1 /*
2 * Copyright 2017 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "ac_llvm_cull.h"
25 #include "si_pipe.h"
26 #include "si_shader_internal.h"
27 #include "sid.h"
28 #include "util/u_memory.h"
29 #include "util/u_prim.h"
30
get_wave_id_in_tg(struct si_shader_context * ctx)31 static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
32 {
33 return si_unpack_param(ctx, ctx->merged_wave_info, 24, 4);
34 }
35
get_tgsize(struct si_shader_context * ctx)36 static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
37 {
38 return si_unpack_param(ctx, ctx->merged_wave_info, 28, 4);
39 }
40
get_thread_id_in_tg(struct si_shader_context * ctx)41 static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx)
42 {
43 LLVMBuilderRef builder = ctx->ac.builder;
44 LLVMValueRef tmp;
45 tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
46 LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
47 return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
48 }
49
ngg_get_vtx_cnt(struct si_shader_context * ctx)50 static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
51 {
52 return si_unpack_param(ctx, ctx->gs_tg_info, 12, 9);
53 }
54
ngg_get_prim_cnt(struct si_shader_context * ctx)55 static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
56 {
57 return si_unpack_param(ctx, ctx->gs_tg_info, 22, 9);
58 }
59
ngg_get_ordered_id(struct si_shader_context * ctx)60 static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx)
61 {
62 return si_unpack_param(ctx, ctx->gs_tg_info, 0, 12);
63 }
64
ngg_get_query_buf(struct si_shader_context * ctx)65 static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx)
66 {
67 LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
68
69 return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
70 LLVMConstInt(ctx->ac.i32, GFX10_GS_QUERY_BUF, false));
71 }
72
ngg_get_initial_edgeflag(struct si_shader_context * ctx,unsigned index)73 static LLVMValueRef ngg_get_initial_edgeflag(struct si_shader_context *ctx, unsigned index)
74 {
75 if (ctx->stage == MESA_SHADER_VERTEX) {
76 LLVMValueRef tmp;
77 tmp = LLVMBuildLShr(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args.gs_invocation_id),
78 LLVMConstInt(ctx->ac.i32, 8 + index, false), "");
79 return LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i1, "");
80 }
81 return ctx->ac.i1false;
82 }
83
84 /**
85 * Return the number of vertices as a constant in \p num_vertices,
86 * and return a more precise value as LLVMValueRef from the function.
87 */
ngg_get_vertices_per_prim(struct si_shader_context * ctx,unsigned * num_vertices)88 static LLVMValueRef ngg_get_vertices_per_prim(struct si_shader_context *ctx, unsigned *num_vertices)
89 {
90 const struct si_shader_info *info = &ctx->shader->selector->info;
91
92 if (ctx->stage == MESA_SHADER_VERTEX) {
93 if (info->base.vs.blit_sgprs_amd) {
94 /* Blits always use axis-aligned rectangles with 3 vertices. */
95 *num_vertices = 3;
96 return LLVMConstInt(ctx->ac.i32, 3, 0);
97 } else {
98 /* We always build up all three indices for the prim export
99 * independent of the primitive type. The additional garbage
100 * data shouldn't hurt. This number doesn't matter with
101 * NGG passthrough.
102 */
103 *num_vertices = 3;
104
105 /* Extract OUTPRIM field. */
106 LLVMValueRef num = si_unpack_param(ctx, ctx->vs_state_bits, 2, 2);
107 return LLVMBuildAdd(ctx->ac.builder, num, ctx->ac.i32_1, "");
108 }
109 } else {
110 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
111
112 if (info->base.tess.point_mode)
113 *num_vertices = 1;
114 else if (info->base.tess.primitive_mode == GL_LINES)
115 *num_vertices = 2;
116 else
117 *num_vertices = 3;
118
119 return LLVMConstInt(ctx->ac.i32, *num_vertices, false);
120 }
121 }
122
gfx10_ngg_export_prim_early(struct si_shader * shader)123 bool gfx10_ngg_export_prim_early(struct si_shader *shader)
124 {
125 struct si_shader_selector *sel = shader->selector;
126
127 assert(shader->key.as_ngg && !shader->key.as_es);
128
129 return sel->info.stage != MESA_SHADER_GEOMETRY && !sel->info.writes_edgeflag;
130 }
131
gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context * ctx)132 void gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context *ctx)
133 {
134 ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ngg_get_vtx_cnt(ctx),
135 ngg_get_prim_cnt(ctx));
136 }
137
gfx10_ngg_build_export_prim(struct si_shader_context * ctx,LLVMValueRef user_edgeflags[3],LLVMValueRef prim_passthrough)138 void gfx10_ngg_build_export_prim(struct si_shader_context *ctx, LLVMValueRef user_edgeflags[3],
139 LLVMValueRef prim_passthrough)
140 {
141 LLVMBuilderRef builder = ctx->ac.builder;
142
143 if (gfx10_is_ngg_passthrough(ctx->shader) || ctx->shader->key.opt.ngg_culling) {
144 ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
145 {
146 struct ac_ngg_prim prim = {};
147
148 if (prim_passthrough)
149 prim.passthrough = prim_passthrough;
150 else
151 prim.passthrough = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
152
153 /* This is only used with NGG culling, which returns the NGG
154 * passthrough prim export encoding.
155 */
156 if (ctx->shader->selector->info.writes_edgeflag) {
157 unsigned all_bits_no_edgeflags = ~SI_NGG_PRIM_EDGE_FLAG_BITS;
158 LLVMValueRef edgeflags = LLVMConstInt(ctx->ac.i32, all_bits_no_edgeflags, 0);
159
160 unsigned num_vertices;
161 ngg_get_vertices_per_prim(ctx, &num_vertices);
162
163 for (unsigned i = 0; i < num_vertices; i++) {
164 unsigned shift = 9 + i * 10;
165 LLVMValueRef edge;
166
167 edge = LLVMBuildLoad(builder, user_edgeflags[i], "");
168 edge = LLVMBuildZExt(builder, edge, ctx->ac.i32, "");
169 edge = LLVMBuildShl(builder, edge, LLVMConstInt(ctx->ac.i32, shift, 0), "");
170 edgeflags = LLVMBuildOr(builder, edgeflags, edge, "");
171 }
172 prim.passthrough = LLVMBuildAnd(builder, prim.passthrough, edgeflags, "");
173 }
174
175 ac_build_export_prim(&ctx->ac, &prim);
176 }
177 ac_build_endif(&ctx->ac, 6001);
178 return;
179 }
180
181 ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
182 {
183 struct ac_ngg_prim prim = {};
184
185 ngg_get_vertices_per_prim(ctx, &prim.num_vertices);
186
187 prim.isnull = ctx->ac.i1false;
188 prim.index[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
189 prim.index[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
190 prim.index[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
191
192 for (unsigned i = 0; i < prim.num_vertices; ++i) {
193 prim.edgeflag[i] = ngg_get_initial_edgeflag(ctx, i);
194
195 if (ctx->shader->selector->info.writes_edgeflag) {
196 LLVMValueRef edge;
197
198 edge = LLVMBuildLoad(ctx->ac.builder, user_edgeflags[i], "");
199 edge = LLVMBuildAnd(ctx->ac.builder, prim.edgeflag[i], edge, "");
200 prim.edgeflag[i] = edge;
201 }
202 }
203
204 ac_build_export_prim(&ctx->ac, &prim);
205 }
206 ac_build_endif(&ctx->ac, 6001);
207 }
208
build_streamout_vertex(struct si_shader_context * ctx,LLVMValueRef * so_buffer,LLVMValueRef * wg_offset_dw,unsigned stream,LLVMValueRef offset_vtx,LLVMValueRef vertexptr)209 static void build_streamout_vertex(struct si_shader_context *ctx, LLVMValueRef *so_buffer,
210 LLVMValueRef *wg_offset_dw, unsigned stream,
211 LLVMValueRef offset_vtx, LLVMValueRef vertexptr)
212 {
213 struct si_shader_info *info = &ctx->shader->selector->info;
214 struct pipe_stream_output_info *so = &ctx->shader->selector->so;
215 LLVMBuilderRef builder = ctx->ac.builder;
216 LLVMValueRef offset[4] = {};
217 LLVMValueRef tmp;
218
219 for (unsigned buffer = 0; buffer < 4; ++buffer) {
220 if (!wg_offset_dw[buffer])
221 continue;
222
223 tmp = LLVMBuildMul(builder, offset_vtx, LLVMConstInt(ctx->ac.i32, so->stride[buffer], false),
224 "");
225 tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
226 offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
227 }
228
229 for (unsigned i = 0; i < so->num_outputs; ++i) {
230 if (so->output[i].stream != stream)
231 continue;
232
233 unsigned reg = so->output[i].register_index;
234 struct si_shader_output_values out;
235 out.semantic = info->output_semantic[reg];
236
237 for (unsigned comp = 0; comp < 4; comp++) {
238 tmp = ac_build_gep0(&ctx->ac, vertexptr, LLVMConstInt(ctx->ac.i32, 4 * reg + comp, false));
239 out.values[comp] = LLVMBuildLoad(builder, tmp, "");
240 out.vertex_stream[comp] = (info->output_streams[reg] >> (2 * comp)) & 3;
241 }
242
243 si_llvm_streamout_store_output(ctx, so_buffer, offset, &so->output[i], &out);
244 }
245 }
246
247 struct ngg_streamout {
248 LLVMValueRef num_vertices;
249
250 /* per-thread data */
251 LLVMValueRef prim_enable[4]; /* i1 per stream */
252 LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
253
254 /* Output */
255 LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
256 };
257
258 /**
259 * Build streamout logic.
260 *
261 * Implies a barrier.
262 *
263 * Writes number of emitted primitives to gs_ngg_scratch[4:8].
264 *
265 * Clobbers gs_ngg_scratch[8:].
266 */
build_streamout(struct si_shader_context * ctx,struct ngg_streamout * nggso)267 static void build_streamout(struct si_shader_context *ctx, struct ngg_streamout *nggso)
268 {
269 struct si_shader_info *info = &ctx->shader->selector->info;
270 struct pipe_stream_output_info *so = &ctx->shader->selector->so;
271 LLVMBuilderRef builder = ctx->ac.builder;
272 LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
273 LLVMValueRef tid = get_thread_id_in_tg(ctx);
274 LLVMValueRef tmp, tmp2;
275 LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false);
276 LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false);
277 LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false);
278 LLVMValueRef so_buffer[4] = {};
279 unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) + (nggso->vertices[2] ? 1 : 0);
280 LLVMValueRef prim_stride_dw[4] = {};
281 LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32);
282 int stream_for_buffer[4] = {-1, -1, -1, -1};
283 unsigned bufmask_for_stream[4] = {};
284 bool isgs = ctx->stage == MESA_SHADER_GEOMETRY;
285 unsigned scratch_emit_base = isgs ? 4 : 0;
286 LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0;
287 unsigned scratch_offset_base = isgs ? 8 : 4;
288 LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
289
290 ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
291
292 /* Determine the mapping of streamout buffers to vertex streams. */
293 for (unsigned i = 0; i < so->num_outputs; ++i) {
294 unsigned buf = so->output[i].output_buffer;
295 unsigned stream = so->output[i].stream;
296 assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
297 stream_for_buffer[buf] = stream;
298 bufmask_for_stream[stream] |= 1 << buf;
299 }
300
301 for (unsigned buffer = 0; buffer < 4; ++buffer) {
302 if (stream_for_buffer[buffer] == -1)
303 continue;
304
305 assert(so->stride[buffer]);
306
307 tmp = LLVMConstInt(ctx->ac.i32, so->stride[buffer], false);
308 prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
309 prim_stride_dw_vgpr =
310 ac_build_writelane(&ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
311 LLVMConstInt(ctx->ac.i32, buffer, false));
312
313 so_buffer[buffer] = ac_build_load_to_sgpr(
314 &ctx->ac, buf_ptr, LLVMConstInt(ctx->ac.i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
315 }
316
317 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
318 ac_build_ifcc(&ctx->ac, tmp, 5200);
319 {
320 LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
321 LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, "");
322
323 /* Advance the streamout offsets in GDS. */
324 LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
325 LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
326
327 tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
328 ac_build_ifcc(&ctx->ac, tmp, 5210);
329 {
330 if (isgs) {
331 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
332 tmp = LLVMBuildLoad(builder, tmp, "");
333 } else {
334 tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0, ngg_get_prim_cnt(ctx), ctx->ac.i32_0);
335 }
336 LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
337
338 unsigned swizzle[4];
339 int unused_stream = -1;
340 for (unsigned stream = 0; stream < 4; ++stream) {
341 if (!info->num_stream_output_components[stream]) {
342 unused_stream = stream;
343 break;
344 }
345 }
346 for (unsigned buffer = 0; buffer < 4; ++buffer) {
347 if (stream_for_buffer[buffer] >= 0) {
348 swizzle[buffer] = stream_for_buffer[buffer];
349 } else {
350 assert(unused_stream >= 0);
351 swizzle[buffer] = unused_stream;
352 }
353 }
354
355 tmp = ac_build_quad_swizzle(&ctx->ac, tmp, swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
356 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
357
358 LLVMValueRef args[] = {
359 LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
360 tmp,
361 ctx->ac.i32_0, // ordering
362 ctx->ac.i32_0, // scope
363 ctx->ac.i1false, // isVolatile
364 LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index
365 ctx->ac.i1true, // wave release
366 ctx->ac.i1true, // wave done
367 };
368 tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add", ctx->ac.i32, args,
369 ARRAY_SIZE(args), 0);
370
371 /* Keep offsets in a VGPR for quick retrieval via readlane by
372 * the first wave for bounds checking, and also store in LDS
373 * for retrieval by all waves later. */
374 LLVMBuildStore(builder, tmp, offsets_vgpr);
375
376 tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_offset_basev, "");
377 tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
378 LLVMBuildStore(builder, tmp, tmp2);
379 }
380 ac_build_endif(&ctx->ac, 5210);
381
382 /* Determine the max emit per buffer. This is done via the SALU, in part
383 * because LLVM can't generate divide-by-multiply if we try to do this
384 * via VALU with one lane per buffer.
385 */
386 LLVMValueRef max_emit[4] = {};
387 for (unsigned buffer = 0; buffer < 4; ++buffer) {
388 if (stream_for_buffer[buffer] == -1)
389 continue;
390
391 LLVMValueRef bufsize_dw = LLVMBuildLShr(
392 builder, LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""), i32_2, "");
393
394 tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
395 LLVMValueRef offset_dw =
396 ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, buffer, false));
397
398 tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
399 tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
400
401 tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
402 max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->ac.i32_0, tmp, "");
403 }
404
405 /* Determine the number of emitted primitives per stream and fixup the
406 * GDS counter if necessary.
407 *
408 * This is complicated by the fact that a single stream can emit to
409 * multiple buffers (but luckily not vice versa).
410 */
411 LLVMValueRef emit_vgpr = ctx->ac.i32_0;
412
413 for (unsigned stream = 0; stream < 4; ++stream) {
414 if (!info->num_stream_output_components[stream])
415 continue;
416
417 tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
418 LLVMValueRef generated =
419 ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, stream, false));
420
421 LLVMValueRef emit = generated;
422 for (unsigned buffer = 0; buffer < 4; ++buffer) {
423 if (stream_for_buffer[buffer] == stream)
424 emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
425 }
426
427 emit_vgpr =
428 ac_build_writelane(&ctx->ac, emit_vgpr, emit, LLVMConstInt(ctx->ac.i32, stream, false));
429
430 /* Fixup the offset using a plain GDS atomic if we overflowed. */
431 tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
432 ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
433 tmp = LLVMBuildLShr(builder, LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false),
434 ac_get_thread_id(&ctx->ac), "");
435 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
436 ac_build_ifcc(&ctx->ac, tmp, 5222);
437 {
438 tmp = LLVMBuildSub(builder, generated, emit, "");
439 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
440 tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
441 LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
442 LLVMAtomicOrderingMonotonic, false);
443 }
444 ac_build_endif(&ctx->ac, 5222);
445 ac_build_endif(&ctx->ac, 5221);
446 }
447
448 tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
449 ac_build_ifcc(&ctx->ac, tmp, 5225);
450 {
451 tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_emit_basev, "");
452 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
453 LLVMBuildStore(builder, emit_vgpr, tmp);
454 }
455 ac_build_endif(&ctx->ac, 5225);
456 }
457 ac_build_endif(&ctx->ac, 5200);
458
459 /* Determine the workgroup-relative per-thread / primitive offset into
460 * the streamout buffers */
461 struct ac_wg_scan primemit_scan[4] = {};
462
463 if (isgs) {
464 for (unsigned stream = 0; stream < 4; ++stream) {
465 if (!info->num_stream_output_components[stream])
466 continue;
467
468 primemit_scan[stream].enable_exclusive = true;
469 primemit_scan[stream].op = nir_op_iadd;
470 primemit_scan[stream].src = nggso->prim_enable[stream];
471 primemit_scan[stream].scratch = ac_build_gep0(
472 &ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false));
473 primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
474 primemit_scan[stream].numwaves = get_tgsize(ctx);
475 primemit_scan[stream].maxwaves = 8;
476 ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
477 }
478 }
479
480 ac_build_s_barrier(&ctx->ac);
481
482 /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
483 LLVMValueRef wgoffset_dw[4] = {};
484
485 {
486 LLVMValueRef scratch_vgpr;
487
488 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
489 scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
490
491 for (unsigned buffer = 0; buffer < 4; ++buffer) {
492 if (stream_for_buffer[buffer] >= 0) {
493 wgoffset_dw[buffer] =
494 ac_build_readlane(&ctx->ac, scratch_vgpr,
495 LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false));
496 }
497 }
498
499 for (unsigned stream = 0; stream < 4; ++stream) {
500 if (info->num_stream_output_components[stream]) {
501 nggso->emit[stream] =
502 ac_build_readlane(&ctx->ac, scratch_vgpr,
503 LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false));
504 }
505 }
506 }
507
508 /* Write out primitive data */
509 for (unsigned stream = 0; stream < 4; ++stream) {
510 if (!info->num_stream_output_components[stream])
511 continue;
512
513 if (isgs) {
514 ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
515 } else {
516 primemit_scan[stream].result_exclusive = tid;
517 }
518
519 tmp = LLVMBuildICmp(builder, LLVMIntULT, primemit_scan[stream].result_exclusive,
520 nggso->emit[stream], "");
521 tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
522 ac_build_ifcc(&ctx->ac, tmp, 5240);
523 {
524 LLVMValueRef offset_vtx =
525 LLVMBuildMul(builder, primemit_scan[stream].result_exclusive, nggso->num_vertices, "");
526
527 for (unsigned i = 0; i < max_num_vertices; ++i) {
528 tmp = LLVMBuildICmp(builder, LLVMIntULT, LLVMConstInt(ctx->ac.i32, i, false),
529 nggso->num_vertices, "");
530 ac_build_ifcc(&ctx->ac, tmp, 5241);
531 build_streamout_vertex(ctx, so_buffer, wgoffset_dw, stream, offset_vtx,
532 nggso->vertices[i]);
533 ac_build_endif(&ctx->ac, 5241);
534 offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, "");
535 }
536 }
537 ac_build_endif(&ctx->ac, 5240);
538 }
539 }
540
541 /* LDS layout of ES vertex data for NGG culling. */
542 enum
543 {
544 /* Byte 0: Boolean ES thread accepted (unculled) flag, and later the old
545 * ES thread ID. After vertex compaction, compacted ES threads
546 * store the old thread ID here to copy input VGPRs from uncompacted
547 * ES threads.
548 * Byte 1: New ES thread ID, loaded by GS to prepare the prim export value.
549 * Byte 2: TES rel patch ID
550 * Byte 3: Unused
551 */
552 lds_byte0_accept_flag = 0,
553 lds_byte1_new_thread_id,
554 lds_byte2_tes_rel_patch_id,
555 lds_byte3_unused,
556
557 lds_packed_data = 0, /* lds_byteN_... */
558 lds_pos_cull_x_div_w,
559 lds_pos_cull_y_div_w,
560 lds_pos_cull_w,
561
562 lds_pos_x = lds_packed_data + 1,
563 lds_pos_y,
564 lds_pos_z,
565 lds_pos_w,
566 /* If VS: */
567 lds_vertex_id,
568 lds_instance_id, /* optional */
569 /* If TES: */
570 lds_tes_u = lds_vertex_id,
571 lds_tes_v = lds_instance_id,
572 lds_tes_patch_id, /* optional */
573 };
574
si_build_gep_i8(struct si_shader_context * ctx,LLVMValueRef ptr,unsigned byte_index)575 static LLVMValueRef si_build_gep_i8(struct si_shader_context *ctx, LLVMValueRef ptr,
576 unsigned byte_index)
577 {
578 assert(byte_index < 4);
579 LLVMTypeRef pi8 = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
580 LLVMValueRef index = LLVMConstInt(ctx->ac.i32, byte_index, 0);
581
582 return LLVMBuildGEP(ctx->ac.builder, LLVMBuildPointerCast(ctx->ac.builder, ptr, pi8, ""), &index,
583 1, "");
584 }
585
ngg_nogs_vertex_size(struct si_shader * shader)586 static unsigned ngg_nogs_vertex_size(struct si_shader *shader)
587 {
588 unsigned lds_vertex_size = 0;
589
590 /* The edgeflag is always stored in the last element that's also
591 * used for padding to reduce LDS bank conflicts. */
592 if (shader->selector->so.num_outputs)
593 lds_vertex_size = 4 * shader->selector->info.num_outputs + 1;
594 if (shader->selector->info.writes_edgeflag)
595 lds_vertex_size = MAX2(lds_vertex_size, 1);
596
597 /* LDS size for passing data from GS to ES.
598 * GS stores Primitive IDs into LDS at the address corresponding
599 * to the ES thread of the provoking vertex. All ES threads
600 * load and export PrimitiveID for their thread.
601 */
602 if (shader->selector->info.stage == MESA_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id)
603 lds_vertex_size = MAX2(lds_vertex_size, 1);
604
605 if (shader->key.opt.ngg_culling) {
606 if (shader->selector->info.stage == MESA_SHADER_VERTEX) {
607 STATIC_ASSERT(lds_instance_id + 1 == 7);
608 lds_vertex_size = MAX2(lds_vertex_size, 7);
609 } else {
610 assert(shader->selector->info.stage == MESA_SHADER_TESS_EVAL);
611
612 if (shader->selector->info.uses_primid || shader->key.mono.u.vs_export_prim_id) {
613 STATIC_ASSERT(lds_tes_patch_id + 2 == 9); /* +1 for LDS padding */
614 lds_vertex_size = MAX2(lds_vertex_size, 9);
615 } else {
616 STATIC_ASSERT(lds_tes_v + 1 == 7);
617 lds_vertex_size = MAX2(lds_vertex_size, 7);
618 }
619 }
620 }
621
622 return lds_vertex_size;
623 }
624
625 /**
626 * Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
627 * for the vertex outputs.
628 */
ngg_nogs_vertex_ptr(struct si_shader_context * ctx,LLVMValueRef vtxid)629 static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vtxid)
630 {
631 /* The extra dword is used to avoid LDS bank conflicts. */
632 unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader);
633 LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size);
634 LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
635 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
636 return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
637 }
638
si_insert_input_v4i32(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)639 static LLVMValueRef si_insert_input_v4i32(struct si_shader_context *ctx, LLVMValueRef ret,
640 struct ac_arg param, unsigned return_index)
641 {
642 LLVMValueRef v = ac_get_arg(&ctx->ac, param);
643
644 for (unsigned i = 0; i < 4; i++) {
645 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, ac_llvm_extract_elem(&ctx->ac, v, i),
646 return_index + i, "");
647 }
648 return ret;
649 }
650
load_bitmasks_2x64(struct si_shader_context * ctx,LLVMValueRef lds_ptr,LLVMValueRef tid,unsigned dw_offset,LLVMValueRef mask[4],LLVMValueRef * total_bitcount)651 static void load_bitmasks_2x64(struct si_shader_context *ctx, LLVMValueRef lds_ptr,
652 LLVMValueRef tid,
653 unsigned dw_offset, LLVMValueRef mask[4],
654 LLVMValueRef *total_bitcount)
655 {
656 LLVMBuilderRef builder = ctx->ac.builder;
657 LLVMValueRef ptr64 = LLVMBuildPointerCast(
658 builder, lds_ptr, LLVMPointerType(LLVMArrayType(ctx->ac.i64, 2), AC_ADDR_SPACE_LDS), "");
659 LLVMValueRef tmp[2];
660
661 for (unsigned i = 0; i < 2; i++)
662 tmp[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i64, "");
663
664 /* If all threads loaded the bitmasks, it would cause many LDS bank conflicts
665 * and the performance could decrease up to WaveSize times (32x or 64x).
666 *
667 * Therefore, only load the bitmasks in thread 0 and other threads will get them
668 * through readlane.
669 */
670 ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntEQ, tid, ctx->ac.i32_0, ""), 17771);
671 for (unsigned i = 0; i < 2; i++) {
672 LLVMValueRef index = LLVMConstInt(ctx->ac.i32, dw_offset / 2 + i, 0);
673 LLVMValueRef val = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ptr64, index), "");
674 LLVMBuildStore(builder, val, tmp[i]);
675 }
676 ac_build_endif(&ctx->ac, 17771);
677
678 *total_bitcount = ctx->ac.i32_0;
679
680 for (unsigned i = 0; i < 2; i++) {
681 tmp[i] = LLVMBuildLoad(builder, tmp[i], "");
682 mask[i] = ac_build_readlane_no_opt_barrier(&ctx->ac, tmp[i], NULL);
683
684 *total_bitcount = LLVMBuildAdd(builder, *total_bitcount,
685 ac_build_bit_count(&ctx->ac, mask[i]), "");
686 }
687 }
688
689 /**
690 * Given a total thread count, update total and per-wave thread counts in input SGPRs
691 * and return the per-wave thread count.
692 *
693 * \param new_num_threads Total thread count on the input, per-wave thread count on the output.
694 * \param tg_info tg_info SGPR value
695 * \param tg_info_num_bits the bit size of thread count field in tg_info
696 * \param tg_info_shift the bit offset of the thread count field in tg_info
697 * \param wave_info merged_wave_info SGPR value
698 * \param wave_info_num_bits the bit size of thread count field in merged_wave_info
699 * \param wave_info_shift the bit offset of the thread count field in merged_wave_info
700 */
update_thread_counts(struct si_shader_context * ctx,LLVMValueRef * new_num_threads,LLVMValueRef * tg_info,unsigned tg_info_num_bits,unsigned tg_info_shift,LLVMValueRef * wave_info,unsigned wave_info_num_bits,unsigned wave_info_shift)701 static void update_thread_counts(struct si_shader_context *ctx, LLVMValueRef *new_num_threads,
702 LLVMValueRef *tg_info, unsigned tg_info_num_bits,
703 unsigned tg_info_shift, LLVMValueRef *wave_info,
704 unsigned wave_info_num_bits, unsigned wave_info_shift)
705 {
706 LLVMBuilderRef builder = ctx->ac.builder;
707
708 /* Update the total thread count. */
709 unsigned tg_info_mask = ~(u_bit_consecutive(0, tg_info_num_bits) << tg_info_shift);
710 *tg_info = LLVMBuildAnd(builder, *tg_info, LLVMConstInt(ctx->ac.i32, tg_info_mask, 0), "");
711 *tg_info = LLVMBuildOr(
712 builder, *tg_info,
713 LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, tg_info_shift, 0), ""), "");
714
715 /* Update the per-wave thread count. */
716 LLVMValueRef prev_threads = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
717 LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), "");
718 *new_num_threads = LLVMBuildSub(builder, *new_num_threads, prev_threads, "");
719 *new_num_threads = ac_build_imax(&ctx->ac, *new_num_threads, ctx->ac.i32_0);
720 *new_num_threads =
721 ac_build_imin(&ctx->ac, *new_num_threads, LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0));
722 unsigned wave_info_mask = ~(u_bit_consecutive(0, wave_info_num_bits) << wave_info_shift);
723 *wave_info = LLVMBuildAnd(builder, *wave_info, LLVMConstInt(ctx->ac.i32, wave_info_mask, 0), "");
724 *wave_info = LLVMBuildOr(
725 builder, *wave_info,
726 LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, wave_info_shift, 0), ""),
727 "");
728 }
729
730 /**
731 * Cull primitives for NGG VS or TES, then compact vertices, which happens
732 * before the VS or TES main function. Return values for the main function.
733 * Also return the position, which is passed to the shader as an input,
734 * so that we don't compute it twice.
735 */
gfx10_emit_ngg_culling_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)736 void gfx10_emit_ngg_culling_epilogue(struct ac_shader_abi *abi, unsigned max_outputs,
737 LLVMValueRef *addrs)
738 {
739 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
740 struct si_shader *shader = ctx->shader;
741 struct si_shader_selector *sel = shader->selector;
742 struct si_shader_info *info = &sel->info;
743 LLVMBuilderRef builder = ctx->ac.builder;
744 unsigned max_waves = ctx->ac.wave_size == 64 ? 2 : 4;
745 LLVMValueRef ngg_scratch = ctx->gs_ngg_scratch;
746
747 if (ctx->ac.wave_size == 64) {
748 ngg_scratch = LLVMBuildPointerCast(builder, ngg_scratch,
749 LLVMPointerType(LLVMArrayType(ctx->ac.i64, max_waves),
750 AC_ADDR_SPACE_LDS), "");
751 }
752
753 assert(shader->key.opt.ngg_culling);
754 assert(shader->key.as_ngg);
755 assert(sel->info.stage == MESA_SHADER_VERTEX ||
756 (sel->info.stage == MESA_SHADER_TESS_EVAL && !shader->key.as_es));
757
758 LLVMValueRef es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
759 unsigned pos_index = 0;
760
761 for (unsigned i = 0; i < info->num_outputs; i++) {
762 LLVMValueRef position[4];
763
764 switch (info->output_semantic[i]) {
765 case VARYING_SLOT_POS:
766 pos_index = i;
767 for (unsigned j = 0; j < 4; j++) {
768 position[j] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], "");
769 }
770
771 /* Store Position.W into LDS. */
772 LLVMBuildStore(
773 builder, ac_to_integer(&ctx->ac, position[3]),
774 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_cull_w, 0)));
775
776 /* Store Position.XY / W into LDS. */
777 for (unsigned chan = 0; chan < 2; chan++) {
778 LLVMValueRef val = ac_build_fdiv(&ctx->ac, position[chan], position[3]);
779 LLVMBuildStore(
780 builder, ac_to_integer(&ctx->ac, val),
781 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_cull_x_div_w + chan, 0)));
782 }
783 break;
784 }
785 }
786
787 /* Initialize the packed data. */
788 LLVMBuildStore(
789 builder, ctx->ac.i32_0,
790 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_packed_data, 0)));
791 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
792
793 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
794
795 /* Initialize all but the first element of ngg_scratch to 0, because we may have less
796 * than the maximum number of waves, but we always read all values. This is where
797 * the thread bitmasks of unculled threads will be stored.
798 *
799 * ngg_scratch layout: iN_wavemask esmask[0..n]
800 */
801 ac_build_ifcc(&ctx->ac,
802 LLVMBuildICmp(builder, LLVMIntULT, get_thread_id_in_tg(ctx),
803 LLVMConstInt(ctx->ac.i32, max_waves - 1, 0), ""),
804 16101);
805 {
806 LLVMValueRef index = LLVMBuildAdd(builder, tid, ctx->ac.i32_1, "");
807 LLVMBuildStore(builder, LLVMConstInt(ctx->ac.iN_wavemask, 0, 0),
808 ac_build_gep0(&ctx->ac, ngg_scratch, index));
809 }
810 ac_build_endif(&ctx->ac, 16101);
811 ac_build_s_barrier(&ctx->ac);
812
813 /* The hardware requires that there are no holes between unculled vertices,
814 * which means we have to pack ES threads, i.e. reduce the ES thread count
815 * and move ES input VGPRs to lower threads. The upside is that varyings
816 * are only fetched and computed for unculled vertices.
817 *
818 * Vertex compaction in GS threads:
819 *
820 * Part 1: Compute the surviving vertex mask in GS threads:
821 * - Compute 4 32-bit surviving vertex masks in LDS. (max 4 waves)
822 * - In GS, notify ES threads whether the vertex survived.
823 * - Barrier
824 * - ES threads will create the mask and store it in LDS.
825 * - Barrier
826 * - Each GS thread loads the vertex masks from LDS.
827 *
828 * Part 2: Compact ES threads in GS threads:
829 * - Compute the prefix sum for all 3 vertices from the masks. These are the new
830 * thread IDs for each vertex within the primitive.
831 * - Write the value of the old thread ID into the LDS address of the new thread ID.
832 * The ES thread will load the old thread ID and use it to load the position, VertexID,
833 * and InstanceID.
834 * - Update vertex indices and null flag in the GS input VGPRs.
835 * - Barrier
836 *
837 * Part 3: Update inputs GPRs
838 * - For all waves, update per-wave thread counts in input SGPRs.
839 * - In ES threads, update the ES input VGPRs (VertexID, InstanceID, TES inputs).
840 */
841
842 LLVMValueRef vtxindex[3];
843 if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL) {
844 /* For the GS fast launch, the VS prologs simply puts the Vertex IDs
845 * into these VGPRs.
846 */
847 vtxindex[0] = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
848 vtxindex[1] = ac_get_arg(&ctx->ac, ctx->gs_vtx23_offset);
849 vtxindex[2] = ac_get_arg(&ctx->ac, ctx->gs_vtx45_offset);
850 } else {
851 vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
852 vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
853 vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
854 };
855 LLVMValueRef gs_vtxptr[] = {
856 ngg_nogs_vertex_ptr(ctx, vtxindex[0]),
857 ngg_nogs_vertex_ptr(ctx, vtxindex[1]),
858 ngg_nogs_vertex_ptr(ctx, vtxindex[2]),
859 };
860 es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
861
862 LLVMValueRef gs_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
863
864 /* Do culling in GS threads. */
865 ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 16002);
866 {
867 /* Load positions. */
868 LLVMValueRef pos[3][4] = {};
869 for (unsigned vtx = 0; vtx < 3; vtx++) {
870 for (unsigned chan = 0; chan < 4; chan++) {
871 unsigned index;
872 if (chan == 0 || chan == 1)
873 index = lds_pos_cull_x_div_w + chan;
874 else if (chan == 3)
875 index = lds_pos_cull_w;
876 else
877 continue;
878
879 LLVMValueRef addr =
880 ac_build_gep0(&ctx->ac, gs_vtxptr[vtx], LLVMConstInt(ctx->ac.i32, index, 0));
881 pos[vtx][chan] = LLVMBuildLoad(builder, addr, "");
882 pos[vtx][chan] = ac_to_float(&ctx->ac, pos[vtx][chan]);
883 }
884 }
885
886 /* Load the viewport state for small prim culling. */
887 LLVMValueRef vp = ac_build_load_invariant(
888 &ctx->ac, ac_get_arg(&ctx->ac, ctx->small_prim_cull_info), ctx->ac.i32_0);
889 vp = LLVMBuildBitCast(builder, vp, ctx->ac.v4f32, "");
890 LLVMValueRef vp_scale[2], vp_translate[2];
891 vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
892 vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
893 vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
894 vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
895
896 /* Get the small prim filter precision. */
897 LLVMValueRef small_prim_precision = si_unpack_param(ctx, ctx->vs_state_bits, 7, 4);
898 small_prim_precision =
899 LLVMBuildOr(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 0x70, 0), "");
900 small_prim_precision =
901 LLVMBuildShl(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 23, 0), "");
902 small_prim_precision = LLVMBuildBitCast(builder, small_prim_precision, ctx->ac.f32, "");
903
904 /* Execute culling code. */
905 struct ac_cull_options options = {};
906 options.cull_front = shader->key.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE;
907 options.cull_back = shader->key.opt.ngg_culling & SI_NGG_CULL_BACK_FACE;
908 options.cull_view_xy = shader->key.opt.ngg_culling & SI_NGG_CULL_VIEW_SMALLPRIMS;
909 options.cull_small_prims = options.cull_view_xy;
910 options.cull_zero_area = options.cull_front || options.cull_back;
911 options.cull_w = true;
912
913 /* Tell ES threads whether their vertex survived. */
914 ac_build_ifcc(&ctx->ac,
915 ac_cull_triangle(&ctx->ac, pos, ctx->ac.i1true, vp_scale, vp_translate,
916 small_prim_precision, &options),
917 16003);
918 {
919 LLVMBuildStore(builder, ctx->ac.i32_1, gs_accepted);
920 for (unsigned vtx = 0; vtx < 3; vtx++) {
921 LLVMBuildStore(builder, ctx->ac.i8_1,
922 si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte0_accept_flag));
923 }
924 }
925 ac_build_endif(&ctx->ac, 16003);
926 }
927 ac_build_endif(&ctx->ac, 16002);
928 ac_build_s_barrier(&ctx->ac);
929
930 gs_accepted = LLVMBuildLoad(builder, gs_accepted, "");
931
932 LLVMValueRef es_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i1, "");
933
934 /* Convert the per-vertex flag to a thread bitmask in ES threads and store it in LDS. */
935 ac_build_ifcc(&ctx->ac, si_is_es_thread(ctx), 16007);
936 {
937 LLVMValueRef es_accepted_flag =
938 LLVMBuildLoad(builder, si_build_gep_i8(ctx, es_vtxptr, lds_byte0_accept_flag), "");
939
940 LLVMValueRef es_accepted_bool =
941 LLVMBuildICmp(builder, LLVMIntNE, es_accepted_flag, ctx->ac.i8_0, "");
942 LLVMValueRef es_mask = ac_get_i1_sgpr_mask(&ctx->ac, es_accepted_bool);
943
944 LLVMBuildStore(builder, es_accepted_bool, es_accepted);
945
946 ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntEQ, tid, ctx->ac.i32_0, ""), 16008);
947 {
948 LLVMBuildStore(builder, es_mask,
949 ac_build_gep0(&ctx->ac, ngg_scratch, get_wave_id_in_tg(ctx)));
950 }
951 ac_build_endif(&ctx->ac, 16008);
952 }
953 ac_build_endif(&ctx->ac, 16007);
954 ac_build_s_barrier(&ctx->ac);
955
956 /* Load the vertex masks and compute the new ES thread count. */
957 LLVMValueRef es_mask[2], new_num_es_threads, kill_wave;
958 load_bitmasks_2x64(ctx, ngg_scratch, tid, 0, es_mask, &new_num_es_threads);
959
960 bool uses_instance_id = ctx->stage == MESA_SHADER_VERTEX &&
961 (sel->info.uses_instanceid ||
962 shader->key.part.vs.prolog.instance_divisor_is_one ||
963 shader->key.part.vs.prolog.instance_divisor_is_fetched);
964 bool uses_tes_prim_id = ctx->stage == MESA_SHADER_TESS_EVAL &&
965 (sel->info.uses_primid || shader->key.mono.u.vs_export_prim_id);
966
967 /* ES threads compute their prefix sum, which is the new ES thread ID.
968 * Then they write the value of the old thread ID into the LDS address
969 * of the new thread ID. It will be used it to load input VGPRs from
970 * the old thread's LDS location.
971 */
972 ac_build_ifcc(&ctx->ac, LLVMBuildLoad(builder, es_accepted, ""), 16009);
973 {
974 LLVMValueRef old_id = get_thread_id_in_tg(ctx);
975 LLVMValueRef new_id = ac_prefix_bitcount_2x64(&ctx->ac, es_mask, old_id);
976 LLVMValueRef new_vtx = ngg_nogs_vertex_ptr(ctx, new_id);
977
978 LLVMBuildStore(builder, LLVMBuildTrunc(builder, new_id, ctx->ac.i8, ""),
979 si_build_gep_i8(ctx, es_vtxptr, lds_byte1_new_thread_id));
980
981 /* Store Position.XYZW into LDS. */
982 for (unsigned chan = 0; chan < 4; chan++) {
983 LLVMBuildStore(
984 builder, ac_to_integer(&ctx->ac, LLVMBuildLoad(builder, addrs[4 * pos_index + chan], "")),
985 ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_pos_x + chan, 0)));
986 }
987
988 /* Store VertexID and InstanceID into LDS. ES threads will have to load them
989 * from LDS after vertex compaction and use them instead of their own
990 * system values.
991 */
992 if (ctx->stage == MESA_SHADER_VERTEX) {
993 LLVMBuildStore(
994 builder, ctx->abi.vertex_id,
995 ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_vertex_id, 0)));
996 if (uses_instance_id) {
997 LLVMBuildStore(
998 builder, ctx->abi.instance_id,
999 ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_instance_id, 0)));
1000 }
1001 } else {
1002 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1003 LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_u)),
1004 ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_tes_u, 0)));
1005 LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_v)),
1006 ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_tes_v, 0)));
1007 LLVMBuildStore(builder, LLVMBuildTrunc(builder, ac_get_arg(&ctx->ac, ctx->tes_rel_patch_id), ctx->ac.i8, ""),
1008 si_build_gep_i8(ctx, new_vtx, lds_byte2_tes_rel_patch_id));
1009 if (uses_tes_prim_id) {
1010 LLVMBuildStore(
1011 builder, ac_get_arg(&ctx->ac, ctx->args.tes_patch_id),
1012 ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)));
1013 }
1014 }
1015 }
1016 ac_build_endif(&ctx->ac, 16009);
1017
1018 /* Kill waves that have inactive threads. */
1019 kill_wave = LLVMBuildICmp(builder, LLVMIntULE,
1020 ac_build_imax(&ctx->ac, new_num_es_threads, ngg_get_prim_cnt(ctx)),
1021 LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
1022 LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), ""),
1023 "");
1024 ac_build_ifcc(&ctx->ac, kill_wave, 19202);
1025 {
1026 /* If we are killing wave 0, send that there are no primitives
1027 * in this threadgroup.
1028 */
1029 ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ctx->ac.i32_0, ctx->ac.i32_0);
1030 ac_build_s_endpgm(&ctx->ac);
1031 }
1032 ac_build_endif(&ctx->ac, 19202);
1033 ac_build_s_barrier(&ctx->ac);
1034
1035 /* Send the final vertex and primitive counts. */
1036 ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), new_num_es_threads,
1037 ngg_get_prim_cnt(ctx));
1038
1039 /* Update thread counts in SGPRs. */
1040 LLVMValueRef new_gs_tg_info = ac_get_arg(&ctx->ac, ctx->gs_tg_info);
1041 LLVMValueRef new_merged_wave_info = ac_get_arg(&ctx->ac, ctx->merged_wave_info);
1042
1043 /* This also converts the thread count from the total count to the per-wave count. */
1044 update_thread_counts(ctx, &new_num_es_threads, &new_gs_tg_info, 9, 12, &new_merged_wave_info, 8,
1045 0);
1046
1047 /* Update vertex indices in VGPR0 (same format as NGG passthrough). */
1048 LLVMValueRef new_vgpr0 = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
1049
1050 /* Set the null flag at the beginning (culled), and then
1051 * overwrite it for accepted primitives.
1052 */
1053 LLVMBuildStore(builder, LLVMConstInt(ctx->ac.i32, 1u << 31, 0), new_vgpr0);
1054
1055 /* Get vertex indices after vertex compaction. */
1056 ac_build_ifcc(&ctx->ac, LLVMBuildTrunc(builder, gs_accepted, ctx->ac.i1, ""), 16011);
1057 {
1058 struct ac_ngg_prim prim = {};
1059 prim.num_vertices = 3;
1060 prim.isnull = ctx->ac.i1false;
1061
1062 for (unsigned vtx = 0; vtx < 3; vtx++) {
1063 prim.index[vtx] = LLVMBuildLoad(
1064 builder, si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte1_new_thread_id), "");
1065 prim.index[vtx] = LLVMBuildZExt(builder, prim.index[vtx], ctx->ac.i32, "");
1066 prim.edgeflag[vtx] = ngg_get_initial_edgeflag(ctx, vtx);
1067 }
1068
1069 /* Set the new GS input VGPR. */
1070 LLVMBuildStore(builder, ac_pack_prim_export(&ctx->ac, &prim), new_vgpr0);
1071 }
1072 ac_build_endif(&ctx->ac, 16011);
1073
1074 if (gfx10_ngg_export_prim_early(shader))
1075 gfx10_ngg_build_export_prim(ctx, NULL, LLVMBuildLoad(builder, new_vgpr0, ""));
1076
1077 /* Set the new ES input VGPRs. */
1078 LLVMValueRef es_data[4];
1079
1080 for (unsigned i = 0; i < 4; i++)
1081 es_data[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
1082
1083 ac_build_ifcc(&ctx->ac, LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, tid, new_num_es_threads, ""),
1084 16012);
1085 {
1086 LLVMValueRef tmp;
1087
1088 for (unsigned i = 0; i < 2; i++) {
1089 tmp = LLVMBuildLoad(
1090 builder,
1091 ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_vertex_id + i, 0)),
1092 "");
1093 LLVMBuildStore(builder, tmp, es_data[i]);
1094 }
1095
1096 if (ctx->stage == MESA_SHADER_TESS_EVAL) {
1097 tmp = LLVMBuildLoad(builder,
1098 si_build_gep_i8(ctx, es_vtxptr, lds_byte2_tes_rel_patch_id), "");
1099 tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
1100 LLVMBuildStore(builder, tmp, es_data[2]);
1101
1102 if (uses_tes_prim_id) {
1103 tmp = LLVMBuildLoad(builder,
1104 ac_build_gep0(&ctx->ac, es_vtxptr,
1105 LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)),
1106 "");
1107 LLVMBuildStore(builder, tmp, es_data[3]);
1108 }
1109 }
1110 }
1111 ac_build_endif(&ctx->ac, 16012);
1112
1113 /* Return values for the main function. */
1114 LLVMValueRef ret = ctx->return_value;
1115 LLVMValueRef val;
1116
1117 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_gs_tg_info, 2, "");
1118 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_merged_wave_info, 3, "");
1119 if (ctx->stage == MESA_SHADER_TESS_EVAL)
1120 ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_offset, 4);
1121
1122 ret = si_insert_input_ptr(ctx, ret, ctx->rw_buffers, 8 + SI_SGPR_RW_BUFFERS);
1123 ret = si_insert_input_ptr(ctx, ret, ctx->bindless_samplers_and_images,
1124 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
1125 ret = si_insert_input_ptr(ctx, ret, ctx->const_and_shader_buffers,
1126 8 + SI_SGPR_CONST_AND_SHADER_BUFFERS);
1127 ret = si_insert_input_ptr(ctx, ret, ctx->samplers_and_images, 8 + SI_SGPR_SAMPLERS_AND_IMAGES);
1128 ret = si_insert_input_ptr(ctx, ret, ctx->vs_state_bits, 8 + SI_SGPR_VS_STATE_BITS);
1129
1130 if (ctx->stage == MESA_SHADER_VERTEX) {
1131 ret = si_insert_input_ptr(ctx, ret, ctx->args.base_vertex, 8 + SI_SGPR_BASE_VERTEX);
1132 ret = si_insert_input_ptr(ctx, ret, ctx->args.start_instance, 8 + SI_SGPR_START_INSTANCE);
1133 ret = si_insert_input_ptr(ctx, ret, ctx->args.draw_id, 8 + SI_SGPR_DRAWID);
1134 ret = si_insert_input_ptr(ctx, ret, ctx->vertex_buffers, 8 + SI_VS_NUM_USER_SGPR);
1135
1136 for (unsigned i = 0; i < shader->selector->num_vbos_in_user_sgprs; i++) {
1137 ret = si_insert_input_v4i32(ctx, ret, ctx->vb_descriptors[i],
1138 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + i * 4);
1139 }
1140 } else {
1141 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1142 ret = si_insert_input_ptr(ctx, ret, ctx->tcs_offchip_layout, 8 + SI_SGPR_TES_OFFCHIP_LAYOUT);
1143 ret = si_insert_input_ptr(ctx, ret, ctx->tes_offchip_addr, 8 + SI_SGPR_TES_OFFCHIP_ADDR);
1144 }
1145
1146 unsigned vgpr;
1147 if (ctx->stage == MESA_SHADER_VERTEX) {
1148 if (shader->selector->num_vbos_in_user_sgprs) {
1149 vgpr = 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->num_vbos_in_user_sgprs * 4;
1150 } else {
1151 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR + 1;
1152 }
1153 } else {
1154 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
1155 }
1156
1157 val = LLVMBuildLoad(builder, new_vgpr0, "");
1158 ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
1159 vgpr++; /* gs_vtx23_offset */
1160
1161 ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_prim_id, vgpr++);
1162 ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_invocation_id, vgpr++);
1163 vgpr++; /* gs_vtx45_offset */
1164
1165 if (ctx->stage == MESA_SHADER_VERTEX) {
1166 val = LLVMBuildLoad(builder, es_data[0], "");
1167 ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
1168 ""); /* VGPR5 - VertexID */
1169 vgpr += 2;
1170 if (uses_instance_id) {
1171 val = LLVMBuildLoad(builder, es_data[1], "");
1172 ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
1173 ""); /* VGPR8 - InstanceID */
1174 } else {
1175 vgpr++;
1176 }
1177 } else {
1178 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1179 unsigned num_vgprs = uses_tes_prim_id ? 4 : 3;
1180 for (unsigned i = 0; i < num_vgprs; i++) {
1181 val = LLVMBuildLoad(builder, es_data[i], "");
1182 ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
1183 }
1184 if (num_vgprs == 3)
1185 vgpr++;
1186 }
1187
1188 /* These two also use LDS. */
1189 if (sel->info.writes_edgeflag ||
1190 (ctx->stage == MESA_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id))
1191 ac_build_s_barrier(&ctx->ac);
1192
1193 ctx->return_value = ret;
1194 }
1195
1196 /**
1197 * Emit the epilogue of an API VS or TES shader compiled as ESGS shader.
1198 */
gfx10_emit_ngg_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)1199 void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs)
1200 {
1201 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1202 struct si_shader_selector *sel = ctx->shader->selector;
1203 struct si_shader_info *info = &sel->info;
1204 struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
1205 LLVMBuilderRef builder = ctx->ac.builder;
1206 LLVMValueRef tmp, tmp2;
1207
1208 assert(!ctx->shader->is_gs_copy_shader);
1209 assert(info->num_outputs <= max_outputs);
1210
1211 LLVMValueRef vertex_ptr = NULL;
1212
1213 if (sel->so.num_outputs || sel->info.writes_edgeflag)
1214 vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
1215
1216 for (unsigned i = 0; i < info->num_outputs; i++) {
1217 outputs[i].semantic = info->output_semantic[i];
1218
1219 for (unsigned j = 0; j < 4; j++) {
1220 outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
1221
1222 /* TODO: we may store more outputs than streamout needs,
1223 * but streamout performance isn't that important.
1224 */
1225 if (sel->so.num_outputs) {
1226 tmp = ac_build_gep0(&ctx->ac, vertex_ptr, LLVMConstInt(ctx->ac.i32, 4 * i + j, false));
1227 tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
1228 tmp2 = ac_to_integer(&ctx->ac, tmp2);
1229 LLVMBuildStore(builder, tmp2, tmp);
1230 }
1231 }
1232
1233 /* Store the edgeflag at the end (if streamout is enabled) */
1234 if (info->output_semantic[i] == VARYING_SLOT_EDGE && sel->info.writes_edgeflag) {
1235 LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], "");
1236 /* The output is a float, but the hw expects a 1-bit integer. */
1237 edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->ac.i32, "");
1238 edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->ac.i32_1);
1239
1240 tmp = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
1241 tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
1242 LLVMBuildStore(builder, edgeflag, tmp);
1243 }
1244 }
1245
1246 bool unterminated_es_if_block =
1247 !sel->so.num_outputs && !sel->info.writes_edgeflag &&
1248 !ctx->screen->use_ngg_streamout && /* no query buffer */
1249 (ctx->stage != MESA_SHADER_VERTEX || !ctx->shader->key.mono.u.vs_export_prim_id);
1250
1251 if (!unterminated_es_if_block)
1252 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
1253
1254 LLVMValueRef is_gs_thread = si_is_gs_thread(ctx);
1255 LLVMValueRef is_es_thread = si_is_es_thread(ctx);
1256 LLVMValueRef vtxindex[3];
1257
1258 if (ctx->shader->key.opt.ngg_culling) {
1259 vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 9);
1260 vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 10, 9);
1261 vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 20, 9);
1262 } else {
1263 vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
1264 vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
1265 vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
1266 }
1267
1268 /* Determine the number of vertices per primitive. */
1269 unsigned num_vertices;
1270 LLVMValueRef num_vertices_val = ngg_get_vertices_per_prim(ctx, &num_vertices);
1271
1272 /* Streamout */
1273 LLVMValueRef emitted_prims = NULL;
1274
1275 if (sel->so.num_outputs) {
1276 assert(!unterminated_es_if_block);
1277
1278 struct ngg_streamout nggso = {};
1279 nggso.num_vertices = num_vertices_val;
1280 nggso.prim_enable[0] = is_gs_thread;
1281
1282 for (unsigned i = 0; i < num_vertices; ++i)
1283 nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
1284
1285 build_streamout(ctx, &nggso);
1286 emitted_prims = nggso.emit[0];
1287 }
1288
1289 LLVMValueRef user_edgeflags[3] = {};
1290
1291 if (sel->info.writes_edgeflag) {
1292 assert(!unterminated_es_if_block);
1293
1294 /* Streamout already inserted the barrier, so don't insert it again. */
1295 if (!sel->so.num_outputs)
1296 ac_build_s_barrier(&ctx->ac);
1297
1298 ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
1299 /* Load edge flags from ES threads and store them into VGPRs in GS threads. */
1300 for (unsigned i = 0; i < num_vertices; i++) {
1301 tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
1302 tmp2 = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
1303 tmp = ac_build_gep0(&ctx->ac, tmp, tmp2);
1304 tmp = LLVMBuildLoad(builder, tmp, "");
1305 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1306
1307 user_edgeflags[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i1, "");
1308 LLVMBuildStore(builder, tmp, user_edgeflags[i]);
1309 }
1310 ac_build_endif(&ctx->ac, 5400);
1311 }
1312
1313 /* Copy Primitive IDs from GS threads to the LDS address corresponding
1314 * to the ES thread of the provoking vertex.
1315 */
1316 if (ctx->stage == MESA_SHADER_VERTEX && ctx->shader->key.mono.u.vs_export_prim_id) {
1317 assert(!unterminated_es_if_block);
1318
1319 /* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */
1320 if (sel->so.num_outputs || sel->info.writes_edgeflag)
1321 ac_build_s_barrier(&ctx->ac);
1322
1323 ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
1324 /* Extract the PROVOKING_VTX_INDEX field. */
1325 LLVMValueRef provoking_vtx_in_prim = si_unpack_param(ctx, ctx->vs_state_bits, 4, 2);
1326
1327 /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
1328 LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
1329 LLVMValueRef provoking_vtx_index =
1330 LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
1331 LLVMValueRef vertex_ptr = ngg_nogs_vertex_ptr(ctx, provoking_vtx_index);
1332
1333 LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.gs_prim_id),
1334 ac_build_gep0(&ctx->ac, vertex_ptr, ctx->ac.i32_0));
1335 ac_build_endif(&ctx->ac, 5400);
1336 }
1337
1338 /* Update query buffer */
1339 if (ctx->screen->use_ngg_streamout && !info->base.vs.blit_sgprs_amd) {
1340 assert(!unterminated_es_if_block);
1341
1342 tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
1343 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1344 ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
1345 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
1346 ac_build_ifcc(&ctx->ac, tmp, 5030);
1347 tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
1348 sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
1349 ac_build_ifcc(&ctx->ac, tmp, 5031);
1350 {
1351 LLVMValueRef args[] = {
1352 ngg_get_prim_cnt(ctx),
1353 ngg_get_query_buf(ctx),
1354 LLVMConstInt(ctx->ac.i32, 16, false), /* offset of stream[0].generated_primitives */
1355 ctx->ac.i32_0, /* soffset */
1356 ctx->ac.i32_0, /* cachepolicy */
1357 };
1358
1359 if (sel->so.num_outputs) {
1360 args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->ac.i32_1);
1361 args[2] = ac_build_writelane(&ctx->ac, args[2], LLVMConstInt(ctx->ac.i32, 24, false),
1362 ctx->ac.i32_1);
1363 }
1364
1365 /* TODO: should this be 64-bit atomics? */
1366 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
1367 0);
1368 }
1369 ac_build_endif(&ctx->ac, 5031);
1370 ac_build_endif(&ctx->ac, 5030);
1371 ac_build_endif(&ctx->ac, 5029);
1372 }
1373
1374 /* Build the primitive export. */
1375 if (!gfx10_ngg_export_prim_early(ctx->shader)) {
1376 assert(!unterminated_es_if_block);
1377 gfx10_ngg_build_export_prim(ctx, user_edgeflags, NULL);
1378 }
1379
1380 /* Export per-vertex data (positions and parameters). */
1381 if (!unterminated_es_if_block)
1382 ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
1383 {
1384 unsigned i;
1385
1386 /* Unconditionally (re-)load the values for proper SSA form. */
1387 for (i = 0; i < info->num_outputs; i++) {
1388 /* If the NGG cull shader part computed the position, don't
1389 * use the position from the current shader part. Instead,
1390 * load it from LDS.
1391 */
1392 if (info->output_semantic[i] == VARYING_SLOT_POS &&
1393 ctx->shader->key.opt.ngg_culling) {
1394 vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
1395
1396 for (unsigned j = 0; j < 4; j++) {
1397 tmp = LLVMConstInt(ctx->ac.i32, lds_pos_x + j, 0);
1398 tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
1399 tmp = LLVMBuildLoad(builder, tmp, "");
1400 outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
1401 }
1402 } else {
1403 for (unsigned j = 0; j < 4; j++) {
1404 outputs[i].values[j] = LLVMBuildLoad(builder, addrs[4 * i + j], "");
1405 }
1406 }
1407 }
1408
1409 if (ctx->shader->key.mono.u.vs_export_prim_id) {
1410 outputs[i].semantic = VARYING_SLOT_PRIMITIVE_ID;
1411
1412 if (ctx->stage == MESA_SHADER_VERTEX) {
1413 /* Wait for GS stores to finish. */
1414 ac_build_s_barrier(&ctx->ac);
1415
1416 tmp = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
1417 tmp = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
1418 outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
1419 } else {
1420 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1421 outputs[i].values[0] = si_get_primitive_id(ctx, 0);
1422 }
1423
1424 outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
1425 for (unsigned j = 1; j < 4; j++)
1426 outputs[i].values[j] = LLVMGetUndef(ctx->ac.f32);
1427
1428 memset(outputs[i].vertex_stream, 0, sizeof(outputs[i].vertex_stream));
1429 i++;
1430 }
1431
1432 si_llvm_build_vs_exports(ctx, outputs, i);
1433 }
1434 ac_build_endif(&ctx->ac, 6002);
1435 }
1436
ngg_gs_get_vertex_storage(struct si_shader_context * ctx)1437 static LLVMValueRef ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
1438 {
1439 const struct si_shader_selector *sel = ctx->shader->selector;
1440 const struct si_shader_info *info = &sel->info;
1441
1442 LLVMTypeRef elements[2] = {
1443 LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
1444 LLVMArrayType(ctx->ac.i8, 4),
1445 };
1446 LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
1447 type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
1448 return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
1449 }
1450
1451 /**
1452 * Return a pointer to the LDS storage reserved for the N'th vertex, where N
1453 * is in emit order; that is:
1454 * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
1455 * - during vertex emit, i.e. while the API GS shader invocation is running,
1456 * N = threadidx * gs.vertices_out + emitidx
1457 *
1458 * Goals of the LDS memory layout:
1459 * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
1460 * in uniform control flow
1461 * 2. Eliminate bank conflicts on read for export if, additionally, there is no
1462 * culling
1463 * 3. Agnostic to the number of waves (since we don't know it before compiling)
1464 * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
1465 * 5. Avoid wasting memory.
1466 *
1467 * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
1468 * layout, elimination of bank conflicts requires that each vertex occupy an
1469 * odd number of dwords. We use the additional dword to store the output stream
1470 * index as well as a flag to indicate whether this vertex ends a primitive
1471 * for rasterization.
1472 *
1473 * Swizzling is required to satisfy points 1 and 2 simultaneously.
1474 *
1475 * Vertices are stored in export order (gsthread * gs.vertices_out + emitidx).
1476 * Indices are swizzled in groups of 32, which ensures point 1 without
1477 * disturbing point 2.
1478 *
1479 * \return an LDS pointer to type {[N x i32], [4 x i8]}
1480 */
ngg_gs_vertex_ptr(struct si_shader_context * ctx,LLVMValueRef vertexidx)1481 static LLVMValueRef ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
1482 {
1483 struct si_shader_selector *sel = ctx->shader->selector;
1484 LLVMBuilderRef builder = ctx->ac.builder;
1485 LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
1486
1487 /* gs.vertices_out = 2^(write_stride_2exp) * some odd number */
1488 unsigned write_stride_2exp = ffs(sel->info.base.gs.vertices_out) - 1;
1489 if (write_stride_2exp) {
1490 LLVMValueRef row = LLVMBuildLShr(builder, vertexidx, LLVMConstInt(ctx->ac.i32, 5, false), "");
1491 LLVMValueRef swizzle = LLVMBuildAnd(
1492 builder, row, LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1, false), "");
1493 vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
1494 }
1495
1496 return ac_build_gep0(&ctx->ac, storage, vertexidx);
1497 }
1498
ngg_gs_emit_vertex_ptr(struct si_shader_context * ctx,LLVMValueRef gsthread,LLVMValueRef emitidx)1499 static LLVMValueRef ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
1500 LLVMValueRef emitidx)
1501 {
1502 struct si_shader_selector *sel = ctx->shader->selector;
1503 LLVMBuilderRef builder = ctx->ac.builder;
1504 LLVMValueRef tmp;
1505
1506 tmp = LLVMConstInt(ctx->ac.i32, sel->info.base.gs.vertices_out, false);
1507 tmp = LLVMBuildMul(builder, tmp, gsthread, "");
1508 const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
1509 return ngg_gs_vertex_ptr(ctx, vertexidx);
1510 }
1511
ngg_gs_get_emit_output_ptr(struct si_shader_context * ctx,LLVMValueRef vertexptr,unsigned out_idx)1512 static LLVMValueRef ngg_gs_get_emit_output_ptr(struct si_shader_context *ctx,
1513 LLVMValueRef vertexptr, unsigned out_idx)
1514 {
1515 LLVMValueRef gep_idx[3] = {
1516 ctx->ac.i32_0, /* implied C-style array */
1517 ctx->ac.i32_0, /* first struct entry */
1518 LLVMConstInt(ctx->ac.i32, out_idx, false),
1519 };
1520 return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
1521 }
1522
ngg_gs_get_emit_primflag_ptr(struct si_shader_context * ctx,LLVMValueRef vertexptr,unsigned stream)1523 static LLVMValueRef ngg_gs_get_emit_primflag_ptr(struct si_shader_context *ctx,
1524 LLVMValueRef vertexptr, unsigned stream)
1525 {
1526 LLVMValueRef gep_idx[3] = {
1527 ctx->ac.i32_0, /* implied C-style array */
1528 ctx->ac.i32_1, /* second struct entry */
1529 LLVMConstInt(ctx->ac.i32, stream, false),
1530 };
1531 return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
1532 }
1533
gfx10_ngg_gs_emit_vertex(struct si_shader_context * ctx,unsigned stream,LLVMValueRef * addrs)1534 void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx, unsigned stream, LLVMValueRef *addrs)
1535 {
1536 const struct si_shader_selector *sel = ctx->shader->selector;
1537 const struct si_shader_info *info = &sel->info;
1538 LLVMBuilderRef builder = ctx->ac.builder;
1539 LLVMValueRef tmp;
1540 const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
1541
1542 /* If this thread has already emitted the declared maximum number of
1543 * vertices, skip the write: excessive vertex emissions are not
1544 * supposed to have any effect.
1545 */
1546 const LLVMValueRef can_emit =
1547 LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
1548 LLVMConstInt(ctx->ac.i32, sel->info.base.gs.vertices_out, false), "");
1549
1550 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
1551 tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
1552 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
1553
1554 ac_build_ifcc(&ctx->ac, can_emit, 9001);
1555
1556 const LLVMValueRef vertexptr = ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
1557 unsigned out_idx = 0;
1558 for (unsigned i = 0; i < info->num_outputs; i++) {
1559 for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
1560 if (!(info->output_usagemask[i] & (1 << chan)) ||
1561 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
1562 continue;
1563
1564 LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
1565 out_val = ac_to_integer(&ctx->ac, out_val);
1566 LLVMBuildStore(builder, out_val, ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx));
1567 }
1568 }
1569 assert(out_idx * 4 == sel->gsvs_vertex_size);
1570
1571 /* Determine and store whether this vertex completed a primitive. */
1572 const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
1573
1574 tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->info.base.gs.output_primitive) - 1, false);
1575 const LLVMValueRef iscompleteprim = LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
1576
1577 /* Since the geometry shader emits triangle strips, we need to
1578 * track which primitive is odd and swap vertex indices to get
1579 * the correct vertex order.
1580 */
1581 LLVMValueRef is_odd = ctx->ac.i1false;
1582 if (stream == 0 && u_vertices_per_prim(sel->info.base.gs.output_primitive) == 3) {
1583 tmp = LLVMBuildAnd(builder, curverts, ctx->ac.i32_1, "");
1584 is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->ac.i32_1, "");
1585 }
1586
1587 tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
1588 LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
1589
1590 /* The per-vertex primitive flag encoding:
1591 * bit 0: whether this vertex finishes a primitive
1592 * bit 1: whether the primitive is odd (if we are emitting triangle strips)
1593 */
1594 tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
1595 tmp = LLVMBuildOr(
1596 builder, tmp,
1597 LLVMBuildShl(builder, LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""), ctx->ac.i8_1, ""), "");
1598 LLVMBuildStore(builder, tmp, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream));
1599
1600 tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
1601 tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
1602 LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
1603
1604 ac_build_endif(&ctx->ac, 9001);
1605 }
1606
gfx10_ngg_gs_emit_prologue(struct si_shader_context * ctx)1607 void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx)
1608 {
1609 /* Zero out the part of LDS scratch that is used to accumulate the
1610 * per-stream generated primitive count.
1611 */
1612 LLVMBuilderRef builder = ctx->ac.builder;
1613 LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
1614 LLVMValueRef tid = get_thread_id_in_tg(ctx);
1615 LLVMValueRef tmp;
1616
1617 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
1618 ac_build_ifcc(&ctx->ac, tmp, 5090);
1619 {
1620 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
1621 LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
1622 }
1623 ac_build_endif(&ctx->ac, 5090);
1624
1625 ac_build_s_barrier(&ctx->ac);
1626 }
1627
gfx10_ngg_gs_emit_epilogue(struct si_shader_context * ctx)1628 void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
1629 {
1630 const struct si_shader_selector *sel = ctx->shader->selector;
1631 const struct si_shader_info *info = &sel->info;
1632 const unsigned verts_per_prim = u_vertices_per_prim(sel->info.base.gs.output_primitive);
1633 LLVMBuilderRef builder = ctx->ac.builder;
1634 LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
1635 LLVMValueRef tmp, tmp2;
1636
1637 /* Zero out remaining (non-emitted) primitive flags.
1638 *
1639 * Note: Alternatively, we could pass the relevant gs_next_vertex to
1640 * the emit threads via LDS. This is likely worse in the expected
1641 * typical case where each GS thread emits the full set of
1642 * vertices.
1643 */
1644 for (unsigned stream = 0; stream < 4; ++stream) {
1645 if (!info->num_stream_output_components[stream])
1646 continue;
1647
1648 const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
1649
1650 ac_build_bgnloop(&ctx->ac, 5100);
1651
1652 const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
1653 tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
1654 LLVMConstInt(ctx->ac.i32, sel->info.base.gs.vertices_out, false), "");
1655 ac_build_ifcc(&ctx->ac, tmp, 5101);
1656 ac_build_break(&ctx->ac);
1657 ac_build_endif(&ctx->ac, 5101);
1658
1659 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
1660 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
1661
1662 tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
1663 LLVMBuildStore(builder, i8_0, ngg_gs_get_emit_primflag_ptr(ctx, tmp, stream));
1664
1665 ac_build_endloop(&ctx->ac, 5100);
1666 }
1667
1668 /* Accumulate generated primitives counts across the entire threadgroup. */
1669 for (unsigned stream = 0; stream < 4; ++stream) {
1670 if (!info->num_stream_output_components[stream])
1671 continue;
1672
1673 LLVMValueRef numprims = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
1674 numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
1675
1676 tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, "");
1677 ac_build_ifcc(&ctx->ac, tmp, 5105);
1678 {
1679 LLVMBuildAtomicRMW(
1680 builder, LLVMAtomicRMWBinOpAdd,
1681 ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, stream, false)),
1682 numprims, LLVMAtomicOrderingMonotonic, false);
1683 }
1684 ac_build_endif(&ctx->ac, 5105);
1685 }
1686
1687 ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
1688
1689 ac_build_s_barrier(&ctx->ac);
1690
1691 const LLVMValueRef tid = get_thread_id_in_tg(ctx);
1692 LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
1693
1694 /* Streamout */
1695 if (sel->so.num_outputs) {
1696 struct ngg_streamout nggso = {};
1697
1698 nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false);
1699
1700 LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
1701 for (unsigned stream = 0; stream < 4; ++stream) {
1702 if (!info->num_stream_output_components[stream])
1703 continue;
1704
1705 tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream), "");
1706 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1707 tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1708 nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
1709 }
1710
1711 for (unsigned i = 0; i < verts_per_prim; ++i) {
1712 tmp = LLVMBuildSub(builder, tid, LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false),
1713 "");
1714 tmp = ngg_gs_vertex_ptr(ctx, tmp);
1715 nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
1716 }
1717
1718 build_streamout(ctx, &nggso);
1719 }
1720
1721 /* Write shader query data. */
1722 if (ctx->screen->use_ngg_streamout) {
1723 tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
1724 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1725 ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
1726 unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
1727 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
1728 LLVMConstInt(ctx->ac.i32, num_query_comps, false), "");
1729 ac_build_ifcc(&ctx->ac, tmp, 5110);
1730 {
1731 LLVMValueRef offset;
1732 tmp = tid;
1733 if (sel->so.num_outputs)
1734 tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->ac.i32, 3, false), "");
1735 offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 32, false), "");
1736 if (sel->so.num_outputs) {
1737 tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->ac.i32, 2, false), "");
1738 tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 8, false), "");
1739 offset = LLVMBuildAdd(builder, offset, tmp, "");
1740 }
1741
1742 tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
1743 LLVMValueRef args[] = {
1744 tmp, ngg_get_query_buf(ctx),
1745 offset, LLVMConstInt(ctx->ac.i32, 16, false), /* soffset */
1746 ctx->ac.i32_0, /* cachepolicy */
1747 };
1748 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
1749 0);
1750 }
1751 ac_build_endif(&ctx->ac, 5110);
1752 ac_build_endif(&ctx->ac, 5109);
1753 }
1754
1755 /* Determine vertex liveness. */
1756 LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
1757
1758 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1759 ac_build_ifcc(&ctx->ac, tmp, 5120);
1760 {
1761 for (unsigned i = 0; i < verts_per_prim; ++i) {
1762 const LLVMValueRef primidx =
1763 LLVMBuildAdd(builder, tid, LLVMConstInt(ctx->ac.i32, i, false), "");
1764
1765 if (i > 0) {
1766 tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
1767 ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
1768 }
1769
1770 /* Load primitive liveness */
1771 tmp = ngg_gs_vertex_ptr(ctx, primidx);
1772 tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
1773 const LLVMValueRef primlive = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1774
1775 tmp = LLVMBuildLoad(builder, vertliveptr, "");
1776 tmp = LLVMBuildOr(builder, tmp, primlive, ""), LLVMBuildStore(builder, tmp, vertliveptr);
1777
1778 if (i > 0)
1779 ac_build_endif(&ctx->ac, 5121 + i);
1780 }
1781 }
1782 ac_build_endif(&ctx->ac, 5120);
1783
1784 /* Inclusive scan addition across the current wave. */
1785 LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
1786 struct ac_wg_scan vertlive_scan = {};
1787 vertlive_scan.op = nir_op_iadd;
1788 vertlive_scan.enable_reduce = true;
1789 vertlive_scan.enable_exclusive = true;
1790 vertlive_scan.src = vertlive;
1791 vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
1792 vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
1793 vertlive_scan.numwaves = get_tgsize(ctx);
1794 vertlive_scan.maxwaves = 8;
1795
1796 ac_build_wg_scan(&ctx->ac, &vertlive_scan);
1797
1798 /* Skip all exports (including index exports) when possible. At least on
1799 * early gfx10 revisions this is also to avoid hangs.
1800 */
1801 LLVMValueRef have_exports =
1802 LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
1803 num_emit_threads = LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
1804
1805 /* Allocate export space. Send this message as early as possible, to
1806 * hide the latency of the SQ <-> SPI roundtrip.
1807 *
1808 * Note: We could consider compacting primitives for export as well.
1809 * PA processes 1 non-null prim / clock, but it fetches 4 DW of
1810 * prim data per clock and skips null primitives at no additional
1811 * cost. So compacting primitives can only be beneficial when
1812 * there are 4 or more contiguous null primitives in the export
1813 * (in the common case of single-dword prim exports).
1814 */
1815 ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), vertlive_scan.result_reduce,
1816 num_emit_threads);
1817
1818 /* Setup the reverse vertex compaction permutation. We re-use stream 1
1819 * of the primitive liveness flags, relying on the fact that each
1820 * threadgroup can have at most 256 threads. */
1821 ac_build_ifcc(&ctx->ac, vertlive, 5130);
1822 {
1823 tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
1824 tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
1825 LLVMBuildStore(builder, tmp2, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1));
1826 }
1827 ac_build_endif(&ctx->ac, 5130);
1828
1829 ac_build_s_barrier(&ctx->ac);
1830
1831 /* Export primitive data */
1832 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1833 ac_build_ifcc(&ctx->ac, tmp, 5140);
1834 {
1835 LLVMValueRef flags;
1836 struct ac_ngg_prim prim = {};
1837 prim.num_vertices = verts_per_prim;
1838
1839 tmp = ngg_gs_vertex_ptr(ctx, tid);
1840 flags = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
1841 prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->ac.i1, ""), "");
1842
1843 for (unsigned i = 0; i < verts_per_prim; ++i) {
1844 prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
1845 LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
1846 prim.edgeflag[i] = ctx->ac.i1false;
1847 }
1848
1849 /* Geometry shaders output triangle strips, but NGG expects triangles. */
1850 if (verts_per_prim == 3) {
1851 LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, "");
1852 is_odd = LLVMBuildTrunc(builder, is_odd, ctx->ac.i1, "");
1853 LLVMValueRef flatshade_first = LLVMBuildICmp(
1854 builder, LLVMIntEQ, si_unpack_param(ctx, ctx->vs_state_bits, 4, 2), ctx->ac.i32_0, "");
1855
1856 ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd, flatshade_first, prim.index);
1857 }
1858
1859 ac_build_export_prim(&ctx->ac, &prim);
1860 }
1861 ac_build_endif(&ctx->ac, 5140);
1862
1863 /* Export position and parameter data */
1864 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
1865 ac_build_ifcc(&ctx->ac, tmp, 5145);
1866 {
1867 struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
1868
1869 tmp = ngg_gs_vertex_ptr(ctx, tid);
1870 tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1), "");
1871 tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
1872 const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
1873
1874 unsigned out_idx = 0;
1875 for (unsigned i = 0; i < info->num_outputs; i++) {
1876 outputs[i].semantic = info->output_semantic[i];
1877
1878 for (unsigned j = 0; j < 4; j++, out_idx++) {
1879 tmp = ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx);
1880 tmp = LLVMBuildLoad(builder, tmp, "");
1881 outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
1882 outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
1883 }
1884 }
1885
1886 si_llvm_build_vs_exports(ctx, outputs, info->num_outputs);
1887 }
1888 ac_build_endif(&ctx->ac, 5145);
1889 }
1890
clamp_gsprims_to_esverts(unsigned * max_gsprims,unsigned max_esverts,unsigned min_verts_per_prim,bool use_adjacency)1891 static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
1892 unsigned min_verts_per_prim, bool use_adjacency)
1893 {
1894 unsigned max_reuse = max_esverts - min_verts_per_prim;
1895 if (use_adjacency)
1896 max_reuse /= 2;
1897 *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
1898 }
1899
gfx10_ngg_get_scratch_dw_size(struct si_shader * shader)1900 unsigned gfx10_ngg_get_scratch_dw_size(struct si_shader *shader)
1901 {
1902 const struct si_shader_selector *sel = shader->selector;
1903
1904 if (sel->info.stage == MESA_SHADER_GEOMETRY && sel->so.num_outputs)
1905 return 44;
1906
1907 return 8;
1908 }
1909
1910 /**
1911 * Determine subgroup information like maximum number of vertices and prims.
1912 *
1913 * This happens before the shader is uploaded, since LDS relocations during
1914 * upload depend on the subgroup size.
1915 */
gfx10_ngg_calculate_subgroup_info(struct si_shader * shader)1916 bool gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
1917 {
1918 const struct si_shader_selector *gs_sel = shader->selector;
1919 const struct si_shader_selector *es_sel =
1920 shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
1921 const gl_shader_stage gs_stage = gs_sel->info.stage;
1922 const unsigned gs_num_invocations = MAX2(gs_sel->info.base.gs.invocations, 1);
1923 const unsigned input_prim = si_get_input_prim(gs_sel);
1924 const bool use_adjacency =
1925 input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
1926 const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
1927 const unsigned min_verts_per_prim = gs_stage == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1;
1928
1929 /* All these are in dwords: */
1930 /* GE can only use 8K dwords (32KB) of LDS per workgroup.
1931 */
1932 const unsigned max_lds_size = 8 * 1024 - gfx10_ngg_get_scratch_dw_size(shader);
1933 const unsigned target_lds_size = max_lds_size;
1934 unsigned esvert_lds_size = 0;
1935 unsigned gsprim_lds_size = 0;
1936
1937 /* All these are per subgroup: */
1938 const unsigned min_esverts = gs_sel->screen->info.chip_class >= GFX10_3 ? 29 : 24;
1939 bool max_vert_out_per_gs_instance = false;
1940 unsigned max_gsprims_base = 128; /* default prim group size clamp */
1941 unsigned max_esverts_base = 128;
1942
1943 if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST) {
1944 max_gsprims_base = 128 / 3;
1945 max_esverts_base = max_gsprims_base * 3;
1946 } else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP) {
1947 max_gsprims_base = 126;
1948 max_esverts_base = 128;
1949 }
1950
1951 /* Hardware has the following non-natural restrictions on the value
1952 * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
1953 * the draw:
1954 * - at most 252 for any line input primitive type
1955 * - at most 251 for any quad input primitive type
1956 * - at most 251 for triangle strips with adjacency (this happens to
1957 * be the natural limit for triangle *lists* with adjacency)
1958 */
1959 max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
1960
1961 if (gs_stage == MESA_SHADER_GEOMETRY) {
1962 bool force_multi_cycling = false;
1963 unsigned max_out_verts_per_gsprim = gs_sel->info.base.gs.vertices_out * gs_num_invocations;
1964
1965 retry_select_mode:
1966 if (max_out_verts_per_gsprim <= 256 && !force_multi_cycling) {
1967 if (max_out_verts_per_gsprim) {
1968 max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim);
1969 }
1970 } else {
1971 /* Use special multi-cycling mode in which each GS
1972 * instance gets its own subgroup. Does not work with
1973 * tessellation. */
1974 max_vert_out_per_gs_instance = true;
1975 max_gsprims_base = 1;
1976 max_out_verts_per_gsprim = gs_sel->info.base.gs.vertices_out;
1977 }
1978
1979 esvert_lds_size = es_sel->esgs_itemsize / 4;
1980 gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
1981
1982 if (gsprim_lds_size > target_lds_size && !force_multi_cycling) {
1983 if (gs_sel->tess_turns_off_ngg || es_sel->info.stage != MESA_SHADER_TESS_EVAL) {
1984 force_multi_cycling = true;
1985 goto retry_select_mode;
1986 }
1987 }
1988 } else {
1989 /* VS and TES. */
1990 /* LDS size for passing data from ES to GS. */
1991 esvert_lds_size = ngg_nogs_vertex_size(shader);
1992 }
1993
1994 unsigned max_gsprims = max_gsprims_base;
1995 unsigned max_esverts = max_esverts_base;
1996
1997 if (esvert_lds_size)
1998 max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
1999 if (gsprim_lds_size)
2000 max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
2001
2002 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2003 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
2004 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
2005
2006 if (esvert_lds_size || gsprim_lds_size) {
2007 /* Now that we have a rough proportionality between esverts
2008 * and gsprims based on the primitive type, scale both of them
2009 * down simultaneously based on required LDS space.
2010 *
2011 * We could be smarter about this if we knew how much vertex
2012 * reuse to expect.
2013 */
2014 unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size;
2015 if (lds_total > target_lds_size) {
2016 max_esverts = max_esverts * target_lds_size / lds_total;
2017 max_gsprims = max_gsprims * target_lds_size / lds_total;
2018
2019 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2020 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
2021 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
2022 }
2023 }
2024
2025 /* Round up towards full wave sizes for better ALU utilization. */
2026 if (!max_vert_out_per_gs_instance) {
2027 const unsigned wavesize = si_get_shader_wave_size(shader);
2028 unsigned orig_max_esverts;
2029 unsigned orig_max_gsprims;
2030 do {
2031 orig_max_esverts = max_esverts;
2032 orig_max_gsprims = max_gsprims;
2033
2034 max_esverts = align(max_esverts, wavesize);
2035 max_esverts = MIN2(max_esverts, max_esverts_base);
2036 if (esvert_lds_size)
2037 max_esverts =
2038 MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size);
2039 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2040 /* Hardware restriction: minimum value of max_esverts */
2041 max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
2042
2043 max_gsprims = align(max_gsprims, wavesize);
2044 max_gsprims = MIN2(max_gsprims, max_gsprims_base);
2045 if (gsprim_lds_size) {
2046 /* Don't count unusable vertices to the LDS size. Those are vertices above
2047 * the maximum number of vertices that can occur in the workgroup,
2048 * which is e.g. max_gsprims * 3 for triangles.
2049 */
2050 unsigned usable_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2051 max_gsprims =
2052 MIN2(max_gsprims, (max_lds_size - usable_esverts * esvert_lds_size) / gsprim_lds_size);
2053 }
2054 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
2055 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
2056 } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
2057
2058 /* Verify the restriction. */
2059 assert(max_esverts >= min_esverts - 1 + max_verts_per_prim);
2060 } else {
2061 /* Hardware restriction: minimum value of max_esverts */
2062 max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
2063 }
2064
2065 unsigned max_out_vertices =
2066 max_vert_out_per_gs_instance
2067 ? gs_sel->info.base.gs.vertices_out
2068 : gs_stage == MESA_SHADER_GEOMETRY
2069 ? max_gsprims * gs_num_invocations * gs_sel->info.base.gs.vertices_out
2070 : max_esverts;
2071 assert(max_out_vertices <= 256);
2072
2073 unsigned prim_amp_factor = 1;
2074 if (gs_stage == MESA_SHADER_GEOMETRY) {
2075 /* Number of output primitives per GS input primitive after
2076 * GS instancing. */
2077 prim_amp_factor = gs_sel->info.base.gs.vertices_out;
2078 }
2079
2080 /* The GE only checks against the maximum number of ES verts after
2081 * allocating a full GS primitive. So we need to ensure that whenever
2082 * this check passes, there is enough space for a full primitive without
2083 * vertex reuse.
2084 */
2085 shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1;
2086 shader->ngg.max_gsprims = max_gsprims;
2087 shader->ngg.max_out_verts = max_out_vertices;
2088 shader->ngg.prim_amp_factor = prim_amp_factor;
2089 shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
2090
2091 /* Don't count unusable vertices. */
2092 shader->gs_info.esgs_ring_size = MIN2(max_esverts, max_gsprims * max_verts_per_prim) *
2093 esvert_lds_size;
2094 shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
2095
2096 assert(shader->ngg.hw_max_esverts >= min_esverts); /* HW limitation */
2097
2098 /* If asserts are disabled, we use the same conditions to return false */
2099 return max_esverts >= max_verts_per_prim && max_gsprims >= 1 &&
2100 max_out_vertices <= 256 &&
2101 shader->ngg.hw_max_esverts >= min_esverts;
2102 }
2103