• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the generic implementation of LoopInfo used for both Loops and
10 // MachineLoops.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
15 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
16 
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/Dominators.h"
22 
23 namespace llvm {
24 
25 //===----------------------------------------------------------------------===//
26 // APIs for simple analysis of the loop. See header notes.
27 
28 /// getExitingBlocks - Return all blocks inside the loop that have successors
29 /// outside of the loop.  These are the blocks _inside of the current loop_
30 /// which branch out.  The returned list is always unique.
31 ///
32 template <class BlockT, class LoopT>
getExitingBlocks(SmallVectorImpl<BlockT * > & ExitingBlocks)33 void LoopBase<BlockT, LoopT>::getExitingBlocks(
34     SmallVectorImpl<BlockT *> &ExitingBlocks) const {
35   assert(!isInvalid() && "Loop not in a valid state!");
36   for (const auto BB : blocks())
37     for (auto *Succ : children<BlockT *>(BB))
38       if (!contains(Succ)) {
39         // Not in current loop? It must be an exit block.
40         ExitingBlocks.push_back(BB);
41         break;
42       }
43 }
44 
45 /// getExitingBlock - If getExitingBlocks would return exactly one block,
46 /// return that block. Otherwise return null.
47 template <class BlockT, class LoopT>
getExitingBlock()48 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
49   assert(!isInvalid() && "Loop not in a valid state!");
50   SmallVector<BlockT *, 8> ExitingBlocks;
51   getExitingBlocks(ExitingBlocks);
52   if (ExitingBlocks.size() == 1)
53     return ExitingBlocks[0];
54   return nullptr;
55 }
56 
57 /// getExitBlocks - Return all of the successor blocks of this loop.  These
58 /// are the blocks _outside of the current loop_ which are branched to.
59 ///
60 template <class BlockT, class LoopT>
getExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)61 void LoopBase<BlockT, LoopT>::getExitBlocks(
62     SmallVectorImpl<BlockT *> &ExitBlocks) const {
63   assert(!isInvalid() && "Loop not in a valid state!");
64   for (const auto BB : blocks())
65     for (auto *Succ : children<BlockT *>(BB))
66       if (!contains(Succ))
67         // Not in current loop? It must be an exit block.
68         ExitBlocks.push_back(Succ);
69 }
70 
71 template <class BlockT, class LoopT>
hasNoExitBlocks()72 bool LoopBase<BlockT, LoopT>::hasNoExitBlocks() const {
73   SmallVector<BlockT *, 8> ExitBlocks;
74   getExitBlocks(ExitBlocks);
75   return ExitBlocks.empty();
76 }
77 
78 /// getExitBlock - If getExitBlocks would return exactly one block,
79 /// return that block. Otherwise return null.
80 template <class BlockT, class LoopT>
getExitBlock()81 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
82   assert(!isInvalid() && "Loop not in a valid state!");
83   SmallVector<BlockT *, 8> ExitBlocks;
84   getExitBlocks(ExitBlocks);
85   if (ExitBlocks.size() == 1)
86     return ExitBlocks[0];
87   return nullptr;
88 }
89 
90 template <class BlockT, class LoopT>
hasDedicatedExits()91 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
92   // Each predecessor of each exit block of a normal loop is contained
93   // within the loop.
94   SmallVector<BlockT *, 4> UniqueExitBlocks;
95   getUniqueExitBlocks(UniqueExitBlocks);
96   for (BlockT *EB : UniqueExitBlocks)
97     for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
98       if (!contains(Predecessor))
99         return false;
100   // All the requirements are met.
101   return true;
102 }
103 
104 // Helper function to get unique loop exits. Pred is a predicate pointing to
105 // BasicBlocks in a loop which should be considered to find loop exits.
106 template <class BlockT, class LoopT, typename PredicateT>
getUniqueExitBlocksHelper(const LoopT * L,SmallVectorImpl<BlockT * > & ExitBlocks,PredicateT Pred)107 void getUniqueExitBlocksHelper(const LoopT *L,
108                                SmallVectorImpl<BlockT *> &ExitBlocks,
109                                PredicateT Pred) {
110   assert(!L->isInvalid() && "Loop not in a valid state!");
111   SmallPtrSet<BlockT *, 32> Visited;
112   auto Filtered = make_filter_range(L->blocks(), Pred);
113   for (BlockT *BB : Filtered)
114     for (BlockT *Successor : children<BlockT *>(BB))
115       if (!L->contains(Successor))
116         if (Visited.insert(Successor).second)
117           ExitBlocks.push_back(Successor);
118 }
119 
120 template <class BlockT, class LoopT>
getUniqueExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)121 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
122     SmallVectorImpl<BlockT *> &ExitBlocks) const {
123   getUniqueExitBlocksHelper(this, ExitBlocks,
124                             [](const BlockT *BB) { return true; });
125 }
126 
127 template <class BlockT, class LoopT>
getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)128 void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
129     SmallVectorImpl<BlockT *> &ExitBlocks) const {
130   const BlockT *Latch = getLoopLatch();
131   assert(Latch && "Latch block must exists");
132   getUniqueExitBlocksHelper(this, ExitBlocks,
133                             [Latch](const BlockT *BB) { return BB != Latch; });
134 }
135 
136 template <class BlockT, class LoopT>
getUniqueExitBlock()137 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
138   SmallVector<BlockT *, 8> UniqueExitBlocks;
139   getUniqueExitBlocks(UniqueExitBlocks);
140   if (UniqueExitBlocks.size() == 1)
141     return UniqueExitBlocks[0];
142   return nullptr;
143 }
144 
145 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
146 template <class BlockT, class LoopT>
getExitEdges(SmallVectorImpl<Edge> & ExitEdges)147 void LoopBase<BlockT, LoopT>::getExitEdges(
148     SmallVectorImpl<Edge> &ExitEdges) const {
149   assert(!isInvalid() && "Loop not in a valid state!");
150   for (const auto BB : blocks())
151     for (auto *Succ : children<BlockT *>(BB))
152       if (!contains(Succ))
153         // Not in current loop? It must be an exit block.
154         ExitEdges.emplace_back(BB, Succ);
155 }
156 
157 /// getLoopPreheader - If there is a preheader for this loop, return it.  A
158 /// loop has a preheader if there is only one edge to the header of the loop
159 /// from outside of the loop and it is legal to hoist instructions into the
160 /// predecessor. If this is the case, the block branching to the header of the
161 /// loop is the preheader node.
162 ///
163 /// This method returns null if there is no preheader for the loop.
164 ///
165 template <class BlockT, class LoopT>
getLoopPreheader()166 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
167   assert(!isInvalid() && "Loop not in a valid state!");
168   // Keep track of nodes outside the loop branching to the header...
169   BlockT *Out = getLoopPredecessor();
170   if (!Out)
171     return nullptr;
172 
173   // Make sure we are allowed to hoist instructions into the predecessor.
174   if (!Out->isLegalToHoistInto())
175     return nullptr;
176 
177   // Make sure there is only one exit out of the preheader.
178   typedef GraphTraits<BlockT *> BlockTraits;
179   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
180   ++SI;
181   if (SI != BlockTraits::child_end(Out))
182     return nullptr; // Multiple exits from the block, must not be a preheader.
183 
184   // The predecessor has exactly one successor, so it is a preheader.
185   return Out;
186 }
187 
188 /// getLoopPredecessor - If the given loop's header has exactly one unique
189 /// predecessor outside the loop, return it. Otherwise return null.
190 /// This is less strict that the loop "preheader" concept, which requires
191 /// the predecessor to have exactly one successor.
192 ///
193 template <class BlockT, class LoopT>
getLoopPredecessor()194 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
195   assert(!isInvalid() && "Loop not in a valid state!");
196   // Keep track of nodes outside the loop branching to the header...
197   BlockT *Out = nullptr;
198 
199   // Loop over the predecessors of the header node...
200   BlockT *Header = getHeader();
201   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
202     if (!contains(Pred)) { // If the block is not in the loop...
203       if (Out && Out != Pred)
204         return nullptr; // Multiple predecessors outside the loop
205       Out = Pred;
206     }
207   }
208 
209   return Out;
210 }
211 
212 /// getLoopLatch - If there is a single latch block for this loop, return it.
213 /// A latch block is a block that contains a branch back to the header.
214 template <class BlockT, class LoopT>
getLoopLatch()215 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
216   assert(!isInvalid() && "Loop not in a valid state!");
217   BlockT *Header = getHeader();
218   BlockT *Latch = nullptr;
219   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
220     if (contains(Pred)) {
221       if (Latch)
222         return nullptr;
223       Latch = Pred;
224     }
225   }
226 
227   return Latch;
228 }
229 
230 //===----------------------------------------------------------------------===//
231 // APIs for updating loop information after changing the CFG
232 //
233 
234 /// addBasicBlockToLoop - This method is used by other analyses to update loop
235 /// information.  NewBB is set to be a new member of the current loop.
236 /// Because of this, it is added as a member of all parent loops, and is added
237 /// to the specified LoopInfo object as being in the current basic block.  It
238 /// is not valid to replace the loop header with this method.
239 ///
240 template <class BlockT, class LoopT>
addBasicBlockToLoop(BlockT * NewBB,LoopInfoBase<BlockT,LoopT> & LIB)241 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
242     BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
243   assert(!isInvalid() && "Loop not in a valid state!");
244 #ifndef NDEBUG
245   if (!Blocks.empty()) {
246     auto SameHeader = LIB[getHeader()];
247     assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
248            "Incorrect LI specified for this loop!");
249   }
250 #endif
251   assert(NewBB && "Cannot add a null basic block to the loop!");
252   assert(!LIB[NewBB] && "BasicBlock already in the loop!");
253 
254   LoopT *L = static_cast<LoopT *>(this);
255 
256   // Add the loop mapping to the LoopInfo object...
257   LIB.BBMap[NewBB] = L;
258 
259   // Add the basic block to this loop and all parent loops...
260   while (L) {
261     L->addBlockEntry(NewBB);
262     L = L->getParentLoop();
263   }
264 }
265 
266 /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
267 /// the OldChild entry in our children list with NewChild, and updates the
268 /// parent pointer of OldChild to be null and the NewChild to be this loop.
269 /// This updates the loop depth of the new child.
270 template <class BlockT, class LoopT>
replaceChildLoopWith(LoopT * OldChild,LoopT * NewChild)271 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
272                                                    LoopT *NewChild) {
273   assert(!isInvalid() && "Loop not in a valid state!");
274   assert(OldChild->ParentLoop == this && "This loop is already broken!");
275   assert(!NewChild->ParentLoop && "NewChild already has a parent!");
276   typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
277   assert(I != SubLoops.end() && "OldChild not in loop!");
278   *I = NewChild;
279   OldChild->ParentLoop = nullptr;
280   NewChild->ParentLoop = static_cast<LoopT *>(this);
281 }
282 
283 /// verifyLoop - Verify loop structure
284 template <class BlockT, class LoopT>
verifyLoop()285 void LoopBase<BlockT, LoopT>::verifyLoop() const {
286   assert(!isInvalid() && "Loop not in a valid state!");
287 #ifndef NDEBUG
288   assert(!Blocks.empty() && "Loop header is missing");
289 
290   // Setup for using a depth-first iterator to visit every block in the loop.
291   SmallVector<BlockT *, 8> ExitBBs;
292   getExitBlocks(ExitBBs);
293   df_iterator_default_set<BlockT *> VisitSet;
294   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
295   df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
296       BI = df_ext_begin(getHeader(), VisitSet),
297       BE = df_ext_end(getHeader(), VisitSet);
298 
299   // Keep track of the BBs visited.
300   SmallPtrSet<BlockT *, 8> VisitedBBs;
301 
302   // Check the individual blocks.
303   for (; BI != BE; ++BI) {
304     BlockT *BB = *BI;
305 
306     assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
307                        GraphTraits<BlockT *>::child_end(BB),
308                        [&](BlockT *B) { return contains(B); }) &&
309            "Loop block has no in-loop successors!");
310 
311     assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
312                        GraphTraits<Inverse<BlockT *>>::child_end(BB),
313                        [&](BlockT *B) { return contains(B); }) &&
314            "Loop block has no in-loop predecessors!");
315 
316     SmallVector<BlockT *, 2> OutsideLoopPreds;
317     std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
318                   GraphTraits<Inverse<BlockT *>>::child_end(BB),
319                   [&](BlockT *B) {
320                     if (!contains(B))
321                       OutsideLoopPreds.push_back(B);
322                   });
323 
324     if (BB == getHeader()) {
325       assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
326     } else if (!OutsideLoopPreds.empty()) {
327       // A non-header loop shouldn't be reachable from outside the loop,
328       // though it is permitted if the predecessor is not itself actually
329       // reachable.
330       BlockT *EntryBB = &BB->getParent()->front();
331       for (BlockT *CB : depth_first(EntryBB))
332         for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
333           assert(CB != OutsideLoopPreds[i] &&
334                  "Loop has multiple entry points!");
335     }
336     assert(BB != &getHeader()->getParent()->front() &&
337            "Loop contains function entry block!");
338 
339     VisitedBBs.insert(BB);
340   }
341 
342   if (VisitedBBs.size() != getNumBlocks()) {
343     dbgs() << "The following blocks are unreachable in the loop: ";
344     for (auto BB : Blocks) {
345       if (!VisitedBBs.count(BB)) {
346         dbgs() << *BB << "\n";
347       }
348     }
349     assert(false && "Unreachable block in loop");
350   }
351 
352   // Check the subloops.
353   for (iterator I = begin(), E = end(); I != E; ++I)
354     // Each block in each subloop should be contained within this loop.
355     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
356          BI != BE; ++BI) {
357       assert(contains(*BI) &&
358              "Loop does not contain all the blocks of a subloop!");
359     }
360 
361   // Check the parent loop pointer.
362   if (ParentLoop) {
363     assert(is_contained(*ParentLoop, this) &&
364            "Loop is not a subloop of its parent!");
365   }
366 #endif
367 }
368 
369 /// verifyLoop - Verify loop structure of this loop and all nested loops.
370 template <class BlockT, class LoopT>
verifyLoopNest(DenseSet<const LoopT * > * Loops)371 void LoopBase<BlockT, LoopT>::verifyLoopNest(
372     DenseSet<const LoopT *> *Loops) const {
373   assert(!isInvalid() && "Loop not in a valid state!");
374   Loops->insert(static_cast<const LoopT *>(this));
375   // Verify this loop.
376   verifyLoop();
377   // Verify the subloops.
378   for (iterator I = begin(), E = end(); I != E; ++I)
379     (*I)->verifyLoopNest(Loops);
380 }
381 
382 template <class BlockT, class LoopT>
print(raw_ostream & OS,unsigned Depth,bool Verbose)383 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
384                                     bool Verbose) const {
385   OS.indent(Depth * 2);
386   if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
387     OS << "Parallel ";
388   OS << "Loop at depth " << getLoopDepth() << " containing: ";
389 
390   BlockT *H = getHeader();
391   for (unsigned i = 0; i < getBlocks().size(); ++i) {
392     BlockT *BB = getBlocks()[i];
393     if (!Verbose) {
394       if (i)
395         OS << ",";
396       BB->printAsOperand(OS, false);
397     } else
398       OS << "\n";
399 
400     if (BB == H)
401       OS << "<header>";
402     if (isLoopLatch(BB))
403       OS << "<latch>";
404     if (isLoopExiting(BB))
405       OS << "<exiting>";
406     if (Verbose)
407       BB->print(OS);
408   }
409   OS << "\n";
410 
411   for (iterator I = begin(), E = end(); I != E; ++I)
412     (*I)->print(OS, Depth + 2);
413 }
414 
415 //===----------------------------------------------------------------------===//
416 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
417 /// result does / not depend on use list (block predecessor) order.
418 ///
419 
420 /// Discover a subloop with the specified backedges such that: All blocks within
421 /// this loop are mapped to this loop or a subloop. And all subloops within this
422 /// loop have their parent loop set to this loop or a subloop.
423 template <class BlockT, class LoopT>
discoverAndMapSubloop(LoopT * L,ArrayRef<BlockT * > Backedges,LoopInfoBase<BlockT,LoopT> * LI,const DomTreeBase<BlockT> & DomTree)424 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
425                                   LoopInfoBase<BlockT, LoopT> *LI,
426                                   const DomTreeBase<BlockT> &DomTree) {
427   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
428 
429   unsigned NumBlocks = 0;
430   unsigned NumSubloops = 0;
431 
432   // Perform a backward CFG traversal using a worklist.
433   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
434   while (!ReverseCFGWorklist.empty()) {
435     BlockT *PredBB = ReverseCFGWorklist.back();
436     ReverseCFGWorklist.pop_back();
437 
438     LoopT *Subloop = LI->getLoopFor(PredBB);
439     if (!Subloop) {
440       if (!DomTree.isReachableFromEntry(PredBB))
441         continue;
442 
443       // This is an undiscovered block. Map it to the current loop.
444       LI->changeLoopFor(PredBB, L);
445       ++NumBlocks;
446       if (PredBB == L->getHeader())
447         continue;
448       // Push all block predecessors on the worklist.
449       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
450                                 InvBlockTraits::child_begin(PredBB),
451                                 InvBlockTraits::child_end(PredBB));
452     } else {
453       // This is a discovered block. Find its outermost discovered loop.
454       while (LoopT *Parent = Subloop->getParentLoop())
455         Subloop = Parent;
456 
457       // If it is already discovered to be a subloop of this loop, continue.
458       if (Subloop == L)
459         continue;
460 
461       // Discover a subloop of this loop.
462       Subloop->setParentLoop(L);
463       ++NumSubloops;
464       NumBlocks += Subloop->getBlocksVector().capacity();
465       PredBB = Subloop->getHeader();
466       // Continue traversal along predecessors that are not loop-back edges from
467       // within this subloop tree itself. Note that a predecessor may directly
468       // reach another subloop that is not yet discovered to be a subloop of
469       // this loop, which we must traverse.
470       for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
471         if (LI->getLoopFor(Pred) != Subloop)
472           ReverseCFGWorklist.push_back(Pred);
473       }
474     }
475   }
476   L->getSubLoopsVector().reserve(NumSubloops);
477   L->reserveBlocks(NumBlocks);
478 }
479 
480 /// Populate all loop data in a stable order during a single forward DFS.
481 template <class BlockT, class LoopT> class PopulateLoopsDFS {
482   typedef GraphTraits<BlockT *> BlockTraits;
483   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
484 
485   LoopInfoBase<BlockT, LoopT> *LI;
486 
487 public:
PopulateLoopsDFS(LoopInfoBase<BlockT,LoopT> * li)488   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
489 
490   void traverse(BlockT *EntryBlock);
491 
492 protected:
493   void insertIntoLoop(BlockT *Block);
494 };
495 
496 /// Top-level driver for the forward DFS within the loop.
497 template <class BlockT, class LoopT>
traverse(BlockT * EntryBlock)498 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
499   for (BlockT *BB : post_order(EntryBlock))
500     insertIntoLoop(BB);
501 }
502 
503 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
504 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
505 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
506 template <class BlockT, class LoopT>
insertIntoLoop(BlockT * Block)507 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
508   LoopT *Subloop = LI->getLoopFor(Block);
509   if (Subloop && Block == Subloop->getHeader()) {
510     // We reach this point once per subloop after processing all the blocks in
511     // the subloop.
512     if (!Subloop->isOutermost())
513       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
514     else
515       LI->addTopLevelLoop(Subloop);
516 
517     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
518     // the lists, except for the loop header, which is always at the beginning.
519     Subloop->reverseBlock(1);
520     std::reverse(Subloop->getSubLoopsVector().begin(),
521                  Subloop->getSubLoopsVector().end());
522 
523     Subloop = Subloop->getParentLoop();
524   }
525   for (; Subloop; Subloop = Subloop->getParentLoop())
526     Subloop->addBlockEntry(Block);
527 }
528 
529 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
530 /// interleaved with backward CFG traversals within each subloop
531 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
532 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
533 /// Block vectors are then populated during a single forward CFG traversal
534 /// (PopulateLoopDFS).
535 ///
536 /// During the two CFG traversals each block is seen three times:
537 /// 1) Discovered and mapped by a reverse CFG traversal.
538 /// 2) Visited during a forward DFS CFG traversal.
539 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
540 ///
541 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
542 /// insertions per block.
543 template <class BlockT, class LoopT>
analyze(const DomTreeBase<BlockT> & DomTree)544 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
545   // Postorder traversal of the dominator tree.
546   const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
547   for (auto DomNode : post_order(DomRoot)) {
548 
549     BlockT *Header = DomNode->getBlock();
550     SmallVector<BlockT *, 4> Backedges;
551 
552     // Check each predecessor of the potential loop header.
553     for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
554       // If Header dominates predBB, this is a new loop. Collect the backedges.
555       if (DomTree.dominates(Header, Backedge) &&
556           DomTree.isReachableFromEntry(Backedge)) {
557         Backedges.push_back(Backedge);
558       }
559     }
560     // Perform a backward CFG traversal to discover and map blocks in this loop.
561     if (!Backedges.empty()) {
562       LoopT *L = AllocateLoop(Header);
563       discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
564     }
565   }
566   // Perform a single forward CFG traversal to populate block and subloop
567   // vectors for all loops.
568   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
569   DFS.traverse(DomRoot->getBlock());
570 }
571 
572 template <class BlockT, class LoopT>
getLoopsInPreorder()573 SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
574   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
575   // The outer-most loop actually goes into the result in the same relative
576   // order as we walk it. But LoopInfo stores the top level loops in reverse
577   // program order so for here we reverse it to get forward program order.
578   // FIXME: If we change the order of LoopInfo we will want to remove the
579   // reverse here.
580   for (LoopT *RootL : reverse(*this)) {
581     auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
582     PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
583                          PreOrderLoopsInRootL.end());
584   }
585 
586   return PreOrderLoops;
587 }
588 
589 template <class BlockT, class LoopT>
590 SmallVector<LoopT *, 4>
getLoopsInReverseSiblingPreorder()591 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
592   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
593   // The outer-most loop actually goes into the result in the same relative
594   // order as we walk it. LoopInfo stores the top level loops in reverse
595   // program order so we walk in order here.
596   // FIXME: If we change the order of LoopInfo we will want to add a reverse
597   // here.
598   for (LoopT *RootL : *this) {
599     assert(PreOrderWorklist.empty() &&
600            "Must start with an empty preorder walk worklist.");
601     PreOrderWorklist.push_back(RootL);
602     do {
603       LoopT *L = PreOrderWorklist.pop_back_val();
604       // Sub-loops are stored in forward program order, but will process the
605       // worklist backwards so we can just append them in order.
606       PreOrderWorklist.append(L->begin(), L->end());
607       PreOrderLoops.push_back(L);
608     } while (!PreOrderWorklist.empty());
609   }
610 
611   return PreOrderLoops;
612 }
613 
614 // Debugging
615 template <class BlockT, class LoopT>
print(raw_ostream & OS)616 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
617   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
618     TopLevelLoops[i]->print(OS);
619 #if 0
620   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
621          E = BBMap.end(); I != E; ++I)
622     OS << "BB '" << I->first->getName() << "' level = "
623        << I->second->getLoopDepth() << "\n";
624 #endif
625 }
626 
627 template <typename T>
compareVectors(std::vector<T> & BB1,std::vector<T> & BB2)628 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
629   llvm::sort(BB1);
630   llvm::sort(BB2);
631   return BB1 == BB2;
632 }
633 
634 template <class BlockT, class LoopT>
addInnerLoopsToHeadersMap(DenseMap<BlockT *,const LoopT * > & LoopHeaders,const LoopInfoBase<BlockT,LoopT> & LI,const LoopT & L)635 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
636                                const LoopInfoBase<BlockT, LoopT> &LI,
637                                const LoopT &L) {
638   LoopHeaders[L.getHeader()] = &L;
639   for (LoopT *SL : L)
640     addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
641 }
642 
643 #ifndef NDEBUG
644 template <class BlockT, class LoopT>
compareLoops(const LoopT * L,const LoopT * OtherL,DenseMap<BlockT *,const LoopT * > & OtherLoopHeaders)645 static void compareLoops(const LoopT *L, const LoopT *OtherL,
646                          DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
647   BlockT *H = L->getHeader();
648   BlockT *OtherH = OtherL->getHeader();
649   assert(H == OtherH &&
650          "Mismatched headers even though found in the same map entry!");
651 
652   assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
653          "Mismatched loop depth!");
654   const LoopT *ParentL = L, *OtherParentL = OtherL;
655   do {
656     assert(ParentL->getHeader() == OtherParentL->getHeader() &&
657            "Mismatched parent loop headers!");
658     ParentL = ParentL->getParentLoop();
659     OtherParentL = OtherParentL->getParentLoop();
660   } while (ParentL);
661 
662   for (const LoopT *SubL : *L) {
663     BlockT *SubH = SubL->getHeader();
664     const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
665     assert(OtherSubL && "Inner loop is missing in computed loop info!");
666     OtherLoopHeaders.erase(SubH);
667     compareLoops(SubL, OtherSubL, OtherLoopHeaders);
668   }
669 
670   std::vector<BlockT *> BBs = L->getBlocks();
671   std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
672   assert(compareVectors(BBs, OtherBBs) &&
673          "Mismatched basic blocks in the loops!");
674 
675   const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
676   const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet = L->getBlocksSet();
677   assert(BlocksSet.size() == OtherBlocksSet.size() &&
678          std::all_of(BlocksSet.begin(), BlocksSet.end(),
679                      [&OtherBlocksSet](const BlockT *BB) {
680                        return OtherBlocksSet.count(BB);
681                      }) &&
682          "Mismatched basic blocks in BlocksSets!");
683 }
684 #endif
685 
686 template <class BlockT, class LoopT>
verify(const DomTreeBase<BlockT> & DomTree)687 void LoopInfoBase<BlockT, LoopT>::verify(
688     const DomTreeBase<BlockT> &DomTree) const {
689   DenseSet<const LoopT *> Loops;
690   for (iterator I = begin(), E = end(); I != E; ++I) {
691     assert((*I)->isOutermost() && "Top-level loop has a parent!");
692     (*I)->verifyLoopNest(&Loops);
693   }
694 
695 // Verify that blocks are mapped to valid loops.
696 #ifndef NDEBUG
697   for (auto &Entry : BBMap) {
698     const BlockT *BB = Entry.first;
699     LoopT *L = Entry.second;
700     assert(Loops.count(L) && "orphaned loop");
701     assert(L->contains(BB) && "orphaned block");
702     for (LoopT *ChildLoop : *L)
703       assert(!ChildLoop->contains(BB) &&
704              "BBMap should point to the innermost loop containing BB");
705   }
706 
707   // Recompute LoopInfo to verify loops structure.
708   LoopInfoBase<BlockT, LoopT> OtherLI;
709   OtherLI.analyze(DomTree);
710 
711   // Build a map we can use to move from our LI to the computed one. This
712   // allows us to ignore the particular order in any layer of the loop forest
713   // while still comparing the structure.
714   DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
715   for (LoopT *L : OtherLI)
716     addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
717 
718   // Walk the top level loops and ensure there is a corresponding top-level
719   // loop in the computed version and then recursively compare those loop
720   // nests.
721   for (LoopT *L : *this) {
722     BlockT *Header = L->getHeader();
723     const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
724     assert(OtherL && "Top level loop is missing in computed loop info!");
725     // Now that we've matched this loop, erase its header from the map.
726     OtherLoopHeaders.erase(Header);
727     // And recursively compare these loops.
728     compareLoops(L, OtherL, OtherLoopHeaders);
729   }
730 
731   // Any remaining entries in the map are loops which were found when computing
732   // a fresh LoopInfo but not present in the current one.
733   if (!OtherLoopHeaders.empty()) {
734     for (const auto &HeaderAndLoop : OtherLoopHeaders)
735       dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
736     llvm_unreachable("Found new loops when recomputing LoopInfo!");
737   }
738 #endif
739 }
740 
741 } // End llvm namespace
742 
743 #endif
744