• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/BranchProbability.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MachineValueType.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <cstring>
62 #include <iterator>
63 #include <string>
64 #include <tuple>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 static cl::opt<bool> JumpIsExpensiveOverride(
70     "jump-is-expensive", cl::init(false),
71     cl::desc("Do not create extra branches to split comparison logic."),
72     cl::Hidden);
73 
74 static cl::opt<unsigned> MinimumJumpTableEntries
75   ("min-jump-table-entries", cl::init(4), cl::Hidden,
76    cl::desc("Set minimum number of entries to use a jump table."));
77 
78 static cl::opt<unsigned> MaximumJumpTableSize
79   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
80    cl::desc("Set maximum size of jump tables."));
81 
82 /// Minimum jump table density for normal functions.
83 static cl::opt<unsigned>
84     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
85                      cl::desc("Minimum density for building a jump table in "
86                               "a normal function"));
87 
88 /// Minimum jump table density for -Os or -Oz functions.
89 static cl::opt<unsigned> OptsizeJumpTableDensity(
90     "optsize-jump-table-density", cl::init(40), cl::Hidden,
91     cl::desc("Minimum density for building a jump table in "
92              "an optsize function"));
93 
94 // FIXME: This option is only to test if the strict fp operation processed
95 // correctly by preventing mutating strict fp operation to normal fp operation
96 // during development. When the backend supports strict float operation, this
97 // option will be meaningless.
98 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
99        cl::desc("Don't mutate strict-float node to a legalize node"),
100        cl::init(false), cl::Hidden);
101 
darwinHasSinCos(const Triple & TT)102 static bool darwinHasSinCos(const Triple &TT) {
103   assert(TT.isOSDarwin() && "should be called with darwin triple");
104   // Don't bother with 32 bit x86.
105   if (TT.getArch() == Triple::x86)
106     return false;
107   // Macos < 10.9 has no sincos_stret.
108   if (TT.isMacOSX())
109     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
110   // iOS < 7.0 has no sincos_stret.
111   if (TT.isiOS())
112     return !TT.isOSVersionLT(7, 0);
113   // Any other darwin such as WatchOS/TvOS is new enough.
114   return true;
115 }
116 
117 // Although this default value is arbitrary, it is not random. It is assumed
118 // that a condition that evaluates the same way by a higher percentage than this
119 // is best represented as control flow. Therefore, the default value N should be
120 // set such that the win from N% correct executions is greater than the loss
121 // from (100 - N)% mispredicted executions for the majority of intended targets.
122 static cl::opt<int> MinPercentageForPredictableBranch(
123     "min-predictable-branch", cl::init(99),
124     cl::desc("Minimum percentage (0-100) that a condition must be either true "
125              "or false to assume that the condition is predictable"),
126     cl::Hidden);
127 
InitLibcalls(const Triple & TT)128 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
129 #define HANDLE_LIBCALL(code, name) \
130   setLibcallName(RTLIB::code, name);
131 #include "llvm/IR/RuntimeLibcalls.def"
132 #undef HANDLE_LIBCALL
133   // Initialize calling conventions to their default.
134   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
135     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
136 
137   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
138   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
139     setLibcallName(RTLIB::ADD_F128, "__addkf3");
140     setLibcallName(RTLIB::SUB_F128, "__subkf3");
141     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
142     setLibcallName(RTLIB::DIV_F128, "__divkf3");
143     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
144     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
145     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
146     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
147     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
148     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
149     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
150     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
151     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
152     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
153     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
154     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
155     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
156     setLibcallName(RTLIB::UNE_F128, "__nekf2");
157     setLibcallName(RTLIB::OGE_F128, "__gekf2");
158     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
159     setLibcallName(RTLIB::OLE_F128, "__lekf2");
160     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
161     setLibcallName(RTLIB::UO_F128, "__unordkf2");
162   }
163 
164   // A few names are different on particular architectures or environments.
165   if (TT.isOSDarwin()) {
166     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
167     // of the gnueabi-style __gnu_*_ieee.
168     // FIXME: What about other targets?
169     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
170     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
171 
172     // Some darwins have an optimized __bzero/bzero function.
173     switch (TT.getArch()) {
174     case Triple::x86:
175     case Triple::x86_64:
176       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
177         setLibcallName(RTLIB::BZERO, "__bzero");
178       break;
179     case Triple::aarch64:
180     case Triple::aarch64_32:
181       setLibcallName(RTLIB::BZERO, "bzero");
182       break;
183     default:
184       break;
185     }
186 
187     if (darwinHasSinCos(TT)) {
188       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
189       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
190       if (TT.isWatchABI()) {
191         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
192                               CallingConv::ARM_AAPCS_VFP);
193         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
194                               CallingConv::ARM_AAPCS_VFP);
195       }
196     }
197   } else {
198     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
199     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
200   }
201 
202   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
203       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
204     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
205     setLibcallName(RTLIB::SINCOS_F64, "sincos");
206     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
207     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
208     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
209   }
210 
211   if (TT.isPS4CPU()) {
212     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
213     setLibcallName(RTLIB::SINCOS_F64, "sincos");
214   }
215 
216   if (TT.isOSOpenBSD()) {
217     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
218   }
219 }
220 
221 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
222 /// UNKNOWN_LIBCALL if there is none.
getFPEXT(EVT OpVT,EVT RetVT)223 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
224   if (OpVT == MVT::f16) {
225     if (RetVT == MVT::f32)
226       return FPEXT_F16_F32;
227     if (RetVT == MVT::f64)
228       return FPEXT_F16_F64;
229     if (RetVT == MVT::f128)
230       return FPEXT_F16_F128;
231   } else if (OpVT == MVT::f32) {
232     if (RetVT == MVT::f64)
233       return FPEXT_F32_F64;
234     if (RetVT == MVT::f128)
235       return FPEXT_F32_F128;
236     if (RetVT == MVT::ppcf128)
237       return FPEXT_F32_PPCF128;
238   } else if (OpVT == MVT::f64) {
239     if (RetVT == MVT::f128)
240       return FPEXT_F64_F128;
241     else if (RetVT == MVT::ppcf128)
242       return FPEXT_F64_PPCF128;
243   } else if (OpVT == MVT::f80) {
244     if (RetVT == MVT::f128)
245       return FPEXT_F80_F128;
246   }
247 
248   return UNKNOWN_LIBCALL;
249 }
250 
251 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
252 /// UNKNOWN_LIBCALL if there is none.
getFPROUND(EVT OpVT,EVT RetVT)253 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
254   if (RetVT == MVT::f16) {
255     if (OpVT == MVT::f32)
256       return FPROUND_F32_F16;
257     if (OpVT == MVT::f64)
258       return FPROUND_F64_F16;
259     if (OpVT == MVT::f80)
260       return FPROUND_F80_F16;
261     if (OpVT == MVT::f128)
262       return FPROUND_F128_F16;
263     if (OpVT == MVT::ppcf128)
264       return FPROUND_PPCF128_F16;
265   } else if (RetVT == MVT::f32) {
266     if (OpVT == MVT::f64)
267       return FPROUND_F64_F32;
268     if (OpVT == MVT::f80)
269       return FPROUND_F80_F32;
270     if (OpVT == MVT::f128)
271       return FPROUND_F128_F32;
272     if (OpVT == MVT::ppcf128)
273       return FPROUND_PPCF128_F32;
274   } else if (RetVT == MVT::f64) {
275     if (OpVT == MVT::f80)
276       return FPROUND_F80_F64;
277     if (OpVT == MVT::f128)
278       return FPROUND_F128_F64;
279     if (OpVT == MVT::ppcf128)
280       return FPROUND_PPCF128_F64;
281   } else if (RetVT == MVT::f80) {
282     if (OpVT == MVT::f128)
283       return FPROUND_F128_F80;
284   }
285 
286   return UNKNOWN_LIBCALL;
287 }
288 
289 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
290 /// UNKNOWN_LIBCALL if there is none.
getFPTOSINT(EVT OpVT,EVT RetVT)291 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
292   if (OpVT == MVT::f16) {
293     if (RetVT == MVT::i32)
294       return FPTOSINT_F16_I32;
295     if (RetVT == MVT::i64)
296       return FPTOSINT_F16_I64;
297     if (RetVT == MVT::i128)
298       return FPTOSINT_F16_I128;
299   } else if (OpVT == MVT::f32) {
300     if (RetVT == MVT::i32)
301       return FPTOSINT_F32_I32;
302     if (RetVT == MVT::i64)
303       return FPTOSINT_F32_I64;
304     if (RetVT == MVT::i128)
305       return FPTOSINT_F32_I128;
306   } else if (OpVT == MVT::f64) {
307     if (RetVT == MVT::i32)
308       return FPTOSINT_F64_I32;
309     if (RetVT == MVT::i64)
310       return FPTOSINT_F64_I64;
311     if (RetVT == MVT::i128)
312       return FPTOSINT_F64_I128;
313   } else if (OpVT == MVT::f80) {
314     if (RetVT == MVT::i32)
315       return FPTOSINT_F80_I32;
316     if (RetVT == MVT::i64)
317       return FPTOSINT_F80_I64;
318     if (RetVT == MVT::i128)
319       return FPTOSINT_F80_I128;
320   } else if (OpVT == MVT::f128) {
321     if (RetVT == MVT::i32)
322       return FPTOSINT_F128_I32;
323     if (RetVT == MVT::i64)
324       return FPTOSINT_F128_I64;
325     if (RetVT == MVT::i128)
326       return FPTOSINT_F128_I128;
327   } else if (OpVT == MVT::ppcf128) {
328     if (RetVT == MVT::i32)
329       return FPTOSINT_PPCF128_I32;
330     if (RetVT == MVT::i64)
331       return FPTOSINT_PPCF128_I64;
332     if (RetVT == MVT::i128)
333       return FPTOSINT_PPCF128_I128;
334   }
335   return UNKNOWN_LIBCALL;
336 }
337 
338 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
339 /// UNKNOWN_LIBCALL if there is none.
getFPTOUINT(EVT OpVT,EVT RetVT)340 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
341   if (OpVT == MVT::f16) {
342     if (RetVT == MVT::i32)
343       return FPTOUINT_F16_I32;
344     if (RetVT == MVT::i64)
345       return FPTOUINT_F16_I64;
346     if (RetVT == MVT::i128)
347       return FPTOUINT_F16_I128;
348   } else if (OpVT == MVT::f32) {
349     if (RetVT == MVT::i32)
350       return FPTOUINT_F32_I32;
351     if (RetVT == MVT::i64)
352       return FPTOUINT_F32_I64;
353     if (RetVT == MVT::i128)
354       return FPTOUINT_F32_I128;
355   } else if (OpVT == MVT::f64) {
356     if (RetVT == MVT::i32)
357       return FPTOUINT_F64_I32;
358     if (RetVT == MVT::i64)
359       return FPTOUINT_F64_I64;
360     if (RetVT == MVT::i128)
361       return FPTOUINT_F64_I128;
362   } else if (OpVT == MVT::f80) {
363     if (RetVT == MVT::i32)
364       return FPTOUINT_F80_I32;
365     if (RetVT == MVT::i64)
366       return FPTOUINT_F80_I64;
367     if (RetVT == MVT::i128)
368       return FPTOUINT_F80_I128;
369   } else if (OpVT == MVT::f128) {
370     if (RetVT == MVT::i32)
371       return FPTOUINT_F128_I32;
372     if (RetVT == MVT::i64)
373       return FPTOUINT_F128_I64;
374     if (RetVT == MVT::i128)
375       return FPTOUINT_F128_I128;
376   } else if (OpVT == MVT::ppcf128) {
377     if (RetVT == MVT::i32)
378       return FPTOUINT_PPCF128_I32;
379     if (RetVT == MVT::i64)
380       return FPTOUINT_PPCF128_I64;
381     if (RetVT == MVT::i128)
382       return FPTOUINT_PPCF128_I128;
383   }
384   return UNKNOWN_LIBCALL;
385 }
386 
387 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
388 /// UNKNOWN_LIBCALL if there is none.
getSINTTOFP(EVT OpVT,EVT RetVT)389 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
390   if (OpVT == MVT::i32) {
391     if (RetVT == MVT::f16)
392       return SINTTOFP_I32_F16;
393     if (RetVT == MVT::f32)
394       return SINTTOFP_I32_F32;
395     if (RetVT == MVT::f64)
396       return SINTTOFP_I32_F64;
397     if (RetVT == MVT::f80)
398       return SINTTOFP_I32_F80;
399     if (RetVT == MVT::f128)
400       return SINTTOFP_I32_F128;
401     if (RetVT == MVT::ppcf128)
402       return SINTTOFP_I32_PPCF128;
403   } else if (OpVT == MVT::i64) {
404     if (RetVT == MVT::f16)
405       return SINTTOFP_I64_F16;
406     if (RetVT == MVT::f32)
407       return SINTTOFP_I64_F32;
408     if (RetVT == MVT::f64)
409       return SINTTOFP_I64_F64;
410     if (RetVT == MVT::f80)
411       return SINTTOFP_I64_F80;
412     if (RetVT == MVT::f128)
413       return SINTTOFP_I64_F128;
414     if (RetVT == MVT::ppcf128)
415       return SINTTOFP_I64_PPCF128;
416   } else if (OpVT == MVT::i128) {
417     if (RetVT == MVT::f16)
418       return SINTTOFP_I128_F16;
419     if (RetVT == MVT::f32)
420       return SINTTOFP_I128_F32;
421     if (RetVT == MVT::f64)
422       return SINTTOFP_I128_F64;
423     if (RetVT == MVT::f80)
424       return SINTTOFP_I128_F80;
425     if (RetVT == MVT::f128)
426       return SINTTOFP_I128_F128;
427     if (RetVT == MVT::ppcf128)
428       return SINTTOFP_I128_PPCF128;
429   }
430   return UNKNOWN_LIBCALL;
431 }
432 
433 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
434 /// UNKNOWN_LIBCALL if there is none.
getUINTTOFP(EVT OpVT,EVT RetVT)435 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
436   if (OpVT == MVT::i32) {
437     if (RetVT == MVT::f16)
438       return UINTTOFP_I32_F16;
439     if (RetVT == MVT::f32)
440       return UINTTOFP_I32_F32;
441     if (RetVT == MVT::f64)
442       return UINTTOFP_I32_F64;
443     if (RetVT == MVT::f80)
444       return UINTTOFP_I32_F80;
445     if (RetVT == MVT::f128)
446       return UINTTOFP_I32_F128;
447     if (RetVT == MVT::ppcf128)
448       return UINTTOFP_I32_PPCF128;
449   } else if (OpVT == MVT::i64) {
450     if (RetVT == MVT::f16)
451       return UINTTOFP_I64_F16;
452     if (RetVT == MVT::f32)
453       return UINTTOFP_I64_F32;
454     if (RetVT == MVT::f64)
455       return UINTTOFP_I64_F64;
456     if (RetVT == MVT::f80)
457       return UINTTOFP_I64_F80;
458     if (RetVT == MVT::f128)
459       return UINTTOFP_I64_F128;
460     if (RetVT == MVT::ppcf128)
461       return UINTTOFP_I64_PPCF128;
462   } else if (OpVT == MVT::i128) {
463     if (RetVT == MVT::f16)
464       return UINTTOFP_I128_F16;
465     if (RetVT == MVT::f32)
466       return UINTTOFP_I128_F32;
467     if (RetVT == MVT::f64)
468       return UINTTOFP_I128_F64;
469     if (RetVT == MVT::f80)
470       return UINTTOFP_I128_F80;
471     if (RetVT == MVT::f128)
472       return UINTTOFP_I128_F128;
473     if (RetVT == MVT::ppcf128)
474       return UINTTOFP_I128_PPCF128;
475   }
476   return UNKNOWN_LIBCALL;
477 }
478 
getOUTLINE_ATOMIC(unsigned Opc,AtomicOrdering Order,MVT VT)479 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
480                                         MVT VT) {
481   unsigned ModeN, ModelN;
482   switch (VT.SimpleTy) {
483   case MVT::i8:
484     ModeN = 0;
485     break;
486   case MVT::i16:
487     ModeN = 1;
488     break;
489   case MVT::i32:
490     ModeN = 2;
491     break;
492   case MVT::i64:
493     ModeN = 3;
494     break;
495   case MVT::i128:
496     ModeN = 4;
497     break;
498   default:
499     return UNKNOWN_LIBCALL;
500   }
501 
502   switch (Order) {
503   case AtomicOrdering::Monotonic:
504     ModelN = 0;
505     break;
506   case AtomicOrdering::Acquire:
507     ModelN = 1;
508     break;
509   case AtomicOrdering::Release:
510     ModelN = 2;
511     break;
512   case AtomicOrdering::AcquireRelease:
513   case AtomicOrdering::SequentiallyConsistent:
514     ModelN = 3;
515     break;
516   default:
517     return UNKNOWN_LIBCALL;
518   }
519 
520 #define LCALLS(A, B)                                                           \
521   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
522 #define LCALL5(A)                                                              \
523   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
524   switch (Opc) {
525   case ISD::ATOMIC_CMP_SWAP: {
526     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
527     return LC[ModeN][ModelN];
528   }
529   case ISD::ATOMIC_SWAP: {
530     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
531     return LC[ModeN][ModelN];
532   }
533   case ISD::ATOMIC_LOAD_ADD: {
534     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
535     return LC[ModeN][ModelN];
536   }
537   case ISD::ATOMIC_LOAD_OR: {
538     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
539     return LC[ModeN][ModelN];
540   }
541   case ISD::ATOMIC_LOAD_CLR: {
542     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
543     return LC[ModeN][ModelN];
544   }
545   case ISD::ATOMIC_LOAD_XOR: {
546     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
547     return LC[ModeN][ModelN];
548   }
549   default:
550     return UNKNOWN_LIBCALL;
551   }
552 #undef LCALLS
553 #undef LCALL5
554 }
555 
getSYNC(unsigned Opc,MVT VT)556 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
557 #define OP_TO_LIBCALL(Name, Enum)                                              \
558   case Name:                                                                   \
559     switch (VT.SimpleTy) {                                                     \
560     default:                                                                   \
561       return UNKNOWN_LIBCALL;                                                  \
562     case MVT::i8:                                                              \
563       return Enum##_1;                                                         \
564     case MVT::i16:                                                             \
565       return Enum##_2;                                                         \
566     case MVT::i32:                                                             \
567       return Enum##_4;                                                         \
568     case MVT::i64:                                                             \
569       return Enum##_8;                                                         \
570     case MVT::i128:                                                            \
571       return Enum##_16;                                                        \
572     }
573 
574   switch (Opc) {
575     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
576     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
577     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
578     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
579     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
580     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
581     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
582     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
583     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
584     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
585     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
586     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
587   }
588 
589 #undef OP_TO_LIBCALL
590 
591   return UNKNOWN_LIBCALL;
592 }
593 
getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)594 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
595   switch (ElementSize) {
596   case 1:
597     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
598   case 2:
599     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
600   case 4:
601     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
602   case 8:
603     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
604   case 16:
605     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
606   default:
607     return UNKNOWN_LIBCALL;
608   }
609 }
610 
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)611 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
612   switch (ElementSize) {
613   case 1:
614     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
615   case 2:
616     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
617   case 4:
618     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
619   case 8:
620     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
621   case 16:
622     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
623   default:
624     return UNKNOWN_LIBCALL;
625   }
626 }
627 
getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)628 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
629   switch (ElementSize) {
630   case 1:
631     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
632   case 2:
633     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
634   case 4:
635     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
636   case 8:
637     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
638   case 16:
639     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
640   default:
641     return UNKNOWN_LIBCALL;
642   }
643 }
644 
645 /// InitCmpLibcallCCs - Set default comparison libcall CC.
InitCmpLibcallCCs(ISD::CondCode * CCs)646 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
647   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
648   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
649   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
650   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
651   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
652   CCs[RTLIB::UNE_F32] = ISD::SETNE;
653   CCs[RTLIB::UNE_F64] = ISD::SETNE;
654   CCs[RTLIB::UNE_F128] = ISD::SETNE;
655   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
656   CCs[RTLIB::OGE_F32] = ISD::SETGE;
657   CCs[RTLIB::OGE_F64] = ISD::SETGE;
658   CCs[RTLIB::OGE_F128] = ISD::SETGE;
659   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
660   CCs[RTLIB::OLT_F32] = ISD::SETLT;
661   CCs[RTLIB::OLT_F64] = ISD::SETLT;
662   CCs[RTLIB::OLT_F128] = ISD::SETLT;
663   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
664   CCs[RTLIB::OLE_F32] = ISD::SETLE;
665   CCs[RTLIB::OLE_F64] = ISD::SETLE;
666   CCs[RTLIB::OLE_F128] = ISD::SETLE;
667   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
668   CCs[RTLIB::OGT_F32] = ISD::SETGT;
669   CCs[RTLIB::OGT_F64] = ISD::SETGT;
670   CCs[RTLIB::OGT_F128] = ISD::SETGT;
671   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
672   CCs[RTLIB::UO_F32] = ISD::SETNE;
673   CCs[RTLIB::UO_F64] = ISD::SETNE;
674   CCs[RTLIB::UO_F128] = ISD::SETNE;
675   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
676 }
677 
678 /// NOTE: The TargetMachine owns TLOF.
TargetLoweringBase(const TargetMachine & tm)679 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
680   initActions();
681 
682   // Perform these initializations only once.
683   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
684       MaxLoadsPerMemcmp = 8;
685   MaxGluedStoresPerMemcpy = 0;
686   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
687       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
688   HasMultipleConditionRegisters = false;
689   HasExtractBitsInsn = false;
690   JumpIsExpensive = JumpIsExpensiveOverride;
691   PredictableSelectIsExpensive = false;
692   EnableExtLdPromotion = false;
693   StackPointerRegisterToSaveRestore = 0;
694   BooleanContents = UndefinedBooleanContent;
695   BooleanFloatContents = UndefinedBooleanContent;
696   BooleanVectorContents = UndefinedBooleanContent;
697   SchedPreferenceInfo = Sched::ILP;
698   GatherAllAliasesMaxDepth = 18;
699   IsStrictFPEnabled = DisableStrictNodeMutation;
700   // TODO: the default will be switched to 0 in the next commit, along
701   // with the Target-specific changes necessary.
702   MaxAtomicSizeInBitsSupported = 1024;
703 
704   MinCmpXchgSizeInBits = 0;
705   SupportsUnalignedAtomics = false;
706 
707   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
708 
709   InitLibcalls(TM.getTargetTriple());
710   InitCmpLibcallCCs(CmpLibcallCCs);
711 }
712 
initActions()713 void TargetLoweringBase::initActions() {
714   // All operations default to being supported.
715   memset(OpActions, 0, sizeof(OpActions));
716   memset(LoadExtActions, 0, sizeof(LoadExtActions));
717   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
718   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
719   memset(CondCodeActions, 0, sizeof(CondCodeActions));
720   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
721   std::fill(std::begin(TargetDAGCombineArray),
722             std::end(TargetDAGCombineArray), 0);
723 
724   for (MVT VT : MVT::fp_valuetypes()) {
725     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
726     if (IntVT.isValid()) {
727       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
728       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
729     }
730   }
731 
732   // Set default actions for various operations.
733   for (MVT VT : MVT::all_valuetypes()) {
734     // Default all indexed load / store to expand.
735     for (unsigned IM = (unsigned)ISD::PRE_INC;
736          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
737       setIndexedLoadAction(IM, VT, Expand);
738       setIndexedStoreAction(IM, VT, Expand);
739       setIndexedMaskedLoadAction(IM, VT, Expand);
740       setIndexedMaskedStoreAction(IM, VT, Expand);
741     }
742 
743     // Most backends expect to see the node which just returns the value loaded.
744     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
745 
746     // These operations default to expand.
747     setOperationAction(ISD::FGETSIGN, VT, Expand);
748     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
749     setOperationAction(ISD::FMINNUM, VT, Expand);
750     setOperationAction(ISD::FMAXNUM, VT, Expand);
751     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
752     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
753     setOperationAction(ISD::FMINIMUM, VT, Expand);
754     setOperationAction(ISD::FMAXIMUM, VT, Expand);
755     setOperationAction(ISD::FMAD, VT, Expand);
756     setOperationAction(ISD::SMIN, VT, Expand);
757     setOperationAction(ISD::SMAX, VT, Expand);
758     setOperationAction(ISD::UMIN, VT, Expand);
759     setOperationAction(ISD::UMAX, VT, Expand);
760     setOperationAction(ISD::ABS, VT, Expand);
761     setOperationAction(ISD::FSHL, VT, Expand);
762     setOperationAction(ISD::FSHR, VT, Expand);
763     setOperationAction(ISD::SADDSAT, VT, Expand);
764     setOperationAction(ISD::UADDSAT, VT, Expand);
765     setOperationAction(ISD::SSUBSAT, VT, Expand);
766     setOperationAction(ISD::USUBSAT, VT, Expand);
767     setOperationAction(ISD::SSHLSAT, VT, Expand);
768     setOperationAction(ISD::USHLSAT, VT, Expand);
769     setOperationAction(ISD::SMULFIX, VT, Expand);
770     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
771     setOperationAction(ISD::UMULFIX, VT, Expand);
772     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
773     setOperationAction(ISD::SDIVFIX, VT, Expand);
774     setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
775     setOperationAction(ISD::UDIVFIX, VT, Expand);
776     setOperationAction(ISD::UDIVFIXSAT, VT, Expand);
777 
778     // Overflow operations default to expand
779     setOperationAction(ISD::SADDO, VT, Expand);
780     setOperationAction(ISD::SSUBO, VT, Expand);
781     setOperationAction(ISD::UADDO, VT, Expand);
782     setOperationAction(ISD::USUBO, VT, Expand);
783     setOperationAction(ISD::SMULO, VT, Expand);
784     setOperationAction(ISD::UMULO, VT, Expand);
785 
786     // ADDCARRY operations default to expand
787     setOperationAction(ISD::ADDCARRY, VT, Expand);
788     setOperationAction(ISD::SUBCARRY, VT, Expand);
789     setOperationAction(ISD::SETCCCARRY, VT, Expand);
790     setOperationAction(ISD::SADDO_CARRY, VT, Expand);
791     setOperationAction(ISD::SSUBO_CARRY, VT, Expand);
792 
793     // ADDC/ADDE/SUBC/SUBE default to expand.
794     setOperationAction(ISD::ADDC, VT, Expand);
795     setOperationAction(ISD::ADDE, VT, Expand);
796     setOperationAction(ISD::SUBC, VT, Expand);
797     setOperationAction(ISD::SUBE, VT, Expand);
798 
799     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
800     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
801     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
802 
803     setOperationAction(ISD::BITREVERSE, VT, Expand);
804     setOperationAction(ISD::PARITY, VT, Expand);
805 
806     // These library functions default to expand.
807     setOperationAction(ISD::FROUND, VT, Expand);
808     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
809     setOperationAction(ISD::FPOWI, VT, Expand);
810 
811     // These operations default to expand for vector types.
812     if (VT.isVector()) {
813       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
814       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
815       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
816       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
817       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
818       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
819     }
820 
821     // Constrained floating-point operations default to expand.
822 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
823     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
824 #include "llvm/IR/ConstrainedOps.def"
825 
826     // For most targets @llvm.get.dynamic.area.offset just returns 0.
827     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
828 
829     // Vector reduction default to expand.
830     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
831     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
832     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
833     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
834     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
835     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
836     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
837     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
838     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
839     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
840     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
841     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
842     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
843     setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand);
844     setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand);
845   }
846 
847   // Most targets ignore the @llvm.prefetch intrinsic.
848   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
849 
850   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
851   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
852 
853   // ConstantFP nodes default to expand.  Targets can either change this to
854   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
855   // to optimize expansions for certain constants.
856   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
857   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
858   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
859   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
860   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
861 
862   // These library functions default to expand.
863   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
864     setOperationAction(ISD::FCBRT,      VT, Expand);
865     setOperationAction(ISD::FLOG ,      VT, Expand);
866     setOperationAction(ISD::FLOG2,      VT, Expand);
867     setOperationAction(ISD::FLOG10,     VT, Expand);
868     setOperationAction(ISD::FEXP ,      VT, Expand);
869     setOperationAction(ISD::FEXP2,      VT, Expand);
870     setOperationAction(ISD::FFLOOR,     VT, Expand);
871     setOperationAction(ISD::FNEARBYINT, VT, Expand);
872     setOperationAction(ISD::FCEIL,      VT, Expand);
873     setOperationAction(ISD::FRINT,      VT, Expand);
874     setOperationAction(ISD::FTRUNC,     VT, Expand);
875     setOperationAction(ISD::FROUND,     VT, Expand);
876     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
877     setOperationAction(ISD::LROUND,     VT, Expand);
878     setOperationAction(ISD::LLROUND,    VT, Expand);
879     setOperationAction(ISD::LRINT,      VT, Expand);
880     setOperationAction(ISD::LLRINT,     VT, Expand);
881   }
882 
883   // Default ISD::TRAP to expand (which turns it into abort).
884   setOperationAction(ISD::TRAP, MVT::Other, Expand);
885 
886   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
887   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
888   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
889 
890   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
891 }
892 
getScalarShiftAmountTy(const DataLayout & DL,EVT) const893 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
894                                                EVT) const {
895   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
896 }
897 
getShiftAmountTy(EVT LHSTy,const DataLayout & DL,bool LegalTypes) const898 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
899                                          bool LegalTypes) const {
900   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
901   if (LHSTy.isVector())
902     return LHSTy;
903   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
904                     : getPointerTy(DL);
905 }
906 
canOpTrap(unsigned Op,EVT VT) const907 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
908   assert(isTypeLegal(VT));
909   switch (Op) {
910   default:
911     return false;
912   case ISD::SDIV:
913   case ISD::UDIV:
914   case ISD::SREM:
915   case ISD::UREM:
916     return true;
917   }
918 }
919 
isFreeAddrSpaceCast(unsigned SrcAS,unsigned DestAS) const920 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
921                                              unsigned DestAS) const {
922   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
923 }
924 
setJumpIsExpensive(bool isExpensive)925 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
926   // If the command-line option was specified, ignore this request.
927   if (!JumpIsExpensiveOverride.getNumOccurrences())
928     JumpIsExpensive = isExpensive;
929 }
930 
931 TargetLoweringBase::LegalizeKind
getTypeConversion(LLVMContext & Context,EVT VT) const932 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
933   // If this is a simple type, use the ComputeRegisterProp mechanism.
934   if (VT.isSimple()) {
935     MVT SVT = VT.getSimpleVT();
936     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
937     MVT NVT = TransformToType[SVT.SimpleTy];
938     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
939 
940     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
941             LA == TypeSoftPromoteHalf ||
942             (NVT.isVector() ||
943              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
944            "Promote may not follow Expand or Promote");
945 
946     if (LA == TypeSplitVector)
947       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
948     if (LA == TypeScalarizeVector)
949       return LegalizeKind(LA, SVT.getVectorElementType());
950     return LegalizeKind(LA, NVT);
951   }
952 
953   // Handle Extended Scalar Types.
954   if (!VT.isVector()) {
955     assert(VT.isInteger() && "Float types must be simple");
956     unsigned BitSize = VT.getSizeInBits();
957     // First promote to a power-of-two size, then expand if necessary.
958     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
959       EVT NVT = VT.getRoundIntegerType(Context);
960       assert(NVT != VT && "Unable to round integer VT");
961       LegalizeKind NextStep = getTypeConversion(Context, NVT);
962       // Avoid multi-step promotion.
963       if (NextStep.first == TypePromoteInteger)
964         return NextStep;
965       // Return rounded integer type.
966       return LegalizeKind(TypePromoteInteger, NVT);
967     }
968 
969     return LegalizeKind(TypeExpandInteger,
970                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
971   }
972 
973   // Handle vector types.
974   ElementCount NumElts = VT.getVectorElementCount();
975   EVT EltVT = VT.getVectorElementType();
976 
977   // Vectors with only one element are always scalarized.
978   if (NumElts.isScalar())
979     return LegalizeKind(TypeScalarizeVector, EltVT);
980 
981   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
982     report_fatal_error("Cannot legalize this vector");
983 
984   // Try to widen vector elements until the element type is a power of two and
985   // promote it to a legal type later on, for example:
986   // <3 x i8> -> <4 x i8> -> <4 x i32>
987   if (EltVT.isInteger()) {
988     // Vectors with a number of elements that is not a power of two are always
989     // widened, for example <3 x i8> -> <4 x i8>.
990     if (!VT.isPow2VectorType()) {
991       NumElts = NumElts.coefficientNextPowerOf2();
992       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
993       return LegalizeKind(TypeWidenVector, NVT);
994     }
995 
996     // Examine the element type.
997     LegalizeKind LK = getTypeConversion(Context, EltVT);
998 
999     // If type is to be expanded, split the vector.
1000     //  <4 x i140> -> <2 x i140>
1001     if (LK.first == TypeExpandInteger)
1002       return LegalizeKind(TypeSplitVector,
1003                           VT.getHalfNumVectorElementsVT(Context));
1004 
1005     // Promote the integer element types until a legal vector type is found
1006     // or until the element integer type is too big. If a legal type was not
1007     // found, fallback to the usual mechanism of widening/splitting the
1008     // vector.
1009     EVT OldEltVT = EltVT;
1010     while (true) {
1011       // Increase the bitwidth of the element to the next pow-of-two
1012       // (which is greater than 8 bits).
1013       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1014                   .getRoundIntegerType(Context);
1015 
1016       // Stop trying when getting a non-simple element type.
1017       // Note that vector elements may be greater than legal vector element
1018       // types. Example: X86 XMM registers hold 64bit element on 32bit
1019       // systems.
1020       if (!EltVT.isSimple())
1021         break;
1022 
1023       // Build a new vector type and check if it is legal.
1024       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1025       // Found a legal promoted vector type.
1026       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1027         return LegalizeKind(TypePromoteInteger,
1028                             EVT::getVectorVT(Context, EltVT, NumElts));
1029     }
1030 
1031     // Reset the type to the unexpanded type if we did not find a legal vector
1032     // type with a promoted vector element type.
1033     EltVT = OldEltVT;
1034   }
1035 
1036   // Try to widen the vector until a legal type is found.
1037   // If there is no wider legal type, split the vector.
1038   while (true) {
1039     // Round up to the next power of 2.
1040     NumElts = NumElts.coefficientNextPowerOf2();
1041 
1042     // If there is no simple vector type with this many elements then there
1043     // cannot be a larger legal vector type.  Note that this assumes that
1044     // there are no skipped intermediate vector types in the simple types.
1045     if (!EltVT.isSimple())
1046       break;
1047     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1048     if (LargerVector == MVT())
1049       break;
1050 
1051     // If this type is legal then widen the vector.
1052     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1053       return LegalizeKind(TypeWidenVector, LargerVector);
1054   }
1055 
1056   // Widen odd vectors to next power of two.
1057   if (!VT.isPow2VectorType()) {
1058     EVT NVT = VT.getPow2VectorType(Context);
1059     return LegalizeKind(TypeWidenVector, NVT);
1060   }
1061 
1062   // Vectors with illegal element types are expanded.
1063   EVT NVT = EVT::getVectorVT(Context, EltVT,
1064                              VT.getVectorElementCount().divideCoefficientBy(2));
1065   return LegalizeKind(TypeSplitVector, NVT);
1066 }
1067 
getVectorTypeBreakdownMVT(MVT VT,MVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT,TargetLoweringBase * TLI)1068 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1069                                           unsigned &NumIntermediates,
1070                                           MVT &RegisterVT,
1071                                           TargetLoweringBase *TLI) {
1072   // Figure out the right, legal destination reg to copy into.
1073   ElementCount EC = VT.getVectorElementCount();
1074   MVT EltTy = VT.getVectorElementType();
1075 
1076   unsigned NumVectorRegs = 1;
1077 
1078   // Scalable vectors cannot be scalarized, so splitting or widening is
1079   // required.
1080   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1081     llvm_unreachable(
1082         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1083 
1084   // FIXME: We don't support non-power-of-2-sized vectors for now.
1085   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1086   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1087     // Split EC to unit size (scalable property is preserved).
1088     NumVectorRegs = EC.getKnownMinValue();
1089     EC = ElementCount::getFixed(1);
1090   }
1091 
1092   // Divide the input until we get to a supported size. This will
1093   // always end up with an EC that represent a scalar or a scalable
1094   // scalar.
1095   while (EC.getKnownMinValue() > 1 &&
1096          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1097     EC = EC.divideCoefficientBy(2);
1098     NumVectorRegs <<= 1;
1099   }
1100 
1101   NumIntermediates = NumVectorRegs;
1102 
1103   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1104   if (!TLI->isTypeLegal(NewVT))
1105     NewVT = EltTy;
1106   IntermediateVT = NewVT;
1107 
1108   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1109 
1110   // Convert sizes such as i33 to i64.
1111   if (!isPowerOf2_32(LaneSizeInBits))
1112     LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
1113 
1114   MVT DestVT = TLI->getRegisterType(NewVT);
1115   RegisterVT = DestVT;
1116   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1117     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1118 
1119   // Otherwise, promotion or legal types use the same number of registers as
1120   // the vector decimated to the appropriate level.
1121   return NumVectorRegs;
1122 }
1123 
1124 /// isLegalRC - Return true if the value types that can be represented by the
1125 /// specified register class are all legal.
isLegalRC(const TargetRegisterInfo & TRI,const TargetRegisterClass & RC) const1126 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1127                                    const TargetRegisterClass &RC) const {
1128   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1129     if (isTypeLegal(*I))
1130       return true;
1131   return false;
1132 }
1133 
1134 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1135 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1136 MachineBasicBlock *
emitPatchPoint(MachineInstr & InitialMI,MachineBasicBlock * MBB) const1137 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1138                                    MachineBasicBlock *MBB) const {
1139   MachineInstr *MI = &InitialMI;
1140   MachineFunction &MF = *MI->getMF();
1141   MachineFrameInfo &MFI = MF.getFrameInfo();
1142 
1143   // We're handling multiple types of operands here:
1144   // PATCHPOINT MetaArgs - live-in, read only, direct
1145   // STATEPOINT Deopt Spill - live-through, read only, indirect
1146   // STATEPOINT Deopt Alloca - live-through, read only, direct
1147   // (We're currently conservative and mark the deopt slots read/write in
1148   // practice.)
1149   // STATEPOINT GC Spill - live-through, read/write, indirect
1150   // STATEPOINT GC Alloca - live-through, read/write, direct
1151   // The live-in vs live-through is handled already (the live through ones are
1152   // all stack slots), but we need to handle the different type of stackmap
1153   // operands and memory effects here.
1154 
1155   if (!llvm::any_of(MI->operands(),
1156                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1157     return MBB;
1158 
1159   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1160 
1161   // Inherit previous memory operands.
1162   MIB.cloneMemRefs(*MI);
1163 
1164   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1165     MachineOperand &MO = MI->getOperand(i);
1166     if (!MO.isFI()) {
1167       // Index of Def operand this Use it tied to.
1168       // Since Defs are coming before Uses, if Use is tied, then
1169       // index of Def must be smaller that index of that Use.
1170       // Also, Defs preserve their position in new MI.
1171       unsigned TiedTo = i;
1172       if (MO.isReg() && MO.isTied())
1173         TiedTo = MI->findTiedOperandIdx(i);
1174       MIB.add(MO);
1175       if (TiedTo < i)
1176         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1177       continue;
1178     }
1179 
1180     // foldMemoryOperand builds a new MI after replacing a single FI operand
1181     // with the canonical set of five x86 addressing-mode operands.
1182     int FI = MO.getIndex();
1183 
1184     // Add frame index operands recognized by stackmaps.cpp
1185     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1186       // indirect-mem-ref tag, size, #FI, offset.
1187       // Used for spills inserted by StatepointLowering.  This codepath is not
1188       // used for patchpoints/stackmaps at all, for these spilling is done via
1189       // foldMemoryOperand callback only.
1190       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1191       MIB.addImm(StackMaps::IndirectMemRefOp);
1192       MIB.addImm(MFI.getObjectSize(FI));
1193       MIB.add(MO);
1194       MIB.addImm(0);
1195     } else {
1196       // direct-mem-ref tag, #FI, offset.
1197       // Used by patchpoint, and direct alloca arguments to statepoints
1198       MIB.addImm(StackMaps::DirectMemRefOp);
1199       MIB.add(MO);
1200       MIB.addImm(0);
1201     }
1202 
1203     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1204 
1205     // Add a new memory operand for this FI.
1206     assert(MFI.getObjectOffset(FI) != -1);
1207 
1208     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1209     // PATCHPOINT should be updated to do the same. (TODO)
1210     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1211       auto Flags = MachineMemOperand::MOLoad;
1212       MachineMemOperand *MMO = MF.getMachineMemOperand(
1213           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1214           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1215       MIB->addMemOperand(MF, MMO);
1216     }
1217   }
1218   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1219   MI->eraseFromParent();
1220   return MBB;
1221 }
1222 
1223 MachineBasicBlock *
emitXRayCustomEvent(MachineInstr & MI,MachineBasicBlock * MBB) const1224 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1225                                         MachineBasicBlock *MBB) const {
1226   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1227          "Called emitXRayCustomEvent on the wrong MI!");
1228   auto &MF = *MI.getMF();
1229   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1230   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1231     MIB.add(MI.getOperand(OpIdx));
1232 
1233   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1234   MI.eraseFromParent();
1235   return MBB;
1236 }
1237 
1238 MachineBasicBlock *
emitXRayTypedEvent(MachineInstr & MI,MachineBasicBlock * MBB) const1239 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1240                                        MachineBasicBlock *MBB) const {
1241   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1242          "Called emitXRayTypedEvent on the wrong MI!");
1243   auto &MF = *MI.getMF();
1244   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1245   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1246     MIB.add(MI.getOperand(OpIdx));
1247 
1248   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1249   MI.eraseFromParent();
1250   return MBB;
1251 }
1252 
1253 /// findRepresentativeClass - Return the largest legal super-reg register class
1254 /// of the register class for the specified type and its associated "cost".
1255 // This function is in TargetLowering because it uses RegClassForVT which would
1256 // need to be moved to TargetRegisterInfo and would necessitate moving
1257 // isTypeLegal over as well - a massive change that would just require
1258 // TargetLowering having a TargetRegisterInfo class member that it would use.
1259 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1260 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1261                                             MVT VT) const {
1262   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1263   if (!RC)
1264     return std::make_pair(RC, 0);
1265 
1266   // Compute the set of all super-register classes.
1267   BitVector SuperRegRC(TRI->getNumRegClasses());
1268   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1269     SuperRegRC.setBitsInMask(RCI.getMask());
1270 
1271   // Find the first legal register class with the largest spill size.
1272   const TargetRegisterClass *BestRC = RC;
1273   for (unsigned i : SuperRegRC.set_bits()) {
1274     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1275     // We want the largest possible spill size.
1276     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1277       continue;
1278     if (!isLegalRC(*TRI, *SuperRC))
1279       continue;
1280     BestRC = SuperRC;
1281   }
1282   return std::make_pair(BestRC, 1);
1283 }
1284 
1285 /// computeRegisterProperties - Once all of the register classes are added,
1286 /// this allows us to compute derived properties we expose.
computeRegisterProperties(const TargetRegisterInfo * TRI)1287 void TargetLoweringBase::computeRegisterProperties(
1288     const TargetRegisterInfo *TRI) {
1289   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1290                 "Too many value types for ValueTypeActions to hold!");
1291 
1292   // Everything defaults to needing one register.
1293   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1294     NumRegistersForVT[i] = 1;
1295     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1296   }
1297   // ...except isVoid, which doesn't need any registers.
1298   NumRegistersForVT[MVT::isVoid] = 0;
1299 
1300   // Find the largest integer register class.
1301   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1302   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1303     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1304 
1305   // Every integer value type larger than this largest register takes twice as
1306   // many registers to represent as the previous ValueType.
1307   for (unsigned ExpandedReg = LargestIntReg + 1;
1308        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1309     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1310     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1311     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1312     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1313                                    TypeExpandInteger);
1314   }
1315 
1316   // Inspect all of the ValueType's smaller than the largest integer
1317   // register to see which ones need promotion.
1318   unsigned LegalIntReg = LargestIntReg;
1319   for (unsigned IntReg = LargestIntReg - 1;
1320        IntReg >= (unsigned)MVT::i1; --IntReg) {
1321     MVT IVT = (MVT::SimpleValueType)IntReg;
1322     if (isTypeLegal(IVT)) {
1323       LegalIntReg = IntReg;
1324     } else {
1325       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1326         (MVT::SimpleValueType)LegalIntReg;
1327       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1328     }
1329   }
1330 
1331   // ppcf128 type is really two f64's.
1332   if (!isTypeLegal(MVT::ppcf128)) {
1333     if (isTypeLegal(MVT::f64)) {
1334       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1335       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1336       TransformToType[MVT::ppcf128] = MVT::f64;
1337       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1338     } else {
1339       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1340       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1341       TransformToType[MVT::ppcf128] = MVT::i128;
1342       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1343     }
1344   }
1345 
1346   // Decide how to handle f128. If the target does not have native f128 support,
1347   // expand it to i128 and we will be generating soft float library calls.
1348   if (!isTypeLegal(MVT::f128)) {
1349     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1350     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1351     TransformToType[MVT::f128] = MVT::i128;
1352     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1353   }
1354 
1355   // Decide how to handle f64. If the target does not have native f64 support,
1356   // expand it to i64 and we will be generating soft float library calls.
1357   if (!isTypeLegal(MVT::f64)) {
1358     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1359     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1360     TransformToType[MVT::f64] = MVT::i64;
1361     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1362   }
1363 
1364   // Decide how to handle f32. If the target does not have native f32 support,
1365   // expand it to i32 and we will be generating soft float library calls.
1366   if (!isTypeLegal(MVT::f32)) {
1367     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1368     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1369     TransformToType[MVT::f32] = MVT::i32;
1370     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1371   }
1372 
1373   // Decide how to handle f16. If the target does not have native f16 support,
1374   // promote it to f32, because there are no f16 library calls (except for
1375   // conversions).
1376   if (!isTypeLegal(MVT::f16)) {
1377     // Allow targets to control how we legalize half.
1378     if (softPromoteHalfType()) {
1379       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1380       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1381       TransformToType[MVT::f16] = MVT::f32;
1382       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1383     } else {
1384       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1385       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1386       TransformToType[MVT::f16] = MVT::f32;
1387       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1388     }
1389   }
1390 
1391   // Loop over all of the vector value types to see which need transformations.
1392   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1393        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1394     MVT VT = (MVT::SimpleValueType) i;
1395     if (isTypeLegal(VT))
1396       continue;
1397 
1398     MVT EltVT = VT.getVectorElementType();
1399     ElementCount EC = VT.getVectorElementCount();
1400     bool IsLegalWiderType = false;
1401     bool IsScalable = VT.isScalableVector();
1402     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1403     switch (PreferredAction) {
1404     case TypePromoteInteger: {
1405       MVT::SimpleValueType EndVT = IsScalable ?
1406                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1407                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1408       // Try to promote the elements of integer vectors. If no legal
1409       // promotion was found, fall through to the widen-vector method.
1410       for (unsigned nVT = i + 1;
1411            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1412         MVT SVT = (MVT::SimpleValueType) nVT;
1413         // Promote vectors of integers to vectors with the same number
1414         // of elements, with a wider element type.
1415         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1416             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1417           TransformToType[i] = SVT;
1418           RegisterTypeForVT[i] = SVT;
1419           NumRegistersForVT[i] = 1;
1420           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1421           IsLegalWiderType = true;
1422           break;
1423         }
1424       }
1425       if (IsLegalWiderType)
1426         break;
1427       LLVM_FALLTHROUGH;
1428     }
1429 
1430     case TypeWidenVector:
1431       if (isPowerOf2_32(EC.getKnownMinValue())) {
1432         // Try to widen the vector.
1433         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1434           MVT SVT = (MVT::SimpleValueType) nVT;
1435           if (SVT.getVectorElementType() == EltVT &&
1436               SVT.isScalableVector() == IsScalable &&
1437               SVT.getVectorElementCount().getKnownMinValue() >
1438                   EC.getKnownMinValue() &&
1439               isTypeLegal(SVT)) {
1440             TransformToType[i] = SVT;
1441             RegisterTypeForVT[i] = SVT;
1442             NumRegistersForVT[i] = 1;
1443             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1444             IsLegalWiderType = true;
1445             break;
1446           }
1447         }
1448         if (IsLegalWiderType)
1449           break;
1450       } else {
1451         // Only widen to the next power of 2 to keep consistency with EVT.
1452         MVT NVT = VT.getPow2VectorType();
1453         if (isTypeLegal(NVT)) {
1454           TransformToType[i] = NVT;
1455           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1456           RegisterTypeForVT[i] = NVT;
1457           NumRegistersForVT[i] = 1;
1458           break;
1459         }
1460       }
1461       LLVM_FALLTHROUGH;
1462 
1463     case TypeSplitVector:
1464     case TypeScalarizeVector: {
1465       MVT IntermediateVT;
1466       MVT RegisterVT;
1467       unsigned NumIntermediates;
1468       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1469           NumIntermediates, RegisterVT, this);
1470       NumRegistersForVT[i] = NumRegisters;
1471       assert(NumRegistersForVT[i] == NumRegisters &&
1472              "NumRegistersForVT size cannot represent NumRegisters!");
1473       RegisterTypeForVT[i] = RegisterVT;
1474 
1475       MVT NVT = VT.getPow2VectorType();
1476       if (NVT == VT) {
1477         // Type is already a power of 2.  The default action is to split.
1478         TransformToType[i] = MVT::Other;
1479         if (PreferredAction == TypeScalarizeVector)
1480           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1481         else if (PreferredAction == TypeSplitVector)
1482           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1483         else if (EC.getKnownMinValue() > 1)
1484           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1485         else
1486           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1487                                                  ? TypeScalarizeScalableVector
1488                                                  : TypeScalarizeVector);
1489       } else {
1490         TransformToType[i] = NVT;
1491         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1492       }
1493       break;
1494     }
1495     default:
1496       llvm_unreachable("Unknown vector legalization action!");
1497     }
1498   }
1499 
1500   // Determine the 'representative' register class for each value type.
1501   // An representative register class is the largest (meaning one which is
1502   // not a sub-register class / subreg register class) legal register class for
1503   // a group of value types. For example, on i386, i8, i16, and i32
1504   // representative would be GR32; while on x86_64 it's GR64.
1505   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1506     const TargetRegisterClass* RRC;
1507     uint8_t Cost;
1508     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1509     RepRegClassForVT[i] = RRC;
1510     RepRegClassCostForVT[i] = Cost;
1511   }
1512 }
1513 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1514 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1515                                            EVT VT) const {
1516   assert(!VT.isVector() && "No default SetCC type for vectors!");
1517   return getPointerTy(DL).SimpleTy;
1518 }
1519 
getCmpLibcallReturnType() const1520 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1521   return MVT::i32; // return the default value
1522 }
1523 
1524 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1525 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1526 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1527 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1528 ///
1529 /// This method returns the number of registers needed, and the VT for each
1530 /// register.  It also returns the VT and quantity of the intermediate values
1531 /// before they are promoted/expanded.
getVectorTypeBreakdown(LLVMContext & Context,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT) const1532 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1533                                                 EVT &IntermediateVT,
1534                                                 unsigned &NumIntermediates,
1535                                                 MVT &RegisterVT) const {
1536   ElementCount EltCnt = VT.getVectorElementCount();
1537 
1538   // If there is a wider vector type with the same element type as this one,
1539   // or a promoted vector type that has the same number of elements which
1540   // are wider, then we should convert to that legal vector type.
1541   // This handles things like <2 x float> -> <4 x float> and
1542   // <4 x i1> -> <4 x i32>.
1543   LegalizeTypeAction TA = getTypeAction(Context, VT);
1544   if (EltCnt.getKnownMinValue() != 1 &&
1545       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1546     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1547     if (isTypeLegal(RegisterEVT)) {
1548       IntermediateVT = RegisterEVT;
1549       RegisterVT = RegisterEVT.getSimpleVT();
1550       NumIntermediates = 1;
1551       return 1;
1552     }
1553   }
1554 
1555   // Figure out the right, legal destination reg to copy into.
1556   EVT EltTy = VT.getVectorElementType();
1557 
1558   unsigned NumVectorRegs = 1;
1559 
1560   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1561   // types like done elsewhere in SelectionDAG.
1562   if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.getKnownMinValue())) {
1563     LegalizeKind LK;
1564     EVT PartVT = VT;
1565     do {
1566       // Iterate until we've found a legal (part) type to hold VT.
1567       LK = getTypeConversion(Context, PartVT);
1568       PartVT = LK.second;
1569     } while (LK.first != TypeLegal);
1570 
1571     NumIntermediates = VT.getVectorElementCount().getKnownMinValue() /
1572                        PartVT.getVectorElementCount().getKnownMinValue();
1573 
1574     // FIXME: This code needs to be extended to handle more complex vector
1575     // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only
1576     // supported cases are vectors that are broken down into equal parts
1577     // such as nxv6i64 -> 3 x nxv2i64.
1578     assert((PartVT.getVectorElementCount() * NumIntermediates) ==
1579                VT.getVectorElementCount() &&
1580            "Expected an integer multiple of PartVT");
1581     IntermediateVT = PartVT;
1582     RegisterVT = getRegisterType(Context, IntermediateVT);
1583     return NumIntermediates;
1584   }
1585 
1586   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1587   // we could break down into LHS/RHS like LegalizeDAG does.
1588   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1589     NumVectorRegs = EltCnt.getKnownMinValue();
1590     EltCnt = ElementCount::getFixed(1);
1591   }
1592 
1593   // Divide the input until we get to a supported size.  This will always
1594   // end with a scalar if the target doesn't support vectors.
1595   while (EltCnt.getKnownMinValue() > 1 &&
1596          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1597     EltCnt = EltCnt.divideCoefficientBy(2);
1598     NumVectorRegs <<= 1;
1599   }
1600 
1601   NumIntermediates = NumVectorRegs;
1602 
1603   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1604   if (!isTypeLegal(NewVT))
1605     NewVT = EltTy;
1606   IntermediateVT = NewVT;
1607 
1608   MVT DestVT = getRegisterType(Context, NewVT);
1609   RegisterVT = DestVT;
1610 
1611   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1612     TypeSize NewVTSize = NewVT.getSizeInBits();
1613     // Convert sizes such as i33 to i64.
1614     if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
1615       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1616     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1617   }
1618 
1619   // Otherwise, promotion or legal types use the same number of registers as
1620   // the vector decimated to the appropriate level.
1621   return NumVectorRegs;
1622 }
1623 
isSuitableForJumpTable(const SwitchInst * SI,uint64_t NumCases,uint64_t Range,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI) const1624 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1625                                                 uint64_t NumCases,
1626                                                 uint64_t Range,
1627                                                 ProfileSummaryInfo *PSI,
1628                                                 BlockFrequencyInfo *BFI) const {
1629   // FIXME: This function check the maximum table size and density, but the
1630   // minimum size is not checked. It would be nice if the minimum size is
1631   // also combined within this function. Currently, the minimum size check is
1632   // performed in findJumpTable() in SelectionDAGBuiler and
1633   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1634   const bool OptForSize =
1635       SI->getParent()->getParent()->hasOptSize() ||
1636       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1637   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1638   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1639 
1640   // Check whether the number of cases is small enough and
1641   // the range is dense enough for a jump table.
1642   return (OptForSize || Range <= MaxJumpTableSize) &&
1643          (NumCases * 100 >= Range * MinDensity);
1644 }
1645 
1646 /// Get the EVTs and ArgFlags collections that represent the legalized return
1647 /// type of the given function.  This does not require a DAG or a return value,
1648 /// and is suitable for use before any DAGs for the function are constructed.
1649 /// TODO: Move this out of TargetLowering.cpp.
GetReturnInfo(CallingConv::ID CC,Type * ReturnType,AttributeList attr,SmallVectorImpl<ISD::OutputArg> & Outs,const TargetLowering & TLI,const DataLayout & DL)1650 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1651                          AttributeList attr,
1652                          SmallVectorImpl<ISD::OutputArg> &Outs,
1653                          const TargetLowering &TLI, const DataLayout &DL) {
1654   SmallVector<EVT, 4> ValueVTs;
1655   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1656   unsigned NumValues = ValueVTs.size();
1657   if (NumValues == 0) return;
1658 
1659   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1660     EVT VT = ValueVTs[j];
1661     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1662 
1663     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1664       ExtendKind = ISD::SIGN_EXTEND;
1665     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1666       ExtendKind = ISD::ZERO_EXTEND;
1667 
1668     // FIXME: C calling convention requires the return type to be promoted to
1669     // at least 32-bit. But this is not necessary for non-C calling
1670     // conventions. The frontend should mark functions whose return values
1671     // require promoting with signext or zeroext attributes.
1672     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1673       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1674       if (VT.bitsLT(MinVT))
1675         VT = MinVT;
1676     }
1677 
1678     unsigned NumParts =
1679         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1680     MVT PartVT =
1681         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1682 
1683     // 'inreg' on function refers to return value
1684     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1685     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1686       Flags.setInReg();
1687 
1688     // Propagate extension type if any
1689     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1690       Flags.setSExt();
1691     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1692       Flags.setZExt();
1693 
1694     for (unsigned i = 0; i < NumParts; ++i)
1695       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1696   }
1697 }
1698 
1699 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1700 /// function arguments in the caller parameter area.  This is the actual
1701 /// alignment, not its logarithm.
getByValTypeAlignment(Type * Ty,const DataLayout & DL) const1702 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1703                                                    const DataLayout &DL) const {
1704   return DL.getABITypeAlign(Ty).value();
1705 }
1706 
allowsMemoryAccessForAlignment(LLVMContext & Context,const DataLayout & DL,EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const1707 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1708     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1709     Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1710   // Check if the specified alignment is sufficient based on the data layout.
1711   // TODO: While using the data layout works in practice, a better solution
1712   // would be to implement this check directly (make this a virtual function).
1713   // For example, the ABI alignment may change based on software platform while
1714   // this function should only be affected by hardware implementation.
1715   Type *Ty = VT.getTypeForEVT(Context);
1716   if (Alignment >= DL.getABITypeAlign(Ty)) {
1717     // Assume that an access that meets the ABI-specified alignment is fast.
1718     if (Fast != nullptr)
1719       *Fast = true;
1720     return true;
1721   }
1722 
1723   // This is a misaligned access.
1724   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment.value(), Flags,
1725                                         Fast);
1726 }
1727 
allowsMemoryAccessForAlignment(LLVMContext & Context,const DataLayout & DL,EVT VT,const MachineMemOperand & MMO,bool * Fast) const1728 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1729     LLVMContext &Context, const DataLayout &DL, EVT VT,
1730     const MachineMemOperand &MMO, bool *Fast) const {
1731   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1732                                         MMO.getAlign(), MMO.getFlags(), Fast);
1733 }
1734 
allowsMemoryAccess(LLVMContext & Context,const DataLayout & DL,EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const1735 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1736                                             const DataLayout &DL, EVT VT,
1737                                             unsigned AddrSpace, Align Alignment,
1738                                             MachineMemOperand::Flags Flags,
1739                                             bool *Fast) const {
1740   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1741                                         Flags, Fast);
1742 }
1743 
allowsMemoryAccess(LLVMContext & Context,const DataLayout & DL,EVT VT,const MachineMemOperand & MMO,bool * Fast) const1744 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1745                                             const DataLayout &DL, EVT VT,
1746                                             const MachineMemOperand &MMO,
1747                                             bool *Fast) const {
1748   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1749                             MMO.getFlags(), Fast);
1750 }
1751 
getPredictableBranchThreshold() const1752 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1753   return BranchProbability(MinPercentageForPredictableBranch, 100);
1754 }
1755 
1756 //===----------------------------------------------------------------------===//
1757 //  TargetTransformInfo Helpers
1758 //===----------------------------------------------------------------------===//
1759 
InstructionOpcodeToISD(unsigned Opcode) const1760 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1761   enum InstructionOpcodes {
1762 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1763 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1764 #include "llvm/IR/Instruction.def"
1765   };
1766   switch (static_cast<InstructionOpcodes>(Opcode)) {
1767   case Ret:            return 0;
1768   case Br:             return 0;
1769   case Switch:         return 0;
1770   case IndirectBr:     return 0;
1771   case Invoke:         return 0;
1772   case CallBr:         return 0;
1773   case Resume:         return 0;
1774   case Unreachable:    return 0;
1775   case CleanupRet:     return 0;
1776   case CatchRet:       return 0;
1777   case CatchPad:       return 0;
1778   case CatchSwitch:    return 0;
1779   case CleanupPad:     return 0;
1780   case FNeg:           return ISD::FNEG;
1781   case Add:            return ISD::ADD;
1782   case FAdd:           return ISD::FADD;
1783   case Sub:            return ISD::SUB;
1784   case FSub:           return ISD::FSUB;
1785   case Mul:            return ISD::MUL;
1786   case FMul:           return ISD::FMUL;
1787   case UDiv:           return ISD::UDIV;
1788   case SDiv:           return ISD::SDIV;
1789   case FDiv:           return ISD::FDIV;
1790   case URem:           return ISD::UREM;
1791   case SRem:           return ISD::SREM;
1792   case FRem:           return ISD::FREM;
1793   case Shl:            return ISD::SHL;
1794   case LShr:           return ISD::SRL;
1795   case AShr:           return ISD::SRA;
1796   case And:            return ISD::AND;
1797   case Or:             return ISD::OR;
1798   case Xor:            return ISD::XOR;
1799   case Alloca:         return 0;
1800   case Load:           return ISD::LOAD;
1801   case Store:          return ISD::STORE;
1802   case GetElementPtr:  return 0;
1803   case Fence:          return 0;
1804   case AtomicCmpXchg:  return 0;
1805   case AtomicRMW:      return 0;
1806   case Trunc:          return ISD::TRUNCATE;
1807   case ZExt:           return ISD::ZERO_EXTEND;
1808   case SExt:           return ISD::SIGN_EXTEND;
1809   case FPToUI:         return ISD::FP_TO_UINT;
1810   case FPToSI:         return ISD::FP_TO_SINT;
1811   case UIToFP:         return ISD::UINT_TO_FP;
1812   case SIToFP:         return ISD::SINT_TO_FP;
1813   case FPTrunc:        return ISD::FP_ROUND;
1814   case FPExt:          return ISD::FP_EXTEND;
1815   case PtrToInt:       return ISD::BITCAST;
1816   case IntToPtr:       return ISD::BITCAST;
1817   case BitCast:        return ISD::BITCAST;
1818   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1819   case ICmp:           return ISD::SETCC;
1820   case FCmp:           return ISD::SETCC;
1821   case PHI:            return 0;
1822   case Call:           return 0;
1823   case Select:         return ISD::SELECT;
1824   case UserOp1:        return 0;
1825   case UserOp2:        return 0;
1826   case VAArg:          return 0;
1827   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1828   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1829   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1830   case ExtractValue:   return ISD::MERGE_VALUES;
1831   case InsertValue:    return ISD::MERGE_VALUES;
1832   case LandingPad:     return 0;
1833   case Freeze:         return ISD::FREEZE;
1834   }
1835 
1836   llvm_unreachable("Unknown instruction type encountered!");
1837 }
1838 
1839 std::pair<int, MVT>
getTypeLegalizationCost(const DataLayout & DL,Type * Ty) const1840 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1841                                             Type *Ty) const {
1842   LLVMContext &C = Ty->getContext();
1843   EVT MTy = getValueType(DL, Ty);
1844 
1845   int Cost = 1;
1846   // We keep legalizing the type until we find a legal kind. We assume that
1847   // the only operation that costs anything is the split. After splitting
1848   // we need to handle two types.
1849   while (true) {
1850     LegalizeKind LK = getTypeConversion(C, MTy);
1851 
1852     if (LK.first == TypeLegal)
1853       return std::make_pair(Cost, MTy.getSimpleVT());
1854 
1855     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1856       Cost *= 2;
1857 
1858     // Do not loop with f128 type.
1859     if (MTy == LK.second)
1860       return std::make_pair(Cost, MTy.getSimpleVT());
1861 
1862     // Keep legalizing the type.
1863     MTy = LK.second;
1864   }
1865 }
1866 
getDefaultSafeStackPointerLocation(IRBuilder<> & IRB,bool UseTLS) const1867 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1868                                                               bool UseTLS) const {
1869   // compiler-rt provides a variable with a magic name.  Targets that do not
1870   // link with compiler-rt may also provide such a variable.
1871   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1872   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1873   auto UnsafeStackPtr =
1874       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1875 
1876   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1877 
1878   if (!UnsafeStackPtr) {
1879     auto TLSModel = UseTLS ?
1880         GlobalValue::InitialExecTLSModel :
1881         GlobalValue::NotThreadLocal;
1882     // The global variable is not defined yet, define it ourselves.
1883     // We use the initial-exec TLS model because we do not support the
1884     // variable living anywhere other than in the main executable.
1885     UnsafeStackPtr = new GlobalVariable(
1886         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1887         UnsafeStackPtrVar, nullptr, TLSModel);
1888   } else {
1889     // The variable exists, check its type and attributes.
1890     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1891       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1892     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1893       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1894                          (UseTLS ? "" : "not ") + "be thread-local");
1895   }
1896   return UnsafeStackPtr;
1897 }
1898 
getSafeStackPointerLocation(IRBuilder<> & IRB) const1899 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1900   if (!TM.getTargetTriple().isAndroid())
1901     return getDefaultSafeStackPointerLocation(IRB, true);
1902 
1903   // Android provides a libc function to retrieve the address of the current
1904   // thread's unsafe stack pointer.
1905   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1906   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1907   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1908                                              StackPtrTy->getPointerTo(0));
1909   return IRB.CreateCall(Fn);
1910 }
1911 
1912 //===----------------------------------------------------------------------===//
1913 //  Loop Strength Reduction hooks
1914 //===----------------------------------------------------------------------===//
1915 
1916 /// isLegalAddressingMode - Return true if the addressing mode represented
1917 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1918 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1919                                                const AddrMode &AM, Type *Ty,
1920                                                unsigned AS, Instruction *I) const {
1921   // The default implementation of this implements a conservative RISCy, r+r and
1922   // r+i addr mode.
1923 
1924   // Allows a sign-extended 16-bit immediate field.
1925   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1926     return false;
1927 
1928   // No global is ever allowed as a base.
1929   if (AM.BaseGV)
1930     return false;
1931 
1932   // Only support r+r,
1933   switch (AM.Scale) {
1934   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1935     break;
1936   case 1:
1937     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1938       return false;
1939     // Otherwise we have r+r or r+i.
1940     break;
1941   case 2:
1942     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1943       return false;
1944     // Allow 2*r as r+r.
1945     break;
1946   default: // Don't allow n * r
1947     return false;
1948   }
1949 
1950   return true;
1951 }
1952 
1953 //===----------------------------------------------------------------------===//
1954 //  Stack Protector
1955 //===----------------------------------------------------------------------===//
1956 
1957 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1958 // so that SelectionDAG handle SSP.
getIRStackGuard(IRBuilder<> & IRB) const1959 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1960   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1961     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1962     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1963     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1964     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1965       G->setVisibility(GlobalValue::HiddenVisibility);
1966     return C;
1967   }
1968   return nullptr;
1969 }
1970 
1971 // Currently only support "standard" __stack_chk_guard.
1972 // TODO: add LOAD_STACK_GUARD support.
insertSSPDeclarations(Module & M) const1973 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1974   if (!M.getNamedValue("__stack_chk_guard")) {
1975     auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1976                                   GlobalVariable::ExternalLinkage, nullptr,
1977                                   "__stack_chk_guard");
1978     if (TM.getRelocationModel() == Reloc::Static &&
1979         !TM.getTargetTriple().isWindowsGNUEnvironment())
1980       GV->setDSOLocal(true);
1981   }
1982 }
1983 
1984 // Currently only support "standard" __stack_chk_guard.
1985 // TODO: add LOAD_STACK_GUARD support.
getSDagStackGuard(const Module & M) const1986 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1987   return M.getNamedValue("__stack_chk_guard");
1988 }
1989 
getSSPStackGuardCheck(const Module & M) const1990 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1991   return nullptr;
1992 }
1993 
getMinimumJumpTableEntries() const1994 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1995   return MinimumJumpTableEntries;
1996 }
1997 
setMinimumJumpTableEntries(unsigned Val)1998 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1999   MinimumJumpTableEntries = Val;
2000 }
2001 
getMinimumJumpTableDensity(bool OptForSize) const2002 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2003   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2004 }
2005 
getMaximumJumpTableSize() const2006 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2007   return MaximumJumpTableSize;
2008 }
2009 
setMaximumJumpTableSize(unsigned Val)2010 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2011   MaximumJumpTableSize = Val;
2012 }
2013 
isJumpTableRelative() const2014 bool TargetLoweringBase::isJumpTableRelative() const {
2015   return getTargetMachine().isPositionIndependent();
2016 }
2017 
2018 //===----------------------------------------------------------------------===//
2019 //  Reciprocal Estimates
2020 //===----------------------------------------------------------------------===//
2021 
2022 /// Get the reciprocal estimate attribute string for a function that will
2023 /// override the target defaults.
getRecipEstimateForFunc(MachineFunction & MF)2024 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2025   const Function &F = MF.getFunction();
2026   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2027 }
2028 
2029 /// Construct a string for the given reciprocal operation of the given type.
2030 /// This string should match the corresponding option to the front-end's
2031 /// "-mrecip" flag assuming those strings have been passed through in an
2032 /// attribute string. For example, "vec-divf" for a division of a vXf32.
getReciprocalOpName(bool IsSqrt,EVT VT)2033 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2034   std::string Name = VT.isVector() ? "vec-" : "";
2035 
2036   Name += IsSqrt ? "sqrt" : "div";
2037 
2038   // TODO: Handle "half" or other float types?
2039   if (VT.getScalarType() == MVT::f64) {
2040     Name += "d";
2041   } else {
2042     assert(VT.getScalarType() == MVT::f32 &&
2043            "Unexpected FP type for reciprocal estimate");
2044     Name += "f";
2045   }
2046 
2047   return Name;
2048 }
2049 
2050 /// Return the character position and value (a single numeric character) of a
2051 /// customized refinement operation in the input string if it exists. Return
2052 /// false if there is no customized refinement step count.
parseRefinementStep(StringRef In,size_t & Position,uint8_t & Value)2053 static bool parseRefinementStep(StringRef In, size_t &Position,
2054                                 uint8_t &Value) {
2055   const char RefStepToken = ':';
2056   Position = In.find(RefStepToken);
2057   if (Position == StringRef::npos)
2058     return false;
2059 
2060   StringRef RefStepString = In.substr(Position + 1);
2061   // Allow exactly one numeric character for the additional refinement
2062   // step parameter.
2063   if (RefStepString.size() == 1) {
2064     char RefStepChar = RefStepString[0];
2065     if (RefStepChar >= '0' && RefStepChar <= '9') {
2066       Value = RefStepChar - '0';
2067       return true;
2068     }
2069   }
2070   report_fatal_error("Invalid refinement step for -recip.");
2071 }
2072 
2073 /// For the input attribute string, return one of the ReciprocalEstimate enum
2074 /// status values (enabled, disabled, or not specified) for this operation on
2075 /// the specified data type.
getOpEnabled(bool IsSqrt,EVT VT,StringRef Override)2076 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2077   if (Override.empty())
2078     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2079 
2080   SmallVector<StringRef, 4> OverrideVector;
2081   Override.split(OverrideVector, ',');
2082   unsigned NumArgs = OverrideVector.size();
2083 
2084   // Check if "all", "none", or "default" was specified.
2085   if (NumArgs == 1) {
2086     // Look for an optional setting of the number of refinement steps needed
2087     // for this type of reciprocal operation.
2088     size_t RefPos;
2089     uint8_t RefSteps;
2090     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2091       // Split the string for further processing.
2092       Override = Override.substr(0, RefPos);
2093     }
2094 
2095     // All reciprocal types are enabled.
2096     if (Override == "all")
2097       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2098 
2099     // All reciprocal types are disabled.
2100     if (Override == "none")
2101       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2102 
2103     // Target defaults for enablement are used.
2104     if (Override == "default")
2105       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2106   }
2107 
2108   // The attribute string may omit the size suffix ('f'/'d').
2109   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2110   std::string VTNameNoSize = VTName;
2111   VTNameNoSize.pop_back();
2112   static const char DisabledPrefix = '!';
2113 
2114   for (StringRef RecipType : OverrideVector) {
2115     size_t RefPos;
2116     uint8_t RefSteps;
2117     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2118       RecipType = RecipType.substr(0, RefPos);
2119 
2120     // Ignore the disablement token for string matching.
2121     bool IsDisabled = RecipType[0] == DisabledPrefix;
2122     if (IsDisabled)
2123       RecipType = RecipType.substr(1);
2124 
2125     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2126       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2127                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2128   }
2129 
2130   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2131 }
2132 
2133 /// For the input attribute string, return the customized refinement step count
2134 /// for this operation on the specified data type. If the step count does not
2135 /// exist, return the ReciprocalEstimate enum value for unspecified.
getOpRefinementSteps(bool IsSqrt,EVT VT,StringRef Override)2136 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2137   if (Override.empty())
2138     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2139 
2140   SmallVector<StringRef, 4> OverrideVector;
2141   Override.split(OverrideVector, ',');
2142   unsigned NumArgs = OverrideVector.size();
2143 
2144   // Check if "all", "default", or "none" was specified.
2145   if (NumArgs == 1) {
2146     // Look for an optional setting of the number of refinement steps needed
2147     // for this type of reciprocal operation.
2148     size_t RefPos;
2149     uint8_t RefSteps;
2150     if (!parseRefinementStep(Override, RefPos, RefSteps))
2151       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2152 
2153     // Split the string for further processing.
2154     Override = Override.substr(0, RefPos);
2155     assert(Override != "none" &&
2156            "Disabled reciprocals, but specifed refinement steps?");
2157 
2158     // If this is a general override, return the specified number of steps.
2159     if (Override == "all" || Override == "default")
2160       return RefSteps;
2161   }
2162 
2163   // The attribute string may omit the size suffix ('f'/'d').
2164   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2165   std::string VTNameNoSize = VTName;
2166   VTNameNoSize.pop_back();
2167 
2168   for (StringRef RecipType : OverrideVector) {
2169     size_t RefPos;
2170     uint8_t RefSteps;
2171     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2172       continue;
2173 
2174     RecipType = RecipType.substr(0, RefPos);
2175     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2176       return RefSteps;
2177   }
2178 
2179   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2180 }
2181 
getRecipEstimateSqrtEnabled(EVT VT,MachineFunction & MF) const2182 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2183                                                     MachineFunction &MF) const {
2184   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2185 }
2186 
getRecipEstimateDivEnabled(EVT VT,MachineFunction & MF) const2187 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2188                                                    MachineFunction &MF) const {
2189   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2190 }
2191 
getSqrtRefinementSteps(EVT VT,MachineFunction & MF) const2192 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2193                                                MachineFunction &MF) const {
2194   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2195 }
2196 
getDivRefinementSteps(EVT VT,MachineFunction & MF) const2197 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2198                                               MachineFunction &MF) const {
2199   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2200 }
2201 
finalizeLowering(MachineFunction & MF) const2202 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2203   MF.getRegInfo().freezeReservedRegs(MF);
2204 }
2205 
2206 MachineMemOperand::Flags
getLoadMemOperandFlags(const LoadInst & LI,const DataLayout & DL) const2207 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
2208                                            const DataLayout &DL) const {
2209   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2210   if (LI.isVolatile())
2211     Flags |= MachineMemOperand::MOVolatile;
2212 
2213   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2214     Flags |= MachineMemOperand::MONonTemporal;
2215 
2216   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2217     Flags |= MachineMemOperand::MOInvariant;
2218 
2219   if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
2220     Flags |= MachineMemOperand::MODereferenceable;
2221 
2222   Flags |= getTargetMMOFlags(LI);
2223   return Flags;
2224 }
2225 
2226 MachineMemOperand::Flags
getStoreMemOperandFlags(const StoreInst & SI,const DataLayout & DL) const2227 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2228                                             const DataLayout &DL) const {
2229   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2230 
2231   if (SI.isVolatile())
2232     Flags |= MachineMemOperand::MOVolatile;
2233 
2234   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2235     Flags |= MachineMemOperand::MONonTemporal;
2236 
2237   // FIXME: Not preserving dereferenceable
2238   Flags |= getTargetMMOFlags(SI);
2239   return Flags;
2240 }
2241 
2242 MachineMemOperand::Flags
getAtomicMemOperandFlags(const Instruction & AI,const DataLayout & DL) const2243 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2244                                              const DataLayout &DL) const {
2245   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2246 
2247   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2248     if (RMW->isVolatile())
2249       Flags |= MachineMemOperand::MOVolatile;
2250   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2251     if (CmpX->isVolatile())
2252       Flags |= MachineMemOperand::MOVolatile;
2253   } else
2254     llvm_unreachable("not an atomic instruction");
2255 
2256   // FIXME: Not preserving dereferenceable
2257   Flags |= getTargetMMOFlags(AI);
2258   return Flags;
2259 }
2260 
2261 //===----------------------------------------------------------------------===//
2262 //  GlobalISel Hooks
2263 //===----------------------------------------------------------------------===//
2264 
shouldLocalize(const MachineInstr & MI,const TargetTransformInfo * TTI) const2265 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2266                                         const TargetTransformInfo *TTI) const {
2267   auto &MF = *MI.getMF();
2268   auto &MRI = MF.getRegInfo();
2269   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2270   // this helper function computes the maximum number of uses we should consider
2271   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2272   // break even in terms of code size when the original MI has 2 users vs
2273   // choosing to potentially spill. Any more than 2 users we we have a net code
2274   // size increase. This doesn't take into account register pressure though.
2275   auto maxUses = [](unsigned RematCost) {
2276     // A cost of 1 means remats are basically free.
2277     if (RematCost == 1)
2278       return UINT_MAX;
2279     if (RematCost == 2)
2280       return 2U;
2281 
2282     // Remat is too expensive, only sink if there's one user.
2283     if (RematCost > 2)
2284       return 1U;
2285     llvm_unreachable("Unexpected remat cost");
2286   };
2287 
2288   // Helper to walk through uses and terminate if we've reached a limit. Saves
2289   // us spending time traversing uses if all we want to know is if it's >= min.
2290   auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
2291     unsigned NumUses = 0;
2292     auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
2293     for (; UI != UE && NumUses < MaxUses; ++UI) {
2294       NumUses++;
2295     }
2296     // If we haven't reached the end yet then there are more than MaxUses users.
2297     return UI == UE;
2298   };
2299 
2300   switch (MI.getOpcode()) {
2301   default:
2302     return false;
2303   // Constants-like instructions should be close to their users.
2304   // We don't want long live-ranges for them.
2305   case TargetOpcode::G_CONSTANT:
2306   case TargetOpcode::G_FCONSTANT:
2307   case TargetOpcode::G_FRAME_INDEX:
2308   case TargetOpcode::G_INTTOPTR:
2309     return true;
2310   case TargetOpcode::G_GLOBAL_VALUE: {
2311     unsigned RematCost = TTI->getGISelRematGlobalCost();
2312     Register Reg = MI.getOperand(0).getReg();
2313     unsigned MaxUses = maxUses(RematCost);
2314     if (MaxUses == UINT_MAX)
2315       return true; // Remats are "free" so always localize.
2316     bool B = isUsesAtMost(Reg, MaxUses);
2317     return B;
2318   }
2319   }
2320 }
2321