• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 
11 #include "polly/CodeGen/IslExprBuilder.h"
12 #include "polly/CodeGen/RuntimeDebugBuilder.h"
13 #include "polly/Options.h"
14 #include "polly/ScopInfo.h"
15 #include "polly/Support/GICHelper.h"
16 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
17 
18 using namespace llvm;
19 using namespace polly;
20 
21 /// Different overflow tracking modes.
22 enum OverflowTrackingChoice {
23   OT_NEVER,   ///< Never tack potential overflows.
24   OT_REQUEST, ///< Track potential overflows if requested.
25   OT_ALWAYS   ///< Always track potential overflows.
26 };
27 
28 static cl::opt<OverflowTrackingChoice> OTMode(
29     "polly-overflow-tracking",
30     cl::desc("Define where potential integer overflows in generated "
31              "expressions should be tracked."),
32     cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."),
33                clEnumValN(OT_REQUEST, "request",
34                           "Track the overflow bit if requested."),
35                clEnumValN(OT_ALWAYS, "always",
36                           "Always track the overflow bit.")),
37     cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory));
38 
IslExprBuilder(Scop & S,PollyIRBuilder & Builder,IDToValueTy & IDToValue,ValueMapT & GlobalMap,const DataLayout & DL,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,BasicBlock * StartBlock)39 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder,
40                                IDToValueTy &IDToValue, ValueMapT &GlobalMap,
41                                const DataLayout &DL, ScalarEvolution &SE,
42                                DominatorTree &DT, LoopInfo &LI,
43                                BasicBlock *StartBlock)
44     : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap),
45       DL(DL), SE(SE), DT(DT), LI(LI), StartBlock(StartBlock) {
46   OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr;
47 }
48 
setTrackOverflow(bool Enable)49 void IslExprBuilder::setTrackOverflow(bool Enable) {
50   // If potential overflows are tracked always or never we ignore requests
51   // to change the behavior.
52   if (OTMode != OT_REQUEST)
53     return;
54 
55   if (Enable) {
56     // If tracking should be enabled initialize the OverflowState.
57     OverflowState = Builder.getFalse();
58   } else {
59     // If tracking should be disabled just unset the OverflowState.
60     OverflowState = nullptr;
61   }
62 }
63 
getOverflowState() const64 Value *IslExprBuilder::getOverflowState() const {
65   // If the overflow tracking was requested but it is disabled we avoid the
66   // additional nullptr checks at the call sides but instead provide a
67   // meaningful result.
68   if (OTMode == OT_NEVER)
69     return Builder.getFalse();
70   return OverflowState;
71 }
72 
hasLargeInts(isl::ast_expr Expr)73 bool IslExprBuilder::hasLargeInts(isl::ast_expr Expr) {
74   enum isl_ast_expr_type Type = isl_ast_expr_get_type(Expr.get());
75 
76   if (Type == isl_ast_expr_id)
77     return false;
78 
79   if (Type == isl_ast_expr_int) {
80     isl::val Val = Expr.get_val();
81     APInt APValue = APIntFromVal(Val);
82     auto BitWidth = APValue.getBitWidth();
83     return BitWidth >= 64;
84   }
85 
86   assert(Type == isl_ast_expr_op && "Expected isl_ast_expr of type operation");
87 
88   int NumArgs = isl_ast_expr_get_op_n_arg(Expr.get());
89 
90   for (int i = 0; i < NumArgs; i++) {
91     isl::ast_expr Operand = Expr.get_op_arg(i);
92     if (hasLargeInts(Operand))
93       return true;
94   }
95 
96   return false;
97 }
98 
createBinOp(BinaryOperator::BinaryOps Opc,Value * LHS,Value * RHS,const Twine & Name)99 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS,
100                                    Value *RHS, const Twine &Name) {
101   // Handle the plain operation (without overflow tracking) first.
102   if (!OverflowState) {
103     switch (Opc) {
104     case Instruction::Add:
105       return Builder.CreateNSWAdd(LHS, RHS, Name);
106     case Instruction::Sub:
107       return Builder.CreateNSWSub(LHS, RHS, Name);
108     case Instruction::Mul:
109       return Builder.CreateNSWMul(LHS, RHS, Name);
110     default:
111       llvm_unreachable("Unknown binary operator!");
112     }
113   }
114 
115   Function *F = nullptr;
116   Module *M = Builder.GetInsertBlock()->getModule();
117   switch (Opc) {
118   case Instruction::Add:
119     F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
120                                   {LHS->getType()});
121     break;
122   case Instruction::Sub:
123     F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow,
124                                   {LHS->getType()});
125     break;
126   case Instruction::Mul:
127     F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow,
128                                   {LHS->getType()});
129     break;
130   default:
131     llvm_unreachable("No overflow intrinsic for binary operator found!");
132   }
133 
134   auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name);
135   assert(ResultStruct->getType()->isStructTy());
136 
137   auto *OverflowFlag =
138       Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit");
139 
140   // If all overflows are tracked we do not combine the results as this could
141   // cause dominance problems. Instead we will always keep the last overflow
142   // flag as current state.
143   if (OTMode == OT_ALWAYS)
144     OverflowState = OverflowFlag;
145   else
146     OverflowState =
147         Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state");
148 
149   return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res");
150 }
151 
createAdd(Value * LHS,Value * RHS,const Twine & Name)152 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) {
153   return createBinOp(Instruction::Add, LHS, RHS, Name);
154 }
155 
createSub(Value * LHS,Value * RHS,const Twine & Name)156 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) {
157   return createBinOp(Instruction::Sub, LHS, RHS, Name);
158 }
159 
createMul(Value * LHS,Value * RHS,const Twine & Name)160 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) {
161   return createBinOp(Instruction::Mul, LHS, RHS, Name);
162 }
163 
getWidestType(Type * T1,Type * T2)164 Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) {
165   assert(isa<IntegerType>(T1) && isa<IntegerType>(T2));
166 
167   if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits())
168     return T2;
169   else
170     return T1;
171 }
172 
createOpUnary(__isl_take isl_ast_expr * Expr)173 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) {
174   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus &&
175          "Unsupported unary operation");
176 
177   Value *V;
178   Type *MaxType = getType(Expr);
179   assert(MaxType->isIntegerTy() &&
180          "Unary expressions can only be created for integer types");
181 
182   V = create(isl_ast_expr_get_op_arg(Expr, 0));
183   MaxType = getWidestType(MaxType, V->getType());
184 
185   if (MaxType != V->getType())
186     V = Builder.CreateSExt(V, MaxType);
187 
188   isl_ast_expr_free(Expr);
189   return createSub(ConstantInt::getNullValue(MaxType), V);
190 }
191 
createOpNAry(__isl_take isl_ast_expr * Expr)192 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) {
193   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
194          "isl ast expression not of type isl_ast_op");
195   assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
196          "We need at least two operands in an n-ary operation");
197 
198   CmpInst::Predicate Pred;
199   switch (isl_ast_expr_get_op_type(Expr)) {
200   default:
201     llvm_unreachable("This is not a an n-ary isl ast expression");
202   case isl_ast_op_max:
203     Pred = CmpInst::ICMP_SGT;
204     break;
205   case isl_ast_op_min:
206     Pred = CmpInst::ICMP_SLT;
207     break;
208   }
209 
210   Value *V = create(isl_ast_expr_get_op_arg(Expr, 0));
211 
212   for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) {
213     Value *OpV = create(isl_ast_expr_get_op_arg(Expr, i));
214     Type *Ty = getWidestType(V->getType(), OpV->getType());
215 
216     if (Ty != OpV->getType())
217       OpV = Builder.CreateSExt(OpV, Ty);
218 
219     if (Ty != V->getType())
220       V = Builder.CreateSExt(V, Ty);
221 
222     Value *Cmp = Builder.CreateICmp(Pred, V, OpV);
223     V = Builder.CreateSelect(Cmp, V, OpV);
224   }
225 
226   // TODO: We can truncate the result, if it fits into a smaller type. This can
227   // help in cases where we have larger operands (e.g. i67) but the result is
228   // known to fit into i64. Without the truncation, the larger i67 type may
229   // force all subsequent operations to be performed on a non-native type.
230   isl_ast_expr_free(Expr);
231   return V;
232 }
233 
createAccessAddress(isl_ast_expr * Expr)234 Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) {
235   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
236          "isl ast expression not of type isl_ast_op");
237   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access &&
238          "not an access isl ast expression");
239   assert(isl_ast_expr_get_op_n_arg(Expr) >= 1 &&
240          "We need at least two operands to create a member access.");
241 
242   Value *Base, *IndexOp, *Access;
243   isl_ast_expr *BaseExpr;
244   isl_id *BaseId;
245 
246   BaseExpr = isl_ast_expr_get_op_arg(Expr, 0);
247   BaseId = isl_ast_expr_get_id(BaseExpr);
248   isl_ast_expr_free(BaseExpr);
249 
250   const ScopArrayInfo *SAI = nullptr;
251 
252   if (PollyDebugPrinting)
253     RuntimeDebugBuilder::createCPUPrinter(Builder, isl_id_get_name(BaseId));
254 
255   if (IDToSAI)
256     SAI = (*IDToSAI)[BaseId];
257 
258   if (!SAI)
259     SAI = ScopArrayInfo::getFromId(isl::manage(BaseId));
260   else
261     isl_id_free(BaseId);
262 
263   assert(SAI && "No ScopArrayInfo found for this isl_id.");
264 
265   Base = SAI->getBasePtr();
266 
267   if (auto NewBase = GlobalMap.lookup(Base))
268     Base = NewBase;
269 
270   assert(Base->getType()->isPointerTy() && "Access base should be a pointer");
271   StringRef BaseName = Base->getName();
272 
273   auto PointerTy = PointerType::get(SAI->getElementType(),
274                                     Base->getType()->getPointerAddressSpace());
275   if (Base->getType() != PointerTy) {
276     Base =
277         Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName);
278   }
279 
280   if (isl_ast_expr_get_op_n_arg(Expr) == 1) {
281     isl_ast_expr_free(Expr);
282     if (PollyDebugPrinting)
283       RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
284     return Base;
285   }
286 
287   IndexOp = nullptr;
288   for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) {
289     Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u));
290     assert(NextIndex->getType()->isIntegerTy() &&
291            "Access index should be an integer");
292 
293     if (PollyDebugPrinting)
294       RuntimeDebugBuilder::createCPUPrinter(Builder, "[", NextIndex, "]");
295 
296     if (!IndexOp) {
297       IndexOp = NextIndex;
298     } else {
299       Type *Ty = getWidestType(NextIndex->getType(), IndexOp->getType());
300 
301       if (Ty != NextIndex->getType())
302         NextIndex = Builder.CreateIntCast(NextIndex, Ty, true);
303       if (Ty != IndexOp->getType())
304         IndexOp = Builder.CreateIntCast(IndexOp, Ty, true);
305 
306       IndexOp = createAdd(IndexOp, NextIndex, "polly.access.add." + BaseName);
307     }
308 
309     // For every but the last dimension multiply the size, for the last
310     // dimension we can exit the loop.
311     if (u + 1 >= e)
312       break;
313 
314     const SCEV *DimSCEV = SAI->getDimensionSize(u);
315 
316     llvm::ValueToSCEVMapTy Map;
317     for (auto &KV : GlobalMap)
318       Map[KV.first] = SE.getSCEV(KV.second);
319     DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map);
320     Value *DimSize =
321         expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(),
322                       &*Builder.GetInsertPoint(), nullptr,
323                       StartBlock->getSinglePredecessor());
324 
325     Type *Ty = getWidestType(DimSize->getType(), IndexOp->getType());
326 
327     if (Ty != IndexOp->getType())
328       IndexOp = Builder.CreateSExtOrTrunc(IndexOp, Ty,
329                                           "polly.access.sext." + BaseName);
330     if (Ty != DimSize->getType())
331       DimSize = Builder.CreateSExtOrTrunc(DimSize, Ty,
332                                           "polly.access.sext." + BaseName);
333     IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName);
334   }
335 
336   Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName);
337 
338   if (PollyDebugPrinting)
339     RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
340   isl_ast_expr_free(Expr);
341   return Access;
342 }
343 
createOpAccess(isl_ast_expr * Expr)344 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) {
345   Value *Addr = createAccessAddress(Expr);
346   assert(Addr && "Could not create op access address");
347   return Builder.CreateLoad(Addr, Addr->getName() + ".load");
348 }
349 
createOpBin(__isl_take isl_ast_expr * Expr)350 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) {
351   Value *LHS, *RHS, *Res;
352   Type *MaxType;
353   isl_ast_op_type OpType;
354 
355   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
356          "isl ast expression not of type isl_ast_op");
357   assert(isl_ast_expr_get_op_n_arg(Expr) == 2 &&
358          "not a binary isl ast expression");
359 
360   OpType = isl_ast_expr_get_op_type(Expr);
361 
362   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
363   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
364 
365   Type *LHSType = LHS->getType();
366   Type *RHSType = RHS->getType();
367 
368   MaxType = getWidestType(LHSType, RHSType);
369 
370   // Take the result into account when calculating the widest type.
371   //
372   // For operations such as '+' the result may require a type larger than
373   // the type of the individual operands. For other operations such as '/', the
374   // result type cannot be larger than the type of the individual operand. isl
375   // does not calculate correct types for these operations and we consequently
376   // exclude those operations here.
377   switch (OpType) {
378   case isl_ast_op_pdiv_q:
379   case isl_ast_op_pdiv_r:
380   case isl_ast_op_div:
381   case isl_ast_op_fdiv_q:
382   case isl_ast_op_zdiv_r:
383     // Do nothing
384     break;
385   case isl_ast_op_add:
386   case isl_ast_op_sub:
387   case isl_ast_op_mul:
388     MaxType = getWidestType(MaxType, getType(Expr));
389     break;
390   default:
391     llvm_unreachable("This is no binary isl ast expression");
392   }
393 
394   if (MaxType != RHS->getType())
395     RHS = Builder.CreateSExt(RHS, MaxType);
396 
397   if (MaxType != LHS->getType())
398     LHS = Builder.CreateSExt(LHS, MaxType);
399 
400   switch (OpType) {
401   default:
402     llvm_unreachable("This is no binary isl ast expression");
403   case isl_ast_op_add:
404     Res = createAdd(LHS, RHS);
405     break;
406   case isl_ast_op_sub:
407     Res = createSub(LHS, RHS);
408     break;
409   case isl_ast_op_mul:
410     Res = createMul(LHS, RHS);
411     break;
412   case isl_ast_op_div:
413     Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true);
414     break;
415   case isl_ast_op_pdiv_q: // Dividend is non-negative
416     Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q");
417     break;
418   case isl_ast_op_fdiv_q: { // Round towards -infty
419     if (auto *Const = dyn_cast<ConstantInt>(RHS)) {
420       auto &Val = Const->getValue();
421       if (Val.isPowerOf2() && Val.isNonNegative()) {
422         Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr");
423         break;
424       }
425     }
426     // TODO: Review code and check that this calculation does not yield
427     //       incorrect overflow in some edge cases.
428     //
429     // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
430     Value *One = ConstantInt::get(MaxType, 1);
431     Value *Zero = ConstantInt::get(MaxType, 0);
432     Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0");
433     Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1");
434     Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2");
435     Value *Dividend =
436         Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3");
437     Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4");
438     break;
439   }
440   case isl_ast_op_pdiv_r: // Dividend is non-negative
441     Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r");
442     break;
443 
444   case isl_ast_op_zdiv_r: // Result only compared against zero
445     Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r");
446     break;
447   }
448 
449   // TODO: We can truncate the result, if it fits into a smaller type. This can
450   // help in cases where we have larger operands (e.g. i67) but the result is
451   // known to fit into i64. Without the truncation, the larger i67 type may
452   // force all subsequent operations to be performed on a non-native type.
453   isl_ast_expr_free(Expr);
454   return Res;
455 }
456 
createOpSelect(__isl_take isl_ast_expr * Expr)457 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) {
458   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select &&
459          "Unsupported unary isl ast expression");
460   Value *LHS, *RHS, *Cond;
461   Type *MaxType = getType(Expr);
462 
463   Cond = create(isl_ast_expr_get_op_arg(Expr, 0));
464   if (!Cond->getType()->isIntegerTy(1))
465     Cond = Builder.CreateIsNotNull(Cond);
466 
467   LHS = create(isl_ast_expr_get_op_arg(Expr, 1));
468   RHS = create(isl_ast_expr_get_op_arg(Expr, 2));
469 
470   MaxType = getWidestType(MaxType, LHS->getType());
471   MaxType = getWidestType(MaxType, RHS->getType());
472 
473   if (MaxType != RHS->getType())
474     RHS = Builder.CreateSExt(RHS, MaxType);
475 
476   if (MaxType != LHS->getType())
477     LHS = Builder.CreateSExt(LHS, MaxType);
478 
479   // TODO: Do we want to truncate the result?
480   isl_ast_expr_free(Expr);
481   return Builder.CreateSelect(Cond, LHS, RHS);
482 }
483 
createOpICmp(__isl_take isl_ast_expr * Expr)484 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) {
485   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
486          "Expected an isl_ast_expr_op expression");
487 
488   Value *LHS, *RHS, *Res;
489 
490   auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0);
491   auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1);
492   bool HasNonAddressOfOperand =
493       isl_ast_expr_get_type(Op0) != isl_ast_expr_op ||
494       isl_ast_expr_get_type(Op1) != isl_ast_expr_op ||
495       isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of ||
496       isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of;
497 
498   LHS = create(Op0);
499   RHS = create(Op1);
500 
501   auto *LHSTy = LHS->getType();
502   auto *RHSTy = RHS->getType();
503   bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy();
504   bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand;
505 
506   auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits());
507   if (LHSTy->isPointerTy())
508     LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy);
509   if (RHSTy->isPointerTy())
510     RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy);
511 
512   if (LHS->getType() != RHS->getType()) {
513     Type *MaxType = LHS->getType();
514     MaxType = getWidestType(MaxType, RHS->getType());
515 
516     if (MaxType != RHS->getType())
517       RHS = Builder.CreateSExt(RHS, MaxType);
518 
519     if (MaxType != LHS->getType())
520       LHS = Builder.CreateSExt(LHS, MaxType);
521   }
522 
523   isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr);
524   assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt &&
525          "Unsupported ICmp isl ast expression");
526   assert(isl_ast_op_eq + 4 == isl_ast_op_gt &&
527          "Isl ast op type interface changed");
528 
529   CmpInst::Predicate Predicates[5][2] = {
530       {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ},
531       {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE},
532       {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT},
533       {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE},
534       {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT},
535   };
536 
537   Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp],
538                            LHS, RHS);
539 
540   isl_ast_expr_free(Expr);
541   return Res;
542 }
543 
createOpBoolean(__isl_take isl_ast_expr * Expr)544 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) {
545   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
546          "Expected an isl_ast_expr_op expression");
547 
548   Value *LHS, *RHS, *Res;
549   isl_ast_op_type OpType;
550 
551   OpType = isl_ast_expr_get_op_type(Expr);
552 
553   assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) &&
554          "Unsupported isl_ast_op_type");
555 
556   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
557   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
558 
559   // Even though the isl pretty printer prints the expressions as 'exp && exp'
560   // or 'exp || exp', we actually code generate the bitwise expressions
561   // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches,
562   // but it is, due to the use of i1 types, otherwise equivalent. The reason
563   // to go for bitwise operations is, that we assume the reduced control flow
564   // will outweigh the overhead introduced by evaluating unneeded expressions.
565   // The isl code generation currently does not take advantage of the fact that
566   // the expression after an '||' or '&&' is in some cases not evaluated.
567   // Evaluating it anyways does not cause any undefined behaviour.
568   //
569   // TODO: Document in isl itself, that the unconditionally evaluating the
570   // second part of '||' or '&&' expressions is safe.
571   if (!LHS->getType()->isIntegerTy(1))
572     LHS = Builder.CreateIsNotNull(LHS);
573   if (!RHS->getType()->isIntegerTy(1))
574     RHS = Builder.CreateIsNotNull(RHS);
575 
576   switch (OpType) {
577   default:
578     llvm_unreachable("Unsupported boolean expression");
579   case isl_ast_op_and:
580     Res = Builder.CreateAnd(LHS, RHS);
581     break;
582   case isl_ast_op_or:
583     Res = Builder.CreateOr(LHS, RHS);
584     break;
585   }
586 
587   isl_ast_expr_free(Expr);
588   return Res;
589 }
590 
591 Value *
createOpBooleanConditional(__isl_take isl_ast_expr * Expr)592 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) {
593   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
594          "Expected an isl_ast_expr_op expression");
595 
596   Value *LHS, *RHS;
597   isl_ast_op_type OpType;
598 
599   Function *F = Builder.GetInsertBlock()->getParent();
600   LLVMContext &Context = F->getContext();
601 
602   OpType = isl_ast_expr_get_op_type(Expr);
603 
604   assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) &&
605          "Unsupported isl_ast_op_type");
606 
607   auto InsertBB = Builder.GetInsertBlock();
608   auto InsertPoint = Builder.GetInsertPoint();
609   auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI);
610   BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F);
611   LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB));
612   DT.addNewBlock(CondBB, InsertBB);
613 
614   InsertBB->getTerminator()->eraseFromParent();
615   Builder.SetInsertPoint(InsertBB);
616   auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB);
617 
618   Builder.SetInsertPoint(CondBB);
619   Builder.CreateBr(NextBB);
620 
621   Builder.SetInsertPoint(InsertBB->getTerminator());
622 
623   LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
624   if (!LHS->getType()->isIntegerTy(1))
625     LHS = Builder.CreateIsNotNull(LHS);
626   auto LeftBB = Builder.GetInsertBlock();
627 
628   if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then)
629     BR->setCondition(Builder.CreateNeg(LHS));
630   else
631     BR->setCondition(LHS);
632 
633   Builder.SetInsertPoint(CondBB->getTerminator());
634   RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
635   if (!RHS->getType()->isIntegerTy(1))
636     RHS = Builder.CreateIsNotNull(RHS);
637   auto RightBB = Builder.GetInsertBlock();
638 
639   Builder.SetInsertPoint(NextBB->getTerminator());
640   auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2);
641   PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse()
642                                                  : Builder.getTrue(),
643                    LeftBB);
644   PHI->addIncoming(RHS, RightBB);
645 
646   isl_ast_expr_free(Expr);
647   return PHI;
648 }
649 
createOp(__isl_take isl_ast_expr * Expr)650 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) {
651   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
652          "Expression not of type isl_ast_expr_op");
653   switch (isl_ast_expr_get_op_type(Expr)) {
654   case isl_ast_op_error:
655   case isl_ast_op_cond:
656   case isl_ast_op_call:
657   case isl_ast_op_member:
658     llvm_unreachable("Unsupported isl ast expression");
659   case isl_ast_op_access:
660     return createOpAccess(Expr);
661   case isl_ast_op_max:
662   case isl_ast_op_min:
663     return createOpNAry(Expr);
664   case isl_ast_op_add:
665   case isl_ast_op_sub:
666   case isl_ast_op_mul:
667   case isl_ast_op_div:
668   case isl_ast_op_fdiv_q: // Round towards -infty
669   case isl_ast_op_pdiv_q: // Dividend is non-negative
670   case isl_ast_op_pdiv_r: // Dividend is non-negative
671   case isl_ast_op_zdiv_r: // Result only compared against zero
672     return createOpBin(Expr);
673   case isl_ast_op_minus:
674     return createOpUnary(Expr);
675   case isl_ast_op_select:
676     return createOpSelect(Expr);
677   case isl_ast_op_and:
678   case isl_ast_op_or:
679     return createOpBoolean(Expr);
680   case isl_ast_op_and_then:
681   case isl_ast_op_or_else:
682     return createOpBooleanConditional(Expr);
683   case isl_ast_op_eq:
684   case isl_ast_op_le:
685   case isl_ast_op_lt:
686   case isl_ast_op_ge:
687   case isl_ast_op_gt:
688     return createOpICmp(Expr);
689   case isl_ast_op_address_of:
690     return createOpAddressOf(Expr);
691   }
692 
693   llvm_unreachable("Unsupported isl_ast_expr_op kind.");
694 }
695 
createOpAddressOf(__isl_take isl_ast_expr * Expr)696 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) {
697   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
698          "Expected an isl_ast_expr_op expression.");
699   assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary.");
700 
701   isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0);
702   assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op &&
703          "Expected address of operator to be an isl_ast_expr_op expression.");
704   assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access &&
705          "Expected address of operator to be an access expression.");
706 
707   Value *V = createAccessAddress(Op);
708 
709   isl_ast_expr_free(Expr);
710 
711   return V;
712 }
713 
createId(__isl_take isl_ast_expr * Expr)714 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) {
715   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id &&
716          "Expression not of type isl_ast_expr_ident");
717 
718   isl_id *Id;
719   Value *V;
720 
721   Id = isl_ast_expr_get_id(Expr);
722 
723   assert(IDToValue.count(Id) && "Identifier not found");
724 
725   V = IDToValue[Id];
726   if (!V)
727     V = UndefValue::get(getType(Expr));
728 
729   if (V->getType()->isPointerTy())
730     V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits()));
731 
732   assert(V && "Unknown parameter id found");
733 
734   isl_id_free(Id);
735   isl_ast_expr_free(Expr);
736 
737   return V;
738 }
739 
getType(__isl_keep isl_ast_expr * Expr)740 IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) {
741   // XXX: We assume i64 is large enough. This is often true, but in general
742   //      incorrect. Also, on 32bit architectures, it would be beneficial to
743   //      use a smaller type. We can and should directly derive this information
744   //      during code generation.
745   return IntegerType::get(Builder.getContext(), 64);
746 }
747 
createInt(__isl_take isl_ast_expr * Expr)748 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) {
749   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int &&
750          "Expression not of type isl_ast_expr_int");
751   isl_val *Val;
752   Value *V;
753   APInt APValue;
754   IntegerType *T;
755 
756   Val = isl_ast_expr_get_val(Expr);
757   APValue = APIntFromVal(Val);
758 
759   auto BitWidth = APValue.getBitWidth();
760   if (BitWidth <= 64)
761     T = getType(Expr);
762   else
763     T = Builder.getIntNTy(BitWidth);
764 
765   APValue = APValue.sextOrSelf(T->getBitWidth());
766   V = ConstantInt::get(T, APValue);
767 
768   isl_ast_expr_free(Expr);
769   return V;
770 }
771 
create(__isl_take isl_ast_expr * Expr)772 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) {
773   switch (isl_ast_expr_get_type(Expr)) {
774   case isl_ast_expr_error:
775     llvm_unreachable("Code generation error");
776   case isl_ast_expr_op:
777     return createOp(Expr);
778   case isl_ast_expr_id:
779     return createId(Expr);
780   case isl_ast_expr_int:
781     return createInt(Expr);
782   }
783 
784   llvm_unreachable("Unexpected enum value");
785 }
786