1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 * Authors:
25 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
26 * Bas Nieuwenhuizen (bas@basnieuwenhuizen.nl)
27 *
28 */
29
30 #include "aco_ir.h"
31 #include "util/u_math.h"
32
33 #include <set>
34 #include <vector>
35
36 namespace aco {
get_live_changes(aco_ptr<Instruction> & instr)37 RegisterDemand get_live_changes(aco_ptr<Instruction>& instr)
38 {
39 RegisterDemand changes;
40 for (const Definition& def : instr->definitions) {
41 if (!def.isTemp() || def.isKill())
42 continue;
43 changes += def.getTemp();
44 }
45
46 for (const Operand& op : instr->operands) {
47 if (!op.isTemp() || !op.isFirstKill())
48 continue;
49 changes -= op.getTemp();
50 }
51
52 return changes;
53 }
54
get_temp_registers(aco_ptr<Instruction> & instr)55 RegisterDemand get_temp_registers(aco_ptr<Instruction>& instr)
56 {
57 RegisterDemand temp_registers;
58
59 for (Definition def : instr->definitions) {
60 if (!def.isTemp())
61 continue;
62 if (def.isKill())
63 temp_registers += def.getTemp();
64 }
65
66 for (Operand op : instr->operands) {
67 if (op.isTemp() && op.isLateKill() && op.isFirstKill())
68 temp_registers += op.getTemp();
69 }
70
71 return temp_registers;
72 }
73
get_demand_before(RegisterDemand demand,aco_ptr<Instruction> & instr,aco_ptr<Instruction> & instr_before)74 RegisterDemand get_demand_before(RegisterDemand demand, aco_ptr<Instruction>& instr, aco_ptr<Instruction>& instr_before)
75 {
76 demand -= get_live_changes(instr);
77 demand -= get_temp_registers(instr);
78 if (instr_before)
79 demand += get_temp_registers(instr_before);
80 return demand;
81 }
82
83 namespace {
process_live_temps_per_block(Program * program,live & lives,Block * block,std::set<unsigned> & worklist,std::vector<uint16_t> & phi_sgpr_ops)84 void process_live_temps_per_block(Program *program, live& lives, Block* block,
85 std::set<unsigned>& worklist, std::vector<uint16_t>& phi_sgpr_ops)
86 {
87 std::vector<RegisterDemand>& register_demand = lives.register_demand[block->index];
88 RegisterDemand new_demand;
89
90 register_demand.resize(block->instructions.size());
91 block->register_demand = RegisterDemand();
92 IDSet live = lives.live_out[block->index];
93
94 /* add the live_out_exec to live */
95 bool exec_live = false;
96 if (block->live_out_exec != Temp()) {
97 live.insert(block->live_out_exec.id());
98 exec_live = true;
99 }
100
101 /* initialize register demand */
102 for (unsigned t : live)
103 new_demand += Temp(t, program->temp_rc[t]);
104 new_demand.sgpr -= phi_sgpr_ops[block->index];
105
106 /* traverse the instructions backwards */
107 int idx;
108 for (idx = block->instructions.size() -1; idx >= 0; idx--) {
109 Instruction *insn = block->instructions[idx].get();
110 if (is_phi(insn))
111 break;
112
113 /* substract the 1 or 2 sgprs from exec */
114 if (exec_live)
115 assert(new_demand.sgpr >= (int16_t) program->lane_mask.size());
116 register_demand[idx] = RegisterDemand(new_demand.vgpr, new_demand.sgpr - (exec_live ? program->lane_mask.size() : 0));
117
118 /* KILL */
119 for (Definition& definition : insn->definitions) {
120 if (!definition.isTemp()) {
121 continue;
122 }
123 if ((definition.isFixed() || definition.hasHint()) && definition.physReg() == vcc)
124 program->needs_vcc = true;
125
126 const Temp temp = definition.getTemp();
127 const size_t n = live.erase(temp.id());
128
129 if (n) {
130 new_demand -= temp;
131 definition.setKill(false);
132 } else {
133 register_demand[idx] += temp;
134 definition.setKill(true);
135 }
136
137 if (definition.isFixed() && definition.physReg() == exec)
138 exec_live = false;
139 }
140
141 /* GEN */
142 if (insn->opcode == aco_opcode::p_logical_end) {
143 new_demand.sgpr += phi_sgpr_ops[block->index];
144 } else {
145 /* we need to do this in a separate loop because the next one can
146 * setKill() for several operands at once and we don't want to
147 * overwrite that in a later iteration */
148 for (Operand& op : insn->operands)
149 op.setKill(false);
150
151 for (unsigned i = 0; i < insn->operands.size(); ++i)
152 {
153 Operand& operand = insn->operands[i];
154 if (!operand.isTemp())
155 continue;
156 if (operand.isFixed() && operand.physReg() == vcc)
157 program->needs_vcc = true;
158 const Temp temp = operand.getTemp();
159 const bool inserted = live.insert(temp.id()).second;
160 if (inserted) {
161 operand.setFirstKill(true);
162 for (unsigned j = i + 1; j < insn->operands.size(); ++j) {
163 if (insn->operands[j].isTemp() && insn->operands[j].tempId() == operand.tempId()) {
164 insn->operands[j].setFirstKill(false);
165 insn->operands[j].setKill(true);
166 }
167 }
168 if (operand.isLateKill())
169 register_demand[idx] += temp;
170 new_demand += temp;
171 }
172
173 if (operand.isFixed() && operand.physReg() == exec)
174 exec_live = true;
175 }
176 }
177
178 block->register_demand.update(register_demand[idx]);
179 }
180
181 /* update block's register demand for a last time */
182 if (exec_live)
183 assert(new_demand.sgpr >= (int16_t) program->lane_mask.size());
184 new_demand.sgpr -= exec_live ? program->lane_mask.size() : 0;
185 block->register_demand.update(new_demand);
186
187 /* handle phi definitions */
188 int phi_idx = idx;
189 while (phi_idx >= 0) {
190 register_demand[phi_idx] = new_demand;
191 Instruction *insn = block->instructions[phi_idx].get();
192
193 assert(is_phi(insn));
194 assert(insn->definitions.size() == 1 && insn->definitions[0].isTemp());
195 Definition& definition = insn->definitions[0];
196 if ((definition.isFixed() || definition.hasHint()) && definition.physReg() == vcc)
197 program->needs_vcc = true;
198 const Temp temp = definition.getTemp();
199 const size_t n = live.erase(temp.id());
200
201 if (n)
202 definition.setKill(false);
203 else
204 definition.setKill(true);
205
206 phi_idx--;
207 }
208
209 /* now, we need to merge the live-ins into the live-out sets */
210 for (unsigned t : live) {
211 RegClass rc = program->temp_rc[t];
212 std::vector<unsigned>& preds = rc.is_linear() ? block->linear_preds : block->logical_preds;
213
214 #ifndef NDEBUG
215 if (preds.empty())
216 aco_err(program, "Temporary never defined or are defined after use: %%%d in BB%d", t, block->index);
217 #endif
218
219 for (unsigned pred_idx : preds) {
220 auto it = lives.live_out[pred_idx].insert(t);
221 if (it.second)
222 worklist.insert(pred_idx);
223 }
224 }
225
226 /* handle phi operands */
227 phi_idx = idx;
228 while (phi_idx >= 0) {
229 Instruction *insn = block->instructions[phi_idx].get();
230 assert(is_phi(insn));
231 /* directly insert into the predecessors live-out set */
232 std::vector<unsigned>& preds = insn->opcode == aco_opcode::p_phi
233 ? block->logical_preds
234 : block->linear_preds;
235 for (unsigned i = 0; i < preds.size(); ++i) {
236 Operand &operand = insn->operands[i];
237 if (!operand.isTemp())
238 continue;
239 if (operand.isFixed() && operand.physReg() == vcc)
240 program->needs_vcc = true;
241 /* check if we changed an already processed block */
242 const bool inserted = lives.live_out[preds[i]].insert(operand.tempId()).second;
243 if (inserted) {
244 operand.setKill(true);
245 worklist.insert(preds[i]);
246 if (insn->opcode == aco_opcode::p_phi && operand.getTemp().type() == RegType::sgpr)
247 phi_sgpr_ops[preds[i]] += operand.size();
248 }
249 }
250 phi_idx--;
251 }
252
253 assert(block->index != 0 || (new_demand == RegisterDemand() && live.empty()));
254 }
255
calc_waves_per_workgroup(Program * program)256 unsigned calc_waves_per_workgroup(Program *program)
257 {
258 /* When workgroup size is not known, just go with wave_size */
259 unsigned workgroup_size = program->workgroup_size == UINT_MAX
260 ? program->wave_size
261 : program->workgroup_size;
262
263 return align(workgroup_size, program->wave_size) / program->wave_size;
264 }
265 } /* end namespace */
266
get_extra_sgprs(Program * program)267 uint16_t get_extra_sgprs(Program *program)
268 {
269 if (program->chip_class >= GFX10) {
270 assert(!program->needs_flat_scr);
271 assert(!program->xnack_enabled);
272 return 2;
273 } else if (program->chip_class >= GFX8) {
274 if (program->needs_flat_scr)
275 return 6;
276 else if (program->xnack_enabled)
277 return 4;
278 else if (program->needs_vcc)
279 return 2;
280 else
281 return 0;
282 } else {
283 assert(!program->xnack_enabled);
284 if (program->needs_flat_scr)
285 return 4;
286 else if (program->needs_vcc)
287 return 2;
288 else
289 return 0;
290 }
291 }
292
get_sgpr_alloc(Program * program,uint16_t addressable_sgprs)293 uint16_t get_sgpr_alloc(Program *program, uint16_t addressable_sgprs)
294 {
295 assert(addressable_sgprs <= program->sgpr_limit);
296 uint16_t sgprs = addressable_sgprs + get_extra_sgprs(program);
297 uint16_t granule = program->sgpr_alloc_granule + 1;
298 return align(std::max(sgprs, granule), granule);
299 }
300
get_vgpr_alloc(Program * program,uint16_t addressable_vgprs)301 uint16_t get_vgpr_alloc(Program *program, uint16_t addressable_vgprs)
302 {
303 assert(addressable_vgprs <= program->vgpr_limit);
304 uint16_t granule = program->vgpr_alloc_granule + 1;
305 return align(std::max(addressable_vgprs, granule), granule);
306 }
307
get_addr_sgpr_from_waves(Program * program,uint16_t max_waves)308 uint16_t get_addr_sgpr_from_waves(Program *program, uint16_t max_waves)
309 {
310 uint16_t sgprs = program->physical_sgprs / max_waves & ~program->sgpr_alloc_granule;
311 sgprs -= get_extra_sgprs(program);
312 return std::min(sgprs, program->sgpr_limit);
313 }
314
get_addr_vgpr_from_waves(Program * program,uint16_t max_waves)315 uint16_t get_addr_vgpr_from_waves(Program *program, uint16_t max_waves)
316 {
317 uint16_t vgprs = 256 / max_waves & ~program->vgpr_alloc_granule;
318 return std::min(vgprs, program->vgpr_limit);
319 }
320
calc_min_waves(Program * program)321 void calc_min_waves(Program* program)
322 {
323 unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
324 /* currently min_waves is in wave64 waves */
325 if (program->wave_size == 32)
326 waves_per_workgroup = DIV_ROUND_UP(waves_per_workgroup, 2);
327
328 unsigned simd_per_cu = 4; /* TODO: different on Navi */
329 bool wgp = program->chip_class >= GFX10; /* assume WGP is used on Navi */
330 unsigned simd_per_cu_wgp = wgp ? simd_per_cu * 2 : simd_per_cu;
331
332 program->min_waves = DIV_ROUND_UP(waves_per_workgroup, simd_per_cu_wgp);
333 }
334
update_vgpr_sgpr_demand(Program * program,const RegisterDemand new_demand)335 void update_vgpr_sgpr_demand(Program* program, const RegisterDemand new_demand)
336 {
337 /* TODO: max_waves_per_simd, simd_per_cu and the number of physical vgprs for Navi */
338 unsigned max_waves_per_simd = 10;
339 if ((program->family >= CHIP_POLARIS10 && program->family <= CHIP_VEGAM) || program->chip_class >= GFX10_3)
340 max_waves_per_simd = 8;
341 unsigned simd_per_cu = 4;
342
343 bool wgp = program->chip_class >= GFX10; /* assume WGP is used on Navi */
344 unsigned simd_per_cu_wgp = wgp ? simd_per_cu * 2 : simd_per_cu;
345 unsigned lds_limit = wgp ? program->lds_limit * 2 : program->lds_limit;
346
347 /* this won't compile, register pressure reduction necessary */
348 if (new_demand.vgpr > program->vgpr_limit || new_demand.sgpr > program->sgpr_limit) {
349 program->num_waves = 0;
350 program->max_reg_demand = new_demand;
351 } else {
352 program->num_waves = program->physical_sgprs / get_sgpr_alloc(program, new_demand.sgpr);
353 program->num_waves = std::min<uint16_t>(program->num_waves, 256 / get_vgpr_alloc(program, new_demand.vgpr));
354 program->max_waves = max_waves_per_simd;
355
356 /* adjust max_waves for workgroup and LDS limits */
357 unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
358 unsigned workgroups_per_cu_wgp = max_waves_per_simd * simd_per_cu_wgp / waves_per_workgroup;
359 if (program->config->lds_size) {
360 unsigned lds = program->config->lds_size * program->lds_alloc_granule;
361 workgroups_per_cu_wgp = std::min(workgroups_per_cu_wgp, lds_limit / lds);
362 }
363 if (waves_per_workgroup > 1 && program->chip_class < GFX10)
364 workgroups_per_cu_wgp = std::min(workgroups_per_cu_wgp, 16u); /* TODO: is this a SI-only limit? what about Navi? */
365
366 /* in cases like waves_per_workgroup=3 or lds=65536 and
367 * waves_per_workgroup=1, we want the maximum possible number of waves per
368 * SIMD and not the minimum. so DIV_ROUND_UP is used */
369 program->max_waves = std::min<uint16_t>(program->max_waves, DIV_ROUND_UP(workgroups_per_cu_wgp * waves_per_workgroup, simd_per_cu_wgp));
370
371 /* incorporate max_waves and calculate max_reg_demand */
372 program->num_waves = std::min<uint16_t>(program->num_waves, program->max_waves);
373 program->max_reg_demand.vgpr = get_addr_vgpr_from_waves(program, program->num_waves);
374 program->max_reg_demand.sgpr = get_addr_sgpr_from_waves(program, program->num_waves);
375 }
376 }
377
live_var_analysis(Program * program)378 live live_var_analysis(Program* program)
379 {
380 live result;
381 result.live_out.resize(program->blocks.size());
382 result.register_demand.resize(program->blocks.size());
383 std::set<unsigned> worklist;
384 std::vector<uint16_t> phi_sgpr_ops(program->blocks.size());
385 RegisterDemand new_demand;
386
387 program->needs_vcc = false;
388
389 /* this implementation assumes that the block idx corresponds to the block's position in program->blocks vector */
390 for (Block& block : program->blocks)
391 worklist.insert(block.index);
392 while (!worklist.empty()) {
393 std::set<unsigned>::reverse_iterator b_it = worklist.rbegin();
394 unsigned block_idx = *b_it;
395 worklist.erase(block_idx);
396 process_live_temps_per_block(program, result, &program->blocks[block_idx], worklist, phi_sgpr_ops);
397 new_demand.update(program->blocks[block_idx].register_demand);
398 }
399
400 /* calculate the program's register demand and number of waves */
401 update_vgpr_sgpr_demand(program, new_demand);
402
403 return result;
404 }
405
406 }
407
408