• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <common/interrupt_props.h>
13 #include <drivers/arm/gicv3.h>
14 #include <lib/spinlock.h>
15 
16 #include "gicv3_private.h"
17 
18 const gicv3_driver_data_t *gicv3_driver_data;
19 
20 /*
21  * Spinlock to guard registers needing read-modify-write. APIs protected by this
22  * spinlock are used either at boot time (when only a single CPU is active), or
23  * when the system is fully coherent.
24  */
25 static spinlock_t gic_lock;
26 
27 /*
28  * Redistributor power operations are weakly bound so that they can be
29  * overridden
30  */
31 #pragma weak gicv3_rdistif_off
32 #pragma weak gicv3_rdistif_on
33 
34 /* Check interrupt ID for SGI/(E)PPI and (E)SPIs */
35 static bool is_sgi_ppi(unsigned int id);
36 
37 /*
38  * Helper macros to save and restore GICR and GICD registers
39  * corresponding to their numbers to and from the context
40  */
41 #define RESTORE_GICR_REG(base, ctx, name, i)	\
42 	gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)])
43 
44 #define SAVE_GICR_REG(base, ctx, name, i)	\
45 	(ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i))
46 
47 /* Helper macros to save and restore GICD registers to and from the context */
48 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
49 	do {								\
50 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
51 				int_id += (1U << REG##R_SHIFT)) {	\
52 			gicd_write_##reg((base), int_id,		\
53 				(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
54 							REG##R_SHIFT]);	\
55 		}							\
56 	} while (false)
57 
58 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
59 	do {								\
60 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
61 				int_id += (1U << REG##R_SHIFT)) {	\
62 			(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >>	\
63 			REG##R_SHIFT] = gicd_read_##reg((base), int_id); \
64 		}							\
65 	} while (false)
66 
67 #if GIC_EXT_INTID
68 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)		\
69 	do {								\
70 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
71 				int_id += (1U << REG##R_SHIFT)) {	\
72 			gicd_write_##reg((base), int_id,		\
73 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID - MIN_SPI_ID))\
74 						>> REG##R_SHIFT]);	\
75 		}							\
76 	} while (false)
77 
78 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)			\
79 	do {								\
80 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
81 				int_id += (1U << REG##R_SHIFT)) {	\
82 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID - MIN_SPI_ID))\
83 			>> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\
84 		}							\
85 	} while (false)
86 #else
87 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)
88 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)
89 #endif /* GIC_EXT_INTID */
90 
91 /*******************************************************************************
92  * This function initialises the ARM GICv3 driver in EL3 with provided platform
93  * inputs.
94  ******************************************************************************/
gicv3_driver_init(const gicv3_driver_data_t * plat_driver_data)95 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
96 {
97 	unsigned int gic_version;
98 	unsigned int gicv2_compat;
99 
100 	assert(plat_driver_data != NULL);
101 	assert(plat_driver_data->gicd_base != 0U);
102 	assert(plat_driver_data->rdistif_num != 0U);
103 	assert(plat_driver_data->rdistif_base_addrs != NULL);
104 
105 	assert(IS_IN_EL3());
106 
107 	assert((plat_driver_data->interrupt_props_num != 0U) ?
108 	       (plat_driver_data->interrupt_props != NULL) : 1);
109 
110 	/* Check for system register support */
111 #ifndef __aarch64__
112 	assert((read_id_pfr1() &
113 			(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
114 #else
115 	assert((read_id_aa64pfr0_el1() &
116 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
117 #endif /* !__aarch64__ */
118 
119 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
120 	gic_version >>= PIDR2_ARCH_REV_SHIFT;
121 	gic_version &= PIDR2_ARCH_REV_MASK;
122 
123 	/* Check GIC version */
124 #if GIC_ENABLE_V4_EXTN
125 	assert(gic_version == ARCH_REV_GICV4);
126 
127 	/* GICv4 supports Direct Virtual LPI injection */
128 	assert((gicd_read_typer(plat_driver_data->gicd_base)
129 					& TYPER_DVIS) != 0);
130 #else
131 	assert(gic_version == ARCH_REV_GICV3);
132 #endif
133 	/*
134 	 * Find out whether the GIC supports the GICv2 compatibility mode.
135 	 * The ARE_S bit resets to 0 if supported
136 	 */
137 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
138 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
139 	gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
140 
141 	if (plat_driver_data->gicr_base != 0U) {
142 		/*
143 		 * Find the base address of each implemented Redistributor interface.
144 		 * The number of interfaces should be equal to the number of CPUs in the
145 		 * system. The memory for saving these addresses has to be allocated by
146 		 * the platform port
147 		 */
148 		gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
149 						   plat_driver_data->rdistif_num,
150 						   plat_driver_data->gicr_base,
151 						   plat_driver_data->mpidr_to_core_pos);
152 #if !HW_ASSISTED_COHERENCY
153 		/*
154 		 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
155 		 */
156 		flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
157 			plat_driver_data->rdistif_num *
158 			sizeof(*(plat_driver_data->rdistif_base_addrs)));
159 #endif
160 	}
161 	gicv3_driver_data = plat_driver_data;
162 
163 	/*
164 	 * The GIC driver data is initialized by the primary CPU with caches
165 	 * enabled. When the secondary CPU boots up, it initializes the
166 	 * GICC/GICR interface with the caches disabled. Hence flush the
167 	 * driver data to ensure coherency. This is not required if the
168 	 * platform has HW_ASSISTED_COHERENCY enabled.
169 	 */
170 #if !HW_ASSISTED_COHERENCY
171 	flush_dcache_range((uintptr_t)&gicv3_driver_data,
172 		sizeof(gicv3_driver_data));
173 	flush_dcache_range((uintptr_t)gicv3_driver_data,
174 		sizeof(*gicv3_driver_data));
175 #endif
176 	INFO("GICv%u with%s legacy support detected.\n", gic_version,
177 				(gicv2_compat == 0U) ? "" : "out");
178 	INFO("ARM GICv%u driver initialized in EL3\n", gic_version);
179 }
180 
181 /*******************************************************************************
182  * This function initialises the GIC distributor interface based upon the data
183  * provided by the platform while initialising the driver.
184  ******************************************************************************/
gicv3_distif_init(void)185 void __init gicv3_distif_init(void)
186 {
187 	unsigned int bitmap;
188 
189 	assert(gicv3_driver_data != NULL);
190 	assert(gicv3_driver_data->gicd_base != 0U);
191 
192 	assert(IS_IN_EL3());
193 
194 	/*
195 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
196 	 * the ARE_S bit. The Distributor might generate a system error
197 	 * otherwise.
198 	 */
199 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
200 		      CTLR_ENABLE_G0_BIT |
201 		      CTLR_ENABLE_G1S_BIT |
202 		      CTLR_ENABLE_G1NS_BIT,
203 		      RWP_TRUE);
204 
205 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
206 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
207 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
208 
209 	/* Set the default attribute of all (E)SPIs */
210 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
211 
212 	bitmap = gicv3_secure_spis_config_props(
213 			gicv3_driver_data->gicd_base,
214 			gicv3_driver_data->interrupt_props,
215 			gicv3_driver_data->interrupt_props_num);
216 
217 	/* Enable the secure (E)SPIs now that they have been configured */
218 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
219 }
220 
221 /*******************************************************************************
222  * This function initialises the GIC Redistributor interface of the calling CPU
223  * (identified by the 'proc_num' parameter) based upon the data provided by the
224  * platform while initialising the driver.
225  ******************************************************************************/
gicv3_rdistif_init(unsigned int proc_num)226 void gicv3_rdistif_init(unsigned int proc_num)
227 {
228 	uintptr_t gicr_base;
229 	unsigned int bitmap;
230 	uint32_t ctlr;
231 
232 	assert(gicv3_driver_data != NULL);
233 	assert(proc_num < gicv3_driver_data->rdistif_num);
234 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
235 	assert(gicv3_driver_data->gicd_base != 0U);
236 
237 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
238 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
239 
240 	assert(IS_IN_EL3());
241 
242 	/* Power on redistributor */
243 	gicv3_rdistif_on(proc_num);
244 
245 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
246 	assert(gicr_base != 0U);
247 
248 	/* Set the default attribute of all SGIs and (E)PPIs */
249 	gicv3_ppi_sgi_config_defaults(gicr_base);
250 
251 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
252 			gicv3_driver_data->interrupt_props,
253 			gicv3_driver_data->interrupt_props_num);
254 
255 	/* Enable interrupt groups as required, if not already */
256 	if ((ctlr & bitmap) != bitmap) {
257 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
258 	}
259 }
260 
261 /*******************************************************************************
262  * Functions to perform power operations on GIC Redistributor
263  ******************************************************************************/
gicv3_rdistif_off(unsigned int proc_num)264 void gicv3_rdistif_off(unsigned int proc_num)
265 {
266 }
267 
gicv3_rdistif_on(unsigned int proc_num)268 void gicv3_rdistif_on(unsigned int proc_num)
269 {
270 }
271 
272 /*******************************************************************************
273  * This function enables the GIC CPU interface of the calling CPU using only
274  * system register accesses.
275  ******************************************************************************/
gicv3_cpuif_enable(unsigned int proc_num)276 void gicv3_cpuif_enable(unsigned int proc_num)
277 {
278 	uintptr_t gicr_base;
279 	u_register_t scr_el3;
280 	unsigned int icc_sre_el3;
281 
282 	assert(gicv3_driver_data != NULL);
283 	assert(proc_num < gicv3_driver_data->rdistif_num);
284 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
285 	assert(IS_IN_EL3());
286 
287 	/* Mark the connected core as awake */
288 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
289 	gicv3_rdistif_mark_core_awake(gicr_base);
290 
291 	/* Disable the legacy interrupt bypass */
292 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
293 
294 	/*
295 	 * Enable system register access for EL3 and allow lower exception
296 	 * levels to configure the same for themselves. If the legacy mode is
297 	 * not supported, the SRE bit is RAO/WI
298 	 */
299 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
300 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
301 
302 	scr_el3 = read_scr_el3();
303 
304 	/*
305 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
306 	 * ICC_SRE_EL2 registers.
307 	 */
308 	write_scr_el3(scr_el3 | SCR_NS_BIT);
309 	isb();
310 
311 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
312 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
313 	isb();
314 
315 	/* Switch to secure state. */
316 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
317 	isb();
318 
319 	/* Write the secure ICC_SRE_EL1 register */
320 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
321 	isb();
322 
323 	/* Program the idle priority in the PMR */
324 	write_icc_pmr_el1(GIC_PRI_MASK);
325 
326 	/* Enable Group0 interrupts */
327 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
328 
329 	/* Enable Group1 Secure interrupts */
330 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
331 				IGRPEN1_EL3_ENABLE_G1S_BIT);
332 	isb();
333 }
334 
335 /*******************************************************************************
336  * This function disables the GIC CPU interface of the calling CPU using
337  * only system register accesses.
338  ******************************************************************************/
gicv3_cpuif_disable(unsigned int proc_num)339 void gicv3_cpuif_disable(unsigned int proc_num)
340 {
341 	uintptr_t gicr_base;
342 
343 	assert(gicv3_driver_data != NULL);
344 	assert(proc_num < gicv3_driver_data->rdistif_num);
345 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
346 
347 	assert(IS_IN_EL3());
348 
349 	/* Disable legacy interrupt bypass */
350 	write_icc_sre_el3(read_icc_sre_el3() |
351 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
352 
353 	/* Disable Group0 interrupts */
354 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
355 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
356 
357 	/* Disable Group1 Secure and Non-Secure interrupts */
358 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
359 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
360 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
361 
362 	/* Synchronise accesses to group enable registers */
363 	isb();
364 
365 	/* Mark the connected core as asleep */
366 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
367 	assert(gicr_base != 0U);
368 	gicv3_rdistif_mark_core_asleep(gicr_base);
369 }
370 
371 /*******************************************************************************
372  * This function returns the id of the highest priority pending interrupt at
373  * the GIC cpu interface.
374  ******************************************************************************/
gicv3_get_pending_interrupt_id(void)375 unsigned int gicv3_get_pending_interrupt_id(void)
376 {
377 	unsigned int id;
378 
379 	assert(IS_IN_EL3());
380 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
381 
382 	/*
383 	 * If the ID is special identifier corresponding to G1S or G1NS
384 	 * interrupt, then read the highest pending group 1 interrupt.
385 	 */
386 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) {
387 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
388 	}
389 
390 	return id;
391 }
392 
393 /*******************************************************************************
394  * This function returns the type of the highest priority pending interrupt at
395  * the GIC cpu interface. The return values can be one of the following :
396  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
397  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
398  *   0 - 1019           : The interrupt type is secure Group 0.
399  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
400  *                            sufficient priority to be signaled
401  ******************************************************************************/
gicv3_get_pending_interrupt_type(void)402 unsigned int gicv3_get_pending_interrupt_type(void)
403 {
404 	assert(IS_IN_EL3());
405 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
406 }
407 
408 /*******************************************************************************
409  * This function returns the type of the interrupt id depending upon the group
410  * this interrupt has been configured under by the interrupt controller i.e.
411  * group0 or group1 Secure / Non Secure. The return value can be one of the
412  * following :
413  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
414  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
415  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
416  *                   interrupt.
417  ******************************************************************************/
gicv3_get_interrupt_type(unsigned int id,unsigned int proc_num)418 unsigned int gicv3_get_interrupt_type(unsigned int id, unsigned int proc_num)
419 {
420 	unsigned int igroup, grpmodr;
421 	uintptr_t gicr_base;
422 
423 	assert(IS_IN_EL3());
424 	assert(gicv3_driver_data != NULL);
425 
426 	/* Ensure the parameters are valid */
427 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
428 	assert(proc_num < gicv3_driver_data->rdistif_num);
429 
430 	/* All LPI interrupts are Group 1 non secure */
431 	if (id >= MIN_LPI_ID) {
432 		return INTR_GROUP1NS;
433 	}
434 
435 	/* Check interrupt ID */
436 	if (is_sgi_ppi(id)) {
437 		/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
438 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
439 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
440 		igroup = gicr_get_igroupr(gicr_base, id);
441 		grpmodr = gicr_get_igrpmodr(gicr_base, id);
442 	} else {
443 		/* SPIs: 32-1019, ESPIs: 4096-5119 */
444 		assert(gicv3_driver_data->gicd_base != 0U);
445 		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
446 		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
447 	}
448 
449 	/*
450 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
451 	 * interrupt
452 	 */
453 	if (igroup != 0U) {
454 		return INTR_GROUP1NS;
455 	}
456 
457 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
458 	if (grpmodr != 0U) {
459 		return INTR_GROUP1S;
460 	}
461 
462 	/* Else it is a Group 0 Secure interrupt */
463 	return INTR_GROUP0;
464 }
465 
466 /*****************************************************************************
467  * Function to save and disable the GIC ITS register context. The power
468  * management of GIC ITS is implementation-defined and this function doesn't
469  * save any memory structures required to support ITS. As the sequence to save
470  * this state is implementation defined, it should be executed in platform
471  * specific code. Calling this function alone and then powering down the GIC and
472  * ITS without implementing the aforementioned platform specific code will
473  * corrupt the ITS state.
474  *
475  * This function must be invoked after the GIC CPU interface is disabled.
476  *****************************************************************************/
gicv3_its_save_disable(uintptr_t gits_base,gicv3_its_ctx_t * const its_ctx)477 void gicv3_its_save_disable(uintptr_t gits_base,
478 				gicv3_its_ctx_t * const its_ctx)
479 {
480 	unsigned int i;
481 
482 	assert(gicv3_driver_data != NULL);
483 	assert(IS_IN_EL3());
484 	assert(its_ctx != NULL);
485 	assert(gits_base != 0U);
486 
487 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
488 
489 	/* Disable the ITS */
490 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
491 
492 	/* Wait for quiescent state */
493 	gits_wait_for_quiescent_bit(gits_base);
494 
495 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
496 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
497 
498 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
499 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
500 	}
501 }
502 
503 /*****************************************************************************
504  * Function to restore the GIC ITS register context. The power
505  * management of GIC ITS is implementation defined and this function doesn't
506  * restore any memory structures required to support ITS. The assumption is
507  * that these structures are in memory and are retained during system suspend.
508  *
509  * This must be invoked before the GIC CPU interface is enabled.
510  *****************************************************************************/
gicv3_its_restore(uintptr_t gits_base,const gicv3_its_ctx_t * const its_ctx)511 void gicv3_its_restore(uintptr_t gits_base,
512 			const gicv3_its_ctx_t * const its_ctx)
513 {
514 	unsigned int i;
515 
516 	assert(gicv3_driver_data != NULL);
517 	assert(IS_IN_EL3());
518 	assert(its_ctx != NULL);
519 	assert(gits_base != 0U);
520 
521 	/* Assert that the GITS is disabled and quiescent */
522 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
523 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
524 
525 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
526 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
527 
528 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
529 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
530 	}
531 
532 	/* Restore the ITS CTLR but leave the ITS disabled */
533 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
534 }
535 
536 /*****************************************************************************
537  * Function to save the GIC Redistributor register context. This function
538  * must be invoked after CPU interface disable and prior to Distributor save.
539  *****************************************************************************/
gicv3_rdistif_save(unsigned int proc_num,gicv3_redist_ctx_t * const rdist_ctx)540 void gicv3_rdistif_save(unsigned int proc_num,
541 			gicv3_redist_ctx_t * const rdist_ctx)
542 {
543 	uintptr_t gicr_base;
544 	unsigned int i, ppi_regs_num, regs_num;
545 
546 	assert(gicv3_driver_data != NULL);
547 	assert(proc_num < gicv3_driver_data->rdistif_num);
548 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
549 	assert(IS_IN_EL3());
550 	assert(rdist_ctx != NULL);
551 
552 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
553 
554 #if GIC_EXT_INTID
555 	/* Calculate number of PPI registers */
556 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
557 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
558 	/* All other values except PPInum [0-2] are reserved */
559 	if (ppi_regs_num > 3U) {
560 		ppi_regs_num = 1U;
561 	}
562 #else
563 	ppi_regs_num = 1U;
564 #endif
565 	/*
566 	 * Wait for any write to GICR_CTLR to complete before trying to save any
567 	 * state.
568 	 */
569 	gicr_wait_for_pending_write(gicr_base);
570 
571 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
572 
573 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
574 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
575 
576 	/* 32 interrupt IDs per register */
577 	for (i = 0U; i < ppi_regs_num; ++i) {
578 		SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
579 		SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
580 		SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
581 		SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
582 		SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
583 	}
584 
585 	/* 16 interrupt IDs per GICR_ICFGR register */
586 	regs_num = ppi_regs_num << 1;
587 	for (i = 0U; i < regs_num; ++i) {
588 		SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
589 	}
590 
591 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
592 
593 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
594 	regs_num = ppi_regs_num << 3;
595 	for (i = 0U; i < regs_num; ++i) {
596 		rdist_ctx->gicr_ipriorityr[i] =
597 		gicr_ipriorityr_read(gicr_base, i);
598 	}
599 
600 	/*
601 	 * Call the pre-save hook that implements the IMP DEF sequence that may
602 	 * be required on some GIC implementations. As this may need to access
603 	 * the Redistributor registers, we pass it proc_num.
604 	 */
605 	gicv3_distif_pre_save(proc_num);
606 }
607 
608 /*****************************************************************************
609  * Function to restore the GIC Redistributor register context. We disable
610  * LPI and per-cpu interrupts before we start restore of the Redistributor.
611  * This function must be invoked after Distributor restore but prior to
612  * CPU interface enable. The pending and active interrupts are restored
613  * after the interrupts are fully configured and enabled.
614  *****************************************************************************/
gicv3_rdistif_init_restore(unsigned int proc_num,const gicv3_redist_ctx_t * const rdist_ctx)615 void gicv3_rdistif_init_restore(unsigned int proc_num,
616 				const gicv3_redist_ctx_t * const rdist_ctx)
617 {
618 	uintptr_t gicr_base;
619 	unsigned int i, ppi_regs_num, regs_num;
620 
621 	assert(gicv3_driver_data != NULL);
622 	assert(proc_num < gicv3_driver_data->rdistif_num);
623 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
624 	assert(IS_IN_EL3());
625 	assert(rdist_ctx != NULL);
626 
627 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
628 
629 #if GIC_EXT_INTID
630 	/* Calculate number of PPI registers */
631 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
632 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
633 	/* All other values except PPInum [0-2] are reserved */
634 	if (ppi_regs_num > 3U) {
635 		ppi_regs_num = 1U;
636 	}
637 #else
638 	ppi_regs_num = 1U;
639 #endif
640 	/* Power on redistributor */
641 	gicv3_rdistif_on(proc_num);
642 
643 	/*
644 	 * Call the post-restore hook that implements the IMP DEF sequence that
645 	 * may be required on some GIC implementations. As this may need to
646 	 * access the Redistributor registers, we pass it proc_num.
647 	 */
648 	gicv3_distif_post_restore(proc_num);
649 
650 	/*
651 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
652 	 * This is a more scalable approach as it avoids clearing the enable
653 	 * bits in the GICD_CTLR.
654 	 */
655 	for (i = 0U; i < ppi_regs_num; ++i) {
656 		gicr_write_icenabler(gicr_base, i, ~0U);
657 	}
658 
659 	/* Wait for pending writes to GICR_ICENABLER */
660 	gicr_wait_for_pending_write(gicr_base);
661 
662 	/*
663 	 * Disable the LPIs to avoid unpredictable behavior when writing to
664 	 * GICR_PROPBASER and GICR_PENDBASER.
665 	 */
666 	gicr_write_ctlr(gicr_base,
667 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
668 
669 	/* Restore registers' content */
670 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
671 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
672 
673 	/* 32 interrupt IDs per register */
674 	for (i = 0U; i < ppi_regs_num; ++i) {
675 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
676 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
677 	}
678 
679 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
680 	regs_num = ppi_regs_num << 3;
681 	for (i = 0U; i < regs_num; ++i) {
682 		gicr_ipriorityr_write(gicr_base, i,
683 					rdist_ctx->gicr_ipriorityr[i]);
684 	}
685 
686 	/* 16 interrupt IDs per GICR_ICFGR register */
687 	regs_num = ppi_regs_num << 1;
688 	for (i = 0U; i < regs_num; ++i) {
689 		RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
690 	}
691 
692 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
693 
694 	/* Restore after group and priorities are set.
695 	 * 32 interrupt IDs per register
696 	 */
697 	for (i = 0U; i < ppi_regs_num; ++i) {
698 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
699 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
700 	}
701 
702 	/*
703 	 * Wait for all writes to the Distributor to complete before enabling
704 	 * the SGI and (E)PPIs.
705 	 */
706 	gicr_wait_for_upstream_pending_write(gicr_base);
707 
708 	/* 32 interrupt IDs per GICR_ISENABLER register */
709 	for (i = 0U; i < ppi_regs_num; ++i) {
710 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
711 	}
712 
713 	/*
714 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
715 	 * the first write to GICR_CTLR was still in flight (this write only
716 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
717 	 * bit).
718 	 */
719 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
720 	gicr_wait_for_pending_write(gicr_base);
721 }
722 
723 /*****************************************************************************
724  * Function to save the GIC Distributor register context. This function
725  * must be invoked after CPU interface disable and Redistributor save.
726  *****************************************************************************/
gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)727 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
728 {
729 	unsigned int typer_reg, num_ints;
730 #if GIC_EXT_INTID
731 	unsigned int num_eints;
732 #endif
733 
734 	assert(gicv3_driver_data != NULL);
735 	assert(gicv3_driver_data->gicd_base != 0U);
736 	assert(IS_IN_EL3());
737 	assert(dist_ctx != NULL);
738 
739 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
740 
741 	typer_reg = gicd_read_typer(gicd_base);
742 
743 	/* Maximum SPI INTID is 32 * (GICD_TYPER.ITLinesNumber + 1) - 1 */
744 	num_ints = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
745 
746 	/* Filter out special INTIDs 1020-1023 */
747 	if (num_ints > (MAX_SPI_ID + 1U)) {
748 		num_ints = MAX_SPI_ID + 1U;
749 	}
750 
751 #if GIC_EXT_INTID
752 	/* Check if extended SPI range is implemented */
753 	if ((typer_reg & TYPER_ESPI) != 0U) {
754 		/*
755 		 * Maximum ESPI INTID is 32 * (GICD_TYPER.ESPI_range + 1) + 4095
756 		 */
757 		num_eints = ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
758 			TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID - 1;
759 	} else {
760 		num_eints = 0U;
761 	}
762 #endif
763 	/* Wait for pending write to complete */
764 	gicd_wait_for_pending_write(gicd_base);
765 
766 	/* Save the GICD_CTLR */
767 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
768 
769 	/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
770 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
771 
772 	/* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */
773 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
774 
775 	/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
776 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
777 
778 	/* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */
779 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
780 
781 	/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
782 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
783 
784 	/* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */
785 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints,	ispendr, ISPEND);
786 
787 	/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
788 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
789 
790 	/* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */
791 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
792 
793 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
794 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
795 
796 	/* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
797 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
798 
799 	/* Save GICD_ICFGR for INTIDs 32 - 1019 */
800 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
801 
802 	/* Save GICD_ICFGRE for INTIDs 4096 - 5119 */
803 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
804 
805 	/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
806 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
807 
808 	/* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */
809 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
810 
811 	/* Save GICD_NSACR for INTIDs 32 - 1019 */
812 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
813 
814 	/* Save GICD_NSACRE for INTIDs 4096 - 5119 */
815 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
816 
817 	/* Save GICD_IROUTER for INTIDs 32 - 1019 */
818 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
819 
820 	/* Save GICD_IROUTERE for INTIDs 4096 - 5119 */
821 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
822 
823 	/*
824 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
825 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
826 	 * driver.
827 	 */
828 }
829 
830 /*****************************************************************************
831  * Function to restore the GIC Distributor register context. We disable G0, G1S
832  * and G1NS interrupt groups before we start restore of the Distributor. This
833  * function must be invoked prior to Redistributor restore and CPU interface
834  * enable. The pending and active interrupts are restored after the interrupts
835  * are fully configured and enabled.
836  *****************************************************************************/
gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)837 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
838 {
839 	unsigned int typer_reg, num_ints;
840 #if GIC_EXT_INTID
841 	unsigned int num_eints;
842 #endif
843 
844 	assert(gicv3_driver_data != NULL);
845 	assert(gicv3_driver_data->gicd_base != 0U);
846 	assert(IS_IN_EL3());
847 	assert(dist_ctx != NULL);
848 
849 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
850 
851 	/*
852 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
853 	 * the ARE_S bit. The Distributor might generate a system error
854 	 * otherwise.
855 	 */
856 	gicd_clr_ctlr(gicd_base,
857 		      CTLR_ENABLE_G0_BIT |
858 		      CTLR_ENABLE_G1S_BIT |
859 		      CTLR_ENABLE_G1NS_BIT,
860 		      RWP_TRUE);
861 
862 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
863 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
864 
865 	typer_reg = gicd_read_typer(gicd_base);
866 
867 	/* Maximum SPI INTID is 32 * (GICD_TYPER.ITLinesNumber + 1) - 1 */
868 	num_ints = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
869 
870 	/* Filter out special INTIDs 1020-1023 */
871 	if (num_ints > (MAX_SPI_ID + 1U)) {
872 		num_ints = MAX_SPI_ID + 1U;
873 	}
874 
875 #if GIC_EXT_INTID
876 	/* Check if extended SPI range is implemented */
877 	if ((typer_reg & TYPER_ESPI) != 0U) {
878 		/*
879 		 * Maximum ESPI INTID is 32 * (GICD_TYPER.ESPI_range + 1) + 4095
880 		 */
881 		num_eints = ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
882 			TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID - 1;
883 	} else {
884 		num_eints = 0U;
885 	}
886 #endif
887 	/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
888 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
889 
890 	/* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */
891 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
892 
893 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
894 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
895 
896 	/* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
897 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
898 
899 	/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
900 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
901 
902 	/* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */
903 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
904 
905 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
906 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
907 
908 	/* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */
909 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
910 
911 	/* Restore GICD_NSACR for INTIDs 32 - 1019 */
912 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
913 
914 	/* Restore GICD_NSACRE for INTIDs 4096 - 5119 */
915 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
916 
917 	/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
918 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
919 
920 	/* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */
921 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
922 
923 	/*
924 	 * Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after
925 	 * the interrupts are configured.
926 	 */
927 
928 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
929 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
930 
931 	/* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */
932 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
933 
934 	/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
935 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
936 
937 	/* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */
938 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
939 
940 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
941 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
942 
943 	/* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */
944 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
945 
946 	/* Restore the GICD_CTLR */
947 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
948 	gicd_wait_for_pending_write(gicd_base);
949 }
950 
951 /*******************************************************************************
952  * This function gets the priority of the interrupt the processor is currently
953  * servicing.
954  ******************************************************************************/
gicv3_get_running_priority(void)955 unsigned int gicv3_get_running_priority(void)
956 {
957 	return (unsigned int)read_icc_rpr_el1();
958 }
959 
960 /*******************************************************************************
961  * This function checks if the interrupt identified by id is active (whether the
962  * state is either active, or active and pending). The proc_num is used if the
963  * interrupt is SGI or (E)PPI and programs the corresponding Redistributor
964  * interface.
965  ******************************************************************************/
gicv3_get_interrupt_active(unsigned int id,unsigned int proc_num)966 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
967 {
968 	assert(gicv3_driver_data != NULL);
969 	assert(gicv3_driver_data->gicd_base != 0U);
970 	assert(proc_num < gicv3_driver_data->rdistif_num);
971 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
972 
973 	/* Check interrupt ID */
974 	if (is_sgi_ppi(id)) {
975 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
976 		return gicr_get_isactiver(
977 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
978 	}
979 
980 	/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
981 	return gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
982 }
983 
984 /*******************************************************************************
985  * This function enables the interrupt identified by id. The proc_num
986  * is used if the interrupt is SGI or PPI, and programs the corresponding
987  * Redistributor interface.
988  ******************************************************************************/
gicv3_enable_interrupt(unsigned int id,unsigned int proc_num)989 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
990 {
991 	assert(gicv3_driver_data != NULL);
992 	assert(gicv3_driver_data->gicd_base != 0U);
993 	assert(proc_num < gicv3_driver_data->rdistif_num);
994 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
995 
996 	/*
997 	 * Ensure that any shared variable updates depending on out of band
998 	 * interrupt trigger are observed before enabling interrupt.
999 	 */
1000 	dsbishst();
1001 
1002 	/* Check interrupt ID */
1003 	if (is_sgi_ppi(id)) {
1004 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1005 		gicr_set_isenabler(
1006 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1007 	} else {
1008 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1009 		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
1010 	}
1011 }
1012 
1013 /*******************************************************************************
1014  * This function disables the interrupt identified by id. The proc_num
1015  * is used if the interrupt is SGI or PPI, and programs the corresponding
1016  * Redistributor interface.
1017  ******************************************************************************/
gicv3_disable_interrupt(unsigned int id,unsigned int proc_num)1018 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
1019 {
1020 	assert(gicv3_driver_data != NULL);
1021 	assert(gicv3_driver_data->gicd_base != 0U);
1022 	assert(proc_num < gicv3_driver_data->rdistif_num);
1023 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1024 
1025 	/*
1026 	 * Disable interrupt, and ensure that any shared variable updates
1027 	 * depending on out of band interrupt trigger are observed afterwards.
1028 	 */
1029 
1030 	/* Check interrupt ID */
1031 	if (is_sgi_ppi(id)) {
1032 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1033 		gicr_set_icenabler(
1034 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1035 
1036 		/* Write to clear enable requires waiting for pending writes */
1037 		gicr_wait_for_pending_write(
1038 			gicv3_driver_data->rdistif_base_addrs[proc_num]);
1039 	} else {
1040 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1041 		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
1042 
1043 		/* Write to clear enable requires waiting for pending writes */
1044 		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
1045 	}
1046 
1047 	dsbishst();
1048 }
1049 
1050 /*******************************************************************************
1051  * This function sets the interrupt priority as supplied for the given interrupt
1052  * id.
1053  ******************************************************************************/
gicv3_set_interrupt_priority(unsigned int id,unsigned int proc_num,unsigned int priority)1054 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
1055 		unsigned int priority)
1056 {
1057 	uintptr_t gicr_base;
1058 
1059 	assert(gicv3_driver_data != NULL);
1060 	assert(gicv3_driver_data->gicd_base != 0U);
1061 	assert(proc_num < gicv3_driver_data->rdistif_num);
1062 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1063 
1064 	/* Check interrupt ID */
1065 	if (is_sgi_ppi(id)) {
1066 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1067 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1068 		gicr_set_ipriorityr(gicr_base, id, priority);
1069 	} else {
1070 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1071 		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
1072 	}
1073 }
1074 
1075 /*******************************************************************************
1076  * This function assigns group for the interrupt identified by id. The proc_num
1077  * is used if the interrupt is SGI or (E)PPI, and programs the corresponding
1078  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
1079  ******************************************************************************/
gicv3_set_interrupt_type(unsigned int id,unsigned int proc_num,unsigned int type)1080 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
1081 		unsigned int type)
1082 {
1083 	bool igroup = false, grpmod = false;
1084 	uintptr_t gicr_base;
1085 
1086 	assert(gicv3_driver_data != NULL);
1087 	assert(gicv3_driver_data->gicd_base != 0U);
1088 	assert(proc_num < gicv3_driver_data->rdistif_num);
1089 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1090 
1091 	switch (type) {
1092 	case INTR_GROUP1S:
1093 		igroup = false;
1094 		grpmod = true;
1095 		break;
1096 	case INTR_GROUP0:
1097 		igroup = false;
1098 		grpmod = false;
1099 		break;
1100 	case INTR_GROUP1NS:
1101 		igroup = true;
1102 		grpmod = false;
1103 		break;
1104 	default:
1105 		assert(false);
1106 		break;
1107 	}
1108 
1109 	/* Check interrupt ID */
1110 	if (is_sgi_ppi(id)) {
1111 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1112 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1113 
1114 		igroup ? gicr_set_igroupr(gicr_base, id) :
1115 			 gicr_clr_igroupr(gicr_base, id);
1116 		grpmod ? gicr_set_igrpmodr(gicr_base, id) :
1117 			 gicr_clr_igrpmodr(gicr_base, id);
1118 	} else {
1119 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1120 
1121 		/* Serialize read-modify-write to Distributor registers */
1122 		spin_lock(&gic_lock);
1123 
1124 		igroup ? gicd_set_igroupr(gicv3_driver_data->gicd_base, id) :
1125 			 gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
1126 		grpmod ? gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id) :
1127 			 gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
1128 
1129 		spin_unlock(&gic_lock);
1130 	}
1131 }
1132 
1133 /*******************************************************************************
1134  * This function raises the specified Secure Group 0 SGI.
1135  *
1136  * The target parameter must be a valid MPIDR in the system.
1137  ******************************************************************************/
gicv3_raise_secure_g0_sgi(unsigned int sgi_num,u_register_t target)1138 void gicv3_raise_secure_g0_sgi(unsigned int sgi_num, u_register_t target)
1139 {
1140 	unsigned int tgt, aff3, aff2, aff1, aff0;
1141 	uint64_t sgi_val;
1142 
1143 	/* Verify interrupt number is in the SGI range */
1144 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1145 
1146 	/* Extract affinity fields from target */
1147 	aff0 = MPIDR_AFFLVL0_VAL(target);
1148 	aff1 = MPIDR_AFFLVL1_VAL(target);
1149 	aff2 = MPIDR_AFFLVL2_VAL(target);
1150 	aff3 = MPIDR_AFFLVL3_VAL(target);
1151 
1152 	/*
1153 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1154 	 * this PE.
1155 	 */
1156 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1157 	tgt = BIT_32(aff0);
1158 
1159 	/* Raise SGI to PE specified by its affinity */
1160 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1161 			tgt);
1162 
1163 	/*
1164 	 * Ensure that any shared variable updates depending on out of band
1165 	 * interrupt trigger are observed before raising SGI.
1166 	 */
1167 	dsbishst();
1168 	write_icc_sgi0r_el1(sgi_val);
1169 	isb();
1170 }
1171 
1172 /*******************************************************************************
1173  * This function sets the interrupt routing for the given (E)SPI interrupt id.
1174  * The interrupt routing is specified in routing mode and mpidr.
1175  *
1176  * The routing mode can be either of:
1177  *  - GICV3_IRM_ANY
1178  *  - GICV3_IRM_PE
1179  *
1180  * The mpidr is the affinity of the PE to which the interrupt will be routed,
1181  * and is ignored for routing mode GICV3_IRM_ANY.
1182  ******************************************************************************/
gicv3_set_spi_routing(unsigned int id,unsigned int irm,u_register_t mpidr)1183 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1184 {
1185 	unsigned long long aff;
1186 	uint64_t router;
1187 
1188 	assert(gicv3_driver_data != NULL);
1189 	assert(gicv3_driver_data->gicd_base != 0U);
1190 
1191 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1192 
1193 	assert(IS_SPI(id));
1194 
1195 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1196 	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
1197 
1198 	/*
1199 	 * In implementations that do not require 1 of N distribution of SPIs,
1200 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1201 	 */
1202 	if (irm == GICV3_IRM_ANY) {
1203 		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
1204 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1205 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1206 			panic();
1207 		}
1208 	}
1209 }
1210 
1211 /*******************************************************************************
1212  * This function clears the pending status of an interrupt identified by id.
1213  * The proc_num is used if the interrupt is SGI or (E)PPI, and programs the
1214  * corresponding Redistributor interface.
1215  ******************************************************************************/
gicv3_clear_interrupt_pending(unsigned int id,unsigned int proc_num)1216 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1217 {
1218 	assert(gicv3_driver_data != NULL);
1219 	assert(gicv3_driver_data->gicd_base != 0U);
1220 	assert(proc_num < gicv3_driver_data->rdistif_num);
1221 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1222 
1223 	/*
1224 	 * Clear pending interrupt, and ensure that any shared variable updates
1225 	 * depending on out of band interrupt trigger are observed afterwards.
1226 	 */
1227 
1228 	/* Check interrupt ID */
1229 	if (is_sgi_ppi(id)) {
1230 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1231 		gicr_set_icpendr(
1232 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1233 	} else {
1234 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1235 		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
1236 	}
1237 
1238 	dsbishst();
1239 }
1240 
1241 /*******************************************************************************
1242  * This function sets the pending status of an interrupt identified by id.
1243  * The proc_num is used if the interrupt is SGI or PPI and programs the
1244  * corresponding Redistributor interface.
1245  ******************************************************************************/
gicv3_set_interrupt_pending(unsigned int id,unsigned int proc_num)1246 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1247 {
1248 	assert(gicv3_driver_data != NULL);
1249 	assert(gicv3_driver_data->gicd_base != 0U);
1250 	assert(proc_num < gicv3_driver_data->rdistif_num);
1251 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1252 
1253 	/*
1254 	 * Ensure that any shared variable updates depending on out of band
1255 	 * interrupt trigger are observed before setting interrupt pending.
1256 	 */
1257 	dsbishst();
1258 
1259 	/* Check interrupt ID */
1260 	if (is_sgi_ppi(id)) {
1261 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1262 		gicr_set_ispendr(
1263 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1264 	} else {
1265 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1266 		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
1267 	}
1268 }
1269 
1270 /*******************************************************************************
1271  * This function sets the PMR register with the supplied value. Returns the
1272  * original PMR.
1273  ******************************************************************************/
gicv3_set_pmr(unsigned int mask)1274 unsigned int gicv3_set_pmr(unsigned int mask)
1275 {
1276 	unsigned int old_mask;
1277 
1278 	old_mask = (unsigned int)read_icc_pmr_el1();
1279 
1280 	/*
1281 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1282 	 * before potential out of band interrupt trigger because of PMR update.
1283 	 * PMR system register writes are self-synchronizing, so no ISB required
1284 	 * thereafter.
1285 	 */
1286 	dsbishst();
1287 	write_icc_pmr_el1(mask);
1288 
1289 	return old_mask;
1290 }
1291 
1292 /*******************************************************************************
1293  * This function delegates the responsibility of discovering the corresponding
1294  * Redistributor frames to each CPU itself. It is a modified version of
1295  * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
1296  * unlike the previous way in which only the Primary CPU did the discovery of
1297  * all the Redistributor frames for every CPU. It also handles the scenario in
1298  * which the frames of various CPUs are not contiguous in physical memory.
1299  ******************************************************************************/
gicv3_rdistif_probe(const uintptr_t gicr_frame)1300 int gicv3_rdistif_probe(const uintptr_t gicr_frame)
1301 {
1302 	u_register_t mpidr;
1303 	unsigned int proc_num, proc_self;
1304 	uint64_t typer_val;
1305 	uintptr_t rdistif_base;
1306 	bool gicr_frame_found = false;
1307 
1308 	assert(gicv3_driver_data->gicr_base == 0U);
1309 
1310 	/* Ensure this function is called with Data Cache enabled */
1311 #ifndef __aarch64__
1312 	assert((read_sctlr() & SCTLR_C_BIT) != 0U);
1313 #else
1314 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1315 #endif /* !__aarch64__ */
1316 
1317 	proc_self = gicv3_driver_data->mpidr_to_core_pos(read_mpidr_el1());
1318 	rdistif_base = gicr_frame;
1319 	do {
1320 		typer_val = gicr_read_typer(rdistif_base);
1321 		if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
1322 			mpidr = mpidr_from_gicr_typer(typer_val);
1323 			proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
1324 		} else {
1325 			proc_num = (unsigned int)(typer_val >>
1326 				TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK;
1327 		}
1328 		if (proc_num == proc_self) {
1329 			/* The base address doesn't need to be initialized on
1330 			 * every warm boot.
1331 			 */
1332 			if (gicv3_driver_data->rdistif_base_addrs[proc_num]
1333 								!= 0U) {
1334 				return 0;
1335 			}
1336 			gicv3_driver_data->rdistif_base_addrs[proc_num] =
1337 			rdistif_base;
1338 			gicr_frame_found = true;
1339 			break;
1340 		}
1341 		rdistif_base += (uintptr_t)(ULL(1) << GICR_PCPUBASE_SHIFT);
1342 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
1343 
1344 	if (!gicr_frame_found) {
1345 		return -1;
1346 	}
1347 
1348 	/*
1349 	 * Flush the driver data to ensure coherency. This is
1350 	 * not required if platform has HW_ASSISTED_COHERENCY
1351 	 * enabled.
1352 	 */
1353 #if !HW_ASSISTED_COHERENCY
1354 	/*
1355 	 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
1356 	 */
1357 	flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
1358 		sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
1359 #endif
1360 	return 0; /* Found matching GICR frame */
1361 }
1362 
1363 /******************************************************************************
1364  * This function checks the interrupt ID and returns true for SGIs and (E)PPIs
1365  * and false for (E)SPIs IDs.
1366  *****************************************************************************/
is_sgi_ppi(unsigned int id)1367 static bool is_sgi_ppi(unsigned int id)
1368 {
1369 	/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
1370 	if (IS_SGI_PPI(id)) {
1371 		return true;
1372 	}
1373 
1374 	/* SPIs: 32-1019, ESPIs: 4096-5119 */
1375 	if (IS_SPI(id)) {
1376 		return false;
1377 	}
1378 
1379 	assert(false);
1380 	panic();
1381 }
1382