1 //===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10
11 #include "polly/CodeGen/IslExprBuilder.h"
12 #include "polly/CodeGen/RuntimeDebugBuilder.h"
13 #include "polly/Options.h"
14 #include "polly/ScopInfo.h"
15 #include "polly/Support/GICHelper.h"
16 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
17
18 using namespace llvm;
19 using namespace polly;
20
21 /// Different overflow tracking modes.
22 enum OverflowTrackingChoice {
23 OT_NEVER, ///< Never tack potential overflows.
24 OT_REQUEST, ///< Track potential overflows if requested.
25 OT_ALWAYS ///< Always track potential overflows.
26 };
27
28 static cl::opt<OverflowTrackingChoice> OTMode(
29 "polly-overflow-tracking",
30 cl::desc("Define where potential integer overflows in generated "
31 "expressions should be tracked."),
32 cl::values(clEnumValN(OT_NEVER, "never", "Never track the overflow bit."),
33 clEnumValN(OT_REQUEST, "request",
34 "Track the overflow bit if requested."),
35 clEnumValN(OT_ALWAYS, "always",
36 "Always track the overflow bit.")),
37 cl::Hidden, cl::init(OT_REQUEST), cl::ZeroOrMore, cl::cat(PollyCategory));
38
IslExprBuilder(Scop & S,PollyIRBuilder & Builder,IDToValueTy & IDToValue,ValueMapT & GlobalMap,const DataLayout & DL,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,BasicBlock * StartBlock)39 IslExprBuilder::IslExprBuilder(Scop &S, PollyIRBuilder &Builder,
40 IDToValueTy &IDToValue, ValueMapT &GlobalMap,
41 const DataLayout &DL, ScalarEvolution &SE,
42 DominatorTree &DT, LoopInfo &LI,
43 BasicBlock *StartBlock)
44 : S(S), Builder(Builder), IDToValue(IDToValue), GlobalMap(GlobalMap),
45 DL(DL), SE(SE), DT(DT), LI(LI), StartBlock(StartBlock) {
46 OverflowState = (OTMode == OT_ALWAYS) ? Builder.getFalse() : nullptr;
47 }
48
setTrackOverflow(bool Enable)49 void IslExprBuilder::setTrackOverflow(bool Enable) {
50 // If potential overflows are tracked always or never we ignore requests
51 // to change the behavior.
52 if (OTMode != OT_REQUEST)
53 return;
54
55 if (Enable) {
56 // If tracking should be enabled initialize the OverflowState.
57 OverflowState = Builder.getFalse();
58 } else {
59 // If tracking should be disabled just unset the OverflowState.
60 OverflowState = nullptr;
61 }
62 }
63
getOverflowState() const64 Value *IslExprBuilder::getOverflowState() const {
65 // If the overflow tracking was requested but it is disabled we avoid the
66 // additional nullptr checks at the call sides but instead provide a
67 // meaningful result.
68 if (OTMode == OT_NEVER)
69 return Builder.getFalse();
70 return OverflowState;
71 }
72
hasLargeInts(isl::ast_expr Expr)73 bool IslExprBuilder::hasLargeInts(isl::ast_expr Expr) {
74 enum isl_ast_expr_type Type = isl_ast_expr_get_type(Expr.get());
75
76 if (Type == isl_ast_expr_id)
77 return false;
78
79 if (Type == isl_ast_expr_int) {
80 isl::val Val = Expr.get_val();
81 APInt APValue = APIntFromVal(Val);
82 auto BitWidth = APValue.getBitWidth();
83 return BitWidth >= 64;
84 }
85
86 assert(Type == isl_ast_expr_op && "Expected isl_ast_expr of type operation");
87
88 int NumArgs = isl_ast_expr_get_op_n_arg(Expr.get());
89
90 for (int i = 0; i < NumArgs; i++) {
91 isl::ast_expr Operand = Expr.get_op_arg(i);
92 if (hasLargeInts(Operand))
93 return true;
94 }
95
96 return false;
97 }
98
createBinOp(BinaryOperator::BinaryOps Opc,Value * LHS,Value * RHS,const Twine & Name)99 Value *IslExprBuilder::createBinOp(BinaryOperator::BinaryOps Opc, Value *LHS,
100 Value *RHS, const Twine &Name) {
101 // Handle the plain operation (without overflow tracking) first.
102 if (!OverflowState) {
103 switch (Opc) {
104 case Instruction::Add:
105 return Builder.CreateNSWAdd(LHS, RHS, Name);
106 case Instruction::Sub:
107 return Builder.CreateNSWSub(LHS, RHS, Name);
108 case Instruction::Mul:
109 return Builder.CreateNSWMul(LHS, RHS, Name);
110 default:
111 llvm_unreachable("Unknown binary operator!");
112 }
113 }
114
115 Function *F = nullptr;
116 Module *M = Builder.GetInsertBlock()->getModule();
117 switch (Opc) {
118 case Instruction::Add:
119 F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
120 {LHS->getType()});
121 break;
122 case Instruction::Sub:
123 F = Intrinsic::getDeclaration(M, Intrinsic::ssub_with_overflow,
124 {LHS->getType()});
125 break;
126 case Instruction::Mul:
127 F = Intrinsic::getDeclaration(M, Intrinsic::smul_with_overflow,
128 {LHS->getType()});
129 break;
130 default:
131 llvm_unreachable("No overflow intrinsic for binary operator found!");
132 }
133
134 auto *ResultStruct = Builder.CreateCall(F, {LHS, RHS}, Name);
135 assert(ResultStruct->getType()->isStructTy());
136
137 auto *OverflowFlag =
138 Builder.CreateExtractValue(ResultStruct, 1, Name + ".obit");
139
140 // If all overflows are tracked we do not combine the results as this could
141 // cause dominance problems. Instead we will always keep the last overflow
142 // flag as current state.
143 if (OTMode == OT_ALWAYS)
144 OverflowState = OverflowFlag;
145 else
146 OverflowState =
147 Builder.CreateOr(OverflowState, OverflowFlag, "polly.overflow.state");
148
149 return Builder.CreateExtractValue(ResultStruct, 0, Name + ".res");
150 }
151
createAdd(Value * LHS,Value * RHS,const Twine & Name)152 Value *IslExprBuilder::createAdd(Value *LHS, Value *RHS, const Twine &Name) {
153 return createBinOp(Instruction::Add, LHS, RHS, Name);
154 }
155
createSub(Value * LHS,Value * RHS,const Twine & Name)156 Value *IslExprBuilder::createSub(Value *LHS, Value *RHS, const Twine &Name) {
157 return createBinOp(Instruction::Sub, LHS, RHS, Name);
158 }
159
createMul(Value * LHS,Value * RHS,const Twine & Name)160 Value *IslExprBuilder::createMul(Value *LHS, Value *RHS, const Twine &Name) {
161 return createBinOp(Instruction::Mul, LHS, RHS, Name);
162 }
163
getWidestType(Type * T1,Type * T2)164 Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) {
165 assert(isa<IntegerType>(T1) && isa<IntegerType>(T2));
166
167 if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits())
168 return T2;
169 else
170 return T1;
171 }
172
createOpUnary(__isl_take isl_ast_expr * Expr)173 Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) {
174 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus &&
175 "Unsupported unary operation");
176
177 Value *V;
178 Type *MaxType = getType(Expr);
179 assert(MaxType->isIntegerTy() &&
180 "Unary expressions can only be created for integer types");
181
182 V = create(isl_ast_expr_get_op_arg(Expr, 0));
183 MaxType = getWidestType(MaxType, V->getType());
184
185 if (MaxType != V->getType())
186 V = Builder.CreateSExt(V, MaxType);
187
188 isl_ast_expr_free(Expr);
189 return createSub(ConstantInt::getNullValue(MaxType), V);
190 }
191
createOpNAry(__isl_take isl_ast_expr * Expr)192 Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) {
193 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
194 "isl ast expression not of type isl_ast_op");
195 assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
196 "We need at least two operands in an n-ary operation");
197
198 CmpInst::Predicate Pred;
199 switch (isl_ast_expr_get_op_type(Expr)) {
200 default:
201 llvm_unreachable("This is not a an n-ary isl ast expression");
202 case isl_ast_op_max:
203 Pred = CmpInst::ICMP_SGT;
204 break;
205 case isl_ast_op_min:
206 Pred = CmpInst::ICMP_SLT;
207 break;
208 }
209
210 Value *V = create(isl_ast_expr_get_op_arg(Expr, 0));
211
212 for (int i = 1; i < isl_ast_expr_get_op_n_arg(Expr); ++i) {
213 Value *OpV = create(isl_ast_expr_get_op_arg(Expr, i));
214 Type *Ty = getWidestType(V->getType(), OpV->getType());
215
216 if (Ty != OpV->getType())
217 OpV = Builder.CreateSExt(OpV, Ty);
218
219 if (Ty != V->getType())
220 V = Builder.CreateSExt(V, Ty);
221
222 Value *Cmp = Builder.CreateICmp(Pred, V, OpV);
223 V = Builder.CreateSelect(Cmp, V, OpV);
224 }
225
226 // TODO: We can truncate the result, if it fits into a smaller type. This can
227 // help in cases where we have larger operands (e.g. i67) but the result is
228 // known to fit into i64. Without the truncation, the larger i67 type may
229 // force all subsequent operations to be performed on a non-native type.
230 isl_ast_expr_free(Expr);
231 return V;
232 }
233
createAccessAddress(isl_ast_expr * Expr)234 Value *IslExprBuilder::createAccessAddress(isl_ast_expr *Expr) {
235 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
236 "isl ast expression not of type isl_ast_op");
237 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access &&
238 "not an access isl ast expression");
239 assert(isl_ast_expr_get_op_n_arg(Expr) >= 1 &&
240 "We need at least two operands to create a member access.");
241
242 Value *Base, *IndexOp, *Access;
243 isl_ast_expr *BaseExpr;
244 isl_id *BaseId;
245
246 BaseExpr = isl_ast_expr_get_op_arg(Expr, 0);
247 BaseId = isl_ast_expr_get_id(BaseExpr);
248 isl_ast_expr_free(BaseExpr);
249
250 const ScopArrayInfo *SAI = nullptr;
251
252 if (PollyDebugPrinting)
253 RuntimeDebugBuilder::createCPUPrinter(Builder, isl_id_get_name(BaseId));
254
255 if (IDToSAI)
256 SAI = (*IDToSAI)[BaseId];
257
258 if (!SAI)
259 SAI = ScopArrayInfo::getFromId(isl::manage(BaseId));
260 else
261 isl_id_free(BaseId);
262
263 assert(SAI && "No ScopArrayInfo found for this isl_id.");
264
265 Base = SAI->getBasePtr();
266
267 if (auto NewBase = GlobalMap.lookup(Base))
268 Base = NewBase;
269
270 assert(Base->getType()->isPointerTy() && "Access base should be a pointer");
271 StringRef BaseName = Base->getName();
272
273 auto PointerTy = PointerType::get(SAI->getElementType(),
274 Base->getType()->getPointerAddressSpace());
275 if (Base->getType() != PointerTy) {
276 Base =
277 Builder.CreateBitCast(Base, PointerTy, "polly.access.cast." + BaseName);
278 }
279
280 if (isl_ast_expr_get_op_n_arg(Expr) == 1) {
281 isl_ast_expr_free(Expr);
282 if (PollyDebugPrinting)
283 RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
284 return Base;
285 }
286
287 IndexOp = nullptr;
288 for (unsigned u = 1, e = isl_ast_expr_get_op_n_arg(Expr); u < e; u++) {
289 Value *NextIndex = create(isl_ast_expr_get_op_arg(Expr, u));
290 assert(NextIndex->getType()->isIntegerTy() &&
291 "Access index should be an integer");
292
293 if (PollyDebugPrinting)
294 RuntimeDebugBuilder::createCPUPrinter(Builder, "[", NextIndex, "]");
295
296 if (!IndexOp) {
297 IndexOp = NextIndex;
298 } else {
299 Type *Ty = getWidestType(NextIndex->getType(), IndexOp->getType());
300
301 if (Ty != NextIndex->getType())
302 NextIndex = Builder.CreateIntCast(NextIndex, Ty, true);
303 if (Ty != IndexOp->getType())
304 IndexOp = Builder.CreateIntCast(IndexOp, Ty, true);
305
306 IndexOp = createAdd(IndexOp, NextIndex, "polly.access.add." + BaseName);
307 }
308
309 // For every but the last dimension multiply the size, for the last
310 // dimension we can exit the loop.
311 if (u + 1 >= e)
312 break;
313
314 const SCEV *DimSCEV = SAI->getDimensionSize(u);
315
316 llvm::ValueToSCEVMapTy Map;
317 for (auto &KV : GlobalMap)
318 Map[KV.first] = SE.getSCEV(KV.second);
319 DimSCEV = SCEVParameterRewriter::rewrite(DimSCEV, SE, Map);
320 Value *DimSize =
321 expandCodeFor(S, SE, DL, "polly", DimSCEV, DimSCEV->getType(),
322 &*Builder.GetInsertPoint(), nullptr,
323 StartBlock->getSinglePredecessor());
324
325 Type *Ty = getWidestType(DimSize->getType(), IndexOp->getType());
326
327 if (Ty != IndexOp->getType())
328 IndexOp = Builder.CreateSExtOrTrunc(IndexOp, Ty,
329 "polly.access.sext." + BaseName);
330 if (Ty != DimSize->getType())
331 DimSize = Builder.CreateSExtOrTrunc(DimSize, Ty,
332 "polly.access.sext." + BaseName);
333 IndexOp = createMul(IndexOp, DimSize, "polly.access.mul." + BaseName);
334 }
335
336 Access = Builder.CreateGEP(Base, IndexOp, "polly.access." + BaseName);
337
338 if (PollyDebugPrinting)
339 RuntimeDebugBuilder::createCPUPrinter(Builder, "\n");
340 isl_ast_expr_free(Expr);
341 return Access;
342 }
343
createOpAccess(isl_ast_expr * Expr)344 Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) {
345 Value *Addr = createAccessAddress(Expr);
346 assert(Addr && "Could not create op access address");
347 return Builder.CreateLoad(Addr, Addr->getName() + ".load");
348 }
349
createOpBin(__isl_take isl_ast_expr * Expr)350 Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) {
351 Value *LHS, *RHS, *Res;
352 Type *MaxType;
353 isl_ast_op_type OpType;
354
355 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
356 "isl ast expression not of type isl_ast_op");
357 assert(isl_ast_expr_get_op_n_arg(Expr) == 2 &&
358 "not a binary isl ast expression");
359
360 OpType = isl_ast_expr_get_op_type(Expr);
361
362 LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
363 RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
364
365 Type *LHSType = LHS->getType();
366 Type *RHSType = RHS->getType();
367
368 MaxType = getWidestType(LHSType, RHSType);
369
370 // Take the result into account when calculating the widest type.
371 //
372 // For operations such as '+' the result may require a type larger than
373 // the type of the individual operands. For other operations such as '/', the
374 // result type cannot be larger than the type of the individual operand. isl
375 // does not calculate correct types for these operations and we consequently
376 // exclude those operations here.
377 switch (OpType) {
378 case isl_ast_op_pdiv_q:
379 case isl_ast_op_pdiv_r:
380 case isl_ast_op_div:
381 case isl_ast_op_fdiv_q:
382 case isl_ast_op_zdiv_r:
383 // Do nothing
384 break;
385 case isl_ast_op_add:
386 case isl_ast_op_sub:
387 case isl_ast_op_mul:
388 MaxType = getWidestType(MaxType, getType(Expr));
389 break;
390 default:
391 llvm_unreachable("This is no binary isl ast expression");
392 }
393
394 if (MaxType != RHS->getType())
395 RHS = Builder.CreateSExt(RHS, MaxType);
396
397 if (MaxType != LHS->getType())
398 LHS = Builder.CreateSExt(LHS, MaxType);
399
400 switch (OpType) {
401 default:
402 llvm_unreachable("This is no binary isl ast expression");
403 case isl_ast_op_add:
404 Res = createAdd(LHS, RHS);
405 break;
406 case isl_ast_op_sub:
407 Res = createSub(LHS, RHS);
408 break;
409 case isl_ast_op_mul:
410 Res = createMul(LHS, RHS);
411 break;
412 case isl_ast_op_div:
413 Res = Builder.CreateSDiv(LHS, RHS, "pexp.div", true);
414 break;
415 case isl_ast_op_pdiv_q: // Dividend is non-negative
416 Res = Builder.CreateUDiv(LHS, RHS, "pexp.p_div_q");
417 break;
418 case isl_ast_op_fdiv_q: { // Round towards -infty
419 if (auto *Const = dyn_cast<ConstantInt>(RHS)) {
420 auto &Val = Const->getValue();
421 if (Val.isPowerOf2() && Val.isNonNegative()) {
422 Res = Builder.CreateAShr(LHS, Val.ceilLogBase2(), "polly.fdiv_q.shr");
423 break;
424 }
425 }
426 // TODO: Review code and check that this calculation does not yield
427 // incorrect overflow in some edge cases.
428 //
429 // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
430 Value *One = ConstantInt::get(MaxType, 1);
431 Value *Zero = ConstantInt::get(MaxType, 0);
432 Value *Sum1 = createSub(LHS, RHS, "pexp.fdiv_q.0");
433 Value *Sum2 = createAdd(Sum1, One, "pexp.fdiv_q.1");
434 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero, "pexp.fdiv_q.2");
435 Value *Dividend =
436 Builder.CreateSelect(isNegative, Sum2, LHS, "pexp.fdiv_q.3");
437 Res = Builder.CreateSDiv(Dividend, RHS, "pexp.fdiv_q.4");
438 break;
439 }
440 case isl_ast_op_pdiv_r: // Dividend is non-negative
441 Res = Builder.CreateURem(LHS, RHS, "pexp.pdiv_r");
442 break;
443
444 case isl_ast_op_zdiv_r: // Result only compared against zero
445 Res = Builder.CreateSRem(LHS, RHS, "pexp.zdiv_r");
446 break;
447 }
448
449 // TODO: We can truncate the result, if it fits into a smaller type. This can
450 // help in cases where we have larger operands (e.g. i67) but the result is
451 // known to fit into i64. Without the truncation, the larger i67 type may
452 // force all subsequent operations to be performed on a non-native type.
453 isl_ast_expr_free(Expr);
454 return Res;
455 }
456
createOpSelect(__isl_take isl_ast_expr * Expr)457 Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) {
458 assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select &&
459 "Unsupported unary isl ast expression");
460 Value *LHS, *RHS, *Cond;
461 Type *MaxType = getType(Expr);
462
463 Cond = create(isl_ast_expr_get_op_arg(Expr, 0));
464 if (!Cond->getType()->isIntegerTy(1))
465 Cond = Builder.CreateIsNotNull(Cond);
466
467 LHS = create(isl_ast_expr_get_op_arg(Expr, 1));
468 RHS = create(isl_ast_expr_get_op_arg(Expr, 2));
469
470 MaxType = getWidestType(MaxType, LHS->getType());
471 MaxType = getWidestType(MaxType, RHS->getType());
472
473 if (MaxType != RHS->getType())
474 RHS = Builder.CreateSExt(RHS, MaxType);
475
476 if (MaxType != LHS->getType())
477 LHS = Builder.CreateSExt(LHS, MaxType);
478
479 // TODO: Do we want to truncate the result?
480 isl_ast_expr_free(Expr);
481 return Builder.CreateSelect(Cond, LHS, RHS);
482 }
483
createOpICmp(__isl_take isl_ast_expr * Expr)484 Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) {
485 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
486 "Expected an isl_ast_expr_op expression");
487
488 Value *LHS, *RHS, *Res;
489
490 auto *Op0 = isl_ast_expr_get_op_arg(Expr, 0);
491 auto *Op1 = isl_ast_expr_get_op_arg(Expr, 1);
492 bool HasNonAddressOfOperand =
493 isl_ast_expr_get_type(Op0) != isl_ast_expr_op ||
494 isl_ast_expr_get_type(Op1) != isl_ast_expr_op ||
495 isl_ast_expr_get_op_type(Op0) != isl_ast_op_address_of ||
496 isl_ast_expr_get_op_type(Op1) != isl_ast_op_address_of;
497
498 LHS = create(Op0);
499 RHS = create(Op1);
500
501 auto *LHSTy = LHS->getType();
502 auto *RHSTy = RHS->getType();
503 bool IsPtrType = LHSTy->isPointerTy() || RHSTy->isPointerTy();
504 bool UseUnsignedCmp = IsPtrType && !HasNonAddressOfOperand;
505
506 auto *PtrAsIntTy = Builder.getIntNTy(DL.getPointerSizeInBits());
507 if (LHSTy->isPointerTy())
508 LHS = Builder.CreatePtrToInt(LHS, PtrAsIntTy);
509 if (RHSTy->isPointerTy())
510 RHS = Builder.CreatePtrToInt(RHS, PtrAsIntTy);
511
512 if (LHS->getType() != RHS->getType()) {
513 Type *MaxType = LHS->getType();
514 MaxType = getWidestType(MaxType, RHS->getType());
515
516 if (MaxType != RHS->getType())
517 RHS = Builder.CreateSExt(RHS, MaxType);
518
519 if (MaxType != LHS->getType())
520 LHS = Builder.CreateSExt(LHS, MaxType);
521 }
522
523 isl_ast_op_type OpType = isl_ast_expr_get_op_type(Expr);
524 assert(OpType >= isl_ast_op_eq && OpType <= isl_ast_op_gt &&
525 "Unsupported ICmp isl ast expression");
526 assert(isl_ast_op_eq + 4 == isl_ast_op_gt &&
527 "Isl ast op type interface changed");
528
529 CmpInst::Predicate Predicates[5][2] = {
530 {CmpInst::ICMP_EQ, CmpInst::ICMP_EQ},
531 {CmpInst::ICMP_SLE, CmpInst::ICMP_ULE},
532 {CmpInst::ICMP_SLT, CmpInst::ICMP_ULT},
533 {CmpInst::ICMP_SGE, CmpInst::ICMP_UGE},
534 {CmpInst::ICMP_SGT, CmpInst::ICMP_UGT},
535 };
536
537 Res = Builder.CreateICmp(Predicates[OpType - isl_ast_op_eq][UseUnsignedCmp],
538 LHS, RHS);
539
540 isl_ast_expr_free(Expr);
541 return Res;
542 }
543
createOpBoolean(__isl_take isl_ast_expr * Expr)544 Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) {
545 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
546 "Expected an isl_ast_expr_op expression");
547
548 Value *LHS, *RHS, *Res;
549 isl_ast_op_type OpType;
550
551 OpType = isl_ast_expr_get_op_type(Expr);
552
553 assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) &&
554 "Unsupported isl_ast_op_type");
555
556 LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
557 RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
558
559 // Even though the isl pretty printer prints the expressions as 'exp && exp'
560 // or 'exp || exp', we actually code generate the bitwise expressions
561 // 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches,
562 // but it is, due to the use of i1 types, otherwise equivalent. The reason
563 // to go for bitwise operations is, that we assume the reduced control flow
564 // will outweigh the overhead introduced by evaluating unneeded expressions.
565 // The isl code generation currently does not take advantage of the fact that
566 // the expression after an '||' or '&&' is in some cases not evaluated.
567 // Evaluating it anyways does not cause any undefined behaviour.
568 //
569 // TODO: Document in isl itself, that the unconditionally evaluating the
570 // second part of '||' or '&&' expressions is safe.
571 if (!LHS->getType()->isIntegerTy(1))
572 LHS = Builder.CreateIsNotNull(LHS);
573 if (!RHS->getType()->isIntegerTy(1))
574 RHS = Builder.CreateIsNotNull(RHS);
575
576 switch (OpType) {
577 default:
578 llvm_unreachable("Unsupported boolean expression");
579 case isl_ast_op_and:
580 Res = Builder.CreateAnd(LHS, RHS);
581 break;
582 case isl_ast_op_or:
583 Res = Builder.CreateOr(LHS, RHS);
584 break;
585 }
586
587 isl_ast_expr_free(Expr);
588 return Res;
589 }
590
591 Value *
createOpBooleanConditional(__isl_take isl_ast_expr * Expr)592 IslExprBuilder::createOpBooleanConditional(__isl_take isl_ast_expr *Expr) {
593 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
594 "Expected an isl_ast_expr_op expression");
595
596 Value *LHS, *RHS;
597 isl_ast_op_type OpType;
598
599 Function *F = Builder.GetInsertBlock()->getParent();
600 LLVMContext &Context = F->getContext();
601
602 OpType = isl_ast_expr_get_op_type(Expr);
603
604 assert((OpType == isl_ast_op_and_then || OpType == isl_ast_op_or_else) &&
605 "Unsupported isl_ast_op_type");
606
607 auto InsertBB = Builder.GetInsertBlock();
608 auto InsertPoint = Builder.GetInsertPoint();
609 auto NextBB = SplitBlock(InsertBB, &*InsertPoint, &DT, &LI);
610 BasicBlock *CondBB = BasicBlock::Create(Context, "polly.cond", F);
611 LI.changeLoopFor(CondBB, LI.getLoopFor(InsertBB));
612 DT.addNewBlock(CondBB, InsertBB);
613
614 InsertBB->getTerminator()->eraseFromParent();
615 Builder.SetInsertPoint(InsertBB);
616 auto BR = Builder.CreateCondBr(Builder.getTrue(), NextBB, CondBB);
617
618 Builder.SetInsertPoint(CondBB);
619 Builder.CreateBr(NextBB);
620
621 Builder.SetInsertPoint(InsertBB->getTerminator());
622
623 LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
624 if (!LHS->getType()->isIntegerTy(1))
625 LHS = Builder.CreateIsNotNull(LHS);
626 auto LeftBB = Builder.GetInsertBlock();
627
628 if (OpType == isl_ast_op_and || OpType == isl_ast_op_and_then)
629 BR->setCondition(Builder.CreateNeg(LHS));
630 else
631 BR->setCondition(LHS);
632
633 Builder.SetInsertPoint(CondBB->getTerminator());
634 RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
635 if (!RHS->getType()->isIntegerTy(1))
636 RHS = Builder.CreateIsNotNull(RHS);
637 auto RightBB = Builder.GetInsertBlock();
638
639 Builder.SetInsertPoint(NextBB->getTerminator());
640 auto PHI = Builder.CreatePHI(Builder.getInt1Ty(), 2);
641 PHI->addIncoming(OpType == isl_ast_op_and_then ? Builder.getFalse()
642 : Builder.getTrue(),
643 LeftBB);
644 PHI->addIncoming(RHS, RightBB);
645
646 isl_ast_expr_free(Expr);
647 return PHI;
648 }
649
createOp(__isl_take isl_ast_expr * Expr)650 Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) {
651 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
652 "Expression not of type isl_ast_expr_op");
653 switch (isl_ast_expr_get_op_type(Expr)) {
654 case isl_ast_op_error:
655 case isl_ast_op_cond:
656 case isl_ast_op_call:
657 case isl_ast_op_member:
658 llvm_unreachable("Unsupported isl ast expression");
659 case isl_ast_op_access:
660 return createOpAccess(Expr);
661 case isl_ast_op_max:
662 case isl_ast_op_min:
663 return createOpNAry(Expr);
664 case isl_ast_op_add:
665 case isl_ast_op_sub:
666 case isl_ast_op_mul:
667 case isl_ast_op_div:
668 case isl_ast_op_fdiv_q: // Round towards -infty
669 case isl_ast_op_pdiv_q: // Dividend is non-negative
670 case isl_ast_op_pdiv_r: // Dividend is non-negative
671 case isl_ast_op_zdiv_r: // Result only compared against zero
672 return createOpBin(Expr);
673 case isl_ast_op_minus:
674 return createOpUnary(Expr);
675 case isl_ast_op_select:
676 return createOpSelect(Expr);
677 case isl_ast_op_and:
678 case isl_ast_op_or:
679 return createOpBoolean(Expr);
680 case isl_ast_op_and_then:
681 case isl_ast_op_or_else:
682 return createOpBooleanConditional(Expr);
683 case isl_ast_op_eq:
684 case isl_ast_op_le:
685 case isl_ast_op_lt:
686 case isl_ast_op_ge:
687 case isl_ast_op_gt:
688 return createOpICmp(Expr);
689 case isl_ast_op_address_of:
690 return createOpAddressOf(Expr);
691 }
692
693 llvm_unreachable("Unsupported isl_ast_expr_op kind.");
694 }
695
createOpAddressOf(__isl_take isl_ast_expr * Expr)696 Value *IslExprBuilder::createOpAddressOf(__isl_take isl_ast_expr *Expr) {
697 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
698 "Expected an isl_ast_expr_op expression.");
699 assert(isl_ast_expr_get_op_n_arg(Expr) == 1 && "Address of should be unary.");
700
701 isl_ast_expr *Op = isl_ast_expr_get_op_arg(Expr, 0);
702 assert(isl_ast_expr_get_type(Op) == isl_ast_expr_op &&
703 "Expected address of operator to be an isl_ast_expr_op expression.");
704 assert(isl_ast_expr_get_op_type(Op) == isl_ast_op_access &&
705 "Expected address of operator to be an access expression.");
706
707 Value *V = createAccessAddress(Op);
708
709 isl_ast_expr_free(Expr);
710
711 return V;
712 }
713
createId(__isl_take isl_ast_expr * Expr)714 Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) {
715 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id &&
716 "Expression not of type isl_ast_expr_ident");
717
718 isl_id *Id;
719 Value *V;
720
721 Id = isl_ast_expr_get_id(Expr);
722
723 assert(IDToValue.count(Id) && "Identifier not found");
724
725 V = IDToValue[Id];
726 if (!V)
727 V = UndefValue::get(getType(Expr));
728
729 if (V->getType()->isPointerTy())
730 V = Builder.CreatePtrToInt(V, Builder.getIntNTy(DL.getPointerSizeInBits()));
731
732 assert(V && "Unknown parameter id found");
733
734 isl_id_free(Id);
735 isl_ast_expr_free(Expr);
736
737 return V;
738 }
739
getType(__isl_keep isl_ast_expr * Expr)740 IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) {
741 // XXX: We assume i64 is large enough. This is often true, but in general
742 // incorrect. Also, on 32bit architectures, it would be beneficial to
743 // use a smaller type. We can and should directly derive this information
744 // during code generation.
745 return IntegerType::get(Builder.getContext(), 64);
746 }
747
createInt(__isl_take isl_ast_expr * Expr)748 Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) {
749 assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int &&
750 "Expression not of type isl_ast_expr_int");
751 isl_val *Val;
752 Value *V;
753 APInt APValue;
754 IntegerType *T;
755
756 Val = isl_ast_expr_get_val(Expr);
757 APValue = APIntFromVal(Val);
758
759 auto BitWidth = APValue.getBitWidth();
760 if (BitWidth <= 64)
761 T = getType(Expr);
762 else
763 T = Builder.getIntNTy(BitWidth);
764
765 APValue = APValue.sextOrSelf(T->getBitWidth());
766 V = ConstantInt::get(T, APValue);
767
768 isl_ast_expr_free(Expr);
769 return V;
770 }
771
create(__isl_take isl_ast_expr * Expr)772 Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) {
773 switch (isl_ast_expr_get_type(Expr)) {
774 case isl_ast_expr_error:
775 llvm_unreachable("Code generation error");
776 case isl_ast_expr_op:
777 return createOp(Expr);
778 case isl_ast_expr_id:
779 return createId(Expr);
780 case isl_ast_expr_int:
781 return createInt(Expr);
782 }
783
784 llvm_unreachable("Unexpected enum value");
785 }
786