   /// Returns a human-readable qualified name for this declaration, like
293   /// A::B::i, for i being member of namespace A::B.
294   ///
295   /// If the declaration is not a member of context which can be named (record,
296   /// namespace), it will return the same result as printName().
297   ///
298   /// Creating this name is expensive, so it should be called only when
299   /// performance doesn't matter.
300   void printQualifiedName(raw_ostream &OS) const;
301   void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
302 
303   /// Print only the nested name specifier part of a fully-qualified name,
304   /// including the '::' at the end. E.g.
305   ///    when `printQualifiedName(D)` prints "A::B::i",
306   ///    this function prints "A::B::".
307   void printNestedNameSpecifier(raw_ostream &OS) const;
308   void printNestedNameSpecifier(raw_ostream &OS,
309                                 const PrintingPolicy &Policy) const;
310 
311   // FIXME: Remove string version.
312   std::string getQualifiedNameAsString() const;
313 
314   /// Appends a human-readable name for this declaration into the given stream.
315   ///
316   /// This is the method invoked by Sema when displaying a NamedDecl
317   /// in a diagnostic.  It does not necessarily produce the same
318   /// result as printName(); for example, class template
319   /// specializations are printed with their template arguments.
320   virtual void getNameForDiagnostic(raw_ostream &OS,
321                                     const PrintingPolicy &Policy,
322                                     bool Qualified) const;
323 
324   /// Determine whether this declaration, if known to be well-formed within
325   /// its context, will replace the declaration OldD if introduced into scope.
326   ///
327   /// A declaration will replace another declaration if, for example, it is
328   /// a redeclaration of the same variable or function, but not if it is a
329   /// declaration of a different kind (function vs. class) or an overloaded
330   /// function.
331   ///
332   /// \param IsKnownNewer \c true if this declaration is known to be newer
333   /// than \p OldD (for instance, if this declaration is newly-created).
334   bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
335 
336   /// Determine whether this declaration has linkage.
337   bool hasLinkage() const;
338 
339   using Decl::isModulePrivate;
340   using Decl::setModulePrivate;
341 
342   /// Determine whether this declaration is a C++ class member.
isCXXClassMember()343   bool isCXXClassMember() const {
344     const DeclContext *DC = getDeclContext();
345 
346     // C++0x [class.mem]p1:
347     //   The enumerators of an unscoped enumeration defined in
348     //   the class are members of the class.
349     if (isa<EnumDecl>(DC))
350       DC = DC->getRedeclContext();
351 
352     return DC->isRecord();
353   }
354 
355   /// Determine whether the given declaration is an instance member of
356   /// a C++ class.
357   bool isCXXInstanceMember() const;
358 
359   /// Determine what kind of linkage this entity has.
360   ///
361   /// This is not the linkage as defined by the standard or the codegen notion
362   /// of linkage. It is just an implementation detail that is used to compute
363   /// those.
364   Linkage getLinkageInternal() const;
365 
366   /// Get the linkage from a semantic point of view. Entities in
367   /// anonymous namespaces are external (in c++98).
getFormalLinkage()368   Linkage getFormalLinkage() const {
369     return clang::getFormalLinkage(getLinkageInternal());
370   }
371 
372   /// True if this decl has external linkage.
hasExternalFormalLinkage()373   bool hasExternalFormalLinkage() const {
374     return isExternalFormalLinkage(getLinkageInternal());
375   }
376 
isExternallyVisible()377   bool isExternallyVisible() const {
378     return clang::isExternallyVisible(getLinkageInternal());
379   }
380 
381   /// Determine whether this declaration can be redeclared in a
382   /// different translation unit.
isExternallyDeclarable()383   bool isExternallyDeclarable() const {
384     return isExternallyVisible() && !getOwningModuleForLinkage();
385   }
386 
387   /// Determines the visibility of this entity.
getVisibility()388   Visibility getVisibility() const {
389     return getLinkageAndVisibility().getVisibility();
390   }
391 
392   /// Determines the linkage and visibility of this entity.
393   LinkageInfo getLinkageAndVisibility() const;
394 
395   /// Kinds of explicit visibility.
396   enum ExplicitVisibilityKind {
397     /// Do an LV computation for, ultimately, a type.
398     /// Visibility may be restricted by type visibility settings and
399     /// the visibility of template arguments.
400     VisibilityForType,
401 
402     /// Do an LV computation for, ultimately, a non-type declaration.
403     /// Visibility may be restricted by value visibility settings and
404     /// the visibility of template arguments.
405     VisibilityForValue
406   };
407 
408   /// If visibility was explicitly specified for this
409   /// declaration, return that visibility.
410   Optional<Visibility>
411   getExplicitVisibility(ExplicitVisibilityKind kind) const;
412 
413   /// True if the computed linkage is valid. Used for consistency
414   /// checking. Should always return true.
415   bool isLinkageValid() const;
416 
417   /// True if something has required us to compute the linkage
418   /// of this declaration.
419   ///
420   /// Language features which can retroactively change linkage (like a
421   /// typedef name for linkage purposes) may need to consider this,
422   /// but hopefully only in transitory ways during parsing.
hasLinkageBeenComputed()423   bool hasLinkageBeenComputed() const {
424     return hasCachedLinkage();
425   }
426 
427   /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
428   /// the underlying named decl.
getUnderlyingDecl()429   NamedDecl *getUnderlyingDecl() {
430     // Fast-path the common case.
431     if (this->getKind() != UsingShadow &&
432         this->getKind() != ConstructorUsingShadow &&
433         this->getKind() != ObjCCompatibleAlias &&
434         this->getKind() != NamespaceAlias)
435       return this;
436 
437     return getUnderlyingDeclImpl();
438   }
getUnderlyingDecl()439   const NamedDecl *getUnderlyingDecl() const {
440     return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
441   }
442 
getMostRecentDecl()443   NamedDecl *getMostRecentDecl() {
444     return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
445   }
getMostRecentDecl()446   const NamedDecl *getMostRecentDecl() const {
447     return const_cast<NamedDecl*>(this)->getMostRecentDecl();
448   }
449 
450   ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
451 
classof(const Decl * D)452   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)453   static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
454 };
455 
456 inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
457   ND.printName(OS);
458   return OS;
459 }
460 
461 /// Represents the declaration of a label.  Labels also have a
462 /// corresponding LabelStmt, which indicates the position that the label was
463 /// defined at.  For normal labels, the location of the decl is the same as the
464 /// location of the statement.  For GNU local labels (__label__), the decl
465 /// location is where the __label__ is.
466 class LabelDecl : public NamedDecl {
467   LabelStmt *TheStmt;
468   StringRef MSAsmName;
469   bool MSAsmNameResolved = false;
470 
471   /// For normal labels, this is the same as the main declaration
472   /// label, i.e., the location of the identifier; for GNU local labels,
473   /// this is the location of the __label__ keyword.
474   SourceLocation LocStart;
475 
LabelDecl(DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,LabelStmt * S,SourceLocation StartL)476   LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
477             LabelStmt *S, SourceLocation StartL)
478       : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
479 
480   void anchor() override;
481 
482 public:
483   static LabelDecl *Create(ASTContext &C, DeclContext *DC,
484                            SourceLocation IdentL, IdentifierInfo *II);
485   static LabelDecl *Create(ASTContext &C, DeclContext *DC,
486                            SourceLocation IdentL, IdentifierInfo *II,
487                            SourceLocation GnuLabelL);
488   static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
489 
getStmt()490   LabelStmt *getStmt() const { return TheStmt; }
setStmt(LabelStmt * T)491   void setStmt(LabelStmt *T) { TheStmt = T; }
492 
isGnuLocal()493   bool isGnuLocal() const { return LocStart != getLocation(); }
setLocStart(SourceLocation L)494   void setLocStart(SourceLocation L) { LocStart = L; }
495 
getSourceRange()496   SourceRange getSourceRange() const override LLVM_READONLY {
497     return SourceRange(LocStart, getLocation());
498   }
499 
isMSAsmLabel()500   bool isMSAsmLabel() const { return !MSAsmName.empty(); }
isResolvedMSAsmLabel()501   bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
502   void setMSAsmLabel(StringRef Name);
getMSAsmLabel()503   StringRef getMSAsmLabel() const { return MSAsmName; }
setMSAsmLabelResolved()504   void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
505 
506   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)507   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)508   static bool classofKind(Kind K) { return K == Label; }
509 };
510 
511 /// Represent a C++ namespace.
512 class NamespaceDecl : public NamedDecl, public DeclContext,
513                       public Redeclarable<NamespaceDecl>
514 {
515   /// The starting location of the source range, pointing
516   /// to either the namespace or the inline keyword.
517   SourceLocation LocStart;
518 
519   /// The ending location of the source range.
520   SourceLocation RBraceLoc;
521 
522   /// A pointer to either the anonymous namespace that lives just inside
523   /// this namespace or to the first namespace in the chain (the latter case
524   /// only when this is not the first in the chain), along with a
525   /// boolean value indicating whether this is an inline namespace.
526   llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
527 
528   NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
529                 SourceLocation StartLoc, SourceLocation IdLoc,
530                 IdentifierInfo *Id, NamespaceDecl *PrevDecl);
531 
532   using redeclarable_base = Redeclarable<NamespaceDecl>;
533 
534   NamespaceDecl *getNextRedeclarationImpl() override;
535   NamespaceDecl *getPreviousDeclImpl() override;
536   NamespaceDecl *getMostRecentDeclImpl() override;
537 
538 public:
539   friend class ASTDeclReader;
540   friend class ASTDeclWriter;
541 
542   static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
543                                bool Inline, SourceLocation StartLoc,
544                                SourceLocation IdLoc, IdentifierInfo *Id,
545                                NamespaceDecl *PrevDecl);
546 
547   static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
548 
549   using redecl_range = redeclarable_base::redecl_range;
550   using redecl_iterator = redeclarable_base::redecl_iterator;
551 
552   using redeclarable_base::redecls_begin;
553   using redeclarable_base::redecls_end;
554   using redeclarable_base::redecls;
555   using redeclarable_base::getPreviousDecl;
556   using redeclarable_base::getMostRecentDecl;
557   using redeclarable_base::isFirstDecl;
558 
559   /// Returns true if this is an anonymous namespace declaration.
560   ///
561   /// For example:
562   /// \code
563   ///   namespace {
564   ///     ...
565   ///   };
566   /// \endcode
567   /// q.v. C++ [namespace.unnamed]
isAnonymousNamespace()568   bool isAnonymousNamespace() const {
569     return !getIdentifier();
570   }
571 
572   /// Returns true if this is an inline namespace declaration.
isInline()573   bool isInline() const {
574     return AnonOrFirstNamespaceAndInline.getInt();
575   }
576 
577   /// Set whether this is an inline namespace declaration.
setInline(bool Inline)578   void setInline(bool Inline) {
579     AnonOrFirstNamespaceAndInline.setInt(Inline);
580   }
581 
582   /// Get the original (first) namespace declaration.
583   NamespaceDecl *getOriginalNamespace();
584 
585   /// Get the original (first) namespace declaration.
586   const NamespaceDecl *getOriginalNamespace() const;
587 
588   /// Return true if this declaration is an original (first) declaration
589   /// of the namespace. This is false for non-original (subsequent) namespace
590   /// declarations and anonymous namespaces.
591   bool isOriginalNamespace() const;
592 
593   /// Retrieve the anonymous namespace nested inside this namespace,
594   /// if any.
getAnonymousNamespace()595   NamespaceDecl *getAnonymousNamespace() const {
596     return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
597   }
598 
setAnonymousNamespace(NamespaceDecl * D)599   void setAnonymousNamespace(NamespaceDecl *D) {
600     getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
601   }
602 
603   /// Retrieves the canonical declaration of this namespace.
getCanonicalDecl()604   NamespaceDecl *getCanonicalDecl() override {
605     return getOriginalNamespace();
606   }
getCanonicalDecl()607   const NamespaceDecl *getCanonicalDecl() const {
608     return getOriginalNamespace();
609   }
610 
getSourceRange()611   SourceRange getSourceRange() const override LLVM_READONLY {
612     return SourceRange(LocStart, RBraceLoc);
613   }
614 
getBeginLoc()615   SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
getRBraceLoc()616   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setLocStart(SourceLocation L)617   void setLocStart(SourceLocation L) { LocStart = L; }
setRBraceLoc(SourceLocation L)618   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
619 
620   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)621   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)622   static bool classofKind(Kind K) { return K == Namespace; }
castToDeclContext(const NamespaceDecl * D)623   static DeclContext *castToDeclContext(const NamespaceDecl *D) {
624     return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
625   }
castFromDeclContext(const DeclContext * DC)626   static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
627     return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
628   }
629 };
630 
631 /// Represent the declaration of a variable (in which case it is
632 /// an lvalue) a function (in which case it is a function designator) or
633 /// an enum constant.
634 class ValueDecl : public NamedDecl {
635   QualType DeclType;
636 
637   void anchor() override;
638 
639 protected:
ValueDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T)640   ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
641             DeclarationName N, QualType T)
642     : NamedDecl(DK, DC, L, N), DeclType(T) {}
643 
644 public:
getType()645   QualType getType() const { return DeclType; }
setType(QualType newType)646   void setType(QualType newType) { DeclType = newType; }
647 
648   /// Determine whether this symbol is weakly-imported,
649   ///        or declared with the weak or weak-ref attr.
650   bool isWeak() const;
651 
652   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)653   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)654   static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
655 };
656 
657 /// A struct with extended info about a syntactic
658 /// name qualifier, to be used for the case of out-of-line declarations.
659 struct QualifierInfo {
660   NestedNameSpecifierLoc QualifierLoc;
661 
662   /// The number of "outer" template parameter lists.
663   /// The count includes all of the template parameter lists that were matched
664   /// against the template-ids occurring into the NNS and possibly (in the
665   /// case of an explicit specialization) a final "template <>".
666   unsigned NumTemplParamLists = 0;
667 
668   /// A new-allocated array of size NumTemplParamLists,
669   /// containing pointers to the "outer" template parameter lists.
670   /// It includes all of the template parameter lists that were matched
671   /// against the template-ids occurring into the NNS and possibly (in the
672   /// case of an explicit specialization) a final "template <>".
673   TemplateParameterList** TemplParamLists = nullptr;
674 
675   QualifierInfo() = default;
676   QualifierInfo(const QualifierInfo &) = delete;
677   QualifierInfo& operator=(const QualifierInfo &) = delete;
678 
679   /// Sets info about "outer" template parameter lists.
680   void setTemplateParameterListsInfo(ASTContext &Context,
681                                      ArrayRef<TemplateParameterList *> TPLists);
682 };
683 
684 /// Represents a ValueDecl that came out of a declarator.
685 /// Contains type source information through TypeSourceInfo.
686 class DeclaratorDecl : public ValueDecl {
687   // A struct representing a TInfo, a trailing requires-clause and a syntactic
688   // qualifier, to be used for the (uncommon) case of out-of-line declarations
689   // and constrained function decls.
690   struct ExtInfo : public QualifierInfo {
691     TypeSourceInfo *TInfo;
692     Expr *TrailingRequiresClause = nullptr;
693   };
694 
695   llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
696 
697   /// The start of the source range for this declaration,
698   /// ignoring outer template declarations.
699   SourceLocation InnerLocStart;
700 
hasExtInfo()701   bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
getExtInfo()702   ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
getExtInfo()703   const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
704 
705 protected:
DeclaratorDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL)706   DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
707                  DeclarationName N, QualType T, TypeSourceInfo *TInfo,
708                  SourceLocation StartL)
709       : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
710 
711 public:
712   friend class ASTDeclReader;
713   friend class ASTDeclWriter;
714 
getTypeSourceInfo()715   TypeSourceInfo *getTypeSourceInfo() const {
716     return hasExtInfo()
717       ? getExtInfo()->TInfo
718       : DeclInfo.get<TypeSourceInfo*>();
719   }
720 
setTypeSourceInfo(TypeSourceInfo * TI)721   void setTypeSourceInfo(TypeSourceInfo *TI) {
722     if (hasExtInfo())
723       getExtInfo()->TInfo = TI;
724     else
725       DeclInfo = TI;
726   }
727 
728   /// Return start of source range ignoring outer template declarations.
getInnerLocStart()729   SourceLocation getInnerLocStart() const { return InnerLocStart; }
setInnerLocStart(SourceLocation L)730   void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
731 
732   /// Return start of source range taking into account any outer template
733   /// declarations.
734   SourceLocation getOuterLocStart() const;
735 
736   SourceRange getSourceRange() const override LLVM_READONLY;
737 
getBeginLoc()738   SourceLocation getBeginLoc() const LLVM_READONLY {
739     return getOuterLocStart();
740   }
741 
742   /// Retrieve the nested-name-specifier that qualifies the name of this
743   /// declaration, if it was present in the source.
getQualifier()744   NestedNameSpecifier *getQualifier() const {
745     return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
746                         : nullptr;
747   }
748 
749   /// Retrieve the nested-name-specifier (with source-location
750   /// information) that qualifies the name of this declaration, if it was
751   /// present in the source.
getQualifierLoc()752   NestedNameSpecifierLoc getQualifierLoc() const {
753     return hasExtInfo() ? getExtInfo()->QualifierLoc
754                         : NestedNameSpecifierLoc();
755   }
756 
757   void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
758 
759   /// \brief Get the constraint-expression introduced by the trailing
760   /// requires-clause in the function/member declaration, or null if no
761   /// requires-clause was provided.
getTrailingRequiresClause()762   Expr *getTrailingRequiresClause() {
763     return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
764                         : nullptr;
765   }
766 
getTrailingRequiresClause()767   const Expr *getTrailingRequiresClause() const {
768     return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
769                         : nullptr;
770   }
771 
772   void setTrailingRequiresClause(Expr *TrailingRequiresClause);
773 
getNumTemplateParameterLists()774   unsigned getNumTemplateParameterLists() const {
775     return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
776   }
777 
getTemplateParameterList(unsigned index)778   TemplateParameterList *getTemplateParameterList(unsigned index) const {
779     assert(index < getNumTemplateParameterLists());
780     return getExtInfo()->TemplParamLists[index];
781   }
782 
783   void setTemplateParameterListsInfo(ASTContext &Context,
784                                      ArrayRef<TemplateParameterList *> TPLists);
785 
786   SourceLocation getTypeSpecStartLoc() const;
787   SourceLocation getTypeSpecEndLoc() const;
788 
789   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)790   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)791   static bool classofKind(Kind K) {
792     return K >= firstDeclarator && K <= lastDeclarator;
793   }
794 };
795 
796 /// Structure used to store a statement, the constant value to
797 /// which it was evaluated (if any), and whether or not the statement
798 /// is an integral constant expression (if known).
799 struct EvaluatedStmt {
800   /// Whether this statement was already evaluated.
801   bool WasEvaluated : 1;
802 
803   /// Whether this statement is being evaluated.
804   bool IsEvaluating : 1;
805 
806   /// Whether this variable is known to have constant initialization. This is
807   /// currently only computed in C++, for static / thread storage duration
808   /// variables that might have constant initialization and for variables that
809   /// are usable in constant expressions.
810   bool HasConstantInitialization : 1;
811 
812   /// Whether this variable is known to have constant destruction. That is,
813   /// whether running the destructor on the initial value is a side-effect
814   /// (and doesn't inspect any state that might have changed during program
815   /// execution). This is currently only computed if the destructor is
816   /// non-trivial.
817   bool HasConstantDestruction : 1;
818 
819   /// In C++98, whether the initializer is an ICE. This affects whether the
820   /// variable is usable in constant expressions.
821   bool HasICEInit : 1;
822   bool CheckedForICEInit : 1;
823 
824   Stmt *Value;
825   APValue Evaluated;
826 
EvaluatedStmtEvaluatedStmt827   EvaluatedStmt()
828       : WasEvaluated(false), IsEvaluating(false),
829         HasConstantInitialization(false), HasConstantDestruction(false),
830         HasICEInit(false), CheckedForICEInit(false) {}
831 };
832 
833 /// Represents a variable declaration or definition.
834 class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
835 public:
836   /// Initialization styles.
837   enum InitializationStyle {
838     /// C-style initialization with assignment
839     CInit,
840 
841     /// Call-style initialization (C++98)
842     CallInit,
843 
844     /// Direct list-initialization (C++11)
845     ListInit
846   };
847 
848   /// Kinds of thread-local storage.
849   enum TLSKind {
850     /// Not a TLS variable.
851     TLS_None,
852 
853     /// TLS with a known-constant initializer.
854     TLS_Static,
855 
856     /// TLS with a dynamic initializer.
857     TLS_Dynamic
858   };
859 
860   /// Return the string used to specify the storage class \p SC.
861   ///
862   /// It is illegal to call this function with SC == None.
863   static const char *getStorageClassSpecifierString(StorageClass SC);
864 
865 protected:
866   // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
867   // have allocated the auxiliary struct of information there.
868   //
869   // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
870   // this as *many* VarDecls are ParmVarDecls that don't have default
871   // arguments. We could save some space by moving this pointer union to be
872   // allocated in trailing space when necessary.
873   using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
874 
875   /// The initializer for this variable or, for a ParmVarDecl, the
876   /// C++ default argument.
877   mutable InitType Init;
878 
879 private:
880   friend class ASTDeclReader;
881   friend class ASTNodeImporter;
882   friend class StmtIteratorBase;
883 
884   class VarDeclBitfields {
885     friend class ASTDeclReader;
886     friend class VarDecl;
887 
888     unsigned SClass : 3;
889     unsigned TSCSpec : 2;
890     unsigned InitStyle : 2;
891 
892     /// Whether this variable is an ARC pseudo-__strong variable; see
893     /// isARCPseudoStrong() for details.
894     unsigned ARCPseudoStrong : 1;
895   };
896   enum { NumVarDeclBits = 8 };
897 
898 protected:
899   enum { NumParameterIndexBits = 8 };
900 
901   enum DefaultArgKind {
902     DAK_None,
903     DAK_Unparsed,
904     DAK_Uninstantiated,
905     DAK_Normal
906   };
907 
908   enum { NumScopeDepthOrObjCQualsBits = 7 };
909 
910   class ParmVarDeclBitfields {
911     friend class ASTDeclReader;
912     friend class ParmVarDecl;
913 
914     unsigned : NumVarDeclBits;
915 
916     /// Whether this parameter inherits a default argument from a
917     /// prior declaration.
918     unsigned HasInheritedDefaultArg : 1;
919 
920     /// Describes the kind of default argument for this parameter. By default
921     /// this is none. If this is normal, then the default argument is stored in
922     /// the \c VarDecl initializer expression unless we were unable to parse
923     /// (even an invalid) expression for the default argument.
924     unsigned DefaultArgKind : 2;
925 
926     /// Whether this parameter undergoes K&R argument promotion.
927     unsigned IsKNRPromoted : 1;
928 
929     /// Whether this parameter is an ObjC method parameter or not.
930     unsigned IsObjCMethodParam : 1;
931 
932     /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
933     /// Otherwise, the number of function parameter scopes enclosing
934     /// the function parameter scope in which this parameter was
935     /// declared.
936     unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
937 
938     /// The number of parameters preceding this parameter in the
939     /// function parameter scope in which it was declared.
940     unsigned ParameterIndex : NumParameterIndexBits;
941   };
942 
943   class NonParmVarDeclBitfields {
944     friend class ASTDeclReader;
945     friend class ImplicitParamDecl;
946     friend class VarDecl;
947 
948     unsigned : NumVarDeclBits;
949 
950     // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
951     /// Whether this variable is a definition which was demoted due to
952     /// module merge.
953     unsigned IsThisDeclarationADemotedDefinition : 1;
954 
955     /// Whether this variable is the exception variable in a C++ catch
956     /// or an Objective-C @catch statement.
957     unsigned ExceptionVar : 1;
958 
959     /// Whether this local variable could be allocated in the return
960     /// slot of its function, enabling the named return value optimization
961     /// (NRVO).
962     unsigned NRVOVariable : 1;
963 
964     /// Whether this variable is the for-range-declaration in a C++0x
965     /// for-range statement.
966     unsigned CXXForRangeDecl : 1;
967 
968     /// Whether this variable is the for-in loop declaration in Objective-C.
969     unsigned ObjCForDecl : 1;
970 
971     /// Whether this variable is (C++1z) inline.
972     unsigned IsInline : 1;
973 
974     /// Whether this variable has (C++1z) inline explicitly specified.
975     unsigned IsInlineSpecified : 1;
976 
977     /// Whether this variable is (C++0x) constexpr.
978     unsigned IsConstexpr : 1;
979 
980     /// Whether this variable is the implicit variable for a lambda
981     /// init-capture.
982     unsigned IsInitCapture : 1;
983 
984     /// Whether this local extern variable's previous declaration was
985     /// declared in the same block scope. This controls whether we should merge
986     /// the type of this declaration with its previous declaration.
987     unsigned PreviousDeclInSameBlockScope : 1;
988 
989     /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
990     /// something else.
991     unsigned ImplicitParamKind : 3;
992 
993     unsigned EscapingByref : 1;
994   };
995 
996   union {
997     unsigned AllBits;
998     VarDeclBitfields VarDeclBits;
999     ParmVarDeclBitfields ParmVarDeclBits;
1000     NonParmVarDeclBitfields NonParmVarDeclBits;
1001   };
1002 
1003   VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1004           SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1005           TypeSourceInfo *TInfo, StorageClass SC);
1006 
1007   using redeclarable_base = Redeclarable<VarDecl>;
1008 
getNextRedeclarationImpl()1009   VarDecl *getNextRedeclarationImpl() override {
1010     return getNextRedeclaration();
1011   }
1012 
getPreviousDeclImpl()1013   VarDecl *getPreviousDeclImpl() override {
1014     return getPreviousDecl();
1015   }
1016 
getMostRecentDeclImpl()1017   VarDecl *getMostRecentDeclImpl() override {
1018     return getMostRecentDecl();
1019   }
1020 
1021 public:
1022   using redecl_range = redeclarable_base::redecl_range;
1023   using redecl_iterator = redeclarable_base::redecl_iterator;
1024 
1025   using redeclarable_base::redecls_begin;
1026   using redeclarable_base::redecls_end;
1027   using redeclarable_base::redecls;
1028   using redeclarable_base::getPreviousDecl;
1029   using redeclarable_base::getMostRecentDecl;
1030   using redeclarable_base::isFirstDecl;
1031 
1032   static VarDecl *Create(ASTContext &C, DeclContext *DC,
1033                          SourceLocation StartLoc, SourceLocation IdLoc,
1034                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1035                          StorageClass S);
1036 
1037   static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1038 
1039   SourceRange getSourceRange() const override LLVM_READONLY;
1040 
1041   /// Returns the storage class as written in the source. For the
1042   /// computed linkage of symbol, see getLinkage.
getStorageClass()1043   StorageClass getStorageClass() const {
1044     return (StorageClass) VarDeclBits.SClass;
1045   }
1046   void setStorageClass(StorageClass SC);
1047 
setTSCSpec(ThreadStorageClassSpecifier TSC)1048   void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1049     VarDeclBits.TSCSpec = TSC;
1050     assert(VarDeclBits.TSCSpec == TSC && "truncation");
1051   }
getTSCSpec()1052   ThreadStorageClassSpecifier getTSCSpec() const {
1053     return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1054   }
1055   TLSKind getTLSKind() const;
1056 
1057   /// Returns true if a variable with function scope is a non-static local
1058   /// variable.
hasLocalStorage()1059   bool hasLocalStorage() const {
1060     if (getStorageClass() == SC_None) {
1061       // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1062       // used to describe variables allocated in global memory and which are
1063       // accessed inside a kernel(s) as read-only variables. As such, variables
1064       // in constant address space cannot have local storage.
1065       if (getType().getAddressSpace() == LangAS::opencl_constant)
1066         return false;
1067       // Second check is for C++11 [dcl.stc]p4.
1068       return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1069     }
1070 
1071     // Global Named Register (GNU extension)
1072     if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1073       return false;
1074 
1075     // Return true for:  Auto, Register.
1076     // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1077 
1078     return getStorageClass() >= SC_Auto;
1079   }
1080 
1081   /// Returns true if a variable with function scope is a static local
1082   /// variable.
isStaticLocal()1083   bool isStaticLocal() const {
1084     return (getStorageClass() == SC_Static ||
1085             // C++11 [dcl.stc]p4
1086             (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1087       && !isFileVarDecl();
1088   }
1089 
1090   /// Returns true if a variable has extern or __private_extern__
1091   /// storage.
hasExternalStorage()1092   bool hasExternalStorage() const {
1093     return getStorageClass() == SC_Extern ||
1094            getStorageClass() == SC_PrivateExtern;
1095   }
1096 
1097   /// Returns true for all variables that do not have local storage.
1098   ///
1099   /// This includes all global variables as well as static variables declared
1100   /// within a function.
hasGlobalStorage()1101   bool hasGlobalStorage() const { return !hasLocalStorage(); }
1102 
1103   /// Get the storage duration of this variable, per C++ [basic.stc].
getStorageDuration()1104   StorageDuration getStorageDuration() const {
1105     return hasLocalStorage() ? SD_Automatic :
1106            getTSCSpec() ? SD_Thread : SD_Static;
1107   }
1108 
1109   /// Compute the language linkage.
1110   LanguageLinkage getLanguageLinkage() const;
1111 
1112   /// Determines whether this variable is a variable with external, C linkage.
1113   bool isExternC() const;
1114 
1115   /// Determines whether this variable's context is, or is nested within,
1116   /// a C++ extern "C" linkage spec.
1117   bool isInExternCContext() const;
1118 
1119   /// Determines whether this variable's context is, or is nested within,
1120   /// a C++ extern "C++" linkage spec.
1121   bool isInExternCXXContext() const;
1122 
1123   /// Returns true for local variable declarations other than parameters.
1124   /// Note that this includes static variables inside of functions. It also
1125   /// includes variables inside blocks.
1126   ///
1127   ///   void foo() { int x; static int y; extern int z; }
isLocalVarDecl()1128   bool isLocalVarDecl() const {
1129     if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1130       return false;
1131     if (const DeclContext *DC = getLexicalDeclContext())
1132       return DC->getRedeclContext()->isFunctionOrMethod();
1133     return false;
1134   }
1135 
1136   /// Similar to isLocalVarDecl but also includes parameters.
isLocalVarDeclOrParm()1137   bool isLocalVarDeclOrParm() const {
1138     return isLocalVarDecl() || getKind() == Decl::ParmVar;
1139   }
1140 
1141   /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
isFunctionOrMethodVarDecl()1142   bool isFunctionOrMethodVarDecl() const {
1143     if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1144       return false;
1145     const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1146     return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1147   }
1148 
1149   /// Determines whether this is a static data member.
1150   ///
1151   /// This will only be true in C++, and applies to, e.g., the
1152   /// variable 'x' in:
1153   /// \code
1154   /// struct S {
1155   ///   static int x;
1156   /// };
1157   /// \endcode
isStaticDataMember()1158   bool isStaticDataMember() const {
1159     // If it wasn't static, it would be a FieldDecl.
1160     return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1161   }
1162 
1163   VarDecl *getCanonicalDecl() override;
getCanonicalDecl()1164   const VarDecl *getCanonicalDecl() const {
1165     return const_cast<VarDecl*>(this)->getCanonicalDecl();
1166   }
1167 
1168   enum DefinitionKind {
1169     /// This declaration is only a declaration.
1170     DeclarationOnly,
1171 
1172     /// This declaration is a tentative definition.
1173     TentativeDefinition,
1174 
1175     /// This declaration is definitely a definition.
1176     Definition
1177   };
1178 
1179   /// Check whether this declaration is a definition. If this could be
1180   /// a tentative definition (in C), don't check whether there's an overriding
1181   /// definition.
1182   DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
isThisDeclarationADefinition()1183   DefinitionKind isThisDeclarationADefinition() const {
1184     return isThisDeclarationADefinition(getASTContext());
1185   }
1186 
1187   /// Check whether this variable is defined in this translation unit.
1188   DefinitionKind hasDefinition(ASTContext &) const;
hasDefinition()1189   DefinitionKind hasDefinition() const {
1190     return hasDefinition(getASTContext());
1191   }
1192 
1193   /// Get the tentative definition that acts as the real definition in a TU.
1194   /// Returns null if there is a proper definition available.
1195   VarDecl *getActingDefinition();
getActingDefinition()1196   const VarDecl *getActingDefinition() const {
1197     return const_cast<VarDecl*>(this)->getActingDefinition();
1198   }
1199 
1200   /// Get the real (not just tentative) definition for this declaration.
1201   VarDecl *getDefinition(ASTContext &);
getDefinition(ASTContext & C)1202   const VarDecl *getDefinition(ASTContext &C) const {
1203     return const_cast<VarDecl*>(this)->getDefinition(C);
1204   }
getDefinition()1205   VarDecl *getDefinition() {
1206     return getDefinition(getASTContext());
1207   }
getDefinition()1208   const VarDecl *getDefinition() const {
1209     return const_cast<VarDecl*>(this)->getDefinition();
1210   }
1211 
1212   /// Determine whether this is or was instantiated from an out-of-line
1213   /// definition of a static data member.
1214   bool isOutOfLine() const override;
1215 
1216   /// Returns true for file scoped variable declaration.
isFileVarDecl()1217   bool isFileVarDecl() const {
1218     Kind K = getKind();
1219     if (K == ParmVar || K == ImplicitParam)
1220       return false;
1221 
1222     if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1223       return true;
1224 
1225     if (isStaticDataMember())
1226       return true;
1227 
1228     return false;
1229   }
1230 
1231   /// Get the initializer for this variable, no matter which
1232   /// declaration it is attached to.
getAnyInitializer()1233   const Expr *getAnyInitializer() const {
1234     const VarDecl *D;
1235     return getAnyInitializer(D);
1236   }
1237 
1238   /// Get the initializer for this variable, no matter which
1239   /// declaration it is attached to. Also get that declaration.
1240   const Expr *getAnyInitializer(const VarDecl *&D) const;
1241 
1242   bool hasInit() const;
getInit()1243   const Expr *getInit() const {
1244     return const_cast<VarDecl *>(this)->getInit();
1245   }
1246   Expr *getInit();
1247 
1248   /// Retrieve the address of the initializer expression.
1249   Stmt **getInitAddress();
1250 
1251   void setInit(Expr *I);
1252 
1253   /// Get the initializing declaration of this variable, if any. This is
1254   /// usually the definition, except that for a static data member it can be
1255   /// the in-class declaration.
1256   VarDecl *getInitializingDeclaration();
getInitializingDeclaration()1257   const VarDecl *getInitializingDeclaration() const {
1258     return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1259   }
1260 
1261   /// Determine whether this variable's value might be usable in a
1262   /// constant expression, according to the relevant language standard.
1263   /// This only checks properties of the declaration, and does not check
1264   /// whether the initializer is in fact a constant expression.
1265   bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
1266 
1267   /// Determine whether this variable's value can be used in a
1268   /// constant expression, according to the relevant language standard,
1269   /// including checking whether it was initialized by a constant expression.
1270   bool isUsableInConstantExpressions(const ASTContext &C) const;
1271 
1272   EvaluatedStmt *ensureEvaluatedStmt() const;
1273   EvaluatedStmt *getEvaluatedStmt() const;
1274 
1275   /// Attempt to evaluate the value of the initializer attached to this
1276   /// declaration, and produce notes explaining why it cannot be evaluated.
1277   /// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
1278   APValue *evaluateValue() const;
1279 
1280 private:
1281   APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
1282                              bool IsConstantInitialization) const;
1283 
1284 public:
1285   /// Return the already-evaluated value of this variable's
1286   /// initializer, or NULL if the value is not yet known. Returns pointer
1287   /// to untyped APValue if the value could not be evaluated.
1288   APValue *getEvaluatedValue() const;
1289 
1290   /// Evaluate the destruction of this variable to determine if it constitutes
1291   /// constant destruction.
1292   ///
1293   /// \pre hasConstantInitialization()
1294   /// \return \c true if this variable has constant destruction, \c false if
1295   ///         not.
1296   bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1297 
1298   /// Determine whether this variable has constant initialization.
1299   ///
1300   /// This is only set in two cases: when the language semantics require
1301   /// constant initialization (globals in C and some globals in C++), and when
1302   /// the variable is usable in constant expressions (constexpr, const int, and
1303   /// reference variables in C++).
1304   bool hasConstantInitialization() const;
1305 
1306   /// Determine whether the initializer of this variable is an integer constant
1307   /// expression. For use in C++98, where this affects whether the variable is
1308   /// usable in constant expressions.
1309   bool hasICEInitializer(const ASTContext &Context) const;
1310 
1311   /// Evaluate the initializer of this variable to determine whether it's a
1312   /// constant initializer. Should only be called once, after completing the
1313   /// definition of the variable.
1314   bool checkForConstantInitialization(
1315       SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1316 
setInitStyle(InitializationStyle Style)1317   void setInitStyle(InitializationStyle Style) {
1318     VarDeclBits.InitStyle = Style;
1319   }
1320 
1321   /// The style of initialization for this declaration.
1322   ///
1323   /// C-style initialization is "int x = 1;". Call-style initialization is
1324   /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1325   /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1326   /// expression for class types. List-style initialization is C++11 syntax,
1327   /// e.g. "int x{1};". Clients can distinguish between different forms of
1328   /// initialization by checking this value. In particular, "int x = {1};" is
1329   /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1330   /// Init expression in all three cases is an InitListExpr.
getInitStyle()1331   InitializationStyle getInitStyle() const {
1332     return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1333   }
1334 
1335   /// Whether the initializer is a direct-initializer (list or call).
isDirectInit()1336   bool isDirectInit() const {
1337     return getInitStyle() != CInit;
1338   }
1339 
1340   /// If this definition should pretend to be a declaration.
isThisDeclarationADemotedDefinition()1341   bool isThisDeclarationADemotedDefinition() const {
1342     return isa<ParmVarDecl>(this) ? false :
1343       NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1344   }
1345 
1346   /// This is a definition which should be demoted to a declaration.
1347   ///
1348   /// In some cases (mostly module merging) we can end up with two visible
1349   /// definitions one of which needs to be demoted to a declaration to keep
1350   /// the AST invariants.
demoteThisDefinitionToDeclaration()1351   void demoteThisDefinitionToDeclaration() {
1352     assert(isThisDeclarationADefinition() && "Not a definition!");
1353     assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
1354     NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1355   }
1356 
1357   /// Determine whether this variable is the exception variable in a
1358   /// C++ catch statememt or an Objective-C \@catch statement.
isExceptionVariable()1359   bool isExceptionVariable() const {
1360     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1361   }
setExceptionVariable(bool EV)1362   void setExceptionVariable(bool EV) {
1363     assert(!isa<ParmVarDecl>(this));
1364     NonParmVarDeclBits.ExceptionVar = EV;
1365   }
1366 
1367   /// Determine whether this local variable can be used with the named
1368   /// return value optimization (NRVO).
1369   ///
1370   /// The named return value optimization (NRVO) works by marking certain
1371   /// non-volatile local variables of class type as NRVO objects. These
1372   /// locals can be allocated within the return slot of their containing
1373   /// function, in which case there is no need to copy the object to the
1374   /// return slot when returning from the function. Within the function body,
1375   /// each return that returns the NRVO object will have this variable as its
1376   /// NRVO candidate.
isNRVOVariable()1377   bool isNRVOVariable() const {
1378     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1379   }
setNRVOVariable(bool NRVO)1380   void setNRVOVariable(bool NRVO) {
1381     assert(!isa<ParmVarDecl>(this));
1382     NonParmVarDeclBits.NRVOVariable = NRVO;
1383   }
1384 
1385   /// Determine whether this variable is the for-range-declaration in
1386   /// a C++0x for-range statement.
isCXXForRangeDecl()1387   bool isCXXForRangeDecl() const {
1388     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1389   }
setCXXForRangeDecl(bool FRD)1390   void setCXXForRangeDecl(bool FRD) {
1391     assert(!isa<ParmVarDecl>(this));
1392     NonParmVarDeclBits.CXXForRangeDecl = FRD;
1393   }
1394 
1395   /// Determine whether this variable is a for-loop declaration for a
1396   /// for-in statement in Objective-C.
isObjCForDecl()1397   bool isObjCForDecl() const {
1398     return NonParmVarDeclBits.ObjCForDecl;
1399   }
1400 
setObjCForDecl(bool FRD)1401   void setObjCForDecl(bool FRD) {
1402     NonParmVarDeclBits.ObjCForDecl = FRD;
1403   }
1404 
1405   /// Determine whether this variable is an ARC pseudo-__strong variable. A
1406   /// pseudo-__strong variable has a __strong-qualified type but does not
1407   /// actually retain the object written into it. Generally such variables are
1408   /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1409   /// the variable is annotated with the objc_externally_retained attribute, 2)
1410   /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1411   /// loop.
isARCPseudoStrong()1412   bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
setARCPseudoStrong(bool PS)1413   void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1414 
1415   /// Whether this variable is (C++1z) inline.
isInline()1416   bool isInline() const {
1417     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1418   }
isInlineSpecified()1419   bool isInlineSpecified() const {
1420     return isa<ParmVarDecl>(this) ? false
1421                                   : NonParmVarDeclBits.IsInlineSpecified;
1422   }
setInlineSpecified()1423   void setInlineSpecified() {
1424     assert(!isa<ParmVarDecl>(this));
1425     NonParmVarDeclBits.IsInline = true;
1426     NonParmVarDeclBits.IsInlineSpecified = true;
1427   }
setImplicitlyInline()1428   void setImplicitlyInline() {
1429     assert(!isa<ParmVarDecl>(this));
1430     NonParmVarDeclBits.IsInline = true;
1431   }
1432 
1433   /// Whether this variable is (C++11) constexpr.
isConstexpr()1434   bool isConstexpr() const {
1435     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1436   }
setConstexpr(bool IC)1437   void setConstexpr(bool IC) {
1438     assert(!isa<ParmVarDecl>(this));
1439     NonParmVarDeclBits.IsConstexpr = IC;
1440   }
1441 
1442   /// Whether this variable is the implicit variable for a lambda init-capture.
isInitCapture()1443   bool isInitCapture() const {
1444     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1445   }
setInitCapture(bool IC)1446   void setInitCapture(bool IC) {
1447     assert(!isa<ParmVarDecl>(this));
1448     NonParmVarDeclBits.IsInitCapture = IC;
1449   }
1450 
1451   /// Determine whether this variable is actually a function parameter pack or
1452   /// init-capture pack.
1453   bool isParameterPack() const;
1454 
1455   /// Whether this local extern variable declaration's previous declaration
1456   /// was declared in the same block scope. Only correct in C++.
isPreviousDeclInSameBlockScope()1457   bool isPreviousDeclInSameBlockScope() const {
1458     return isa<ParmVarDecl>(this)
1459                ? false
1460                : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1461   }
setPreviousDeclInSameBlockScope(bool Same)1462   void setPreviousDeclInSameBlockScope(bool Same) {
1463     assert(!isa<ParmVarDecl>(this));
1464     NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1465   }
1466 
1467   /// Indicates the capture is a __block variable that is captured by a block
1468   /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1469   /// returns false).
1470   bool isEscapingByref() const;
1471 
1472   /// Indicates the capture is a __block variable that is never captured by an
1473   /// escaping block.
1474   bool isNonEscapingByref() const;
1475 
setEscapingByref()1476   void setEscapingByref() {
1477     NonParmVarDeclBits.EscapingByref = true;
1478   }
1479 
1480   /// Retrieve the variable declaration from which this variable could
1481   /// be instantiated, if it is an instantiation (rather than a non-template).
1482   VarDecl *getTemplateInstantiationPattern() const;
1483 
1484   /// If this variable is an instantiated static data member of a
1485   /// class template specialization, returns the templated static data member
1486   /// from which it was instantiated.
1487   VarDecl *getInstantiatedFromStaticDataMember() const;
1488 
1489   /// If this variable is an instantiation of a variable template or a
1490   /// static data member of a class template, determine what kind of
1491   /// template specialization or instantiation this is.
1492   TemplateSpecializationKind getTemplateSpecializationKind() const;
1493 
1494   /// Get the template specialization kind of this variable for the purposes of
1495   /// template instantiation. This differs from getTemplateSpecializationKind()
1496   /// for an instantiation of a class-scope explicit specialization.
1497   TemplateSpecializationKind
1498   getTemplateSpecializationKindForInstantiation() const;
1499 
1500   /// If this variable is an instantiation of a variable template or a
1501   /// static data member of a class template, determine its point of
1502   /// instantiation.
1503   SourceLocation getPointOfInstantiation() const;
1504 
1505   /// If this variable is an instantiation of a static data member of a
1506   /// class template specialization, retrieves the member specialization
1507   /// information.
1508   MemberSpecializationInfo *getMemberSpecializationInfo() const;
1509 
1510   /// For a static data member that was instantiated from a static
1511   /// data member of a class template, set the template specialiation kind.
1512   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1513                         SourceLocation PointOfInstantiation = SourceLocation());
1514 
1515   /// Specify that this variable is an instantiation of the
1516   /// static data member VD.
1517   void setInstantiationOfStaticDataMember(VarDecl *VD,
1518                                           TemplateSpecializationKind TSK);
1519 
1520   /// Retrieves the variable template that is described by this
1521   /// variable declaration.
1522   ///
1523   /// Every variable template is represented as a VarTemplateDecl and a
1524   /// VarDecl. The former contains template properties (such as
1525   /// the template parameter lists) while the latter contains the
1526   /// actual description of the template's
1527   /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1528   /// VarDecl that from a VarTemplateDecl, while
1529   /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1530   /// a VarDecl.
1531   VarTemplateDecl *getDescribedVarTemplate() const;
1532 
1533   void setDescribedVarTemplate(VarTemplateDecl *Template);
1534 
1535   // Is this variable known to have a definition somewhere in the complete
1536   // program? This may be true even if the declaration has internal linkage and
1537   // has no definition within this source file.
1538   bool isKnownToBeDefined() const;
1539 
1540   /// Is destruction of this variable entirely suppressed? If so, the variable
1541   /// need not have a usable destructor at all.
1542   bool isNoDestroy(const ASTContext &) const;
1543 
1544   /// Would the destruction of this variable have any effect, and if so, what
1545   /// kind?
1546   QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
1547 
1548   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1549   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1550   static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1551 };
1552 
1553 class ImplicitParamDecl : public VarDecl {
1554   void anchor() override;
1555 
1556 public:
1557   /// Defines the kind of the implicit parameter: is this an implicit parameter
1558   /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1559   /// context or something else.
1560   enum ImplicitParamKind : unsigned {
1561     /// Parameter for Objective-C 'self' argument
1562     ObjCSelf,
1563 
1564     /// Parameter for Objective-C '_cmd' argument
1565     ObjCCmd,
1566 
1567     /// Parameter for C++ 'this' argument
1568     CXXThis,
1569 
1570     /// Parameter for C++ virtual table pointers
1571     CXXVTT,
1572 
1573     /// Parameter for captured context
1574     CapturedContext,
1575 
1576     /// Other implicit parameter
1577     Other,
1578   };
1579 
1580   /// Create implicit parameter.
1581   static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1582                                    SourceLocation IdLoc, IdentifierInfo *Id,
1583                                    QualType T, ImplicitParamKind ParamKind);
1584   static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1585                                    ImplicitParamKind ParamKind);
1586 
1587   static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1588 
ImplicitParamDecl(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type,ImplicitParamKind ParamKind)1589   ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1590                     IdentifierInfo *Id, QualType Type,
1591                     ImplicitParamKind ParamKind)
1592       : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1593                 /*TInfo=*/nullptr, SC_None) {
1594     NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1595     setImplicit();
1596   }
1597 
ImplicitParamDecl(ASTContext & C,QualType Type,ImplicitParamKind ParamKind)1598   ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1599       : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1600                 SourceLocation(), /*Id=*/nullptr, Type,
1601                 /*TInfo=*/nullptr, SC_None) {
1602     NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1603     setImplicit();
1604   }
1605 
1606   /// Returns the implicit parameter kind.
getParameterKind()1607   ImplicitParamKind getParameterKind() const {
1608     return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1609   }
1610 
1611   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1612   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1613   static bool classofKind(Kind K) { return K == ImplicitParam; }
1614 };
1615 
1616 /// Represents a parameter to a function.
1617 class ParmVarDecl : public VarDecl {
1618 public:
1619   enum { MaxFunctionScopeDepth = 255 };
1620   enum { MaxFunctionScopeIndex = 255 };
1621 
1622 protected:
ParmVarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)1623   ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1624               SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1625               TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1626       : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1627     assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
1628     assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
1629     assert(ParmVarDeclBits.IsKNRPromoted == false);
1630     assert(ParmVarDeclBits.IsObjCMethodParam == false);
1631     setDefaultArg(DefArg);
1632   }
1633 
1634 public:
1635   static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1636                              SourceLocation StartLoc,
1637                              SourceLocation IdLoc, IdentifierInfo *Id,
1638                              QualType T, TypeSourceInfo *TInfo,
1639                              StorageClass S, Expr *DefArg);
1640 
1641   static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1642 
1643   SourceRange getSourceRange() const override LLVM_READONLY;
1644 
setObjCMethodScopeInfo(unsigned parameterIndex)1645   void setObjCMethodScopeInfo(unsigned parameterIndex) {
1646     ParmVarDeclBits.IsObjCMethodParam = true;
1647     setParameterIndex(parameterIndex);
1648   }
1649 
setScopeInfo(unsigned scopeDepth,unsigned parameterIndex)1650   void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1651     assert(!ParmVarDeclBits.IsObjCMethodParam);
1652 
1653     ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1654     assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
1655            && "truncation!");
1656 
1657     setParameterIndex(parameterIndex);
1658   }
1659 
isObjCMethodParameter()1660   bool isObjCMethodParameter() const {
1661     return ParmVarDeclBits.IsObjCMethodParam;
1662   }
1663 
getFunctionScopeDepth()1664   unsigned getFunctionScopeDepth() const {
1665     if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1666     return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1667   }
1668 
getMaxFunctionScopeDepth()1669   static constexpr unsigned getMaxFunctionScopeDepth() {
1670     return (1u << NumScopeDepthOrObjCQualsBits) - 1;
1671   }
1672 
1673   /// Returns the index of this parameter in its prototype or method scope.
getFunctionScopeIndex()1674   unsigned getFunctionScopeIndex() const {
1675     return getParameterIndex();
1676   }
1677 
getObjCDeclQualifier()1678   ObjCDeclQualifier getObjCDeclQualifier() const {
1679     if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1680     return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1681   }
setObjCDeclQualifier(ObjCDeclQualifier QTVal)1682   void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1683     assert(ParmVarDeclBits.IsObjCMethodParam);
1684     ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1685   }
1686 
1687   /// True if the value passed to this parameter must undergo
1688   /// K&R-style default argument promotion:
1689   ///
1690   /// C99 6.5.2.2.
1691   ///   If the expression that denotes the called function has a type
1692   ///   that does not include a prototype, the integer promotions are
1693   ///   performed on each argument, and arguments that have type float
1694   ///   are promoted to double.
isKNRPromoted()1695   bool isKNRPromoted() const {
1696     return ParmVarDeclBits.IsKNRPromoted;
1697   }
setKNRPromoted(bool promoted)1698   void setKNRPromoted(bool promoted) {
1699     ParmVarDeclBits.IsKNRPromoted = promoted;
1700   }
1701 
1702   Expr *getDefaultArg();
getDefaultArg()1703   const Expr *getDefaultArg() const {
1704     return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1705   }
1706 
1707   void setDefaultArg(Expr *defarg);
1708 
1709   /// Retrieve the source range that covers the entire default
1710   /// argument.
1711   SourceRange getDefaultArgRange() const;
1712   void setUninstantiatedDefaultArg(Expr *arg);
1713   Expr *getUninstantiatedDefaultArg();
getUninstantiatedDefaultArg()1714   const Expr *getUninstantiatedDefaultArg() const {
1715     return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1716   }
1717 
1718   /// Determines whether this parameter has a default argument,
1719   /// either parsed or not.
1720   bool hasDefaultArg() const;
1721 
1722   /// Determines whether this parameter has a default argument that has not
1723   /// yet been parsed. This will occur during the processing of a C++ class
1724   /// whose member functions have default arguments, e.g.,
1725   /// @code
1726   ///   class X {
1727   ///   public:
1728   ///     void f(int x = 17); // x has an unparsed default argument now
1729   ///   }; // x has a regular default argument now
1730   /// @endcode
hasUnparsedDefaultArg()1731   bool hasUnparsedDefaultArg() const {
1732     return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1733   }
1734 
hasUninstantiatedDefaultArg()1735   bool hasUninstantiatedDefaultArg() const {
1736     return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1737   }
1738 
1739   /// Specify that this parameter has an unparsed default argument.
1740   /// The argument will be replaced with a real default argument via
1741   /// setDefaultArg when the class definition enclosing the function
1742   /// declaration that owns this default argument is completed.
setUnparsedDefaultArg()1743   void setUnparsedDefaultArg() {
1744     ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1745   }
1746 
hasInheritedDefaultArg()1747   bool hasInheritedDefaultArg() const {
1748     return ParmVarDeclBits.HasInheritedDefaultArg;
1749   }
1750 
1751   void setHasInheritedDefaultArg(bool I = true) {
1752     ParmVarDeclBits.HasInheritedDefaultArg = I;
1753   }
1754 
1755   QualType getOriginalType() const;
1756 
1757   /// Sets the function declaration that owns this
1758   /// ParmVarDecl. Since ParmVarDecls are often created before the
1759   /// FunctionDecls that own them, this routine is required to update
1760   /// the DeclContext appropriately.
setOwningFunction(DeclContext * FD)1761   void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1762 
1763   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1764   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1765   static bool classofKind(Kind K) { return K == ParmVar; }
1766 
1767 private:
1768   enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1769 
setParameterIndex(unsigned parameterIndex)1770   void setParameterIndex(unsigned parameterIndex) {
1771     if (parameterIndex >= ParameterIndexSentinel) {
1772       setParameterIndexLarge(parameterIndex);
1773       return;
1774     }
1775 
1776     ParmVarDeclBits.ParameterIndex = parameterIndex;
1777     assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
1778   }
getParameterIndex()1779   unsigned getParameterIndex() const {
1780     unsigned d = ParmVarDeclBits.ParameterIndex;
1781     return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1782   }
1783 
1784   void setParameterIndexLarge(unsigned parameterIndex);
1785   unsigned getParameterIndexLarge() const;
1786 };
1787 
1788 enum class MultiVersionKind {
1789   None,
1790   Target,
1791   CPUSpecific,
1792   CPUDispatch
1793 };
1794 
1795 /// Represents a function declaration or definition.
1796 ///
1797 /// Since a given function can be declared several times in a program,
1798 /// there may be several FunctionDecls that correspond to that
1799 /// function. Only one of those FunctionDecls will be found when
1800 /// traversing the list of declarations in the context of the
1801 /// FunctionDecl (e.g., the translation unit); this FunctionDecl
1802 /// contains all of the information known about the function. Other,
1803 /// previous declarations of the function are available via the
1804 /// getPreviousDecl() chain.
1805 class FunctionDecl : public DeclaratorDecl,
1806                      public DeclContext,
1807                      public Redeclarable<FunctionDecl> {
1808   // This class stores some data in DeclContext::FunctionDeclBits
1809   // to save some space. Use the provided accessors to access it.
1810 public:
1811   /// The kind of templated function a FunctionDecl can be.
1812   enum TemplatedKind {
1813     // Not templated.
1814     TK_NonTemplate,
1815     // The pattern in a function template declaration.
1816     TK_FunctionTemplate,
1817     // A non-template function that is an instantiation or explicit
1818     // specialization of a member of a templated class.
1819     TK_MemberSpecialization,
1820     // An instantiation or explicit specialization of a function template.
1821     // Note: this might have been instantiated from a templated class if it
1822     // is a class-scope explicit specialization.
1823     TK_FunctionTemplateSpecialization,
1824     // A function template specialization that hasn't yet been resolved to a
1825     // particular specialized function template.
1826     TK_DependentFunctionTemplateSpecialization
1827   };
1828 
1829   /// Stashed information about a defaulted function definition whose body has
1830   /// not yet been lazily generated.
1831   class DefaultedFunctionInfo final
1832       : llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
1833     friend TrailingObjects;
1834     unsigned NumLookups;
1835 
1836   public:
1837     static DefaultedFunctionInfo *Create(ASTContext &Context,
1838                                          ArrayRef<DeclAccessPair> Lookups);
1839     /// Get the unqualified lookup results that should be used in this
1840     /// defaulted function definition.
getUnqualifiedLookups()1841     ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
1842       return {getTrailingObjects<DeclAccessPair>(), NumLookups};
1843     }
1844   };
1845 
1846 private:
1847   /// A new[]'d array of pointers to VarDecls for the formal
1848   /// parameters of this function.  This is null if a prototype or if there are
1849   /// no formals.
1850   ParmVarDecl **ParamInfo = nullptr;
1851 
1852   /// The active member of this union is determined by
1853   /// FunctionDeclBits.HasDefaultedFunctionInfo.
1854   union {
1855     /// The body of the function.
1856     LazyDeclStmtPtr Body;
1857     /// Information about a future defaulted function definition.
1858     DefaultedFunctionInfo *DefaultedInfo;
1859   };
1860 
1861   unsigned ODRHash;
1862 
1863   /// End part of this FunctionDecl's source range.
1864   ///
1865   /// We could compute the full range in getSourceRange(). However, when we're
1866   /// dealing with a function definition deserialized from a PCH/AST file,
1867   /// we can only compute the full range once the function body has been
1868   /// de-serialized, so it's far better to have the (sometimes-redundant)
1869   /// EndRangeLoc.
1870   SourceLocation EndRangeLoc;
1871 
1872   /// The template or declaration that this declaration
1873   /// describes or was instantiated from, respectively.
1874   ///
1875   /// For non-templates, this value will be NULL. For function
1876   /// declarations that describe a function template, this will be a
1877   /// pointer to a FunctionTemplateDecl. For member functions
1878   /// of class template specializations, this will be a MemberSpecializationInfo
1879   /// pointer containing information about the specialization.
1880   /// For function template specializations, this will be a
1881   /// FunctionTemplateSpecializationInfo, which contains information about
1882   /// the template being specialized and the template arguments involved in
1883   /// that specialization.
1884   llvm::PointerUnion<FunctionTemplateDecl *,
1885                      MemberSpecializationInfo *,
1886                      FunctionTemplateSpecializationInfo *,
1887                      DependentFunctionTemplateSpecializationInfo *>
1888     TemplateOrSpecialization;
1889 
1890   /// Provides source/type location info for the declaration name embedded in
1891   /// the DeclaratorDecl base class.
1892   DeclarationNameLoc DNLoc;
1893 
1894   /// Specify that this function declaration is actually a function
1895   /// template specialization.
1896   ///
1897   /// \param C the ASTContext.
1898   ///
1899   /// \param Template the function template that this function template
1900   /// specialization specializes.
1901   ///
1902   /// \param TemplateArgs the template arguments that produced this
1903   /// function template specialization from the template.
1904   ///
1905   /// \param InsertPos If non-NULL, the position in the function template
1906   /// specialization set where the function template specialization data will
1907   /// be inserted.
1908   ///
1909   /// \param TSK the kind of template specialization this is.
1910   ///
1911   /// \param TemplateArgsAsWritten location info of template arguments.
1912   ///
1913   /// \param PointOfInstantiation point at which the function template
1914   /// specialization was first instantiated.
1915   void setFunctionTemplateSpecialization(ASTContext &C,
1916                                          FunctionTemplateDecl *Template,
1917                                        const TemplateArgumentList *TemplateArgs,
1918                                          void *InsertPos,
1919                                          TemplateSpecializationKind TSK,
1920                           const TemplateArgumentListInfo *TemplateArgsAsWritten,
1921                                          SourceLocation PointOfInstantiation);
1922 
1923   /// Specify that this record is an instantiation of the
1924   /// member function FD.
1925   void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1926                                         TemplateSpecializationKind TSK);
1927 
1928   void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
1929 
1930   // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
1931   // need to access this bit but we want to avoid making ASTDeclWriter
1932   // a friend of FunctionDeclBitfields just for this.
isDeletedBit()1933   bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
1934 
1935   /// Whether an ODRHash has been stored.
hasODRHash()1936   bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
1937 
1938   /// State that an ODRHash has been stored.
1939   void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
1940 
1941 protected:
1942   FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1943                const DeclarationNameInfo &NameInfo, QualType T,
1944                TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
1945                ConstexprSpecKind ConstexprKind,
1946                Expr *TrailingRequiresClause = nullptr);
1947 
1948   using redeclarable_base = Redeclarable<FunctionDecl>;
1949 
getNextRedeclarationImpl()1950   FunctionDecl *getNextRedeclarationImpl() override {
1951     return getNextRedeclaration();
1952   }
1953 
getPreviousDeclImpl()1954   FunctionDecl *getPreviousDeclImpl() override {
1955     return getPreviousDecl();
1956   }
1957 
getMostRecentDeclImpl()1958   FunctionDecl *getMostRecentDeclImpl() override {
1959     return getMostRecentDecl();
1960   }
1961 
1962 public:
1963   friend class ASTDeclReader;
1964   friend class ASTDeclWriter;
1965 
1966   using redecl_range = redeclarable_base::redecl_range;
1967   using redecl_iterator = redeclarable_base::redecl_iterator;
1968 
1969   using redeclarable_base::redecls_begin;
1970   using redeclarable_base::redecls_end;
1971   using redeclarable_base::redecls;
1972   using redeclarable_base::getPreviousDecl;
1973   using redeclarable_base::getMostRecentDecl;
1974   using redeclarable_base::isFirstDecl;
1975 
1976   static FunctionDecl *
1977   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1978          SourceLocation NLoc, DeclarationName N, QualType T,
1979          TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified = false,
1980          bool hasWrittenPrototype = true,
1981          ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified,
1982          Expr *TrailingRequiresClause = nullptr) {
1983     DeclarationNameInfo NameInfo(N, NLoc);
1984     return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
1985                                 isInlineSpecified, hasWrittenPrototype,
1986                                 ConstexprKind, TrailingRequiresClause);
1987   }
1988 
1989   static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1990                               SourceLocation StartLoc,
1991                               const DeclarationNameInfo &NameInfo, QualType T,
1992                               TypeSourceInfo *TInfo, StorageClass SC,
1993                               bool isInlineSpecified, bool hasWrittenPrototype,
1994                               ConstexprSpecKind ConstexprKind,
1995                               Expr *TrailingRequiresClause);
1996 
1997   static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1998 
getNameInfo()1999   DeclarationNameInfo getNameInfo() const {
2000     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2001   }
2002 
2003   void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
2004                             bool Qualified) const override;
2005 
setRangeEnd(SourceLocation E)2006   void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
2007 
2008   /// Returns the location of the ellipsis of a variadic function.
getEllipsisLoc()2009   SourceLocation getEllipsisLoc() const {
2010     const auto *FPT = getType()->getAs<FunctionProtoType>();
2011     if (FPT && FPT->isVariadic())
2012       return FPT->getEllipsisLoc();
2013     return SourceLocation();
2014   }
2015 
2016   SourceRange getSourceRange() const override LLVM_READONLY;
2017 
2018   // Function definitions.
2019   //
2020   // A function declaration may be:
2021   // - a non defining declaration,
2022   // - a definition. A function may be defined because:
2023   //   - it has a body, or will have it in the case of late parsing.
2024   //   - it has an uninstantiated body. The body does not exist because the
2025   //     function is not used yet, but the declaration is considered a
2026   //     definition and does not allow other definition of this function.
2027   //   - it does not have a user specified body, but it does not allow
2028   //     redefinition, because it is deleted/defaulted or is defined through
2029   //     some other mechanism (alias, ifunc).
2030 
2031   /// Returns true if the function has a body.
2032   ///
2033   /// The function body might be in any of the (re-)declarations of this
2034   /// function. The variant that accepts a FunctionDecl pointer will set that
2035   /// function declaration to the actual declaration containing the body (if
2036   /// there is one).
2037   bool hasBody(const FunctionDecl *&Definition) const;
2038 
hasBody()2039   bool hasBody() const override {
2040     const FunctionDecl* Definition;
2041     return hasBody(Definition);
2042   }
2043 
2044   /// Returns whether the function has a trivial body that does not require any
2045   /// specific codegen.
2046   bool hasTrivialBody() const;
2047 
2048   /// Returns true if the function has a definition that does not need to be
2049   /// instantiated.
2050   ///
2051   /// The variant that accepts a FunctionDecl pointer will set that function
2052   /// declaration to the declaration that is a definition (if there is one).
2053   ///
2054   /// \param CheckForPendingFriendDefinition If \c true, also check for friend
2055   ///        declarations that were instantiataed from function definitions.
2056   ///        Such a declaration behaves as if it is a definition for the
2057   ///        purpose of redefinition checking, but isn't actually a "real"
2058   ///        definition until its body is instantiated.
2059   bool isDefined(const FunctionDecl *&Definition,
2060                  bool CheckForPendingFriendDefinition = false) const;
2061 
isDefined()2062   bool isDefined() const {
2063     const FunctionDecl* Definition;
2064     return isDefined(Definition);
2065   }
2066 
2067   /// Get the definition for this declaration.
getDefinition()2068   FunctionDecl *getDefinition() {
2069     const FunctionDecl *Definition;
2070     if (isDefined(Definition))
2071       return const_cast<FunctionDecl *>(Definition);
2072     return nullptr;
2073   }
getDefinition()2074   const FunctionDecl *getDefinition() const {
2075     return const_cast<FunctionDecl *>(this)->getDefinition();
2076   }
2077 
2078   /// Retrieve the body (definition) of the function. The function body might be
2079   /// in any of the (re-)declarations of this function. The variant that accepts
2080   /// a FunctionDecl pointer will set that function declaration to the actual
2081   /// declaration containing the body (if there is one).
2082   /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2083   /// unnecessary AST de-serialization of the body.
2084   Stmt *getBody(const FunctionDecl *&Definition) const;
2085 
getBody()2086   Stmt *getBody() const override {
2087     const FunctionDecl* Definition;
2088     return getBody(Definition);
2089   }
2090 
2091   /// Returns whether this specific declaration of the function is also a
2092   /// definition that does not contain uninstantiated body.
2093   ///
2094   /// This does not determine whether the function has been defined (e.g., in a
2095   /// previous definition); for that information, use isDefined.
2096   ///
2097   /// Note: the function declaration does not become a definition until the
2098   /// parser reaches the definition, if called before, this function will return
2099   /// `false`.
isThisDeclarationADefinition()2100   bool isThisDeclarationADefinition() const {
2101     return isDeletedAsWritten() || isDefaulted() ||
2102            doesThisDeclarationHaveABody() || hasSkippedBody() ||
2103            willHaveBody() || hasDefiningAttr();
2104   }
2105 
2106   /// Determine whether this specific declaration of the function is a friend
2107   /// declaration that was instantiated from a function definition. Such
2108   /// declarations behave like definitions in some contexts.
2109   bool isThisDeclarationInstantiatedFromAFriendDefinition() const;
2110 
2111   /// Returns whether this specific declaration of the function has a body.
doesThisDeclarationHaveABody()2112   bool doesThisDeclarationHaveABody() const {
2113     return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
2114            isLateTemplateParsed();
2115   }
2116 
2117   void setBody(Stmt *B);
setLazyBody(uint64_t Offset)2118   void setLazyBody(uint64_t Offset) {
2119     FunctionDeclBits.HasDefaultedFunctionInfo = false;
2120     Body = LazyDeclStmtPtr(Offset);
2121   }
2122 
2123   void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
2124   DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
2125 
2126   /// Whether this function is variadic.
2127   bool isVariadic() const;
2128 
2129   /// Whether this function is marked as virtual explicitly.
isVirtualAsWritten()2130   bool isVirtualAsWritten() const {
2131     return FunctionDeclBits.IsVirtualAsWritten;
2132   }
2133 
2134   /// State that this function is marked as virtual explicitly.
setVirtualAsWritten(bool V)2135   void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2136 
2137   /// Whether this virtual function is pure, i.e. makes the containing class
2138   /// abstract.
isPure()2139   bool isPure() const { return FunctionDeclBits.IsPure; }
2140   void setPure(bool P = true);
2141 
2142   /// Whether this templated function will be late parsed.
isLateTemplateParsed()2143   bool isLateTemplateParsed() const {
2144     return FunctionDeclBits.IsLateTemplateParsed;
2145   }
2146 
2147   /// State that this templated function will be late parsed.
2148   void setLateTemplateParsed(bool ILT = true) {
2149     FunctionDeclBits.IsLateTemplateParsed = ILT;
2150   }
2151 
2152   /// Whether this function is "trivial" in some specialized C++ senses.
2153   /// Can only be true for default constructors, copy constructors,
2154   /// copy assignment operators, and destructors.  Not meaningful until
2155   /// the class has been fully built by Sema.
isTrivial()2156   bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
setTrivial(bool IT)2157   void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2158 
isTrivialForCall()2159   bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
setTrivialForCall(bool IT)2160   void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2161 
2162   /// Whether this function is defaulted. Valid for e.g.
2163   /// special member functions, defaulted comparisions (not methods!).
isDefaulted()2164   bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2165   void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2166 
2167   /// Whether this function is explicitly defaulted.
isExplicitlyDefaulted()2168   bool isExplicitlyDefaulted() const {
2169     return FunctionDeclBits.IsExplicitlyDefaulted;
2170   }
2171 
2172   /// State that this function is explicitly defaulted.
2173   void setExplicitlyDefaulted(bool ED = true) {
2174     FunctionDeclBits.IsExplicitlyDefaulted = ED;
2175   }
2176 
2177   /// True if this method is user-declared and was not
2178   /// deleted or defaulted on its first declaration.
isUserProvided()2179   bool isUserProvided() const {
2180     auto *DeclAsWritten = this;
2181     if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
2182       DeclAsWritten = Pattern;
2183     return !(DeclAsWritten->isDeleted() ||
2184              DeclAsWritten->getCanonicalDecl()->isDefaulted());
2185   }
2186 
2187   /// Whether falling off this function implicitly returns null/zero.
2188   /// If a more specific implicit return value is required, front-ends
2189   /// should synthesize the appropriate return statements.
hasImplicitReturnZero()2190   bool hasImplicitReturnZero() const {
2191     return FunctionDeclBits.HasImplicitReturnZero;
2192   }
2193 
2194   /// State that falling off this function implicitly returns null/zero.
2195   /// If a more specific implicit return value is required, front-ends
2196   /// should synthesize the appropriate return statements.
setHasImplicitReturnZero(bool IRZ)2197   void setHasImplicitReturnZero(bool IRZ) {
2198     FunctionDeclBits.HasImplicitReturnZero = IRZ;
2199   }
2200 
2201   /// Whether this function has a prototype, either because one
2202   /// was explicitly written or because it was "inherited" by merging
2203   /// a declaration without a prototype with a declaration that has a
2204   /// prototype.
hasPrototype()2205   bool hasPrototype() const {
2206     return hasWrittenPrototype() || hasInheritedPrototype();
2207   }
2208 
2209   /// Whether this function has a written prototype.
hasWrittenPrototype()2210   bool hasWrittenPrototype() const {
2211     return FunctionDeclBits.HasWrittenPrototype;
2212   }
2213 
2214   /// State that this function has a written prototype.
2215   void setHasWrittenPrototype(bool P = true) {
2216     FunctionDeclBits.HasWrittenPrototype = P;
2217   }
2218 
2219   /// Whether this function inherited its prototype from a
2220   /// previous declaration.
hasInheritedPrototype()2221   bool hasInheritedPrototype() const {
2222     return FunctionDeclBits.HasInheritedPrototype;
2223   }
2224 
2225   /// State that this function inherited its prototype from a
2226   /// previous declaration.
2227   void setHasInheritedPrototype(bool P = true) {
2228     FunctionDeclBits.HasInheritedPrototype = P;
2229   }
2230 
2231   /// Whether this is a (C++11) constexpr function or constexpr constructor.
isConstexpr()2232   bool isConstexpr() const {
2233     return getConstexprKind() != ConstexprSpecKind::Unspecified;
2234   }
setConstexprKind(ConstexprSpecKind CSK)2235   void setConstexprKind(ConstexprSpecKind CSK) {
2236     FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
2237   }
getConstexprKind()2238   ConstexprSpecKind getConstexprKind() const {
2239     return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2240   }
isConstexprSpecified()2241   bool isConstexprSpecified() const {
2242     return getConstexprKind() == ConstexprSpecKind::Constexpr;
2243   }
isConsteval()2244   bool isConsteval() const {
2245     return getConstexprKind() == ConstexprSpecKind::Consteval;
2246   }
2247 
2248   /// Whether the instantiation of this function is pending.
2249   /// This bit is set when the decision to instantiate this function is made
2250   /// and unset if and when the function body is created. That leaves out
2251   /// cases where instantiation did not happen because the template definition
2252   /// was not seen in this TU. This bit remains set in those cases, under the
2253   /// assumption that the instantiation will happen in some other TU.
instantiationIsPending()2254   bool instantiationIsPending() const {
2255     return FunctionDeclBits.InstantiationIsPending;
2256   }
2257 
2258   /// State that the instantiation of this function is pending.
2259   /// (see instantiationIsPending)
setInstantiationIsPending(bool IC)2260   void setInstantiationIsPending(bool IC) {
2261     FunctionDeclBits.InstantiationIsPending = IC;
2262   }
2263 
2264   /// Indicates the function uses __try.
usesSEHTry()2265   bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
setUsesSEHTry(bool UST)2266   void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2267 
2268   /// Whether this function has been deleted.
2269   ///
2270   /// A function that is "deleted" (via the C++0x "= delete" syntax)
2271   /// acts like a normal function, except that it cannot actually be
2272   /// called or have its address taken. Deleted functions are
2273   /// typically used in C++ overload resolution to attract arguments
2274   /// whose type or lvalue/rvalue-ness would permit the use of a
2275   /// different overload that would behave incorrectly. For example,
2276   /// one might use deleted functions to ban implicit conversion from
2277   /// a floating-point number to an Integer type:
2278   ///
2279   /// @code
2280   /// struct Integer {
2281   ///   Integer(long); // construct from a long
2282   ///   Integer(double) = delete; // no construction from float or double
2283   ///   Integer(long double) = delete; // no construction from long double
2284   /// };
2285   /// @endcode
2286   // If a function is deleted, its first declaration must be.
isDeleted()2287   bool isDeleted() const {
2288     return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2289   }
2290 
isDeletedAsWritten()2291   bool isDeletedAsWritten() const {
2292     return FunctionDeclBits.IsDeleted && !isDefaulted();
2293   }
2294 
2295   void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2296 
2297   /// Determines whether this function is "main", which is the
2298   /// entry point into an executable program.
2299   bool isMain() const;
2300 
2301   /// Determines whether this function is a MSVCRT user defined entry
2302   /// point.
2303   bool isMSVCRTEntryPoint() const;
2304 
2305   /// Determines whether this operator new or delete is one
2306   /// of the reserved global placement operators:
2307   ///    void *operator new(size_t, void *);
2308   ///    void *operator new[](size_t, void *);
2309   ///    void operator delete(void *, void *);
2310   ///    void operator delete[](void *, void *);
2311   /// These functions have special behavior under [new.delete.placement]:
2312   ///    These functions are reserved, a C++ program may not define
2313   ///    functions that displace the versions in the Standard C++ library.
2314   ///    The provisions of [basic.stc.dynamic] do not apply to these
2315   ///    reserved placement forms of operator new and operator delete.
2316   ///
2317   /// This function must be an allocation or deallocation function.
2318   bool isReservedGlobalPlacementOperator() const;
2319 
2320   /// Determines whether this function is one of the replaceable
2321   /// global allocation functions:
2322   ///    void *operator new(size_t);
2323   ///    void *operator new(size_t, const std::nothrow_t &) noexcept;
2324   ///    void *operator new[](size_t);
2325   ///    void *operator new[](size_t, const std::nothrow_t &) noexcept;
2326   ///    void operator delete(void *) noexcept;
2327   ///    void operator delete(void *, std::size_t) noexcept;      [C++1y]
2328   ///    void operator delete(void *, const std::nothrow_t &) noexcept;
2329   ///    void operator delete[](void *) noexcept;
2330   ///    void operator delete[](void *, std::size_t) noexcept;    [C++1y]
2331   ///    void operator delete[](void *, const std::nothrow_t &) noexcept;
2332   /// These functions have special behavior under C++1y [expr.new]:
2333   ///    An implementation is allowed to omit a call to a replaceable global
2334   ///    allocation function. [...]
2335   ///
2336   /// If this function is an aligned allocation/deallocation function, return
2337   /// the parameter number of the requested alignment through AlignmentParam.
2338   ///
2339   /// If this function is an allocation/deallocation function that takes
2340   /// the `std::nothrow_t` tag, return true through IsNothrow,
2341   bool isReplaceableGlobalAllocationFunction(
2342       Optional<unsigned> *AlignmentParam = nullptr,
2343       bool *IsNothrow = nullptr) const;
2344 
2345   /// Determine if this function provides an inline implementation of a builtin.
2346   bool isInlineBuiltinDeclaration() const;
2347 
2348   /// Determine whether this is a destroying operator delete.
2349   bool isDestroyingOperatorDelete() const;
2350 
2351   /// Compute the language linkage.
2352   LanguageLinkage getLanguageLinkage() const;
2353 
2354   /// Determines whether this function is a function with
2355   /// external, C linkage.
2356   bool isExternC() const;
2357 
2358   /// Determines whether this function's context is, or is nested within,
2359   /// a C++ extern "C" linkage spec.
2360   bool isInExternCContext() const;
2361 
2362   /// Determines whether this function's context is, or is nested within,
2363   /// a C++ extern "C++" linkage spec.
2364   bool isInExternCXXContext() const;
2365 
2366   /// Determines whether this is a global function.
2367   bool isGlobal() const;
2368 
2369   /// Determines whether this function is known to be 'noreturn', through
2370   /// an attribute on its declaration or its type.
2371   bool isNoReturn() const;
2372 
2373   /// True if the function was a definition but its body was skipped.
hasSkippedBody()2374   bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2375   void setHasSkippedBody(bool Skipped = true) {
2376     FunctionDeclBits.HasSkippedBody = Skipped;
2377   }
2378 
2379   /// True if this function will eventually have a body, once it's fully parsed.
willHaveBody()2380   bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2381   void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2382 
2383   /// True if this function is considered a multiversioned function.
isMultiVersion()2384   bool isMultiVersion() const {
2385     return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2386   }
2387 
2388   /// Sets the multiversion state for this declaration and all of its
2389   /// redeclarations.
2390   void setIsMultiVersion(bool V = true) {
2391     getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2392   }
2393 
2394   /// Gets the kind of multiversioning attribute this declaration has. Note that
2395   /// this can return a value even if the function is not multiversion, such as
2396   /// the case of 'target'.
2397   MultiVersionKind getMultiVersionKind() const;
2398 
2399 
2400   /// True if this function is a multiversioned dispatch function as a part of
2401   /// the cpu_specific/cpu_dispatch functionality.
2402   bool isCPUDispatchMultiVersion() const;
2403   /// True if this function is a multiversioned processor specific function as a
2404   /// part of the cpu_specific/cpu_dispatch functionality.
2405   bool isCPUSpecificMultiVersion() const;
2406 
2407   /// True if this function is a multiversioned dispatch function as a part of
2408   /// the target functionality.
2409   bool isTargetMultiVersion() const;
2410 
2411   /// \brief Get the associated-constraints of this function declaration.
2412   /// Currently, this will either be a vector of size 1 containing the
2413   /// trailing-requires-clause or an empty vector.
2414   ///
2415   /// Use this instead of getTrailingRequiresClause for concepts APIs that
2416   /// accept an ArrayRef of constraint expressions.
getAssociatedConstraints(SmallVectorImpl<const Expr * > & AC)2417   void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
2418     if (auto *TRC = getTrailingRequiresClause())
2419       AC.push_back(TRC);
2420   }
2421 
2422   void setPreviousDeclaration(FunctionDecl * PrevDecl);
2423 
2424   FunctionDecl *getCanonicalDecl() override;
getCanonicalDecl()2425   const FunctionDecl *getCanonicalDecl() const {
2426     return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2427   }
2428 
2429   unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2430 
2431   // ArrayRef interface to parameters.
parameters()2432   ArrayRef<ParmVarDecl *> parameters() const {
2433     return {ParamInfo, getNumParams()};
2434   }
parameters()2435   MutableArrayRef<ParmVarDecl *> parameters() {
2436     return {ParamInfo, getNumParams()};
2437   }
2438 
2439   // Iterator access to formal parameters.
2440   using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2441   using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2442 
param_empty()2443   bool param_empty() const { return parameters().empty(); }
param_begin()2444   param_iterator param_begin() { return parameters().begin(); }
param_end()2445   param_iterator param_end() { return parameters().end(); }
param_begin()2446   param_const_iterator param_begin() const { return parameters().begin(); }
param_end()2447   param_const_iterator param_end() const { return parameters().end(); }
param_size()2448   size_t param_size() const { return parameters().size(); }
2449 
2450   /// Return the number of parameters this function must have based on its
2451   /// FunctionType.  This is the length of the ParamInfo array after it has been
2452   /// created.
2453   unsigned getNumParams() const;
2454 
getParamDecl(unsigned i)2455   const ParmVarDecl *getParamDecl(unsigned i) const {
2456     assert(i < getNumParams() && "Illegal param #");
2457     return ParamInfo[i];
2458   }
getParamDecl(unsigned i)2459   ParmVarDecl *getParamDecl(unsigned i) {
2460     assert(i < getNumParams() && "Illegal param #");
2461     return ParamInfo[i];
2462   }
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)2463   void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2464     setParams(getASTContext(), NewParamInfo);
2465   }
2466 
2467   /// Returns the minimum number of arguments needed to call this function. This
2468   /// may be fewer than the number of function parameters, if some of the
2469   /// parameters have default arguments (in C++).
2470   unsigned getMinRequiredArguments() const;
2471 
2472   /// Determine whether this function has a single parameter, or multiple
2473   /// parameters where all but the first have default arguments.
2474   ///
2475   /// This notion is used in the definition of copy/move constructors and
2476   /// initializer list constructors. Note that, unlike getMinRequiredArguments,
2477   /// parameter packs are not treated specially here.
2478   bool hasOneParamOrDefaultArgs() const;
2479 
2480   /// Find the source location information for how the type of this function
2481   /// was written. May be absent (for example if the function was declared via
2482   /// a typedef) and may contain a different type from that of the function
2483   /// (for example if the function type was adjusted by an attribute).
2484   FunctionTypeLoc getFunctionTypeLoc() const;
2485 
getReturnType()2486   QualType getReturnType() const {
2487     return getType()->castAs<FunctionType>()->getReturnType();
2488   }
2489 
2490   /// Attempt to compute an informative source range covering the
2491   /// function return type. This may omit qualifiers and other information with
2492   /// limited representation in the AST.
2493   SourceRange getReturnTypeSourceRange() const;
2494 
2495   /// Attempt to compute an informative source range covering the
2496   /// function parameters, including the ellipsis of a variadic function.
2497   /// The source range excludes the parentheses, and is invalid if there are
2498   /// no parameters and no ellipsis.
2499   SourceRange getParametersSourceRange() const;
2500 
2501   /// Get the declared return type, which may differ from the actual return
2502   /// type if the return type is deduced.
getDeclaredReturnType()2503   QualType getDeclaredReturnType() const {
2504     auto *TSI = getTypeSourceInfo();
2505     QualType T = TSI ? TSI->getType() : getType();
2506     return T->castAs<FunctionType>()->getReturnType();
2507   }
2508 
2509   /// Gets the ExceptionSpecificationType as declared.
getExceptionSpecType()2510   ExceptionSpecificationType getExceptionSpecType() const {
2511     auto *TSI = getTypeSourceInfo();
2512     QualType T = TSI ? TSI->getType() : getType();
2513     const auto *FPT = T->getAs<FunctionProtoType>();
2514     return FPT ? FPT->getExceptionSpecType() : EST_None;
2515   }
2516 
2517   /// Attempt to compute an informative source range covering the
2518   /// function exception specification, if any.
2519   SourceRange getExceptionSpecSourceRange() const;
2520 
2521   /// Determine the type of an expression that calls this function.
getCallResultType()2522   QualType getCallResultType() const {
2523     return getType()->castAs<FunctionType>()->getCallResultType(
2524         getASTContext());
2525   }
2526 
2527   /// Returns the storage class as written in the source. For the
2528   /// computed linkage of symbol, see getLinkage.
getStorageClass()2529   StorageClass getStorageClass() const {
2530     return static_cast<StorageClass>(FunctionDeclBits.SClass);
2531   }
2532 
2533   /// Sets the storage class as written in the source.
setStorageClass(StorageClass SClass)2534   void setStorageClass(StorageClass SClass) {
2535     FunctionDeclBits.SClass = SClass;
2536   }
2537 
2538   /// Determine whether the "inline" keyword was specified for this
2539   /// function.
isInlineSpecified()2540   bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2541 
2542   /// Set whether the "inline" keyword was specified for this function.
setInlineSpecified(bool I)2543   void setInlineSpecified(bool I) {
2544     FunctionDeclBits.IsInlineSpecified = I;
2545     FunctionDeclBits.IsInline = I;
2546   }
2547 
2548   /// Flag that this function is implicitly inline.
2549   void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2550 
2551   /// Determine whether this function should be inlined, because it is
2552   /// either marked "inline" or "constexpr" or is a member function of a class
2553   /// that was defined in the class body.
isInlined()2554   bool isInlined() const { return FunctionDeclBits.IsInline; }
2555 
2556   bool isInlineDefinitionExternallyVisible() const;
2557 
2558   bool isMSExternInline() const;
2559 
2560   bool doesDeclarationForceExternallyVisibleDefinition() const;
2561 
isStatic()2562   bool isStatic() const { return getStorageClass() == SC_Static; }
2563 
2564   /// Whether this function declaration represents an C++ overloaded
2565   /// operator, e.g., "operator+".
isOverloadedOperator()2566   bool isOverloadedOperator() const {
2567     return getOverloadedOperator() != OO_None;
2568   }
2569 
2570   OverloadedOperatorKind getOverloadedOperator() const;
2571 
2572   const IdentifierInfo *getLiteralIdentifier() const;
2573 
2574   /// If this function is an instantiation of a member function
2575   /// of a class template specialization, retrieves the function from
2576   /// which it was instantiated.
2577   ///
2578   /// This routine will return non-NULL for (non-templated) member
2579   /// functions of class templates and for instantiations of function
2580   /// templates. For example, given:
2581   ///
2582   /// \code
2583   /// template<typename T>
2584   /// struct X {
2585   ///   void f(T);
2586   /// };
2587   /// \endcode
2588   ///
2589   /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2590   /// whose parent is the class template specialization X<int>. For
2591   /// this declaration, getInstantiatedFromFunction() will return
2592   /// the FunctionDecl X<T>::A. When a complete definition of
2593   /// X<int>::A is required, it will be instantiated from the
2594   /// declaration returned by getInstantiatedFromMemberFunction().
2595   FunctionDecl *getInstantiatedFromMemberFunction() const;
2596 
2597   /// What kind of templated function this is.
2598   TemplatedKind getTemplatedKind() const;
2599 
2600   /// If this function is an instantiation of a member function of a
2601   /// class template specialization, retrieves the member specialization
2602   /// information.
2603   MemberSpecializationInfo *getMemberSpecializationInfo() const;
2604 
2605   /// Specify that this record is an instantiation of the
2606   /// member function FD.
setInstantiationOfMemberFunction(FunctionDecl * FD,TemplateSpecializationKind TSK)2607   void setInstantiationOfMemberFunction(FunctionDecl *FD,
2608                                         TemplateSpecializationKind TSK) {
2609     setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2610   }
2611 
2612   /// Retrieves the function template that is described by this
2613   /// function declaration.
2614   ///
2615   /// Every function template is represented as a FunctionTemplateDecl
2616   /// and a FunctionDecl (or something derived from FunctionDecl). The
2617   /// former contains template properties (such as the template
2618   /// parameter lists) while the latter contains the actual
2619   /// description of the template's
2620   /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2621   /// FunctionDecl that describes the function template,
2622   /// getDescribedFunctionTemplate() retrieves the
2623   /// FunctionTemplateDecl from a FunctionDecl.
2624   FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2625 
2626   void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2627 
2628   /// Determine whether this function is a function template
2629   /// specialization.
isFunctionTemplateSpecialization()2630   bool isFunctionTemplateSpecialization() const {
2631     return getPrimaryTemplate() != nullptr;
2632   }
2633 
2634   /// If this function is actually a function template specialization,
2635   /// retrieve information about this function template specialization.
2636   /// Otherwise, returns NULL.
2637   FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2638 
2639   /// Determines whether this function is a function template
2640   /// specialization or a member of a class template specialization that can
2641   /// be implicitly instantiated.
2642   bool isImplicitlyInstantiable() const;
2643 
2644   /// Determines if the given function was instantiated from a
2645   /// function template.
2646   bool isTemplateInstantiation() const;
2647 
2648   /// Retrieve the function declaration from which this function could
2649   /// be instantiated, if it is an instantiation (rather than a non-template
2650   /// or a specialization, for example).
2651   ///
2652   /// If \p ForDefinition is \c false, explicit specializations will be treated
2653   /// as if they were implicit instantiations. This will then find the pattern
2654   /// corresponding to non-definition portions of the declaration, such as
2655   /// default arguments and the exception specification.
2656   FunctionDecl *
2657   getTemplateInstantiationPattern(bool ForDefinition = true) const;
2658 
2659   /// Retrieve the primary template that this function template
2660   /// specialization either specializes or was instantiated from.
2661   ///
2662   /// If this function declaration is not a function template specialization,
2663   /// returns NULL.
2664   FunctionTemplateDecl *getPrimaryTemplate() const;
2665 
2666   /// Retrieve the template arguments used to produce this function
2667   /// template specialization from the primary template.
2668   ///
2669   /// If this function declaration is not a function template specialization,
2670   /// returns NULL.
2671   const TemplateArgumentList *getTemplateSpecializationArgs() const;
2672 
2673   /// Retrieve the template argument list as written in the sources,
2674   /// if any.
2675   ///
2676   /// If this function declaration is not a function template specialization
2677   /// or if it had no explicit template argument list, returns NULL.
2678   /// Note that it an explicit template argument list may be written empty,
2679   /// e.g., template<> void foo<>(char* s);
2680   const ASTTemplateArgumentListInfo*
2681   getTemplateSpecializationArgsAsWritten() const;
2682 
2683   /// Specify that this function declaration is actually a function
2684   /// template specialization.
2685   ///
2686   /// \param Template the function template that this function template
2687   /// specialization specializes.
2688   ///
2689   /// \param TemplateArgs the template arguments that produced this
2690   /// function template specialization from the template.
2691   ///
2692   /// \param InsertPos If non-NULL, the position in the function template
2693   /// specialization set where the function template specialization data will
2694   /// be inserted.
2695   ///
2696   /// \param TSK the kind of template specialization this is.
2697   ///
2698   /// \param TemplateArgsAsWritten location info of template arguments.
2699   ///
2700   /// \param PointOfInstantiation point at which the function template
2701   /// specialization was first instantiated.
2702   void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2703                 const TemplateArgumentList *TemplateArgs,
2704                 void *InsertPos,
2705                 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2706                 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2707                 SourceLocation PointOfInstantiation = SourceLocation()) {
2708     setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2709                                       InsertPos, TSK, TemplateArgsAsWritten,
2710                                       PointOfInstantiation);
2711   }
2712 
2713   /// Specifies that this function declaration is actually a
2714   /// dependent function template specialization.
2715   void setDependentTemplateSpecialization(ASTContext &Context,
2716                              const UnresolvedSetImpl &Templates,
2717                       const TemplateArgumentListInfo &TemplateArgs);
2718 
2719   DependentFunctionTemplateSpecializationInfo *
2720   getDependentSpecializationInfo() const;
2721 
2722   /// Determine what kind of template instantiation this function
2723   /// represents.
2724   TemplateSpecializationKind getTemplateSpecializationKind() const;
2725 
2726   /// Determine the kind of template specialization this function represents
2727   /// for the purpose of template instantiation.
2728   TemplateSpecializationKind
2729   getTemplateSpecializationKindForInstantiation() const;
2730 
2731   /// Determine what kind of template instantiation this function
2732   /// represents.
2733   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2734                         SourceLocation PointOfInstantiation = SourceLocation());
2735 
2736   /// Retrieve the (first) point of instantiation of a function template
2737   /// specialization or a member of a class template specialization.
2738   ///
2739   /// \returns the first point of instantiation, if this function was
2740   /// instantiated from a template; otherwise, returns an invalid source
2741   /// location.
2742   SourceLocation getPointOfInstantiation() const;
2743 
2744   /// Determine whether this is or was instantiated from an out-of-line
2745   /// definition of a member function.
2746   bool isOutOfLine() const override;
2747 
2748   /// Identify a memory copying or setting function.
2749   /// If the given function is a memory copy or setting function, returns
2750   /// the corresponding Builtin ID. If the function is not a memory function,
2751   /// returns 0.
2752   unsigned getMemoryFunctionKind() const;
2753 
2754   /// Returns ODRHash of the function.  This value is calculated and
2755   /// stored on first call, then the stored value returned on the other calls.
2756   unsigned getODRHash();
2757 
2758   /// Returns cached ODRHash of the function.  This must have been previously
2759   /// computed and stored.
2760   unsigned getODRHash() const;
2761 
2762   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2763   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2764   static bool classofKind(Kind K) {
2765     return K >= firstFunction && K <= lastFunction;
2766   }
castToDeclContext(const FunctionDecl * D)2767   static DeclContext *castToDeclContext(const FunctionDecl *D) {
2768     return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2769   }
castFromDeclContext(const DeclContext * DC)2770   static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2771     return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2772   }
2773 };
2774 
2775 /// Represents a member of a struct/union/class.
2776 class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2777   unsigned BitField : 1;
2778   unsigned Mutable : 1;
2779   mutable unsigned CachedFieldIndex : 30;
2780 
2781   /// The kinds of value we can store in InitializerOrBitWidth.
2782   ///
2783   /// Note that this is compatible with InClassInitStyle except for
2784   /// ISK_CapturedVLAType.
2785   enum InitStorageKind {
2786     /// If the pointer is null, there's nothing special.  Otherwise,
2787     /// this is a bitfield and the pointer is the Expr* storing the
2788     /// bit-width.
2789     ISK_NoInit = (unsigned) ICIS_NoInit,
2790 
2791     /// The pointer is an (optional due to delayed parsing) Expr*
2792     /// holding the copy-initializer.
2793     ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2794 
2795     /// The pointer is an (optional due to delayed parsing) Expr*
2796     /// holding the list-initializer.
2797     ISK_InClassListInit = (unsigned) ICIS_ListInit,
2798 
2799     /// The pointer is a VariableArrayType* that's been captured;
2800     /// the enclosing context is a lambda or captured statement.
2801     ISK_CapturedVLAType,
2802   };
2803 
2804   /// If this is a bitfield with a default member initializer, this
2805   /// structure is used to represent the two expressions.
2806   struct InitAndBitWidth {
2807     Expr *Init;
2808     Expr *BitWidth;
2809   };
2810 
2811   /// Storage for either the bit-width, the in-class initializer, or
2812   /// both (via InitAndBitWidth), or the captured variable length array bound.
2813   ///
2814   /// If the storage kind is ISK_InClassCopyInit or
2815   /// ISK_InClassListInit, but the initializer is null, then this
2816   /// field has an in-class initializer that has not yet been parsed
2817   /// and attached.
2818   // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2819   // overwhelmingly common case that we have none of these things.
2820   llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2821 
2822 protected:
FieldDecl(Kind DK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)2823   FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2824             SourceLocation IdLoc, IdentifierInfo *Id,
2825             QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2826             InClassInitStyle InitStyle)
2827     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2828       BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2829       InitStorage(nullptr, (InitStorageKind) InitStyle) {
2830     if (BW)
2831       setBitWidth(BW);
2832   }
2833 
2834 public:
2835   friend class ASTDeclReader;
2836   friend class ASTDeclWriter;
2837 
2838   static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2839                            SourceLocation StartLoc, SourceLocation IdLoc,
2840                            IdentifierInfo *Id, QualType T,
2841                            TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2842                            InClassInitStyle InitStyle);
2843 
2844   static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2845 
2846   /// Returns the index of this field within its record,
2847   /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2848   unsigned getFieldIndex() const;
2849 
2850   /// Determines whether this field is mutable (C++ only).
isMutable()2851   bool isMutable() const { return Mutable; }
2852 
2853   /// Determines whether this field is a bitfield.
isBitField()2854   bool isBitField() const { return BitField; }
2855 
2856   /// Determines whether this is an unnamed bitfield.
isUnnamedBitfield()2857   bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2858 
2859   /// Determines whether this field is a
2860   /// representative for an anonymous struct or union. Such fields are
2861   /// unnamed and are implicitly generated by the implementation to
2862   /// store the data for the anonymous union or struct.
2863   bool isAnonymousStructOrUnion() const;
2864 
getBitWidth()2865   Expr *getBitWidth() const {
2866     if (!BitField)
2867       return nullptr;
2868     void *Ptr = InitStorage.getPointer();
2869     if (getInClassInitStyle())
2870       return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
2871     return static_cast<Expr*>(Ptr);
2872   }
2873 
2874   unsigned getBitWidthValue(const ASTContext &Ctx) const;
2875 
2876   /// Set the bit-field width for this member.
2877   // Note: used by some clients (i.e., do not remove it).
setBitWidth(Expr * Width)2878   void setBitWidth(Expr *Width) {
2879     assert(!hasCapturedVLAType() && !BitField &&
2880            "bit width or captured type already set");
2881     assert(Width && "no bit width specified");
2882     InitStorage.setPointer(
2883         InitStorage.getInt()
2884             ? new (getASTContext())
2885                   InitAndBitWidth{getInClassInitializer(), Width}
2886             : static_cast<void*>(Width));
2887     BitField = true;
2888   }
2889 
2890   /// Remove the bit-field width from this member.
2891   // Note: used by some clients (i.e., do not remove it).
removeBitWidth()2892   void removeBitWidth() {
2893     assert(isBitField() && "no bitfield width to remove");
2894     InitStorage.setPointer(getInClassInitializer());
2895     BitField = false;
2896   }
2897 
2898   /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
2899   /// at all and instead act as a separator between contiguous runs of other
2900   /// bit-fields.
2901   bool isZeroLengthBitField(const ASTContext &Ctx) const;
2902 
2903   /// Determine if this field is a subobject of zero size, that is, either a
2904   /// zero-length bit-field or a field of empty class type with the
2905   /// [[no_unique_address]] attribute.
2906   bool isZeroSize(const ASTContext &Ctx) const;
2907 
2908   /// Get the kind of (C++11) default member initializer that this field has.
getInClassInitStyle()2909   InClassInitStyle getInClassInitStyle() const {
2910     InitStorageKind storageKind = InitStorage.getInt();
2911     return (storageKind == ISK_CapturedVLAType
2912               ? ICIS_NoInit : (InClassInitStyle) storageKind);
2913   }
2914 
2915   /// Determine whether this member has a C++11 default member initializer.
hasInClassInitializer()2916   bool hasInClassInitializer() const {
2917     return getInClassInitStyle() != ICIS_NoInit;
2918   }
2919 
2920   /// Get the C++11 default member initializer for this member, or null if one
2921   /// has not been set. If a valid declaration has a default member initializer,
2922   /// but this returns null, then we have not parsed and attached it yet.
getInClassInitializer()2923   Expr *getInClassInitializer() const {
2924     if (!hasInClassInitializer())
2925       return nullptr;
2926     void *Ptr = InitStorage.getPointer();
2927     if (BitField)
2928       return static_cast<InitAndBitWidth*>(Ptr)->Init;
2929     return static_cast<Expr*>(Ptr);
2930   }
2931 
2932   /// Set the C++11 in-class initializer for this member.
setInClassInitializer(Expr * Init)2933   void setInClassInitializer(Expr *Init) {
2934     assert(hasInClassInitializer() && !getInClassInitializer());
2935     if (BitField)
2936       static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
2937     else
2938       InitStorage.setPointer(Init);
2939   }
2940 
2941   /// Remove the C++11 in-class initializer from this member.
removeInClassInitializer()2942   void removeInClassInitializer() {
2943     assert(hasInClassInitializer() && "no initializer to remove");
2944     InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
2945   }
2946 
2947   /// Determine whether this member captures the variable length array
2948   /// type.
hasCapturedVLAType()2949   bool hasCapturedVLAType() const {
2950     return InitStorage.getInt() == ISK_CapturedVLAType;
2951   }
2952 
2953   /// Get the captured variable length array type.
getCapturedVLAType()2954   const VariableArrayType *getCapturedVLAType() const {
2955     return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
2956                                       InitStorage.getPointer())
2957                                 : nullptr;
2958   }
2959 
2960   /// Set the captured variable length array type for this field.
2961   void setCapturedVLAType(const VariableArrayType *VLAType);
2962 
2963   /// Returns the parent of this field declaration, which
2964   /// is the struct in which this field is defined.
2965   ///
2966   /// Returns null if this is not a normal class/struct field declaration, e.g.
2967   /// ObjCAtDefsFieldDecl, ObjCIvarDecl.
getParent()2968   const RecordDecl *getParent() const {
2969     return dyn_cast<RecordDecl>(getDeclContext());
2970   }
2971 
getParent()2972   RecordDecl *getParent() {
2973     return dyn_cast<RecordDecl>(getDeclContext());
2974   }
2975 
2976   SourceRange getSourceRange() const override LLVM_READONLY;
2977 
2978   /// Retrieves the canonical declaration of this field.
getCanonicalDecl()2979   FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()2980   const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
2981 
2982   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2983   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2984   static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
2985 };
2986 
2987 /// An instance of this object exists for each enum constant
2988 /// that is defined.  For example, in "enum X {a,b}", each of a/b are
2989 /// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
2990 /// TagType for the X EnumDecl.
2991 class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
2992   Stmt *Init; // an integer constant expression
2993   llvm::APSInt Val; // The value.
2994 
2995 protected:
EnumConstantDecl(DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)2996   EnumConstantDecl(DeclContext *DC, SourceLocation L,
2997                    IdentifierInfo *Id, QualType T, Expr *E,
2998                    const llvm::APSInt &V)
2999     : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
3000 
3001 public:
3002   friend class StmtIteratorBase;
3003 
3004   static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
3005                                   SourceLocation L, IdentifierInfo *Id,
3006                                   QualType T, Expr *E,
3007                                   const llvm::APSInt &V);
3008   static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3009 
getInitExpr()3010   const Expr *getInitExpr() const { return (const Expr*) Init; }
getInitExpr()3011   Expr *getInitExpr() { return (Expr*) Init; }
getInitVal()3012   const llvm::APSInt &getInitVal() const { return Val; }
3013 
setInitExpr(Expr * E)3014   void setInitExpr(Expr *E) { Init = (Stmt*) E; }
setInitVal(const llvm::APSInt & V)3015   void setInitVal(const llvm::APSInt &V) { Val = V; }
3016 
3017   SourceRange getSourceRange() const override LLVM_READONLY;
3018 
3019   /// Retrieves the canonical declaration of this enumerator.
getCanonicalDecl()3020   EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3021   const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
3022 
3023   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3024   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3025   static bool classofKind(Kind K) { return K == EnumConstant; }
3026 };
3027 
3028 /// Represents a field injected from an anonymous union/struct into the parent
3029 /// scope. These are always implicit.
3030 class IndirectFieldDecl : public ValueDecl,
3031                           public Mergeable<IndirectFieldDecl> {
3032   NamedDecl **Chaining;
3033   unsigned ChainingSize;
3034 
3035   IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
3036                     DeclarationName N, QualType T,
3037                     MutableArrayRef<NamedDecl *> CH);
3038 
3039   void anchor() override;
3040 
3041 public:
3042   friend class ASTDeclReader;
3043 
3044   static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
3045                                    SourceLocation L, IdentifierInfo *Id,
3046                                    QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
3047 
3048   static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3049 
3050   using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
3051 
chain()3052   ArrayRef<NamedDecl *> chain() const {
3053     return llvm::makeArrayRef(Chaining, ChainingSize);
3054   }
chain_begin()3055   chain_iterator chain_begin() const { return chain().begin(); }
chain_end()3056   chain_iterator chain_end() const { return chain().end(); }
3057 
getChainingSize()3058   unsigned getChainingSize() const { return ChainingSize; }
3059 
getAnonField()3060   FieldDecl *getAnonField() const {
3061     assert(chain().size() >= 2);
3062     return cast<FieldDecl>(chain().back());
3063   }
3064 
getVarDecl()3065   VarDecl *getVarDecl() const {
3066     assert(chain().size() >= 2);
3067     return dyn_cast<VarDecl>(chain().front());
3068   }
3069 
getCanonicalDecl()3070   IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3071   const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3072 
3073   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3074   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3075   static bool classofKind(Kind K) { return K == IndirectField; }
3076 };
3077 
3078 /// Represents a declaration of a type.
3079 class TypeDecl : public NamedDecl {
3080   friend class ASTContext;
3081 
3082   /// This indicates the Type object that represents
3083   /// this TypeDecl.  It is a cache maintained by
3084   /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
3085   /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
3086   mutable const Type *TypeForDecl = nullptr;
3087 
3088   /// The start of the source range for this declaration.
3089   SourceLocation LocStart;
3090 
3091   void anchor() override;
3092 
3093 protected:
3094   TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
3095            SourceLocation StartL = SourceLocation())
NamedDecl(DK,DC,L,Id)3096     : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
3097 
3098 public:
3099   // Low-level accessor. If you just want the type defined by this node,
3100   // check out ASTContext::getTypeDeclType or one of
3101   // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
3102   // already know the specific kind of node this is.
getTypeForDecl()3103   const Type *getTypeForDecl() const { return TypeForDecl; }
setTypeForDecl(const Type * TD)3104   void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
3105 
getBeginLoc()3106   SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
setLocStart(SourceLocation L)3107   void setLocStart(SourceLocation L) { LocStart = L; }
getSourceRange()3108   SourceRange getSourceRange() const override LLVM_READONLY {
3109     if (LocStart.isValid())
3110       return SourceRange(LocStart, getLocation());
3111     else
3112       return SourceRange(getLocation());
3113   }
3114 
3115   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3116   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3117   static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
3118 };
3119 
3120 /// Base class for declarations which introduce a typedef-name.
3121 class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
3122   struct alignas(8) ModedTInfo {
3123     TypeSourceInfo *first;
3124     QualType second;
3125   };
3126 
3127   /// If int part is 0, we have not computed IsTransparentTag.
3128   /// Otherwise, IsTransparentTag is (getInt() >> 1).
3129   mutable llvm::PointerIntPair<
3130       llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
3131       MaybeModedTInfo;
3132 
3133   void anchor() override;
3134 
3135 protected:
TypedefNameDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3136   TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
3137                   SourceLocation StartLoc, SourceLocation IdLoc,
3138                   IdentifierInfo *Id, TypeSourceInfo *TInfo)
3139       : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
3140         MaybeModedTInfo(TInfo, 0) {}
3141 
3142   using redeclarable_base = Redeclarable<TypedefNameDecl>;
3143 
getNextRedeclarationImpl()3144   TypedefNameDecl *getNextRedeclarationImpl() override {
3145     return getNextRedeclaration();
3146   }
3147 
getPreviousDeclImpl()3148   TypedefNameDecl *getPreviousDeclImpl() override {
3149     return getPreviousDecl();
3150   }
3151 
getMostRecentDeclImpl()3152   TypedefNameDecl *getMostRecentDeclImpl() override {
3153     return getMostRecentDecl();
3154   }
3155 
3156 public:
3157   using redecl_range = redeclarable_base::redecl_range;
3158   using redecl_iterator = redeclarable_base::redecl_iterator;
3159 
3160   using redeclarable_base::redecls_begin;
3161   using redeclarable_base::redecls_end;
3162   using redeclarable_base::redecls;
3163   using redeclarable_base::getPreviousDecl;
3164   using redeclarable_base::getMostRecentDecl;
3165   using redeclarable_base::isFirstDecl;
3166 
isModed()3167   bool isModed() const {
3168     return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
3169   }
3170 
getTypeSourceInfo()3171   TypeSourceInfo *getTypeSourceInfo() const {
3172     return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
3173                      : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
3174   }
3175 
getUnderlyingType()3176   QualType getUnderlyingType() const {
3177     return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
3178                      : MaybeModedTInfo.getPointer()
3179                            .get<TypeSourceInfo *>()
3180                            ->getType();
3181   }
3182 
setTypeSourceInfo(TypeSourceInfo * newType)3183   void setTypeSourceInfo(TypeSourceInfo *newType) {
3184     MaybeModedTInfo.setPointer(newType);
3185   }
3186 
setModedTypeSourceInfo(TypeSourceInfo * unmodedTSI,QualType modedTy)3187   void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
3188     MaybeModedTInfo.setPointer(new (getASTContext(), 8)
3189                                    ModedTInfo({unmodedTSI, modedTy}));
3190   }
3191 
3192   /// Retrieves the canonical declaration of this typedef-name.
getCanonicalDecl()3193   TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3194   const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3195 
3196   /// Retrieves the tag declaration for which this is the typedef name for
3197   /// linkage purposes, if any.
3198   ///
3199   /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3200   /// this typedef declaration.
3201   TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3202 
3203   /// Determines if this typedef shares a name and spelling location with its
3204   /// underlying tag type, as is the case with the NS_ENUM macro.
isTransparentTag()3205   bool isTransparentTag() const {
3206     if (MaybeModedTInfo.getInt())
3207       return MaybeModedTInfo.getInt() & 0x2;
3208     return isTransparentTagSlow();
3209   }
3210 
3211   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3212   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3213   static bool classofKind(Kind K) {
3214     return K >= firstTypedefName && K <= lastTypedefName;
3215   }
3216 
3217 private:
3218   bool isTransparentTagSlow() const;
3219 };
3220 
3221 /// Represents the declaration of a typedef-name via the 'typedef'
3222 /// type specifier.
3223 class TypedefDecl : public TypedefNameDecl {
TypedefDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3224   TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3225               SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3226       : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3227 
3228 public:
3229   static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3230                              SourceLocation StartLoc, SourceLocation IdLoc,
3231                              IdentifierInfo *Id, TypeSourceInfo *TInfo);
3232   static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3233 
3234   SourceRange getSourceRange() const override LLVM_READONLY;
3235 
3236   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3237   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3238   static bool classofKind(Kind K) { return K == Typedef; }
3239 };
3240 
3241 /// Represents the declaration of a typedef-name via a C++11
3242 /// alias-declaration.
3243 class TypeAliasDecl : public TypedefNameDecl {
3244   /// The template for which this is the pattern, if any.
3245   TypeAliasTemplateDecl *Template;
3246 
TypeAliasDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3247   TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3248                 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3249       : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3250         Template(nullptr) {}
3251 
3252 public:
3253   static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3254                                SourceLocation StartLoc, SourceLocation IdLoc,
3255                                IdentifierInfo *Id, TypeSourceInfo *TInfo);
3256   static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3257 
3258   SourceRange getSourceRange() const override LLVM_READONLY;
3259 
getDescribedAliasTemplate()3260   TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
setDescribedAliasTemplate(TypeAliasTemplateDecl * TAT)3261   void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3262 
3263   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3264   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3265   static bool classofKind(Kind K) { return K == TypeAlias; }
3266 };
3267 
3268 /// Represents the declaration of a struct/union/class/enum.
3269 class TagDecl : public TypeDecl,
3270                 public DeclContext,
3271                 public Redeclarable<TagDecl> {
3272   // This class stores some data in DeclContext::TagDeclBits
3273   // to save some space. Use the provided accessors to access it.
3274 public:
3275   // This is really ugly.
3276   using TagKind = TagTypeKind;
3277 
3278 private:
3279   SourceRange BraceRange;
3280 
3281   // A struct representing syntactic qualifier info,
3282   // to be used for the (uncommon) case of out-of-line declarations.
3283   using ExtInfo = QualifierInfo;
3284 
3285   /// If the (out-of-line) tag declaration name
3286   /// is qualified, it points to the qualifier info (nns and range);
3287   /// otherwise, if the tag declaration is anonymous and it is part of
3288   /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3289   /// otherwise, if the tag declaration is anonymous and it is used as a
3290   /// declaration specifier for variables, it points to the first VarDecl (used
3291   /// for mangling);
3292   /// otherwise, it is a null (TypedefNameDecl) pointer.
3293   llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3294 
hasExtInfo()3295   bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
getExtInfo()3296   ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
getExtInfo()3297   const ExtInfo *getExtInfo() const {
3298     return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3299   }
3300 
3301 protected:
3302   TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3303           SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3304           SourceLocation StartL);
3305 
3306   using redeclarable_base = Redeclarable<TagDecl>;
3307 
getNextRedeclarationImpl()3308   TagDecl *getNextRedeclarationImpl() override {
3309     return getNextRedeclaration();
3310   }
3311 
getPreviousDeclImpl()3312   TagDecl *getPreviousDeclImpl() override {
3313     return getPreviousDecl();
3314   }
3315 
getMostRecentDeclImpl()3316   TagDecl *getMostRecentDeclImpl() override {
3317     return getMostRecentDecl();
3318   }
3319 
3320   /// Completes the definition of this tag declaration.
3321   ///
3322   /// This is a helper function for derived classes.
3323   void completeDefinition();
3324 
3325   /// True if this decl is currently being defined.
3326   void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3327 
3328   /// Indicates whether it is possible for declarations of this kind
3329   /// to have an out-of-date definition.
3330   ///
3331   /// This option is only enabled when modules are enabled.
3332   void setMayHaveOutOfDateDef(bool V = true) {
3333     TagDeclBits.MayHaveOutOfDateDef = V;
3334   }
3335 
3336 public:
3337   friend class ASTDeclReader;
3338   friend class ASTDeclWriter;
3339 
3340   using redecl_range = redeclarable_base::redecl_range;
3341   using redecl_iterator = redeclarable_base::redecl_iterator;
3342 
3343   using redeclarable_base::redecls_begin;
3344   using redeclarable_base::redecls_end;
3345   using redeclarable_base::redecls;
3346   using redeclarable_base::getPreviousDecl;
3347   using redeclarable_base::getMostRecentDecl;
3348   using redeclarable_base::isFirstDecl;
3349 
getBraceRange()3350   SourceRange getBraceRange() const { return BraceRange; }
setBraceRange(SourceRange R)3351   void setBraceRange(SourceRange R) { BraceRange = R; }
3352 
3353   /// Return SourceLocation representing start of source
3354   /// range ignoring outer template declarations.
getInnerLocStart()3355   SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3356 
3357   /// Return SourceLocation representing start of source
3358   /// range taking into account any outer template declarations.
3359   SourceLocation getOuterLocStart() const;
3360   SourceRange getSourceRange() const override LLVM_READONLY;
3361 
3362   TagDecl *getCanonicalDecl() override;
getCanonicalDecl()3363   const TagDecl *getCanonicalDecl() const {
3364     return const_cast<TagDecl*>(this)->getCanonicalDecl();
3365   }
3366 
3367   /// Return true if this declaration is a completion definition of the type.
3368   /// Provided for consistency.
isThisDeclarationADefinition()3369   bool isThisDeclarationADefinition() const {
3370     return isCompleteDefinition();
3371   }
3372 
3373   /// Return true if this decl has its body fully specified.
isCompleteDefinition()3374   bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3375 
3376   /// True if this decl has its body fully specified.
3377   void setCompleteDefinition(bool V = true) {
3378     TagDeclBits.IsCompleteDefinition = V;
3379   }
3380 
3381   /// Return true if this complete decl is
3382   /// required to be complete for some existing use.
isCompleteDefinitionRequired()3383   bool isCompleteDefinitionRequired() const {
3384     return TagDeclBits.IsCompleteDefinitionRequired;
3385   }
3386 
3387   /// True if this complete decl is
3388   /// required to be complete for some existing use.
3389   void setCompleteDefinitionRequired(bool V = true) {
3390     TagDeclBits.IsCompleteDefinitionRequired = V;
3391   }
3392 
3393   /// Return true if this decl is currently being defined.
isBeingDefined()3394   bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3395 
3396   /// True if this tag declaration is "embedded" (i.e., defined or declared
3397   /// for the very first time) in the syntax of a declarator.
isEmbeddedInDeclarator()3398   bool isEmbeddedInDeclarator() const {
3399     return TagDeclBits.IsEmbeddedInDeclarator;
3400   }
3401 
3402   /// True if this tag declaration is "embedded" (i.e., defined or declared
3403   /// for the very first time) in the syntax of a declarator.
setEmbeddedInDeclarator(bool isInDeclarator)3404   void setEmbeddedInDeclarator(bool isInDeclarator) {
3405     TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3406   }
3407 
3408   /// True if this tag is free standing, e.g. "struct foo;".
isFreeStanding()3409   bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3410 
3411   /// True if this tag is free standing, e.g. "struct foo;".
3412   void setFreeStanding(bool isFreeStanding = true) {
3413     TagDeclBits.IsFreeStanding = isFreeStanding;
3414   }
3415 
3416   /// Indicates whether it is possible for declarations of this kind
3417   /// to have an out-of-date definition.
3418   ///
3419   /// This option is only enabled when modules are enabled.
mayHaveOutOfDateDef()3420   bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3421 
3422   /// Whether this declaration declares a type that is
3423   /// dependent, i.e., a type that somehow depends on template
3424   /// parameters.
isDependentType()3425   bool isDependentType() const { return isDependentContext(); }
3426 
3427   /// Starts the definition of this tag declaration.
3428   ///
3429   /// This method should be invoked at the beginning of the definition
3430   /// of this tag declaration. It will set the tag type into a state
3431   /// where it is in the process of being defined.
3432   void startDefinition();
3433 
3434   /// Returns the TagDecl that actually defines this
3435   ///  struct/union/class/enum.  When determining whether or not a
3436   ///  struct/union/class/enum has a definition, one should use this
3437   ///  method as opposed to 'isDefinition'.  'isDefinition' indicates
3438   ///  whether or not a specific TagDecl is defining declaration, not
3439   ///  whether or not the struct/union/class/enum type is defined.
3440   ///  This method returns NULL if there is no TagDecl that defines
3441   ///  the struct/union/class/enum.
3442   TagDecl *getDefinition() const;
3443 
getKindName()3444   StringRef getKindName() const {
3445     return TypeWithKeyword::getTagTypeKindName(getTagKind());
3446   }
3447 
getTagKind()3448   TagKind getTagKind() const {
3449     return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3450   }
3451 
setTagKind(TagKind TK)3452   void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
3453 
isStruct()3454   bool isStruct() const { return getTagKind() == TTK_Struct; }
isInterface()3455   bool isInterface() const { return getTagKind() == TTK_Interface; }
isClass()3456   bool isClass()  const { return getTagKind() == TTK_Class; }
isUnion()3457   bool isUnion()  const { return getTagKind() == TTK_Union; }
isEnum()3458   bool isEnum()   const { return getTagKind() == TTK_Enum; }
3459 
3460   /// Is this tag type named, either directly or via being defined in
3461   /// a typedef of this type?
3462   ///
3463   /// C++11 [basic.link]p8:
3464   ///   A type is said to have linkage if and only if:
3465   ///     - it is a class or enumeration type that is named (or has a
3466   ///       name for linkage purposes) and the name has linkage; ...
3467   /// C++11 [dcl.typedef]p9:
3468   ///   If the typedef declaration defines an unnamed class (or enum),
3469   ///   the first typedef-name declared by the declaration to be that
3470   ///   class type (or enum type) is used to denote the class type (or
3471   ///   enum type) for linkage purposes only.
3472   ///
3473   /// C does not have an analogous rule, but the same concept is
3474   /// nonetheless useful in some places.
hasNameForLinkage()3475   bool hasNameForLinkage() const {
3476     return (getDeclName() || getTypedefNameForAnonDecl());
3477   }
3478 
getTypedefNameForAnonDecl()3479   TypedefNameDecl *getTypedefNameForAnonDecl() const {
3480     return hasExtInfo() ? nullptr
3481                         : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3482   }
3483 
3484   void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
3485 
3486   /// Retrieve the nested-name-specifier that qualifies the name of this
3487   /// declaration, if it was present in the source.
getQualifier()3488   NestedNameSpecifier *getQualifier() const {
3489     return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3490                         : nullptr;
3491   }
3492 
3493   /// Retrieve the nested-name-specifier (with source-location
3494   /// information) that qualifies the name of this declaration, if it was
3495   /// present in the source.
getQualifierLoc()3496   NestedNameSpecifierLoc getQualifierLoc() const {
3497     return hasExtInfo() ? getExtInfo()->QualifierLoc
3498                         : NestedNameSpecifierLoc();
3499   }
3500 
3501   void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3502 
getNumTemplateParameterLists()3503   unsigned getNumTemplateParameterLists() const {
3504     return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3505   }
3506 
getTemplateParameterList(unsigned i)3507   TemplateParameterList *getTemplateParameterList(unsigned i) const {
3508     assert(i < getNumTemplateParameterLists());
3509     return getExtInfo()->TemplParamLists[i];
3510   }
3511 
3512   void setTemplateParameterListsInfo(ASTContext &Context,
3513                                      ArrayRef<TemplateParameterList *> TPLists);
3514 
3515   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3516   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3517   static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3518 
castToDeclContext(const TagDecl * D)3519   static DeclContext *castToDeclContext(const TagDecl *D) {
3520     return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3521   }
3522 
castFromDeclContext(const DeclContext * DC)3523   static TagDecl *castFromDeclContext(const DeclContext *DC) {
3524     return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3525   }
3526 };
3527 
3528 /// Represents an enum.  In C++11, enums can be forward-declared
3529 /// with a fixed underlying type, and in C we allow them to be forward-declared
3530 /// with no underlying type as an extension.
3531 class EnumDecl : public TagDecl {
3532   // This class stores some data in DeclContext::EnumDeclBits
3533   // to save some space. Use the provided accessors to access it.
3534 
3535   /// This represent the integer type that the enum corresponds
3536   /// to for code generation purposes.  Note that the enumerator constants may
3537   /// have a different type than this does.
3538   ///
3539   /// If the underlying integer type was explicitly stated in the source
3540   /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3541   /// was automatically deduced somehow, and this is a Type*.
3542   ///
3543   /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3544   /// some cases it won't.
3545   ///
3546   /// The underlying type of an enumeration never has any qualifiers, so
3547   /// we can get away with just storing a raw Type*, and thus save an
3548   /// extra pointer when TypeSourceInfo is needed.
3549   llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3550 
3551   /// The integer type that values of this type should
3552   /// promote to.  In C, enumerators are generally of an integer type
3553   /// directly, but gcc-style large enumerators (and all enumerators
3554   /// in C++) are of the enum type instead.
3555   QualType PromotionType;
3556 
3557   /// If this enumeration is an instantiation of a member enumeration
3558   /// of a class template specialization, this is the member specialization
3559   /// information.
3560   MemberSpecializationInfo *SpecializationInfo = nullptr;
3561 
3562   /// Store the ODRHash after first calculation.
3563   /// The corresponding flag HasODRHash is in EnumDeclBits
3564   /// and can be accessed with the provided accessors.
3565   unsigned ODRHash;
3566 
3567   EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3568            SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3569            bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3570 
3571   void anchor() override;
3572 
3573   void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3574                                     TemplateSpecializationKind TSK);
3575 
3576   /// Sets the width in bits required to store all the
3577   /// non-negative enumerators of this enum.
setNumPositiveBits(unsigned Num)3578   void setNumPositiveBits(unsigned Num) {
3579     EnumDeclBits.NumPositiveBits = Num;
3580     assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
3581   }
3582 
3583   /// Returns the width in bits required to store all the
3584   /// negative enumerators of this enum. (see getNumNegativeBits)
setNumNegativeBits(unsigned Num)3585   void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3586 
3587 public:
3588   /// True if this tag declaration is a scoped enumeration. Only
3589   /// possible in C++11 mode.
3590   void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3591 
3592   /// If this tag declaration is a scoped enum,
3593   /// then this is true if the scoped enum was declared using the class
3594   /// tag, false if it was declared with the struct tag. No meaning is
3595   /// associated if this tag declaration is not a scoped enum.
3596   void setScopedUsingClassTag(bool ScopedUCT = true) {
3597     EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3598   }
3599 
3600   /// True if this is an Objective-C, C++11, or
3601   /// Microsoft-style enumeration with a fixed underlying type.
3602   void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3603 
3604 private:
3605   /// True if a valid hash is stored in ODRHash.
hasODRHash()3606   bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3607   void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3608 
3609 public:
3610   friend class ASTDeclReader;
3611 
getCanonicalDecl()3612   EnumDecl *getCanonicalDecl() override {
3613     return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3614   }
getCanonicalDecl()3615   const EnumDecl *getCanonicalDecl() const {
3616     return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3617   }
3618 
getPreviousDecl()3619   EnumDecl *getPreviousDecl() {
3620     return cast_or_null<EnumDecl>(
3621             static_cast<TagDecl *>(this)->getPreviousDecl());
3622   }
getPreviousDecl()3623   const EnumDecl *getPreviousDecl() const {
3624     return const_cast<EnumDecl*>(this)->getPreviousDecl();
3625   }
3626 
getMostRecentDecl()3627   EnumDecl *getMostRecentDecl() {
3628     return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3629   }
getMostRecentDecl()3630   const EnumDecl *getMostRecentDecl() const {
3631     return const_cast<EnumDecl*>(this)->getMostRecentDecl();
3632   }
3633 
getDefinition()3634   EnumDecl *getDefinition() const {
3635     return cast_or_null<EnumDecl>(TagDecl::getDefinition());
3636   }
3637 
3638   static EnumDecl *Create(ASTContext &C, DeclContext *DC,
3639                           SourceLocation StartLoc, SourceLocation IdLoc,
3640                           IdentifierInfo *Id, EnumDecl *PrevDecl,
3641                           bool IsScoped, bool IsScopedUsingClassTag,
3642                           bool IsFixed);
3643   static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3644 
3645   /// When created, the EnumDecl corresponds to a
3646   /// forward-declared enum. This method is used to mark the
3647   /// declaration as being defined; its enumerators have already been
3648   /// added (via DeclContext::addDecl). NewType is the new underlying
3649   /// type of the enumeration type.
3650   void completeDefinition(QualType NewType,
3651                           QualType PromotionType,
3652                           unsigned NumPositiveBits,
3653                           unsigned NumNegativeBits);
3654 
3655   // Iterates through the enumerators of this enumeration.
3656   using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
3657   using enumerator_range =
3658       llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
3659 
enumerators()3660   enumerator_range enumerators() const {
3661     return enumerator_range(enumerator_begin(), enumerator_end());
3662   }
3663 
enumerator_begin()3664   enumerator_iterator enumerator_begin() const {
3665     const EnumDecl *E = getDefinition();
3666     if (!E)
3667       E = this;
3668     return enumerator_iterator(E->decls_begin());
3669   }
3670 
enumerator_end()3671   enumerator_iterator enumerator_end() const {
3672     const EnumDecl *E = getDefinition();
3673     if (!E)
3674       E = this;
3675     return enumerator_iterator(E->decls_end());
3676   }
3677 
3678   /// Return the integer type that enumerators should promote to.
getPromotionType()3679   QualType getPromotionType() const { return PromotionType; }
3680 
3681   /// Set the promotion type.
setPromotionType(QualType T)3682   void setPromotionType(QualType T) { PromotionType = T; }
3683 
3684   /// Return the integer type this enum decl corresponds to.
3685   /// This returns a null QualType for an enum forward definition with no fixed
3686   /// underlying type.
getIntegerType()3687   QualType getIntegerType() const {
3688     if (!IntegerType)
3689       return QualType();
3690     if (const Type *T = IntegerType.dyn_cast<const Type*>())
3691       return QualType(T, 0);
3692     return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
3693   }
3694 
3695   /// Set the underlying integer type.
setIntegerType(QualType T)3696   void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
3697 
3698   /// Set the underlying integer type source info.
setIntegerTypeSourceInfo(TypeSourceInfo * TInfo)3699   void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
3700 
3701   /// Return the type source info for the underlying integer type,
3702   /// if no type source info exists, return 0.
getIntegerTypeSourceInfo()3703   TypeSourceInfo *getIntegerTypeSourceInfo() const {
3704     return IntegerType.dyn_cast<TypeSourceInfo*>();
3705   }
3706 
3707   /// Retrieve the source range that covers the underlying type if
3708   /// specified.
3709   SourceRange getIntegerTypeRange() const LLVM_READONLY;
3710 
3711   /// Returns the width in bits required to store all the
3712   /// non-negative enumerators of this enum.
getNumPositiveBits()3713   unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
3714 
3715   /// Returns the width in bits required to store all the
3716   /// negative enumerators of this enum.  These widths include
3717   /// the rightmost leading 1;  that is:
3718   ///
3719   /// MOST NEGATIVE ENUMERATOR     PATTERN     NUM NEGATIVE BITS
3720   /// ------------------------     -------     -----------------
3721   ///                       -1     1111111                     1
3722   ///                      -10     1110110                     5
3723   ///                     -101     1001011                     8
getNumNegativeBits()3724   unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
3725 
3726   /// Returns true if this is a C++11 scoped enumeration.
isScoped()3727   bool isScoped() const { return EnumDeclBits.IsScoped; }
3728 
3729   /// Returns true if this is a C++11 scoped enumeration.
isScopedUsingClassTag()3730   bool isScopedUsingClassTag() const {
3731     return EnumDeclBits.IsScopedUsingClassTag;
3732   }
3733 
3734   /// Returns true if this is an Objective-C, C++11, or
3735   /// Microsoft-style enumeration with a fixed underlying type.
isFixed()3736   bool isFixed() const { return EnumDeclBits.IsFixed; }
3737 
3738   unsigned getODRHash();
3739 
3740   /// Returns true if this can be considered a complete type.
isComplete()3741   bool isComplete() const {
3742     // IntegerType is set for fixed type enums and non-fixed but implicitly
3743     // int-sized Microsoft enums.
3744     return isCompleteDefinition() || IntegerType;
3745   }
3746 
3747   /// Returns true if this enum is either annotated with
3748   /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
3749   bool isClosed() const;
3750 
3751   /// Returns true if this enum is annotated with flag_enum and isn't annotated
3752   /// with enum_extensibility(open).
3753   bool isClosedFlag() const;
3754 
3755   /// Returns true if this enum is annotated with neither flag_enum nor
3756   /// enum_extensibility(open).
3757   bool isClosedNonFlag() const;
3758 
3759   /// Retrieve the enum definition from which this enumeration could
3760   /// be instantiated, if it is an instantiation (rather than a non-template).
3761   EnumDecl *getTemplateInstantiationPattern() const;
3762 
3763   /// Returns the enumeration (declared within the template)
3764   /// from which this enumeration type was instantiated, or NULL if
3765   /// this enumeration was not instantiated from any template.
3766   EnumDecl *getInstantiatedFromMemberEnum() const;
3767 
3768   /// If this enumeration is a member of a specialization of a
3769   /// templated class, determine what kind of template specialization
3770   /// or instantiation this is.
3771   TemplateSpecializationKind getTemplateSpecializationKind() const;
3772 
3773   /// For an enumeration member that was instantiated from a member
3774   /// enumeration of a templated class, set the template specialiation kind.
3775   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3776                         SourceLocation PointOfInstantiation = SourceLocation());
3777 
3778   /// If this enumeration is an instantiation of a member enumeration of
3779   /// a class template specialization, retrieves the member specialization
3780   /// information.
getMemberSpecializationInfo()3781   MemberSpecializationInfo *getMemberSpecializationInfo() const {
3782     return SpecializationInfo;
3783   }
3784 
3785   /// Specify that this enumeration is an instantiation of the
3786   /// member enumeration ED.
setInstantiationOfMemberEnum(EnumDecl * ED,TemplateSpecializationKind TSK)3787   void setInstantiationOfMemberEnum(EnumDecl *ED,
3788                                     TemplateSpecializationKind TSK) {
3789     setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
3790   }
3791 
classof(const Decl * D)3792   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3793   static bool classofKind(Kind K) { return K == Enum; }
3794 };
3795 
3796 /// Represents a struct/union/class.  For example:
3797 ///   struct X;                  // Forward declaration, no "body".
3798 ///   union Y { int A, B; };     // Has body with members A and B (FieldDecls).
3799 /// This decl will be marked invalid if *any* members are invalid.
3800 class RecordDecl : public TagDecl {
3801   // This class stores some data in DeclContext::RecordDeclBits
3802   // to save some space. Use the provided accessors to access it.
3803 public:
3804   friend class DeclContext;
3805   /// Enum that represents the different ways arguments are passed to and
3806   /// returned from function calls. This takes into account the target-specific
3807   /// and version-specific rules along with the rules determined by the
3808   /// language.
3809   enum ArgPassingKind : unsigned {
3810     /// The argument of this type can be passed directly in registers.
3811     APK_CanPassInRegs,
3812 
3813     /// The argument of this type cannot be passed directly in registers.
3814     /// Records containing this type as a subobject are not forced to be passed
3815     /// indirectly. This value is used only in C++. This value is required by
3816     /// C++ because, in uncommon situations, it is possible for a class to have
3817     /// only trivial copy/move constructors even when one of its subobjects has
3818     /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
3819     /// constructor in the derived class is deleted).
3820     APK_CannotPassInRegs,
3821 
3822     /// The argument of this type cannot be passed directly in registers.
3823     /// Records containing this type as a subobject are forced to be passed
3824     /// indirectly.
3825     APK_CanNeverPassInRegs
3826   };
3827 
3828 protected:
3829   RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3830              SourceLocation StartLoc, SourceLocation IdLoc,
3831              IdentifierInfo *Id, RecordDecl *PrevDecl);
3832 
3833 public:
3834   static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3835                             SourceLocation StartLoc, SourceLocation IdLoc,
3836                             IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
3837   static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
3838 
getPreviousDecl()3839   RecordDecl *getPreviousDecl() {
3840     return cast_or_null<RecordDecl>(
3841             static_cast<TagDecl *>(this)->getPreviousDecl());
3842   }
getPreviousDecl()3843   const RecordDecl *getPreviousDecl() const {
3844     return const_cast<RecordDecl*>(this)->getPreviousDecl();
3845   }
3846 
getMostRecentDecl()3847   RecordDecl *getMostRecentDecl() {
3848     return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3849   }
getMostRecentDecl()3850   const RecordDecl *getMostRecentDecl() const {
3851     return const_cast<RecordDecl*>(this)->getMostRecentDecl();
3852   }
3853 
hasFlexibleArrayMember()3854   bool hasFlexibleArrayMember() const {
3855     return RecordDeclBits.HasFlexibleArrayMember;
3856   }
3857 
setHasFlexibleArrayMember(bool V)3858   void setHasFlexibleArrayMember(bool V) {
3859     RecordDeclBits.HasFlexibleArrayMember = V;
3860   }
3861 
3862   /// Whether this is an anonymous struct or union. To be an anonymous
3863   /// struct or union, it must have been declared without a name and
3864   /// there must be no objects of this type declared, e.g.,
3865   /// @code
3866   ///   union { int i; float f; };
3867   /// @endcode
3868   /// is an anonymous union but neither of the following are:
3869   /// @code
3870   ///  union X { int i; float f; };
3871   ///  union { int i; float f; } obj;
3872   /// @endcode
isAnonymousStructOrUnion()3873   bool isAnonymousStructOrUnion() const {
3874     return RecordDeclBits.AnonymousStructOrUnion;
3875   }
3876 
setAnonymousStructOrUnion(bool Anon)3877   void setAnonymousStructOrUnion(bool Anon) {
3878     RecordDeclBits.AnonymousStructOrUnion = Anon;
3879   }
3880 
hasObjectMember()3881   bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
setHasObjectMember(bool val)3882   void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
3883 
hasVolatileMember()3884   bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
3885 
setHasVolatileMember(bool val)3886   void setHasVolatileMember(bool val) {
3887     RecordDeclBits.HasVolatileMember = val;
3888   }
3889 
hasLoadedFieldsFromExternalStorage()3890   bool hasLoadedFieldsFromExternalStorage() const {
3891     return RecordDeclBits.LoadedFieldsFromExternalStorage;
3892   }
3893 
setHasLoadedFieldsFromExternalStorage(bool val)3894   void setHasLoadedFieldsFromExternalStorage(bool val) const {
3895     RecordDeclBits.LoadedFieldsFromExternalStorage = val;
3896   }
3897 
3898   /// Functions to query basic properties of non-trivial C structs.
isNonTrivialToPrimitiveDefaultInitialize()3899   bool isNonTrivialToPrimitiveDefaultInitialize() const {
3900     return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
3901   }
3902 
setNonTrivialToPrimitiveDefaultInitialize(bool V)3903   void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
3904     RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
3905   }
3906 
isNonTrivialToPrimitiveCopy()3907   bool isNonTrivialToPrimitiveCopy() const {
3908     return RecordDeclBits.NonTrivialToPrimitiveCopy;
3909   }
3910 
setNonTrivialToPrimitiveCopy(bool V)3911   void setNonTrivialToPrimitiveCopy(bool V) {
3912     RecordDeclBits.NonTrivialToPrimitiveCopy = V;
3913   }
3914 
isNonTrivialToPrimitiveDestroy()3915   bool isNonTrivialToPrimitiveDestroy() const {
3916     return RecordDeclBits.NonTrivialToPrimitiveDestroy;
3917   }
3918 
setNonTrivialToPrimitiveDestroy(bool V)3919   void setNonTrivialToPrimitiveDestroy(bool V) {
3920     RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
3921   }
3922 
hasNonTrivialToPrimitiveDefaultInitializeCUnion()3923   bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
3924     return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
3925   }
3926 
setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V)3927   void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
3928     RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
3929   }
3930 
hasNonTrivialToPrimitiveDestructCUnion()3931   bool hasNonTrivialToPrimitiveDestructCUnion() const {
3932     return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
3933   }
3934 
setHasNonTrivialToPrimitiveDestructCUnion(bool V)3935   void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
3936     RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
3937   }
3938 
hasNonTrivialToPrimitiveCopyCUnion()3939   bool hasNonTrivialToPrimitiveCopyCUnion() const {
3940     return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
3941   }
3942 
setHasNonTrivialToPrimitiveCopyCUnion(bool V)3943   void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
3944     RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
3945   }
3946 
3947   /// Determine whether this class can be passed in registers. In C++ mode,
3948   /// it must have at least one trivial, non-deleted copy or move constructor.
3949   /// FIXME: This should be set as part of completeDefinition.
canPassInRegisters()3950   bool canPassInRegisters() const {
3951     return getArgPassingRestrictions() == APK_CanPassInRegs;
3952   }
3953 
getArgPassingRestrictions()3954   ArgPassingKind getArgPassingRestrictions() const {
3955     return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
3956   }
3957 
setArgPassingRestrictions(ArgPassingKind Kind)3958   void setArgPassingRestrictions(ArgPassingKind Kind) {
3959     RecordDeclBits.ArgPassingRestrictions = Kind;
3960   }
3961 
isParamDestroyedInCallee()3962   bool isParamDestroyedInCallee() const {
3963     return RecordDeclBits.ParamDestroyedInCallee;
3964   }
3965 
setParamDestroyedInCallee(bool V)3966   void setParamDestroyedInCallee(bool V) {
3967     RecordDeclBits.ParamDestroyedInCallee = V;
3968   }
3969 
3970   /// Determines whether this declaration represents the
3971   /// injected class name.
3972   ///
3973   /// The injected class name in C++ is the name of the class that
3974   /// appears inside the class itself. For example:
3975   ///
3976   /// \code
3977   /// struct C {
3978   ///   // C is implicitly declared here as a synonym for the class name.
3979   /// };
3980   ///
3981   /// C::C c; // same as "C c;"
3982   /// \endcode
3983   bool isInjectedClassName() const;
3984 
3985   /// Determine whether this record is a class describing a lambda
3986   /// function object.
3987   bool isLambda() const;
3988 
3989   /// Determine whether this record is a record for captured variables in
3990   /// CapturedStmt construct.
3991   bool isCapturedRecord() const;
3992 
3993   /// Mark the record as a record for captured variables in CapturedStmt
3994   /// construct.
3995   void setCapturedRecord();
3996 
3997   /// Returns the RecordDecl that actually defines
3998   ///  this struct/union/class.  When determining whether or not a
3999   ///  struct/union/class is completely defined, one should use this
4000   ///  method as opposed to 'isCompleteDefinition'.
4001   ///  'isCompleteDefinition' indicates whether or not a specific
4002   ///  RecordDecl is a completed definition, not whether or not the
4003   ///  record type is defined.  This method returns NULL if there is
4004   ///  no RecordDecl that defines the struct/union/tag.
getDefinition()4005   RecordDecl *getDefinition() const {
4006     return cast_or_null<RecordDecl>(TagDecl::getDefinition());
4007   }
4008 
4009   /// Returns whether this record is a union, or contains (at any nesting level)
4010   /// a union member. This is used by CMSE to warn about possible information
4011   /// leaks.
4012   bool isOrContainsUnion() const;
4013 
4014   // Iterator access to field members. The field iterator only visits
4015   // the non-static data members of this class, ignoring any static
4016   // data members, functions, constructors, destructors, etc.
4017   using field_iterator = specific_decl_iterator<FieldDecl>;
4018   using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
4019 
fields()4020   field_range fields() const { return field_range(field_begin(), field_end()); }
4021   field_iterator field_begin() const;
4022 
field_end()4023   field_iterator field_end() const {
4024     return field_iterator(decl_iterator());
4025   }
4026 
4027   // Whether there are any fields (non-static data members) in this record.
field_empty()4028   bool field_empty() const {
4029     return field_begin() == field_end();
4030   }
4031 
4032   /// Note that the definition of this type is now complete.
4033   virtual void completeDefinition();
4034 
classof(const Decl * D)4035   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4036   static bool classofKind(Kind K) {
4037     return K >= firstRecord && K <= lastRecord;
4038   }
4039 
4040   /// Get whether or not this is an ms_struct which can
4041   /// be turned on with an attribute, pragma, or -mms-bitfields
4042   /// commandline option.
4043   bool isMsStruct(const ASTContext &C) const;
4044 
4045   /// Whether we are allowed to insert extra padding between fields.
4046   /// These padding are added to help AddressSanitizer detect
4047   /// intra-object-overflow bugs.
4048   bool mayInsertExtraPadding(bool EmitRemark = false) const;
4049 
4050   /// Finds the first data member which has a name.
4051   /// nullptr is returned if no named data member exists.
4052   const FieldDecl *findFirstNamedDataMember() const;
4053 
4054 private:
4055   /// Deserialize just the fields.
4056   void LoadFieldsFromExternalStorage() const;
4057 };
4058 
4059 class FileScopeAsmDecl : public Decl {
4060   StringLiteral *AsmString;
4061   SourceLocation RParenLoc;
4062 
FileScopeAsmDecl(DeclContext * DC,StringLiteral * asmstring,SourceLocation StartL,SourceLocation EndL)4063   FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
4064                    SourceLocation StartL, SourceLocation EndL)
4065     : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
4066 
4067   virtual void anchor();
4068 
4069 public:
4070   static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
4071                                   StringLiteral *Str, SourceLocation AsmLoc,
4072                                   SourceLocation RParenLoc);
4073 
4074   static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4075 
getAsmLoc()4076   SourceLocation getAsmLoc() const { return getLocation(); }
getRParenLoc()4077   SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)4078   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
getSourceRange()4079   SourceRange getSourceRange() const override LLVM_READONLY {
4080     return SourceRange(getAsmLoc(), getRParenLoc());
4081   }
4082 
getAsmString()4083   const StringLiteral *getAsmString() const { return AsmString; }
getAsmString()4084   StringLiteral *getAsmString() { return AsmString; }
setAsmString(StringLiteral * Asm)4085   void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
4086 
classof(const Decl * D)4087   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4088   static bool classofKind(Kind K) { return K == FileScopeAsm; }
4089 };
4090 
4091 /// Represents a block literal declaration, which is like an
4092 /// unnamed FunctionDecl.  For example:
4093 /// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4094 class BlockDecl : public Decl, public DeclContext {
4095   // This class stores some data in DeclContext::BlockDeclBits
4096   // to save some space. Use the provided accessors to access it.
4097 public:
4098   /// A class which contains all the information about a particular
4099   /// captured value.
4100   class Capture {
4101     enum {
4102       flag_isByRef = 0x1,
4103       flag_isNested = 0x2
4104     };
4105 
4106     /// The variable being captured.
4107     llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
4108 
4109     /// The copy expression, expressed in terms of a DeclRef (or
4110     /// BlockDeclRef) to the captured variable.  Only required if the
4111     /// variable has a C++ class type.
4112     Expr *CopyExpr;
4113 
4114   public:
Capture(VarDecl * variable,bool byRef,bool nested,Expr * copy)4115     Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
4116       : VariableAndFlags(variable,
4117                   (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
4118         CopyExpr(copy) {}
4119 
4120     /// The variable being captured.
getVariable()4121     VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
4122 
4123     /// Whether this is a "by ref" capture, i.e. a capture of a __block
4124     /// variable.
isByRef()4125     bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
4126 
isEscapingByref()4127     bool isEscapingByref() const {
4128       return getVariable()->isEscapingByref();
4129     }
4130 
isNonEscapingByref()4131     bool isNonEscapingByref() const {
4132       return getVariable()->isNonEscapingByref();
4133     }
4134 
4135     /// Whether this is a nested capture, i.e. the variable captured
4136     /// is not from outside the immediately enclosing function/block.
isNested()4137     bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
4138 
hasCopyExpr()4139     bool hasCopyExpr() const { return CopyExpr != nullptr; }
getCopyExpr()4140     Expr *getCopyExpr() const { return CopyExpr; }
setCopyExpr(Expr * e)4141     void setCopyExpr(Expr *e) { CopyExpr = e; }
4142   };
4143 
4144 private:
4145   /// A new[]'d array of pointers to ParmVarDecls for the formal
4146   /// parameters of this function.  This is null if a prototype or if there are
4147   /// no formals.
4148   ParmVarDecl **ParamInfo = nullptr;
4149   unsigned NumParams = 0;
4150 
4151   Stmt *Body = nullptr;
4152   TypeSourceInfo *SignatureAsWritten = nullptr;
4153 
4154   const Capture *Captures = nullptr;
4155   unsigned NumCaptures = 0;
4156 
4157   unsigned ManglingNumber = 0;
4158   Decl *ManglingContextDecl = nullptr;
4159 
4160 protected:
4161   BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
4162 
4163 public:
4164   static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
4165   static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4166 
getCaretLocation()4167   SourceLocation getCaretLocation() const { return getLocation(); }
4168 
isVariadic()4169   bool isVariadic() const { return BlockDeclBits.IsVariadic; }
setIsVariadic(bool value)4170   void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
4171 
getCompoundBody()4172   CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
getBody()4173   Stmt *getBody() const override { return (Stmt*) Body; }
setBody(CompoundStmt * B)4174   void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
4175 
setSignatureAsWritten(TypeSourceInfo * Sig)4176   void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
getSignatureAsWritten()4177   TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
4178 
4179   // ArrayRef access to formal parameters.
parameters()4180   ArrayRef<ParmVarDecl *> parameters() const {
4181     return {ParamInfo, getNumParams()};
4182   }
parameters()4183   MutableArrayRef<ParmVarDecl *> parameters() {
4184     return {ParamInfo, getNumParams()};
4185   }
4186 
4187   // Iterator access to formal parameters.
4188   using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
4189   using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
4190 
param_empty()4191   bool param_empty() const { return parameters().empty(); }
param_begin()4192   param_iterator param_begin() { return parameters().begin(); }
param_end()4193   param_iterator param_end() { return parameters().end(); }
param_begin()4194   param_const_iterator param_begin() const { return parameters().begin(); }
param_end()4195   param_const_iterator param_end() const { return parameters().end(); }
param_size()4196   size_t param_size() const { return parameters().size(); }
4197 
getNumParams()4198   unsigned getNumParams() const { return NumParams; }
4199 
getParamDecl(unsigned i)4200   const ParmVarDecl *getParamDecl(unsigned i) const {
4201     assert(i < getNumParams() && "Illegal param #");
4202     return ParamInfo[i];
4203   }
getParamDecl(unsigned i)4204   ParmVarDecl *getParamDecl(unsigned i) {
4205     assert(i < getNumParams() && "Illegal param #");
4206     return ParamInfo[i];
4207   }
4208 
4209   void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
4210 
4211   /// True if this block (or its nested blocks) captures
4212   /// anything of local storage from its enclosing scopes.
hasCaptures()4213   bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
4214 
4215   /// Returns the number of captured variables.
4216   /// Does not include an entry for 'this'.
getNumCaptures()4217   unsigned getNumCaptures() const { return NumCaptures; }
4218 
4219   using capture_const_iterator = ArrayRef<Capture>::const_iterator;
4220 
captures()4221   ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
4222 
capture_begin()4223   capture_const_iterator capture_begin() const { return captures().begin(); }
capture_end()4224   capture_const_iterator capture_end() const { return captures().end(); }
4225 
capturesCXXThis()4226   bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
4227   void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
4228 
blockMissingReturnType()4229   bool blockMissingReturnType() const {
4230     return BlockDeclBits.BlockMissingReturnType;
4231   }
4232 
4233   void setBlockMissingReturnType(bool val = true) {
4234     BlockDeclBits.BlockMissingReturnType = val;
4235   }
4236 
isConversionFromLambda()4237   bool isConversionFromLambda() const {
4238     return BlockDeclBits.IsConversionFromLambda;
4239   }
4240 
4241   void setIsConversionFromLambda(bool val = true) {
4242     BlockDeclBits.IsConversionFromLambda = val;
4243   }
4244 
doesNotEscape()4245   bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
4246   void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
4247 
canAvoidCopyToHeap()4248   bool canAvoidCopyToHeap() const {
4249     return BlockDeclBits.CanAvoidCopyToHeap;
4250   }
4251   void setCanAvoidCopyToHeap(bool B = true) {
4252     BlockDeclBits.CanAvoidCopyToHeap = B;
4253   }
4254 
4255   bool capturesVariable(const VarDecl *var) const;
4256 
4257   void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4258                    bool CapturesCXXThis);
4259 
getBlockManglingNumber()4260   unsigned getBlockManglingNumber() const { return ManglingNumber; }
4261 
getBlockManglingContextDecl()4262   Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
4263 
setBlockMangling(unsigned Number,Decl * Ctx)4264   void setBlockMangling(unsigned Number, Decl *Ctx) {
4265     ManglingNumber = Number;
4266     ManglingContextDecl = Ctx;
4267   }
4268 
4269   SourceRange getSourceRange() const override LLVM_READONLY;
4270 
4271   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)4272   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4273   static bool classofKind(Kind K) { return K == Block; }
castToDeclContext(const BlockDecl * D)4274   static DeclContext *castToDeclContext(const BlockDecl *D) {
4275     return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
4276   }
castFromDeclContext(const DeclContext * DC)4277   static BlockDecl *castFromDeclContext(const DeclContext *DC) {
4278     return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
4279   }
4280 };
4281 
4282 /// Represents the body of a CapturedStmt, and serves as its DeclContext.
4283 class CapturedDecl final
4284     : public Decl,
4285       public DeclContext,
4286       private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
4287 protected:
numTrailingObjects(OverloadToken<ImplicitParamDecl>)4288   size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
4289     return NumParams;
4290   }
4291 
4292 private:
4293   /// The number of parameters to the outlined function.
4294   unsigned NumParams;
4295 
4296   /// The position of context parameter in list of parameters.
4297   unsigned ContextParam;
4298 
4299   /// The body of the outlined function.
4300   llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
4301 
4302   explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
4303 
getParams()4304   ImplicitParamDecl *const *getParams() const {
4305     return getTrailingObjects<ImplicitParamDecl *>();
4306   }
4307 
getParams()4308   ImplicitParamDecl **getParams() {
4309     return getTrailingObjects<ImplicitParamDecl *>();
4310   }
4311 
4312 public:
4313   friend class ASTDeclReader;
4314   friend class ASTDeclWriter;
4315   friend TrailingObjects;
4316 
4317   static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
4318                               unsigned NumParams);
4319   static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4320                                           unsigned NumParams);
4321 
4322   Stmt *getBody() const override;
4323   void setBody(Stmt *B);
4324 
4325   bool isNothrow() const;
4326   void setNothrow(bool Nothrow = true);
4327 
getNumParams()4328   unsigned getNumParams() const { return NumParams; }
4329 
getParam(unsigned i)4330   ImplicitParamDecl *getParam(unsigned i) const {
4331     assert(i < NumParams);
4332     return getParams()[i];
4333   }
setParam(unsigned i,ImplicitParamDecl * P)4334   void setParam(unsigned i, ImplicitParamDecl *P) {
4335     assert(i < NumParams);
4336     getParams()[i] = P;
4337   }
4338 
4339   // ArrayRef interface to parameters.
parameters()4340   ArrayRef<ImplicitParamDecl *> parameters() const {
4341     return {getParams(), getNumParams()};
4342   }
parameters()4343   MutableArrayRef<ImplicitParamDecl *> parameters() {
4344     return {getParams(), getNumParams()};
4345   }
4346 
4347   /// Retrieve the parameter containing captured variables.
getContextParam()4348   ImplicitParamDecl *getContextParam() const {
4349     assert(ContextParam < NumParams);
4350     return getParam(ContextParam);
4351   }
setContextParam(unsigned i,ImplicitParamDecl * P)4352   void setContextParam(unsigned i, ImplicitParamDecl *P) {
4353     assert(i < NumParams);
4354     ContextParam = i;
4355     setParam(i, P);
4356   }
getContextParamPosition()4357   unsigned getContextParamPosition() const { return ContextParam; }
4358 
4359   using param_iterator = ImplicitParamDecl *const *;
4360   using param_range = llvm::iterator_range<param_iterator>;
4361 
4362   /// Retrieve an iterator pointing to the first parameter decl.
param_begin()4363   param_iterator param_begin() const { return getParams(); }
4364   /// Retrieve an iterator one past the last parameter decl.
param_end()4365   param_iterator param_end() const { return getParams() + NumParams; }
4366 
4367   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)4368   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4369   static bool classofKind(Kind K) { return K == Captured; }
castToDeclContext(const CapturedDecl * D)4370   static DeclContext *castToDeclContext(const CapturedDecl *D) {
4371     return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
4372   }
castFromDeclContext(const DeclContext * DC)4373   static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
4374     return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
4375   }
4376 };
4377 
4378 /// Describes a module import declaration, which makes the contents
4379 /// of the named module visible in the current translation unit.
4380 ///
4381 /// An import declaration imports the named module (or submodule). For example:
4382 /// \code
4383 ///   @import std.vector;
4384 /// \endcode
4385 ///
4386 /// Import declarations can also be implicitly generated from
4387 /// \#include/\#import directives.
4388 class ImportDecl final : public Decl,
4389                          llvm::TrailingObjects<ImportDecl, SourceLocation> {
4390   friend class ASTContext;
4391   friend class ASTDeclReader;
4392   friend class ASTReader;
4393   friend TrailingObjects;
4394 
4395   /// The imported module.
4396   Module *ImportedModule = nullptr;
4397 
4398   /// The next import in the list of imports local to the translation
4399   /// unit being parsed (not loaded from an AST file).
4400   ///
4401   /// Includes a bit that indicates whether we have source-location information
4402   /// for each identifier in the module name.
4403   ///
4404   /// When the bit is false, we only have a single source location for the
4405   /// end of the import declaration.
4406   llvm::PointerIntPair<ImportDecl *, 1, bool> NextLocalImportAndComplete;
4407 
4408   ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4409              ArrayRef<SourceLocation> IdentifierLocs);
4410 
4411   ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4412              SourceLocation EndLoc);
4413 
ImportDecl(EmptyShell Empty)4414   ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
4415 
isImportComplete()4416   bool isImportComplete() const { return NextLocalImportAndComplete.getInt(); }
4417 
setImportComplete(bool C)4418   void setImportComplete(bool C) { NextLocalImportAndComplete.setInt(C); }
4419 
4420   /// The next import in the list of imports local to the translation
4421   /// unit being parsed (not loaded from an AST file).
getNextLocalImport()4422   ImportDecl *getNextLocalImport() const {
4423     return NextLocalImportAndComplete.getPointer();
4424   }
4425 
setNextLocalImport(ImportDecl * Import)4426   void setNextLocalImport(ImportDecl *Import) {
4427     NextLocalImportAndComplete.setPointer(Import);
4428   }
4429 
4430 public:
4431   /// Create a new module import declaration.
4432   static ImportDecl *Create(ASTContext &C, DeclContext *DC,
4433                             SourceLocation StartLoc, Module *Imported,
4434                             ArrayRef<SourceLocation> IdentifierLocs);
4435 
4436   /// Create a new module import declaration for an implicitly-generated
4437   /// import.
4438   static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
4439                                     SourceLocation StartLoc, Module *Imported,
4440                                     SourceLocation EndLoc);
4441 
4442   /// Create a new, deserialized module import declaration.
4443   static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4444                                         unsigned NumLocations);
4445 
4446   /// Retrieve the module that was imported by the import declaration.
getImportedModule()4447   Module *getImportedModule() const { return ImportedModule; }
4448 
4449   /// Retrieves the locations of each of the identifiers that make up
4450   /// the complete module name in the import declaration.
4451   ///
4452   /// This will return an empty array if the locations of the individual
4453   /// identifiers aren't available.
4454   ArrayRef<SourceLocation> getIdentifierLocs() const;
4455 
4456   SourceRange getSourceRange() const override LLVM_READONLY;
4457 
classof(const Decl * D)4458   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4459   static bool classofKind(Kind K) { return K == Import; }
4460 };
4461 
4462 /// Represents a C++ Modules TS module export declaration.
4463 ///
4464 /// For example:
4465 /// \code
4466 ///   export void foo();
4467 /// \endcode
4468 class ExportDecl final : public Decl, public DeclContext {
4469   virtual void anchor();
4470 
4471 private:
4472   friend class ASTDeclReader;
4473 
4474   /// The source location for the right brace (if valid).
4475   SourceLocation RBraceLoc;
4476 
ExportDecl(DeclContext * DC,SourceLocation ExportLoc)4477   ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
4478       : Decl(Export, DC, ExportLoc), DeclContext(Export),
4479         RBraceLoc(SourceLocation()) {}
4480 
4481 public:
4482   static ExportDecl *Create(ASTContext &C, DeclContext *DC,
4483                             SourceLocation ExportLoc);
4484   static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4485 
getExportLoc()4486   SourceLocation getExportLoc() const { return getLocation(); }
getRBraceLoc()4487   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setRBraceLoc(SourceLocation L)4488   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4489 
hasBraces()4490   bool hasBraces() const { return RBraceLoc.isValid(); }
4491 
getEndLoc()4492   SourceLocation getEndLoc() const LLVM_READONLY {
4493     if (hasBraces())
4494       return RBraceLoc;
4495     // No braces: get the end location of the (only) declaration in context
4496     // (if present).
4497     return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
4498   }
4499 
getSourceRange()4500   SourceRange getSourceRange() const override LLVM_READONLY {
4501     return SourceRange(getLocation(), getEndLoc());
4502   }
4503 
classof(const Decl * D)4504   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4505   static bool classofKind(Kind K) { return K == Export; }
castToDeclContext(const ExportDecl * D)4506   static DeclContext *castToDeclContext(const ExportDecl *D) {
4507     return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
4508   }
castFromDeclContext(const DeclContext * DC)4509   static ExportDecl *castFromDeclContext(const DeclContext *DC) {
4510     return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
4511   }
4512 };
4513 
4514 /// Represents an empty-declaration.
4515 class EmptyDecl : public Decl {
EmptyDecl(DeclContext * DC,SourceLocation L)4516   EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
4517 
4518   virtual void anchor();
4519 
4520 public:
4521   static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
4522                            SourceLocation L);
4523   static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4524 
classof(const Decl * D)4525   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4526   static bool classofKind(Kind K) { return K == Empty; }
4527 };
4528 
4529 /// Insertion operator for diagnostics.  This allows sending NamedDecl's
4530 /// into a diagnostic with <<.
4531 inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
4532                                              const NamedDecl *ND) {
4533   PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
4534                   DiagnosticsEngine::ak_nameddecl);
4535   return PD;
4536 }
4537 
4538 template<typename decl_type>
setPreviousDecl(decl_type * PrevDecl)4539 void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
4540   // Note: This routine is implemented here because we need both NamedDecl
4541   // and Redeclarable to be defined.
4542   assert(RedeclLink.isFirst() &&
4543          "setPreviousDecl on a decl already in a redeclaration chain");
4544 
4545   if (PrevDecl) {
4546     // Point to previous. Make sure that this is actually the most recent
4547     // redeclaration, or we can build invalid chains. If the most recent
4548     // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
4549     First = PrevDecl->getFirstDecl();
4550     assert(First->RedeclLink.isFirst() && "Expected first");
4551     decl_type *MostRecent = First->getNextRedeclaration();
4552     RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
4553 
4554     // If the declaration was previously visible, a redeclaration of it remains
4555     // visible even if it wouldn't be visible by itself.
4556     static_cast<decl_type*>(this)->IdentifierNamespace |=
4557       MostRecent->getIdentifierNamespace() &
4558       (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
4559   } else {
4560     // Make this first.
4561     First = static_cast<decl_type*>(this);
4562   }
4563 
4564   // First one will point to this one as latest.
4565   First->RedeclLink.setLatest(static_cast<decl_type*>(this));
4566 
4567   assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
4568          cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
4569 }
4570 
4571 // Inline function definitions.
4572 
4573 /// Check if the given decl is complete.
4574 ///
4575 /// We use this function to break a cycle between the inline definitions in
4576 /// Type.h and Decl.h.
IsEnumDeclComplete(EnumDecl * ED)4577 inline bool IsEnumDeclComplete(EnumDecl *ED) {
4578   return ED->isComplete();
4579 }
4580 
4581 /// Check if the given decl is scoped.
4582 ///
4583 /// We use this function to break a cycle between the inline definitions in
4584 /// Type.h and Decl.h.
IsEnumDeclScoped(EnumDecl * ED)4585 inline bool IsEnumDeclScoped(EnumDecl *ED) {
4586   return ED->isScoped();
4587 }
4588 
4589 /// OpenMP variants are mangled early based on their OpenMP context selector.
4590 /// The new name looks likes this:
4591 ///  <name> + OpenMPVariantManglingSeparatorStr + <mangled OpenMP context>
getOpenMPVariantManglingSeparatorStr()4592 static constexpr StringRef getOpenMPVariantManglingSeparatorStr() {
4593   return "$ompvariant";
4594 }
4595 
4596 } // namespace clang
4597 
4598 #endif // LLVM_CLANG_AST_DECL_H
4599