• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- NoRecursionCheck.cpp - clang-tidy --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NoRecursionCheck.h"
10 #include "clang/AST/ASTContext.h"
11 #include "clang/ASTMatchers/ASTMatchFinder.h"
12 #include "clang/Analysis/CallGraph.h"
13 #include "llvm/ADT/DenseMapInfo.h"
14 #include "llvm/ADT/SCCIterator.h"
15 
16 using namespace clang::ast_matchers;
17 
18 namespace clang {
19 namespace tidy {
20 namespace misc {
21 
22 namespace {
23 
24 /// Much like SmallSet, with two differences:
25 /// 1. It can *only* be constructed from an ArrayRef<>. If the element count
26 ///    is small, there is no copy and said storage *must* outlive us.
27 /// 2. it is immutable, the way it was constructed it will stay.
28 template <typename T, unsigned SmallSize> class ImmutableSmallSet {
29   ArrayRef<T> Vector;
30   llvm::DenseSet<T> Set;
31 
32   static_assert(SmallSize <= 32, "N should be small");
33 
isSmall() const34   bool isSmall() const { return Set.empty(); }
35 
36 public:
37   using size_type = size_t;
38 
39   ImmutableSmallSet() = delete;
40   ImmutableSmallSet(const ImmutableSmallSet &) = delete;
41   ImmutableSmallSet(ImmutableSmallSet &&) = delete;
42   T &operator=(const ImmutableSmallSet &) = delete;
43   T &operator=(ImmutableSmallSet &&) = delete;
44 
45   // WARNING: Storage *must* outlive us if we decide that the size is small.
ImmutableSmallSet(ArrayRef<T> Storage)46   ImmutableSmallSet(ArrayRef<T> Storage) {
47     // Is size small-enough to just keep using the existing storage?
48     if (Storage.size() <= SmallSize) {
49       Vector = Storage;
50       return;
51     }
52 
53     // We've decided that it isn't performant to keep using vector.
54     // Let's migrate the data into Set.
55     Set.reserve(Storage.size());
56     Set.insert(Storage.begin(), Storage.end());
57   }
58 
59   /// count - Return 1 if the element is in the set, 0 otherwise.
count(const T & V) const60   size_type count(const T &V) const {
61     if (isSmall()) {
62       // Since the collection is small, just do a linear search.
63       return llvm::find(Vector, V) == Vector.end() ? 0 : 1;
64     }
65 
66     return Set.count(V);
67   }
68 };
69 
70 /// Much like SmallSetVector, but with one difference:
71 /// when the size is \p SmallSize or less, when checking whether an element is
72 /// already in the set or not, we perform linear search over the vector,
73 /// but if the size is larger than \p SmallSize, we look in set.
74 /// FIXME: upstream this into SetVector/SmallSetVector itself.
75 template <typename T, unsigned SmallSize> class SmartSmallSetVector {
76 public:
77   using size_type = size_t;
78 
79 private:
80   SmallVector<T, SmallSize> Vector;
81   llvm::DenseSet<T> Set;
82 
83   static_assert(SmallSize <= 32, "N should be small");
84 
85   // Are we still using Vector for uniqness tracking?
isSmall() const86   bool isSmall() const { return Set.empty(); }
87 
88   // Will one more entry cause Vector to switch away from small-size storage?
entiretyOfVectorSmallSizeIsOccupied() const89   bool entiretyOfVectorSmallSizeIsOccupied() const {
90     assert(isSmall() && Vector.size() <= SmallSize &&
91            "Shouldn't ask if we have already [should have] migrated into Set.");
92     return Vector.size() == SmallSize;
93   }
94 
populateSet()95   void populateSet() {
96     assert(Set.empty() && "Should not have already utilized the Set.");
97     // Magical growth factor prediction - to how many elements do we expect to
98     // sanely grow after switching away from small-size storage?
99     const size_t NewMaxElts = 4 * Vector.size();
100     Vector.reserve(NewMaxElts);
101     Set.reserve(NewMaxElts);
102     Set.insert(Vector.begin(), Vector.end());
103   }
104 
105   /// count - Return 1 if the element is in the set, 0 otherwise.
count(const T & V) const106   size_type count(const T &V) const {
107     if (isSmall()) {
108       // Since the collection is small, just do a linear search.
109       return llvm::find(Vector, V) == Vector.end() ? 0 : 1;
110     }
111     // Look-up in the Set.
112     return Set.count(V);
113   }
114 
setInsert(const T & V)115   bool setInsert(const T &V) {
116     if (count(V) != 0)
117       return false; // Already exists.
118     // Does not exist, Can/need to record it.
119     if (isSmall()) { // Are we still using Vector for uniqness tracking?
120       // Will one more entry fit within small-sized Vector?
121       if (!entiretyOfVectorSmallSizeIsOccupied())
122         return true; // We'll insert into vector right afterwards anyway.
123       // Time to switch to Set.
124       populateSet();
125     }
126     // Set time!
127     // Note that this must be after `populateSet()` might have been called.
128     bool SetInsertionSucceeded = Set.insert(V).second;
129     (void)SetInsertionSucceeded;
130     assert(SetInsertionSucceeded && "We did check that no such value existed");
131     return true;
132   }
133 
134 public:
135   /// Insert a new element into the SmartSmallSetVector.
136   /// \returns true if the element was inserted into the SmartSmallSetVector.
insert(const T & X)137   bool insert(const T &X) {
138     bool result = setInsert(X);
139     if (result)
140       Vector.push_back(X);
141     return result;
142   }
143 
144   /// Clear the SmartSmallSetVector and return the underlying vector.
takeVector()145   decltype(Vector) takeVector() {
146     Set.clear();
147     return std::move(Vector);
148   }
149 };
150 
151 constexpr unsigned SmallCallStackSize = 16;
152 constexpr unsigned SmallSCCSize = 32;
153 
154 using CallStackTy =
155     llvm::SmallVector<CallGraphNode::CallRecord, SmallCallStackSize>;
156 
157 // In given SCC, find *some* call stack that will be cyclic.
158 // This will only find *one* such stack, it might not be the smallest one,
159 // and there may be other loops.
PathfindSomeCycle(ArrayRef<CallGraphNode * > SCC)160 CallStackTy PathfindSomeCycle(ArrayRef<CallGraphNode *> SCC) {
161   // We'll need to be able to performantly look up whether some CallGraphNode
162   // is in SCC or not, so cache all the SCC elements in a set.
163   const ImmutableSmallSet<CallGraphNode *, SmallSCCSize> SCCElts(SCC);
164 
165   // Is node N part if the current SCC?
166   auto NodeIsPartOfSCC = [&SCCElts](CallGraphNode *N) {
167     return SCCElts.count(N) != 0;
168   };
169 
170   // Track the call stack that will cause a cycle.
171   SmartSmallSetVector<CallGraphNode::CallRecord, SmallCallStackSize>
172       CallStackSet;
173 
174   // Arbitrairly take the first element of SCC as entry point.
175   CallGraphNode::CallRecord EntryNode(SCC.front(), /*CallExpr=*/nullptr);
176   // Continue recursing into subsequent callees that are part of this SCC,
177   // and are thus known to be part of the call graph loop, until loop forms.
178   CallGraphNode::CallRecord *Node = &EntryNode;
179   while (true) {
180     // Did we see this node before?
181     if (!CallStackSet.insert(*Node))
182       break; // Cycle completed! Note that didn't insert the node into stack!
183     // Else, perform depth-first traversal: out of all callees, pick first one
184     // that is part of this SCC. This is not guaranteed to yield shortest cycle.
185     Node = llvm::find_if(Node->Callee->callees(), NodeIsPartOfSCC);
186   }
187 
188   // Note that we failed to insert the last node, that completes the cycle.
189   // But we really want to have it. So insert it manually into stack only.
190   CallStackTy CallStack = CallStackSet.takeVector();
191   CallStack.emplace_back(*Node);
192 
193   return CallStack;
194 }
195 
196 } // namespace
197 
registerMatchers(MatchFinder * Finder)198 void NoRecursionCheck::registerMatchers(MatchFinder *Finder) {
199   Finder->addMatcher(translationUnitDecl().bind("TUDecl"), this);
200 }
201 
handleSCC(ArrayRef<CallGraphNode * > SCC)202 void NoRecursionCheck::handleSCC(ArrayRef<CallGraphNode *> SCC) {
203   assert(!SCC.empty() && "Empty SCC does not make sense.");
204 
205   // First of all, call out every strongly connected function.
206   for (CallGraphNode *N : SCC) {
207     FunctionDecl *D = N->getDefinition();
208     diag(D->getLocation(), "function %0 is within a recursive call chain") << D;
209   }
210 
211   // Now, SCC only tells us about strongly connected function declarations in
212   // the call graph. It doesn't *really* tell us about the cycles they form.
213   // And there may be more than one cycle in SCC.
214   // So let's form a call stack that eventually exposes *some* cycle.
215   const CallStackTy EventuallyCyclicCallStack = PathfindSomeCycle(SCC);
216   assert(!EventuallyCyclicCallStack.empty() && "We should've found the cycle");
217 
218   // While last node of the call stack does cause a loop, due to the way we
219   // pathfind the cycle, the loop does not necessarily begin at the first node
220   // of the call stack, so drop front nodes of the call stack until it does.
221   const auto CyclicCallStack =
222       ArrayRef<CallGraphNode::CallRecord>(EventuallyCyclicCallStack)
223           .drop_until([LastNode = EventuallyCyclicCallStack.back()](
224                           CallGraphNode::CallRecord FrontNode) {
225             return FrontNode == LastNode;
226           });
227   assert(CyclicCallStack.size() >= 2 && "Cycle requires at least 2 frames");
228 
229   // Which function we decided to be the entry point that lead to the recursion?
230   FunctionDecl *CycleEntryFn = CyclicCallStack.front().Callee->getDefinition();
231   // And now, for ease of understanding, let's print the call sequence that
232   // forms the cycle in question.
233   diag(CycleEntryFn->getLocation(),
234        "example recursive call chain, starting from function %0",
235        DiagnosticIDs::Note)
236       << CycleEntryFn;
237   for (int CurFrame = 1, NumFrames = CyclicCallStack.size();
238        CurFrame != NumFrames; ++CurFrame) {
239     CallGraphNode::CallRecord PrevNode = CyclicCallStack[CurFrame - 1];
240     CallGraphNode::CallRecord CurrNode = CyclicCallStack[CurFrame];
241 
242     Decl *PrevDecl = PrevNode.Callee->getDecl();
243     Decl *CurrDecl = CurrNode.Callee->getDecl();
244 
245     diag(CurrNode.CallExpr->getBeginLoc(),
246          "Frame #%0: function %1 calls function %2 here:", DiagnosticIDs::Note)
247         << CurFrame << cast<NamedDecl>(PrevDecl) << cast<NamedDecl>(CurrDecl);
248   }
249 
250   diag(CyclicCallStack.back().CallExpr->getBeginLoc(),
251        "... which was the starting point of the recursive call chain; there "
252        "may be other cycles",
253        DiagnosticIDs::Note);
254 }
255 
check(const MatchFinder::MatchResult & Result)256 void NoRecursionCheck::check(const MatchFinder::MatchResult &Result) {
257   // Build call graph for the entire translation unit.
258   const auto *TU = Result.Nodes.getNodeAs<TranslationUnitDecl>("TUDecl");
259   CallGraph CG;
260   CG.addToCallGraph(const_cast<TranslationUnitDecl *>(TU));
261 
262   // Look for cycles in call graph,
263   // by looking for Strongly Connected Components (SCC's)
264   for (llvm::scc_iterator<CallGraph *> SCCI = llvm::scc_begin(&CG),
265                                        SCCE = llvm::scc_end(&CG);
266        SCCI != SCCE; ++SCCI) {
267     if (!SCCI.hasCycle()) // We only care about cycles, not standalone nodes.
268       continue;
269     handleSCC(*SCCI);
270   }
271 }
272 
273 } // namespace misc
274 } // namespace tidy
275 } // namespace clang
276