• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wextra"
20 
21 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
22 //#define LOG_NDEBUG 0
23 #include "VSyncPredictor.h"
24 #include <android-base/logging.h>
25 #include <android-base/stringprintf.h>
26 #include <cutils/compiler.h>
27 #include <cutils/properties.h>
28 #include <utils/Log.h>
29 #include <utils/Trace.h>
30 #include <algorithm>
31 #include <chrono>
32 #include <sstream>
33 #include "RefreshRateConfigs.h"
34 
35 #undef LOG_TAG
36 #define LOG_TAG "VSyncPredictor"
37 
38 namespace android::scheduler {
39 using base::StringAppendF;
40 
41 static auto constexpr kMaxPercent = 100u;
42 
43 VSyncPredictor::~VSyncPredictor() = default;
44 
VSyncPredictor(nsecs_t idealPeriod,size_t historySize,size_t minimumSamplesForPrediction,uint32_t outlierTolerancePercent)45 VSyncPredictor::VSyncPredictor(nsecs_t idealPeriod, size_t historySize,
46                                size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent)
47       : mTraceOn(property_get_bool("debug.sf.vsp_trace", true)),
48         kHistorySize(historySize),
49         kMinimumSamplesForPrediction(minimumSamplesForPrediction),
50         kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)),
51         mIdealPeriod(idealPeriod) {
52     resetModel();
53 }
54 
traceInt64If(const char * name,int64_t value) const55 inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const {
56     if (CC_UNLIKELY(mTraceOn)) {
57         ATRACE_INT64(name, value);
58     }
59 }
60 
next(size_t i) const61 inline size_t VSyncPredictor::next(size_t i) const {
62     return (i + 1) % mTimestamps.size();
63 }
64 
validate(nsecs_t timestamp) const65 bool VSyncPredictor::validate(nsecs_t timestamp) const {
66     if (mLastTimestampIndex < 0 || mTimestamps.empty()) {
67         return true;
68     }
69 
70     auto const aValidTimestamp = mTimestamps[mLastTimestampIndex];
71     auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod;
72     if (percent >= kOutlierTolerancePercent &&
73         percent <= (kMaxPercent - kOutlierTolerancePercent)) {
74         return false;
75     }
76 
77     const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(),
78                                        [timestamp](nsecs_t a, nsecs_t b) {
79                                            return std::abs(timestamp - a) < std::abs(timestamp - b);
80                                        });
81     const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / mIdealPeriod;
82     if (distancePercent < kOutlierTolerancePercent) {
83         // duplicate timestamp
84         return false;
85     }
86     return true;
87 }
88 
currentPeriod() const89 nsecs_t VSyncPredictor::currentPeriod() const {
90     std::lock_guard lock(mMutex);
91     return mRateMap.find(mIdealPeriod)->second.slope;
92 }
93 
addVsyncTimestamp(nsecs_t timestamp)94 bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) {
95     std::lock_guard lock(mMutex);
96 
97     if (!validate(timestamp)) {
98         // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored,
99         // don't insert this ts into mTimestamps ringbuffer. If we are still
100         // in the learning phase we should just clear all timestamps and start
101         // over.
102         if (mTimestamps.size() < kMinimumSamplesForPrediction) {
103             // Add the timestamp to mTimestamps before clearing it so we could
104             // update mKnownTimestamp based on the new timestamp.
105             mTimestamps.push_back(timestamp);
106             clearTimestamps();
107         } else if (!mTimestamps.empty()) {
108             mKnownTimestamp =
109                     std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end()));
110         } else {
111             mKnownTimestamp = timestamp;
112         }
113         return false;
114     }
115 
116     if (mTimestamps.size() != kHistorySize) {
117         mTimestamps.push_back(timestamp);
118         mLastTimestampIndex = next(mLastTimestampIndex);
119     } else {
120         mLastTimestampIndex = next(mLastTimestampIndex);
121         mTimestamps[mLastTimestampIndex] = timestamp;
122     }
123 
124     if (mTimestamps.size() < kMinimumSamplesForPrediction) {
125         mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
126         return true;
127     }
128 
129     // This is a 'simple linear regression' calculation of Y over X, with Y being the
130     // vsync timestamps, and X being the ordinal of vsync count.
131     // The calculated slope is the vsync period.
132     // Formula for reference:
133     // Sigma_i: means sum over all timestamps.
134     // mean(variable): statistical mean of variable.
135     // X: snapped ordinal of the timestamp
136     // Y: vsync timestamp
137     //
138     //         Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) )
139     // slope = -------------------------------------------
140     //         Sigma_i ( X_i - mean(X) ) ^ 2
141     //
142     // intercept = mean(Y) - slope * mean(X)
143     //
144     std::vector<nsecs_t> vsyncTS(mTimestamps.size());
145     std::vector<nsecs_t> ordinals(mTimestamps.size());
146 
147     // normalizing to the oldest timestamp cuts down on error in calculating the intercept.
148     auto const oldest_ts = *std::min_element(mTimestamps.begin(), mTimestamps.end());
149     auto it = mRateMap.find(mIdealPeriod);
150     auto const currentPeriod = it->second.slope;
151     // TODO (b/144707443): its important that there's some precision in the mean of the ordinals
152     //                     for the intercept calculation, so scale the ordinals by 1000 to continue
153     //                     fixed point calculation. Explore expanding
154     //                     scheduler::utils::calculate_mean to have a fixed point fractional part.
155     static constexpr int64_t kScalingFactor = 1000;
156 
157     for (auto i = 0u; i < mTimestamps.size(); i++) {
158         traceInt64If("VSP-ts", mTimestamps[i]);
159 
160         vsyncTS[i] = mTimestamps[i] - oldest_ts;
161         ordinals[i] = ((vsyncTS[i] + (currentPeriod / 2)) / currentPeriod) * kScalingFactor;
162     }
163 
164     auto meanTS = scheduler::calculate_mean(vsyncTS);
165     auto meanOrdinal = scheduler::calculate_mean(ordinals);
166     for (size_t i = 0; i < vsyncTS.size(); i++) {
167         vsyncTS[i] -= meanTS;
168         ordinals[i] -= meanOrdinal;
169     }
170 
171     auto top = 0ll;
172     auto bottom = 0ll;
173     for (size_t i = 0; i < vsyncTS.size(); i++) {
174         top += vsyncTS[i] * ordinals[i];
175         bottom += ordinals[i] * ordinals[i];
176     }
177 
178     if (CC_UNLIKELY(bottom == 0)) {
179         it->second = {mIdealPeriod, 0};
180         clearTimestamps();
181         return false;
182     }
183 
184     nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom;
185     nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor);
186 
187     auto const percent = std::abs(anticipatedPeriod - mIdealPeriod) * kMaxPercent / mIdealPeriod;
188     if (percent >= kOutlierTolerancePercent) {
189         it->second = {mIdealPeriod, 0};
190         clearTimestamps();
191         return false;
192     }
193 
194     traceInt64If("VSP-period", anticipatedPeriod);
195     traceInt64If("VSP-intercept", intercept);
196 
197     it->second = {anticipatedPeriod, intercept};
198 
199     ALOGV("model update ts: %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, timestamp,
200           anticipatedPeriod, intercept);
201     return true;
202 }
203 
nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const204 nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const {
205     auto const [slope, intercept] = getVSyncPredictionModelLocked();
206 
207     if (mTimestamps.empty()) {
208         traceInt64If("VSP-mode", 1);
209         auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint;
210         auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1;
211         return knownTimestamp + numPeriodsOut * mIdealPeriod;
212     }
213 
214     auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end());
215 
216     // See b/145667109, the ordinal calculation must take into account the intercept.
217     auto const zeroPoint = oldest + intercept;
218     auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope;
219     auto const prediction = (ordinalRequest * slope) + intercept + oldest;
220 
221     traceInt64If("VSP-mode", 0);
222     traceInt64If("VSP-timePoint", timePoint);
223     traceInt64If("VSP-prediction", prediction);
224 
225     auto const printer = [&, slope = slope, intercept = intercept] {
226         std::stringstream str;
227         str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+"
228             << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept
229             << "oldestTS: " << oldest << " ordinal: " << ordinalRequest;
230         return str.str();
231     };
232 
233     ALOGV("%s", printer().c_str());
234     LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s",
235                         printer().c_str());
236 
237     return prediction;
238 }
239 
nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const240 nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const {
241     std::lock_guard lock(mMutex);
242     return nextAnticipatedVSyncTimeFromLocked(timePoint);
243 }
244 
245 /*
246  * Returns whether a given vsync timestamp is in phase with a frame rate.
247  * If the frame rate is not a divider of the refresh rate, it is always considered in phase.
248  * For example, if the vsync timestamps are (16.6,33.3,50.0,66.6):
249  * isVSyncInPhase(16.6, 30) = true
250  * isVSyncInPhase(33.3, 30) = false
251  * isVSyncInPhase(50.0, 30) = true
252  */
isVSyncInPhase(nsecs_t timePoint,Fps frameRate) const253 bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) const {
254     struct VsyncError {
255         nsecs_t vsyncTimestamp;
256         float error;
257 
258         bool operator<(const VsyncError& other) const { return error < other.error; }
259     };
260 
261     std::lock_guard lock(mMutex);
262     const auto divider =
263             RefreshRateConfigs::getFrameRateDivider(Fps::fromPeriodNsecs(mIdealPeriod), frameRate);
264     if (divider <= 1 || timePoint == 0) {
265         return true;
266     }
267 
268     const nsecs_t period = mRateMap[mIdealPeriod].slope;
269     const nsecs_t justBeforeTimePoint = timePoint - period / 2;
270     const nsecs_t dividedPeriod = mIdealPeriod / divider;
271 
272     // If this is the first time we have asked about this divider with the
273     // current vsync period, it is considered in phase and we store the closest
274     // vsync timestamp
275     const auto knownTimestampIter = mRateDividerKnownTimestampMap.find(dividedPeriod);
276     if (knownTimestampIter == mRateDividerKnownTimestampMap.end()) {
277         const auto vsync = nextAnticipatedVSyncTimeFromLocked(justBeforeTimePoint);
278         mRateDividerKnownTimestampMap[dividedPeriod] = vsync;
279         return true;
280     }
281 
282     // Find the next N vsync timestamp where N is the divider.
283     // One of these vsyncs will be in phase. We return the one which is
284     // the most aligned with the last known in phase vsync
285     std::vector<VsyncError> vsyncs(static_cast<size_t>(divider));
286     const nsecs_t knownVsync = knownTimestampIter->second;
287     nsecs_t point = justBeforeTimePoint;
288     for (size_t i = 0; i < divider; i++) {
289         const nsecs_t vsync = nextAnticipatedVSyncTimeFromLocked(point);
290         const auto numPeriods = static_cast<float>(vsync - knownVsync) / (period * divider);
291         const auto error = std::abs(std::round(numPeriods) - numPeriods);
292         vsyncs[i] = {vsync, error};
293         point = vsync + 1;
294     }
295 
296     const auto minVsyncError = std::min_element(vsyncs.begin(), vsyncs.end());
297     mRateDividerKnownTimestampMap[dividedPeriod] = minVsyncError->vsyncTimestamp;
298     return std::abs(minVsyncError->vsyncTimestamp - timePoint) < period / 2;
299 }
300 
getVSyncPredictionModel() const301 VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const {
302     std::lock_guard lock(mMutex);
303     const auto model = VSyncPredictor::getVSyncPredictionModelLocked();
304     return {model.slope, model.intercept};
305 }
306 
getVSyncPredictionModelLocked() const307 VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const {
308     return mRateMap.find(mIdealPeriod)->second;
309 }
310 
setPeriod(nsecs_t period)311 void VSyncPredictor::setPeriod(nsecs_t period) {
312     ATRACE_CALL();
313 
314     std::lock_guard lock(mMutex);
315     static constexpr size_t kSizeLimit = 30;
316     if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) {
317         mRateMap.erase(mRateMap.begin());
318     }
319 
320     mIdealPeriod = period;
321     if (mRateMap.find(period) == mRateMap.end()) {
322         mRateMap[mIdealPeriod] = {period, 0};
323     }
324 
325     clearTimestamps();
326 }
327 
clearTimestamps()328 void VSyncPredictor::clearTimestamps() {
329     if (!mTimestamps.empty()) {
330         auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end());
331         if (mKnownTimestamp) {
332             mKnownTimestamp = std::max(*mKnownTimestamp, maxRb);
333         } else {
334             mKnownTimestamp = maxRb;
335         }
336 
337         mTimestamps.clear();
338         mLastTimestampIndex = 0;
339     }
340 }
341 
needsMoreSamples() const342 bool VSyncPredictor::needsMoreSamples() const {
343     std::lock_guard lock(mMutex);
344     return mTimestamps.size() < kMinimumSamplesForPrediction;
345 }
346 
resetModel()347 void VSyncPredictor::resetModel() {
348     std::lock_guard lock(mMutex);
349     mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
350     clearTimestamps();
351 }
352 
dump(std::string & result) const353 void VSyncPredictor::dump(std::string& result) const {
354     std::lock_guard lock(mMutex);
355     StringAppendF(&result, "\tmIdealPeriod=%.2f\n", mIdealPeriod / 1e6f);
356     StringAppendF(&result, "\tRefresh Rate Map:\n");
357     for (const auto& [idealPeriod, periodInterceptTuple] : mRateMap) {
358         StringAppendF(&result,
359                       "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n",
360                       idealPeriod / 1e6f, periodInterceptTuple.slope / 1e6f,
361                       periodInterceptTuple.intercept);
362     }
363 }
364 
365 } // namespace android::scheduler
366 
367 // TODO(b/129481165): remove the #pragma below and fix conversion issues
368 #pragma clang diagnostic pop // ignored "-Wextra"