• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /** @file brw_fs_generator.cpp
25  *
26  * This file supports generating code from the FS LIR to the actual
27  * native instructions.
28  */
29 
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33 #include "util/mesa-sha1.h"
34 
35 static enum brw_reg_file
brw_file_from_reg(fs_reg * reg)36 brw_file_from_reg(fs_reg *reg)
37 {
38    switch (reg->file) {
39    case ARF:
40       return BRW_ARCHITECTURE_REGISTER_FILE;
41    case FIXED_GRF:
42    case VGRF:
43       return BRW_GENERAL_REGISTER_FILE;
44    case MRF:
45       return BRW_MESSAGE_REGISTER_FILE;
46    case IMM:
47       return BRW_IMMEDIATE_VALUE;
48    case BAD_FILE:
49    case ATTR:
50    case UNIFORM:
51       unreachable("not reached");
52    }
53    return BRW_ARCHITECTURE_REGISTER_FILE;
54 }
55 
56 static struct brw_reg
brw_reg_from_fs_reg(const struct gen_device_info * devinfo,fs_inst * inst,fs_reg * reg,bool compressed)57 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
58                     fs_reg *reg, bool compressed)
59 {
60    struct brw_reg brw_reg;
61 
62    switch (reg->file) {
63    case MRF:
64       assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
65       /* Fallthrough */
66    case VGRF:
67       if (reg->stride == 0) {
68          brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
69       } else {
70          /* From the Haswell PRM:
71           *
72           *  "VertStride must be used to cross GRF register boundaries. This
73           *   rule implies that elements within a 'Width' cannot cross GRF
74           *   boundaries."
75           *
76           * The maximum width value that could satisfy this restriction is:
77           */
78          const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
79 
80          /* Because the hardware can only split source regions at a whole
81           * multiple of width during decompression (i.e. vertically), clamp
82           * the value obtained above to the physical execution size of a
83           * single decompressed chunk of the instruction:
84           */
85          const unsigned phys_width = compressed ? inst->exec_size / 2 :
86                                      inst->exec_size;
87 
88          const unsigned max_hw_width = 16;
89 
90          /* XXX - The equation above is strictly speaking not correct on
91           *       hardware that supports unbalanced GRF writes -- On Gen9+
92           *       each decompressed chunk of the instruction may have a
93           *       different execution size when the number of components
94           *       written to each destination GRF is not the same.
95           */
96          if (reg->stride > 4) {
97             assert(reg != &inst->dst);
98             assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
99             brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
100             brw_reg = stride(brw_reg, reg->stride, 1, 0);
101          } else {
102             const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
103             brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
104             brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
105          }
106 
107          if (devinfo->gen == 7 && !devinfo->is_haswell) {
108             /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
109              *  "Each DF (Double Float) operand uses an element size of 4 rather
110              *   than 8 and all regioning parameters are twice what the values
111              *   would be based on the true element size: ExecSize, Width,
112              *   HorzStride, and VertStride. Each DF operand uses a pair of
113              *   channels and all masking and swizzing should be adjusted
114              *   appropriately."
115              *
116              * From the IvyBridge PRM (Special Requirements for Handling Double
117              * Precision Data Types, page 71):
118              *  "In Align1 mode, all regioning parameters like stride, execution
119              *   size, and width must use the syntax of a pair of packed
120              *   floats. The offsets for these data types must be 64-bit
121              *   aligned. The execution size and regioning parameters are in terms
122              *   of floats."
123              *
124              * Summarized: when handling DF-typed arguments, ExecSize,
125              * VertStride, and Width must be doubled.
126              *
127              * It applies to BayTrail too.
128              */
129             if (type_sz(reg->type) == 8) {
130                brw_reg.width++;
131                if (brw_reg.vstride > 0)
132                   brw_reg.vstride++;
133                assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
134             }
135 
136             /* When converting from DF->F, we set the destination stride to 2
137              * because each d2f conversion implicitly writes 2 floats, being
138              * the first one the converted value. IVB/BYT actually writes two
139              * F components per SIMD channel, and every other component is
140              * filled with garbage.
141              */
142             if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
143                 type_sz(inst->dst.type) < 8) {
144                assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
145                brw_reg.hstride--;
146             }
147          }
148       }
149 
150       brw_reg = retype(brw_reg, reg->type);
151       brw_reg = byte_offset(brw_reg, reg->offset);
152       brw_reg.abs = reg->abs;
153       brw_reg.negate = reg->negate;
154       break;
155    case ARF:
156    case FIXED_GRF:
157    case IMM:
158       assert(reg->offset == 0);
159       brw_reg = reg->as_brw_reg();
160       break;
161    case BAD_FILE:
162       /* Probably unused. */
163       brw_reg = brw_null_reg();
164       break;
165    case ATTR:
166    case UNIFORM:
167       unreachable("not reached");
168    }
169 
170    /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
171     * region, but on IVB and BYT DF regions must be programmed in terms of
172     * floats. A <0,2,1> region accomplishes this.
173     */
174    if (devinfo->gen == 7 && !devinfo->is_haswell &&
175        type_sz(reg->type) == 8 &&
176        brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
177        brw_reg.width == BRW_WIDTH_1 &&
178        brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
179       brw_reg.width = BRW_WIDTH_2;
180       brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
181    }
182 
183    return brw_reg;
184 }
185 
fs_generator(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,struct brw_stage_prog_data * prog_data,bool runtime_check_aads_emit,gl_shader_stage stage)186 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
187                            void *mem_ctx,
188                            struct brw_stage_prog_data *prog_data,
189                            bool runtime_check_aads_emit,
190                            gl_shader_stage stage)
191 
192    : compiler(compiler), log_data(log_data),
193      devinfo(compiler->devinfo),
194      prog_data(prog_data), dispatch_width(0),
195      runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
196      shader_name(NULL), stage(stage), mem_ctx(mem_ctx)
197 {
198    p = rzalloc(mem_ctx, struct brw_codegen);
199    brw_init_codegen(devinfo, p, mem_ctx);
200 
201    /* In the FS code generator, we are very careful to ensure that we always
202     * set the right execution size so we don't need the EU code to "help" us
203     * by trying to infer it.  Sometimes, it infers the wrong thing.
204     */
205    p->automatic_exec_sizes = false;
206 }
207 
~fs_generator()208 fs_generator::~fs_generator()
209 {
210 }
211 
212 class ip_record : public exec_node {
213 public:
214    DECLARE_RALLOC_CXX_OPERATORS(ip_record)
215 
ip_record(int ip)216    ip_record(int ip)
217    {
218       this->ip = ip;
219    }
220 
221    int ip;
222 };
223 
224 bool
patch_discard_jumps_to_fb_writes()225 fs_generator::patch_discard_jumps_to_fb_writes()
226 {
227    if (this->discard_halt_patches.is_empty())
228       return false;
229 
230    int scale = brw_jump_scale(p->devinfo);
231 
232    if (devinfo->gen >= 6) {
233       /* There is a somewhat strange undocumented requirement of using
234        * HALT, according to the simulator.  If some channel has HALTed to
235        * a particular UIP, then by the end of the program, every channel
236        * must have HALTed to that UIP.  Furthermore, the tracking is a
237        * stack, so you can't do the final halt of a UIP after starting
238        * halting to a new UIP.
239        *
240        * Symptoms of not emitting this instruction on actual hardware
241        * included GPU hangs and sparkly rendering on the piglit discard
242        * tests.
243        */
244       brw_inst *last_halt = brw_HALT(p);
245       brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
246       brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
247    }
248 
249    int ip = p->nr_insn;
250 
251    foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
252       brw_inst *patch = &p->store[patch_ip->ip];
253 
254       assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
255       if (devinfo->gen >= 6) {
256          /* HALT takes a half-instruction distance from the pre-incremented IP. */
257          brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
258       } else {
259          brw_set_src1(p, patch, brw_imm_d((ip - patch_ip->ip) * scale));
260       }
261    }
262 
263    this->discard_halt_patches.make_empty();
264 
265    if (devinfo->gen < 6) {
266       /* From the g965 PRM:
267        *
268        *    "As DMask is not automatically reloaded into AMask upon completion
269        *    of this instruction, software has to manually restore AMask upon
270        *    completion."
271        *
272        * DMask lives in the bottom 16 bits of sr0.1.
273        */
274       brw_inst *reset = brw_MOV(p, brw_mask_reg(BRW_AMASK),
275                                    retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW));
276       brw_inst_set_exec_size(devinfo, reset, BRW_EXECUTE_1);
277       brw_inst_set_mask_control(devinfo, reset, BRW_MASK_DISABLE);
278       brw_inst_set_qtr_control(devinfo, reset, BRW_COMPRESSION_NONE);
279       brw_inst_set_thread_control(devinfo, reset, BRW_THREAD_SWITCH);
280    }
281 
282    if (devinfo->gen == 4 && !devinfo->is_g4x) {
283       /* From the g965 PRM:
284        *
285        *    "[DevBW, DevCL] Erratum: The subfields in mask stack register are
286        *    reset to zero during graphics reset, however, they are not
287        *    initialized at thread dispatch. These subfields will retain the
288        *    values from the previous thread. Software should make sure the
289        *    mask stack is empty (reset to zero) before terminating the thread.
290        *    In case that this is not practical, software may have to reset the
291        *    mask stack at the beginning of each kernel, which will impact the
292        *    performance."
293        *
294        * Luckily we can rely on:
295        *
296        *    "[DevBW, DevCL] This register access restriction is not
297        *    applicable, hardware does ensure execution pipeline coherency,
298        *    when a mask stack register is used as an explicit source and/or
299        *    destination."
300        */
301       brw_push_insn_state(p);
302       brw_set_default_mask_control(p, BRW_MASK_DISABLE);
303       brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
304 
305       brw_set_default_exec_size(p, BRW_EXECUTE_2);
306       brw_MOV(p, vec2(brw_mask_stack_depth_reg(0)), brw_imm_uw(0));
307 
308       brw_set_default_exec_size(p, BRW_EXECUTE_16);
309       /* Reset the if stack. */
310       brw_MOV(p, retype(brw_mask_stack_reg(0), BRW_REGISTER_TYPE_UW),
311               brw_imm_uw(0));
312 
313       brw_pop_insn_state(p);
314    }
315 
316    return true;
317 }
318 
319 void
generate_send(fs_inst * inst,struct brw_reg dst,struct brw_reg desc,struct brw_reg ex_desc,struct brw_reg payload,struct brw_reg payload2)320 fs_generator::generate_send(fs_inst *inst,
321                             struct brw_reg dst,
322                             struct brw_reg desc,
323                             struct brw_reg ex_desc,
324                             struct brw_reg payload,
325                             struct brw_reg payload2)
326 {
327    const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
328                             dst.nr == BRW_ARF_NULL;
329    const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
330 
331    uint32_t desc_imm = inst->desc |
332       brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
333 
334    uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
335 
336    if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
337       /* If we have any sort of extended descriptor, then we need SENDS.  This
338        * also covers the dual-payload case because ex_mlen goes in ex_desc.
339        */
340       brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
341                                       desc, desc_imm, ex_desc, ex_desc_imm,
342                                       inst->eot);
343       if (inst->check_tdr)
344          brw_inst_set_opcode(p->devinfo, brw_last_inst,
345                              devinfo->gen >= 12 ? BRW_OPCODE_SENDC : BRW_OPCODE_SENDSC);
346    } else {
347       brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
348                                    inst->eot);
349       if (inst->check_tdr)
350          brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
351    }
352 }
353 
354 void
fire_fb_write(fs_inst * inst,struct brw_reg payload,struct brw_reg implied_header,GLuint nr)355 fs_generator::fire_fb_write(fs_inst *inst,
356                             struct brw_reg payload,
357                             struct brw_reg implied_header,
358                             GLuint nr)
359 {
360    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
361 
362    if (devinfo->gen < 6) {
363       brw_push_insn_state(p);
364       brw_set_default_exec_size(p, BRW_EXECUTE_8);
365       brw_set_default_mask_control(p, BRW_MASK_DISABLE);
366       brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
367       brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
368       brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
369               offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
370       brw_pop_insn_state(p);
371    }
372 
373    uint32_t msg_control = brw_fb_write_msg_control(inst, prog_data);
374 
375    /* We assume render targets start at 0, because headerless FB write
376     * messages set "Render Target Index" to 0.  Using a different binding
377     * table index would make it impossible to use headerless messages.
378     */
379    const uint32_t surf_index = inst->target;
380 
381    brw_inst *insn = brw_fb_WRITE(p,
382                                  payload,
383                                  retype(implied_header, BRW_REGISTER_TYPE_UW),
384                                  msg_control,
385                                  surf_index,
386                                  nr,
387                                  0,
388                                  inst->eot,
389                                  inst->last_rt,
390                                  inst->header_size != 0);
391 
392    if (devinfo->gen >= 6)
393       brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
394 }
395 
396 void
generate_fb_write(fs_inst * inst,struct brw_reg payload)397 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
398 {
399    if (devinfo->gen < 8 && !devinfo->is_haswell) {
400       brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
401       brw_set_default_flag_reg(p, 0, 0);
402    }
403 
404    const struct brw_reg implied_header =
405       devinfo->gen < 6 ? payload : brw_null_reg();
406 
407    if (inst->base_mrf >= 0)
408       payload = brw_message_reg(inst->base_mrf);
409 
410    if (!runtime_check_aads_emit) {
411       fire_fb_write(inst, payload, implied_header, inst->mlen);
412    } else {
413       /* This can only happen in gen < 6 */
414       assert(devinfo->gen < 6);
415 
416       struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
417 
418       /* Check runtime bit to detect if we have to send AA data or not */
419       brw_push_insn_state(p);
420       brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
421       brw_set_default_exec_size(p, BRW_EXECUTE_1);
422       brw_AND(p,
423               v1_null_ud,
424               retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
425               brw_imm_ud(1<<26));
426       brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
427 
428       int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
429       brw_pop_insn_state(p);
430       {
431          /* Don't send AA data */
432          fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
433       }
434       brw_land_fwd_jump(p, jmp);
435       fire_fb_write(inst, payload, implied_header, inst->mlen);
436    }
437 }
438 
439 void
generate_fb_read(fs_inst * inst,struct brw_reg dst,struct brw_reg payload)440 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
441                                struct brw_reg payload)
442 {
443    assert(inst->size_written % REG_SIZE == 0);
444    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
445    /* We assume that render targets start at binding table index 0. */
446    const unsigned surf_index = inst->target;
447 
448    gen9_fb_READ(p, dst, payload, surf_index,
449                 inst->header_size, inst->size_written / REG_SIZE,
450                 prog_data->persample_dispatch);
451 }
452 
453 void
generate_mov_indirect(fs_inst * inst,struct brw_reg dst,struct brw_reg reg,struct brw_reg indirect_byte_offset)454 fs_generator::generate_mov_indirect(fs_inst *inst,
455                                     struct brw_reg dst,
456                                     struct brw_reg reg,
457                                     struct brw_reg indirect_byte_offset)
458 {
459    assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
460    assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
461    assert(!reg.abs && !reg.negate);
462    assert(reg.type == dst.type);
463 
464    unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
465 
466    if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
467       imm_byte_offset += indirect_byte_offset.ud;
468 
469       reg.nr = imm_byte_offset / REG_SIZE;
470       reg.subnr = imm_byte_offset % REG_SIZE;
471       if (type_sz(reg.type) > 4 && !devinfo->has_64bit_float) {
472          brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
473                     subscript(reg, BRW_REGISTER_TYPE_D, 0));
474          brw_set_default_swsb(p, tgl_swsb_null());
475          brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
476                     subscript(reg, BRW_REGISTER_TYPE_D, 1));
477       } else {
478          brw_MOV(p, dst, reg);
479       }
480    } else {
481       /* Prior to Broadwell, there are only 8 address registers. */
482       assert(inst->exec_size <= 8 || devinfo->gen >= 8);
483 
484       /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
485       struct brw_reg addr = vec8(brw_address_reg(0));
486 
487       /* Whether we can use destination dependency control without running the
488        * risk of a hang if an instruction gets shot down.
489        */
490       const bool use_dep_ctrl = !inst->predicate &&
491                                 inst->exec_size == dispatch_width;
492       brw_inst *insn;
493 
494       /* The destination stride of an instruction (in bytes) must be greater
495        * than or equal to the size of the rest of the instruction.  Since the
496        * address register is of type UW, we can't use a D-type instruction.
497        * In order to get around this, re retype to UW and use a stride.
498        */
499       indirect_byte_offset =
500          retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
501 
502       /* There are a number of reasons why we don't use the base offset here.
503        * One reason is that the field is only 9 bits which means we can only
504        * use it to access the first 16 GRFs.  Also, from the Haswell PRM
505        * section "Register Region Restrictions":
506        *
507        *    "The lower bits of the AddressImmediate must not overflow to
508        *    change the register address.  The lower 5 bits of Address
509        *    Immediate when added to lower 5 bits of address register gives
510        *    the sub-register offset. The upper bits of Address Immediate
511        *    when added to upper bits of address register gives the register
512        *    address. Any overflow from sub-register offset is dropped."
513        *
514        * Since the indirect may cause us to cross a register boundary, this
515        * makes the base offset almost useless.  We could try and do something
516        * clever where we use a actual base offset if base_offset % 32 == 0 but
517        * that would mean we were generating different code depending on the
518        * base offset.  Instead, for the sake of consistency, we'll just do the
519        * add ourselves.  This restriction is only listed in the Haswell PRM
520        * but empirical testing indicates that it applies on all older
521        * generations and is lifted on Broadwell.
522        *
523        * In the end, while base_offset is nice to look at in the generated
524        * code, using it saves us 0 instructions and would require quite a bit
525        * of case-by-case work.  It's just not worth it.
526        *
527        * Due to a hardware bug some platforms (particularly Gen11+) seem to
528        * require the address components of all channels to be valid whether or
529        * not they're active, which causes issues if we use VxH addressing
530        * under non-uniform control-flow.  We can easily work around that by
531        * initializing the whole address register with a pipelined NoMask MOV
532        * instruction.
533        */
534       if (devinfo->gen >= 7) {
535          insn = brw_MOV(p, addr, brw_imm_uw(imm_byte_offset));
536          brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
537          brw_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE);
538          if (devinfo->gen >= 12)
539             brw_set_default_swsb(p, tgl_swsb_null());
540          else
541             brw_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl);
542       }
543 
544       insn = brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
545       if (devinfo->gen >= 12)
546          brw_set_default_swsb(p, tgl_swsb_regdist(1));
547       else if (devinfo->gen >= 7)
548          brw_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl);
549 
550       if (type_sz(reg.type) > 4 &&
551           ((devinfo->gen == 7 && !devinfo->is_haswell) ||
552            devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
553            !devinfo->has_64bit_float)) {
554          /* IVB has an issue (which we found empirically) where it reads two
555           * address register components per channel for indirectly addressed
556           * 64-bit sources.
557           *
558           * From the Cherryview PRM Vol 7. "Register Region Restrictions":
559           *
560           *    "When source or destination datatype is 64b or operation is
561           *    integer DWord multiply, indirect addressing must not be used."
562           *
563           * To work around both of these, we do two integer MOVs insead of one
564           * 64-bit MOV.  Because no double value should ever cross a register
565           * boundary, it's safe to use the immediate offset in the indirect
566           * here to handle adding 4 bytes to the offset and avoid the extra
567           * ADD to the register file.
568           */
569          brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
570                     retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
571          brw_set_default_swsb(p, tgl_swsb_null());
572          brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
573                     retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
574       } else {
575          struct brw_reg ind_src = brw_VxH_indirect(0, 0);
576 
577          brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
578 
579          if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
580              !inst->get_next()->is_tail_sentinel() &&
581              ((fs_inst *)inst->get_next())->mlen > 0) {
582             /* From the Sandybridge PRM:
583              *
584              *    "[Errata: DevSNB(SNB)] If MRF register is updated by any
585              *    instruction that “indexed/indirect” source AND is followed
586              *    by a send, the instruction requires a “Switch”. This is to
587              *    avoid race condition where send may dispatch before MRF is
588              *    updated."
589              */
590             brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
591          }
592       }
593    }
594 }
595 
596 void
generate_shuffle(fs_inst * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg idx)597 fs_generator::generate_shuffle(fs_inst *inst,
598                                struct brw_reg dst,
599                                struct brw_reg src,
600                                struct brw_reg idx)
601 {
602    /* Ivy bridge has some strange behavior that makes this a real pain to
603     * implement for 64-bit values so we just don't bother.
604     */
605    assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
606 
607    /* Because we're using the address register, we're limited to 8-wide
608     * execution on gen7.  On gen8, we're limited to 16-wide by the address
609     * register file and 8-wide for 64-bit types.  We could try and make this
610     * instruction splittable higher up in the compiler but that gets weird
611     * because it reads all of the channels regardless of execution size.  It's
612     * easier just to split it here.
613     */
614    const unsigned lower_width =
615       (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
616       8 : MIN2(16, inst->exec_size);
617 
618    brw_set_default_exec_size(p, cvt(lower_width) - 1);
619    for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
620       brw_set_default_group(p, group);
621 
622       if ((src.vstride == 0 && src.hstride == 0) ||
623           idx.file == BRW_IMMEDIATE_VALUE) {
624          /* Trivial, the source is already uniform or the index is a constant.
625           * We will typically not get here if the optimizer is doing its job,
626           * but asserting would be mean.
627           */
628          const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
629          brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
630       } else {
631          /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
632          struct brw_reg addr = vec8(brw_address_reg(0));
633 
634          struct brw_reg group_idx = suboffset(idx, group);
635 
636          if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
637             /* Things get grumpy if the register is too wide. */
638             group_idx.width--;
639             group_idx.vstride--;
640          }
641 
642          assert(type_sz(group_idx.type) <= 4);
643          if (type_sz(group_idx.type) == 4) {
644             /* The destination stride of an instruction (in bytes) must be
645              * greater than or equal to the size of the rest of the
646              * instruction.  Since the address register is of type UW, we
647              * can't use a D-type instruction.  In order to get around this,
648              * re retype to UW and use a stride.
649              */
650             group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
651          }
652 
653          uint32_t src_start_offset = src.nr * REG_SIZE + src.subnr;
654 
655          /* From the Haswell PRM:
656           *
657           *    "When a sequence of NoDDChk and NoDDClr are used, the last
658           *    instruction that completes the scoreboard clear must have a
659           *    non-zero execution mask. This means, if any kind of predication
660           *    can change the execution mask or channel enable of the last
661           *    instruction, the optimization must be avoided.  This is to
662           *    avoid instructions being shot down the pipeline when no writes
663           *    are required."
664           *
665           * Whenever predication is enabled or the instructions being emitted
666           * aren't the full width, it's possible that it will be run with zero
667           * channels enabled so we can't use dependency control without
668           * running the risk of a hang if an instruction gets shot down.
669           */
670          const bool use_dep_ctrl = !inst->predicate &&
671                                    lower_width == dispatch_width;
672          brw_inst *insn;
673 
674          /* Due to a hardware bug some platforms (particularly Gen11+) seem
675           * to require the address components of all channels to be valid
676           * whether or not they're active, which causes issues if we use VxH
677           * addressing under non-uniform control-flow.  We can easily work
678           * around that by initializing the whole address register with a
679           * pipelined NoMask MOV instruction.
680           */
681          insn = brw_MOV(p, addr, brw_imm_uw(src_start_offset));
682          brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
683          brw_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE);
684          if (devinfo->gen >= 12)
685             brw_set_default_swsb(p, tgl_swsb_null());
686          else
687             brw_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl);
688 
689          /* Take into account the component size and horizontal stride. */
690          assert(src.vstride == src.hstride + src.width);
691          insn = brw_SHL(p, addr, group_idx,
692                         brw_imm_uw(util_logbase2(type_sz(src.type)) +
693                                    src.hstride - 1));
694          if (devinfo->gen >= 12)
695             brw_set_default_swsb(p, tgl_swsb_regdist(1));
696          else
697             brw_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl);
698 
699          /* Add on the register start offset */
700          brw_ADD(p, addr, addr, brw_imm_uw(src_start_offset));
701 
702          if (type_sz(src.type) > 4 &&
703              ((devinfo->gen == 7 && !devinfo->is_haswell) ||
704               devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
705             /* IVB has an issue (which we found empirically) where it reads
706              * two address register components per channel for indirectly
707              * addressed 64-bit sources.
708              *
709              * From the Cherryview PRM Vol 7. "Register Region Restrictions":
710              *
711              *    "When source or destination datatype is 64b or operation is
712              *    integer DWord multiply, indirect addressing must not be
713              *    used."
714              *
715              * To work around both of these, we do two integer MOVs insead of
716              * one 64-bit MOV.  Because no double value should ever cross a
717              * register boundary, it's safe to use the immediate offset in the
718              * indirect here to handle adding 4 bytes to the offset and avoid
719              * the extra ADD to the register file.
720              */
721             struct brw_reg gdst = suboffset(dst, group);
722             struct brw_reg dst_d = retype(spread(gdst, 2),
723                                           BRW_REGISTER_TYPE_D);
724             assert(dst.hstride == 1);
725             brw_MOV(p, dst_d,
726                     retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
727             brw_set_default_swsb(p, tgl_swsb_null());
728             brw_MOV(p, byte_offset(dst_d, 4),
729                     retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
730          } else {
731             brw_MOV(p, suboffset(dst, group * dst.hstride),
732                     retype(brw_VxH_indirect(0, 0), src.type));
733          }
734       }
735 
736       brw_set_default_swsb(p, tgl_swsb_null());
737    }
738 }
739 
740 void
generate_quad_swizzle(const fs_inst * inst,struct brw_reg dst,struct brw_reg src,unsigned swiz)741 fs_generator::generate_quad_swizzle(const fs_inst *inst,
742                                     struct brw_reg dst, struct brw_reg src,
743                                     unsigned swiz)
744 {
745    /* Requires a quad. */
746    assert(inst->exec_size >= 4);
747 
748    if (src.file == BRW_IMMEDIATE_VALUE ||
749        has_scalar_region(src)) {
750       /* The value is uniform across all channels */
751       brw_MOV(p, dst, src);
752 
753    } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
754       /* This only works on 8-wide 32-bit values */
755       assert(inst->exec_size == 8);
756       assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
757       assert(src.vstride == src.width + 1);
758       brw_set_default_access_mode(p, BRW_ALIGN_16);
759       struct brw_reg swiz_src = stride(src, 4, 4, 1);
760       swiz_src.swizzle = swiz;
761       brw_MOV(p, dst, swiz_src);
762 
763    } else {
764       assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
765       assert(src.vstride == src.width + 1);
766       const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
767 
768       switch (swiz) {
769       case BRW_SWIZZLE_XXXX:
770       case BRW_SWIZZLE_YYYY:
771       case BRW_SWIZZLE_ZZZZ:
772       case BRW_SWIZZLE_WWWW:
773          brw_MOV(p, dst, stride(src_0, 4, 4, 0));
774          break;
775 
776       case BRW_SWIZZLE_XXZZ:
777       case BRW_SWIZZLE_YYWW:
778          brw_MOV(p, dst, stride(src_0, 2, 2, 0));
779          break;
780 
781       case BRW_SWIZZLE_XYXY:
782       case BRW_SWIZZLE_ZWZW:
783          assert(inst->exec_size == 4);
784          brw_MOV(p, dst, stride(src_0, 0, 2, 1));
785          break;
786 
787       default:
788          assert(inst->force_writemask_all);
789          brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
790 
791          for (unsigned c = 0; c < 4; c++) {
792             brw_inst *insn = brw_MOV(
793                p, stride(suboffset(dst, c),
794                          4 * inst->dst.stride, 1, 4 * inst->dst.stride),
795                stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
796 
797             if (devinfo->gen < 12) {
798                brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
799                brw_inst_set_no_dd_check(devinfo, insn, c > 0);
800             }
801 
802             brw_set_default_swsb(p, tgl_swsb_null());
803          }
804 
805          break;
806       }
807    }
808 }
809 
810 void
generate_urb_read(fs_inst * inst,struct brw_reg dst,struct brw_reg header)811 fs_generator::generate_urb_read(fs_inst *inst,
812                                 struct brw_reg dst,
813                                 struct brw_reg header)
814 {
815    assert(inst->size_written % REG_SIZE == 0);
816    assert(header.file == BRW_GENERAL_REGISTER_FILE);
817    assert(header.type == BRW_REGISTER_TYPE_UD);
818 
819    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
820    brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
821    brw_set_src0(p, send, header);
822    if (devinfo->gen < 12)
823       brw_set_src1(p, send, brw_imm_ud(0u));
824 
825    brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
826    brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
827 
828    if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
829       brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
830 
831    brw_inst_set_mlen(p->devinfo, send, inst->mlen);
832    brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
833    brw_inst_set_header_present(p->devinfo, send, true);
834    brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
835 }
836 
837 void
generate_urb_write(fs_inst * inst,struct brw_reg payload)838 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
839 {
840    brw_inst *insn = brw_next_insn(p, BRW_OPCODE_SEND);
841 
842    brw_set_dest(p, insn, brw_null_reg());
843    brw_set_src0(p, insn, payload);
844    if (devinfo->gen < 12)
845       brw_set_src1(p, insn, brw_imm_ud(0u));
846 
847    brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
848    brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
849 
850    if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
851        inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
852       brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
853 
854    if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
855        inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
856       brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
857 
858    brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
859    brw_inst_set_rlen(p->devinfo, insn, 0);
860    brw_inst_set_eot(p->devinfo, insn, inst->eot);
861    brw_inst_set_header_present(p->devinfo, insn, true);
862    brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
863 }
864 
865 void
generate_cs_terminate(fs_inst * inst,struct brw_reg payload)866 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
867 {
868    struct brw_inst *insn;
869 
870    insn = brw_next_insn(p, BRW_OPCODE_SEND);
871 
872    brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
873    brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
874    if (devinfo->gen < 12)
875       brw_set_src1(p, insn, brw_imm_ud(0u));
876 
877    /* Terminate a compute shader by sending a message to the thread spawner.
878     */
879    brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
880    brw_inst_set_mlen(devinfo, insn, 1);
881    brw_inst_set_rlen(devinfo, insn, 0);
882    brw_inst_set_eot(devinfo, insn, inst->eot);
883    brw_inst_set_header_present(devinfo, insn, false);
884 
885    brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
886 
887    if (devinfo->gen < 11) {
888       brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
889 
890       /* Note that even though the thread has a URB resource associated with it,
891        * we set the "do not dereference URB" bit, because the URB resource is
892        * managed by the fixed-function unit, so it will free it automatically.
893        */
894       brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
895    }
896 
897    brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
898 }
899 
900 void
generate_barrier(fs_inst *,struct brw_reg src)901 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
902 {
903    brw_barrier(p, src);
904    if (devinfo->gen >= 12) {
905       brw_set_default_swsb(p, tgl_swsb_null());
906       brw_SYNC(p, TGL_SYNC_BAR);
907    } else {
908       brw_WAIT(p);
909    }
910 }
911 
912 bool
generate_linterp(fs_inst * inst,struct brw_reg dst,struct brw_reg * src)913 fs_generator::generate_linterp(fs_inst *inst,
914                                struct brw_reg dst, struct brw_reg *src)
915 {
916    /* PLN reads:
917     *                      /   in SIMD16   \
918     *    -----------------------------------
919     *   | src1+0 | src1+1 | src1+2 | src1+3 |
920     *   |-----------------------------------|
921     *   |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
922     *    -----------------------------------
923     *
924     * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
925     *
926     *    -----------------------------------
927     *   | src1+0 | src1+1 | src1+2 | src1+3 |
928     *   |-----------------------------------|
929     *   |(x0, x1)|(y0, y1)|        |        | in SIMD8
930     *   |-----------------------------------|
931     *   |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
932     *    -----------------------------------
933     *
934     * See also: emit_interpolation_setup_gen4().
935     */
936    struct brw_reg delta_x = src[0];
937    struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
938    struct brw_reg interp = src[1];
939    brw_inst *i[2];
940 
941    /* nir_lower_interpolation() will do the lowering to MAD instructions for
942     * us on gen11+
943     */
944    assert(devinfo->gen < 11);
945 
946    if (devinfo->has_pln) {
947       if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
948          /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
949           *
950           *    "[DevSNB]:<src1> must be even register aligned.
951           *
952           * This restriction is lifted on Ivy Bridge.
953           *
954           * This means that we need to split PLN into LINE+MAC on-the-fly.
955           * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
956           * we have to split into SIMD8 pieces.  For gen4 (!has_pln), the
957           * coordinate registers are laid out differently so we leave it as a
958           * SIMD16 instruction.
959           */
960          assert(inst->exec_size == 8 || inst->exec_size == 16);
961          assert(inst->group % 16 == 0);
962 
963          brw_push_insn_state(p);
964          brw_set_default_exec_size(p, BRW_EXECUTE_8);
965 
966          /* Thanks to two accumulators, we can emit all the LINEs and then all
967           * the MACs.  This improves parallelism a bit.
968           */
969          for (unsigned g = 0; g < inst->exec_size / 8; g++) {
970             brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
971                                       offset(delta_x, g * 2));
972             brw_inst_set_group(devinfo, line, inst->group + g * 8);
973 
974             /* LINE writes the accumulator automatically on gen4-5.  On Sandy
975              * Bridge and later, we have to explicitly enable it.
976              */
977             if (devinfo->gen >= 6)
978                brw_inst_set_acc_wr_control(p->devinfo, line, true);
979 
980             /* brw_set_default_saturate() is called before emitting
981              * instructions, so the saturate bit is set in each instruction,
982              * so we need to unset it on the LINE instructions.
983              */
984             brw_inst_set_saturate(p->devinfo, line, false);
985          }
986 
987          for (unsigned g = 0; g < inst->exec_size / 8; g++) {
988             brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
989                                     offset(delta_x, g * 2 + 1));
990             brw_inst_set_group(devinfo, mac, inst->group + g * 8);
991             brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
992          }
993 
994          brw_pop_insn_state(p);
995 
996          return true;
997       } else {
998          brw_PLN(p, dst, interp, delta_x);
999 
1000          return false;
1001       }
1002    } else {
1003       i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
1004       i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
1005 
1006       brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
1007 
1008       /* brw_set_default_saturate() is called before emitting instructions, so
1009        * the saturate bit is set in each instruction, so we need to unset it on
1010        * the first instruction.
1011        */
1012       brw_inst_set_saturate(p->devinfo, i[0], false);
1013 
1014       return true;
1015    }
1016 }
1017 
1018 void
generate_get_buffer_size(fs_inst * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg surf_index)1019 fs_generator::generate_get_buffer_size(fs_inst *inst,
1020                                        struct brw_reg dst,
1021                                        struct brw_reg src,
1022                                        struct brw_reg surf_index)
1023 {
1024    assert(devinfo->gen >= 7);
1025    assert(surf_index.file == BRW_IMMEDIATE_VALUE);
1026 
1027    uint32_t simd_mode;
1028    int rlen = 4;
1029 
1030    switch (inst->exec_size) {
1031    case 8:
1032       simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1033       break;
1034    case 16:
1035       simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1036       break;
1037    default:
1038       unreachable("Invalid width for texture instruction");
1039    }
1040 
1041    if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1042       rlen = 8;
1043       dst = vec16(dst);
1044    }
1045 
1046    brw_SAMPLE(p,
1047               retype(dst, BRW_REGISTER_TYPE_UW),
1048               inst->base_mrf,
1049               src,
1050               surf_index.ud,
1051               0,
1052               GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
1053               rlen, /* response length */
1054               inst->mlen,
1055               inst->header_size > 0,
1056               simd_mode,
1057               BRW_SAMPLER_RETURN_FORMAT_SINT32);
1058 }
1059 
1060 void
generate_tex(fs_inst * inst,struct brw_reg dst,struct brw_reg surface_index,struct brw_reg sampler_index)1061 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
1062                            struct brw_reg surface_index,
1063                            struct brw_reg sampler_index)
1064 {
1065    assert(devinfo->gen < 7);
1066    assert(inst->size_written % REG_SIZE == 0);
1067    int msg_type = -1;
1068    uint32_t simd_mode;
1069    uint32_t return_format;
1070 
1071    /* Sampler EOT message of less than the dispatch width would kill the
1072     * thread prematurely.
1073     */
1074    assert(!inst->eot || inst->exec_size == dispatch_width);
1075 
1076    switch (dst.type) {
1077    case BRW_REGISTER_TYPE_D:
1078       return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
1079       break;
1080    case BRW_REGISTER_TYPE_UD:
1081       return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1082       break;
1083    default:
1084       return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1085       break;
1086    }
1087 
1088    /* Stomp the resinfo output type to UINT32.  On gens 4-5, the output type
1089     * is set as part of the message descriptor.  On gen4, the PRM seems to
1090     * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
1091     * later gens UINT32 is required.  Once you hit Sandy Bridge, the bit is
1092     * gone from the message descriptor entirely and you just get UINT32 all
1093     * the time regasrdless.  Since we can really only do non-UINT32 on gen4,
1094     * just stomp it to UINT32 all the time.
1095     */
1096    if (inst->opcode == SHADER_OPCODE_TXS)
1097       return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1098 
1099    switch (inst->exec_size) {
1100    case 8:
1101       simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1102       break;
1103    case 16:
1104       simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1105       break;
1106    default:
1107       unreachable("Invalid width for texture instruction");
1108    }
1109 
1110    if (devinfo->gen >= 5) {
1111       switch (inst->opcode) {
1112       case SHADER_OPCODE_TEX:
1113 	 if (inst->shadow_compare) {
1114 	    msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1115 	 } else {
1116 	    msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1117 	 }
1118 	 break;
1119       case FS_OPCODE_TXB:
1120 	 if (inst->shadow_compare) {
1121 	    msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1122 	 } else {
1123 	    msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1124 	 }
1125 	 break;
1126       case SHADER_OPCODE_TXL:
1127 	 if (inst->shadow_compare) {
1128 	    msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1129 	 } else {
1130 	    msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1131 	 }
1132 	 break;
1133       case SHADER_OPCODE_TXS:
1134 	 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1135 	 break;
1136       case SHADER_OPCODE_TXD:
1137          assert(!inst->shadow_compare);
1138          msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1139 	 break;
1140       case SHADER_OPCODE_TXF:
1141 	 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1142 	 break;
1143       case SHADER_OPCODE_TXF_CMS:
1144          msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1145          break;
1146       case SHADER_OPCODE_LOD:
1147          msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1148          break;
1149       case SHADER_OPCODE_TG4:
1150          assert(devinfo->gen == 6);
1151          assert(!inst->shadow_compare);
1152          msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1153          break;
1154       case SHADER_OPCODE_SAMPLEINFO:
1155          msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1156          break;
1157       default:
1158 	 unreachable("not reached");
1159       }
1160    } else {
1161       switch (inst->opcode) {
1162       case SHADER_OPCODE_TEX:
1163 	 /* Note that G45 and older determines shadow compare and dispatch width
1164 	  * from message length for most messages.
1165 	  */
1166          if (inst->exec_size == 8) {
1167             msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1168             if (inst->shadow_compare) {
1169                assert(inst->mlen == 6);
1170             } else {
1171                assert(inst->mlen <= 4);
1172             }
1173          } else {
1174             if (inst->shadow_compare) {
1175                msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1176                assert(inst->mlen == 9);
1177             } else {
1178                msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1179                assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1180             }
1181          }
1182 	 break;
1183       case FS_OPCODE_TXB:
1184 	 if (inst->shadow_compare) {
1185             assert(inst->exec_size == 8);
1186 	    assert(inst->mlen == 6);
1187 	    msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1188 	 } else {
1189 	    assert(inst->mlen == 9);
1190 	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1191 	    simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1192 	 }
1193 	 break;
1194       case SHADER_OPCODE_TXL:
1195 	 if (inst->shadow_compare) {
1196             assert(inst->exec_size == 8);
1197 	    assert(inst->mlen == 6);
1198 	    msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1199 	 } else {
1200 	    assert(inst->mlen == 9);
1201 	    msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1202 	    simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1203 	 }
1204 	 break;
1205       case SHADER_OPCODE_TXD:
1206 	 /* There is no sample_d_c message; comparisons are done manually */
1207          assert(inst->exec_size == 8);
1208 	 assert(inst->mlen == 7 || inst->mlen == 10);
1209 	 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1210 	 break;
1211       case SHADER_OPCODE_TXF:
1212          assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1213 	 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1214 	 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1215 	 break;
1216       case SHADER_OPCODE_TXS:
1217 	 assert(inst->mlen == 3);
1218 	 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1219 	 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1220 	 break;
1221       default:
1222 	 unreachable("not reached");
1223       }
1224    }
1225    assert(msg_type != -1);
1226 
1227    if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1228       dst = vec16(dst);
1229    }
1230 
1231    assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1232 
1233    /* Load the message header if present.  If there's a texture offset,
1234     * we need to set it up explicitly and load the offset bitfield.
1235     * Otherwise, we can use an implied move from g0 to the first message reg.
1236     */
1237    struct brw_reg src = brw_null_reg();
1238    if (inst->header_size != 0) {
1239       if (devinfo->gen < 6 && !inst->offset) {
1240          /* Set up an implied move from g0 to the MRF. */
1241          src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1242       } else {
1243          const tgl_swsb swsb = brw_get_default_swsb(p);
1244          assert(inst->base_mrf != -1);
1245          struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1246 
1247          brw_push_insn_state(p);
1248          brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1249          brw_set_default_exec_size(p, BRW_EXECUTE_8);
1250          brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1251          brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1252          /* Explicitly set up the message header by copying g0 to the MRF. */
1253          brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1254          brw_set_default_swsb(p, tgl_swsb_regdist(1));
1255 
1256          brw_set_default_exec_size(p, BRW_EXECUTE_1);
1257          if (inst->offset) {
1258             /* Set the offset bits in DWord 2. */
1259             brw_MOV(p, get_element_ud(header_reg, 2),
1260                        brw_imm_ud(inst->offset));
1261          }
1262 
1263          brw_pop_insn_state(p);
1264          brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1265       }
1266    }
1267 
1268    uint32_t base_binding_table_index;
1269    switch (inst->opcode) {
1270    case SHADER_OPCODE_TG4:
1271       base_binding_table_index = prog_data->binding_table.gather_texture_start;
1272       break;
1273    default:
1274       base_binding_table_index = prog_data->binding_table.texture_start;
1275       break;
1276    }
1277 
1278    assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1279    assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1280 
1281    brw_SAMPLE(p,
1282               retype(dst, BRW_REGISTER_TYPE_UW),
1283               inst->base_mrf,
1284               src,
1285               surface_index.ud + base_binding_table_index,
1286               sampler_index.ud % 16,
1287               msg_type,
1288               inst->size_written / REG_SIZE,
1289               inst->mlen,
1290               inst->header_size != 0,
1291               simd_mode,
1292               return_format);
1293 }
1294 
1295 
1296 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1297  * looking like:
1298  *
1299  * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1300  *
1301  * Ideally, we want to produce:
1302  *
1303  *           DDX                     DDY
1304  * dst: (ss0.tr - ss0.tl)     (ss0.tl - ss0.bl)
1305  *      (ss0.tr - ss0.tl)     (ss0.tr - ss0.br)
1306  *      (ss0.br - ss0.bl)     (ss0.tl - ss0.bl)
1307  *      (ss0.br - ss0.bl)     (ss0.tr - ss0.br)
1308  *      (ss1.tr - ss1.tl)     (ss1.tl - ss1.bl)
1309  *      (ss1.tr - ss1.tl)     (ss1.tr - ss1.br)
1310  *      (ss1.br - ss1.bl)     (ss1.tl - ss1.bl)
1311  *      (ss1.br - ss1.bl)     (ss1.tr - ss1.br)
1312  *
1313  * and add another set of two more subspans if in 16-pixel dispatch mode.
1314  *
1315  * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1316  * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1317  * pair.  But the ideal approximation may impose a huge performance cost on
1318  * sample_d.  On at least Haswell, sample_d instruction does some
1319  * optimizations if the same LOD is used for all pixels in the subspan.
1320  *
1321  * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1322  * appropriate swizzling.
1323  */
1324 void
generate_ddx(const fs_inst * inst,struct brw_reg dst,struct brw_reg src)1325 fs_generator::generate_ddx(const fs_inst *inst,
1326                            struct brw_reg dst, struct brw_reg src)
1327 {
1328    unsigned vstride, width;
1329 
1330    if (devinfo->gen >= 8) {
1331       if (inst->opcode == FS_OPCODE_DDX_FINE) {
1332          /* produce accurate derivatives */
1333          vstride = BRW_VERTICAL_STRIDE_2;
1334          width = BRW_WIDTH_2;
1335       } else {
1336          /* replicate the derivative at the top-left pixel to other pixels */
1337          vstride = BRW_VERTICAL_STRIDE_4;
1338          width = BRW_WIDTH_4;
1339       }
1340 
1341       struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1342       struct brw_reg src1 = src;
1343 
1344       src0.vstride = vstride;
1345       src0.width   = width;
1346       src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1347       src1.vstride = vstride;
1348       src1.width   = width;
1349       src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1350 
1351       brw_ADD(p, dst, src0, negate(src1));
1352    } else {
1353       /* On Haswell and earlier, the region used above appears to not work
1354        * correctly for compressed instructions.  At least on Haswell and
1355        * Iron Lake, compressed ALIGN16 instructions do work.  Since we
1356        * would have to split to SIMD8 no matter which method we choose, we
1357        * may as well use ALIGN16 on all platforms gen7 and earlier.
1358        */
1359       struct brw_reg src0 = stride(src, 4, 4, 1);
1360       struct brw_reg src1 = stride(src, 4, 4, 1);
1361       if (inst->opcode == FS_OPCODE_DDX_FINE) {
1362          src0.swizzle = BRW_SWIZZLE_XXZZ;
1363          src1.swizzle = BRW_SWIZZLE_YYWW;
1364       } else {
1365          src0.swizzle = BRW_SWIZZLE_XXXX;
1366          src1.swizzle = BRW_SWIZZLE_YYYY;
1367       }
1368 
1369       brw_push_insn_state(p);
1370       brw_set_default_access_mode(p, BRW_ALIGN_16);
1371       brw_ADD(p, dst, negate(src0), src1);
1372       brw_pop_insn_state(p);
1373    }
1374 }
1375 
1376 /* The negate_value boolean is used to negate the derivative computation for
1377  * FBOs, since they place the origin at the upper left instead of the lower
1378  * left.
1379  */
1380 void
generate_ddy(const fs_inst * inst,struct brw_reg dst,struct brw_reg src)1381 fs_generator::generate_ddy(const fs_inst *inst,
1382                            struct brw_reg dst, struct brw_reg src)
1383 {
1384    const uint32_t type_size = type_sz(src.type);
1385 
1386    if (inst->opcode == FS_OPCODE_DDY_FINE) {
1387       /* produce accurate derivatives.
1388        *
1389        * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1390        * "Register Region Restrictions", Section "1. Special Restrictions":
1391        *
1392        *    "In Align16 mode, the channel selects and channel enables apply to
1393        *     a pair of half-floats, because these parameters are defined for
1394        *     DWord elements ONLY. This is applicable when both source and
1395        *     destination are half-floats."
1396        *
1397        * So for half-float operations we use the Gen11+ Align1 path. CHV
1398        * inherits its FP16 hardware from SKL, so it is not affected.
1399        */
1400       if (devinfo->gen >= 11 ||
1401           (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1402          src = stride(src, 0, 2, 1);
1403 
1404          brw_push_insn_state(p);
1405          brw_set_default_exec_size(p, BRW_EXECUTE_4);
1406          for (uint32_t g = 0; g < inst->exec_size; g += 4) {
1407             brw_set_default_group(p, inst->group + g);
1408             brw_ADD(p, byte_offset(dst, g * type_size),
1409                        negate(byte_offset(src,  g * type_size)),
1410                        byte_offset(src, (g + 2) * type_size));
1411             brw_set_default_swsb(p, tgl_swsb_null());
1412          }
1413          brw_pop_insn_state(p);
1414       } else {
1415          struct brw_reg src0 = stride(src, 4, 4, 1);
1416          struct brw_reg src1 = stride(src, 4, 4, 1);
1417          src0.swizzle = BRW_SWIZZLE_XYXY;
1418          src1.swizzle = BRW_SWIZZLE_ZWZW;
1419 
1420          brw_push_insn_state(p);
1421          brw_set_default_access_mode(p, BRW_ALIGN_16);
1422          brw_ADD(p, dst, negate(src0), src1);
1423          brw_pop_insn_state(p);
1424       }
1425    } else {
1426       /* replicate the derivative at the top-left pixel to other pixels */
1427       if (devinfo->gen >= 8) {
1428          struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1429          struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1430 
1431          brw_ADD(p, dst, negate(src0), src1);
1432       } else {
1433          /* On Haswell and earlier, the region used above appears to not work
1434           * correctly for compressed instructions.  At least on Haswell and
1435           * Iron Lake, compressed ALIGN16 instructions do work.  Since we
1436           * would have to split to SIMD8 no matter which method we choose, we
1437           * may as well use ALIGN16 on all platforms gen7 and earlier.
1438           */
1439          struct brw_reg src0 = stride(src, 4, 4, 1);
1440          struct brw_reg src1 = stride(src, 4, 4, 1);
1441          src0.swizzle = BRW_SWIZZLE_XXXX;
1442          src1.swizzle = BRW_SWIZZLE_ZZZZ;
1443 
1444          brw_push_insn_state(p);
1445          brw_set_default_access_mode(p, BRW_ALIGN_16);
1446          brw_ADD(p, dst, negate(src0), src1);
1447          brw_pop_insn_state(p);
1448       }
1449    }
1450 }
1451 
1452 void
generate_discard_jump(fs_inst *)1453 fs_generator::generate_discard_jump(fs_inst *)
1454 {
1455    /* This HALT will be patched up at FB write time to point UIP at the end of
1456     * the program, and at brw_uip_jip() JIP will be set to the end of the
1457     * current block (or the program).
1458     */
1459    this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1460    brw_HALT(p);
1461 }
1462 
1463 void
generate_scratch_write(fs_inst * inst,struct brw_reg src)1464 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1465 {
1466    /* The 32-wide messages only respect the first 16-wide half of the channel
1467     * enable signals which are replicated identically for the second group of
1468     * 16 channels, so we cannot use them unless the write is marked
1469     * force_writemask_all.
1470     */
1471    const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1472                                MIN2(16, inst->exec_size);
1473    const unsigned block_size = 4 * lower_size / REG_SIZE;
1474    const tgl_swsb swsb = brw_get_default_swsb(p);
1475    assert(inst->mlen != 0);
1476 
1477    brw_push_insn_state(p);
1478    brw_set_default_exec_size(p, cvt(lower_size) - 1);
1479    brw_set_default_compression(p, lower_size > 8);
1480 
1481    for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1482       brw_set_default_group(p, inst->group + lower_size * i);
1483 
1484       if (i > 0) {
1485          assert(swsb.mode & TGL_SBID_SET);
1486          brw_set_default_swsb(p, tgl_swsb_sbid(TGL_SBID_SRC, swsb.sbid));
1487       } else {
1488          brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1489       }
1490 
1491       brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1492               retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1493 
1494       brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1495       brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1496                                     block_size,
1497                                     inst->offset + block_size * REG_SIZE * i);
1498    }
1499 
1500    brw_pop_insn_state(p);
1501 }
1502 
1503 void
generate_scratch_read(fs_inst * inst,struct brw_reg dst)1504 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1505 {
1506    assert(inst->exec_size <= 16 || inst->force_writemask_all);
1507    assert(inst->mlen != 0);
1508 
1509    brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1510                                 inst->exec_size / 8, inst->offset);
1511 }
1512 
1513 void
generate_scratch_read_gen7(fs_inst * inst,struct brw_reg dst)1514 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1515 {
1516    assert(inst->exec_size <= 16 || inst->force_writemask_all);
1517 
1518    gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1519 }
1520 
1521 /* The A32 messages take a buffer base address in header.5:[31:0] (See
1522  * MH1_A32_PSM for typed messages or MH_A32_GO for byte/dword scattered
1523  * and OWord block messages in the SKL PRM Vol. 2d for more details.)
1524  * Unfortunately, there are a number of subtle differences:
1525  *
1526  * For the block read/write messages:
1527  *
1528  *   - We always stomp header.2 to fill in the actual scratch address (in
1529  *     units of OWORDs) so we don't care what's in there.
1530  *
1531  *   - They rely on per-thread scratch space value in header.3[3:0] to do
1532  *     bounds checking so that needs to be valid.  The upper bits of
1533  *     header.3 are ignored, though, so we can copy all of g0.3.
1534  *
1535  *   - They ignore header.5[9:0] and assumes the address is 1KB aligned.
1536  *
1537  *
1538  * For the byte/dword scattered read/write messages:
1539  *
1540  *   - We want header.2 to be zero because that gets added to the per-channel
1541  *     offset in the non-header portion of the message.
1542  *
1543  *   - Contrary to what the docs claim, they don't do any bounds checking so
1544  *     the value of header.3[3:0] doesn't matter.
1545  *
1546  *   - They consider all of header.5 for the base address and header.5[9:0]
1547  *     are not ignored.  This means that we can't copy g0.5 verbatim because
1548  *     g0.5[9:0] contains the FFTID on most platforms.  Instead, we have to
1549  *     use an AND to mask off the bottom 10 bits.
1550  *
1551  *
1552  * For block messages, just copying g0 gives a valid header because all the
1553  * garbage gets ignored except for header.2 which we stomp as part of message
1554  * setup.  For byte/dword scattered messages, we can just zero out the header
1555  * and copy over the bits we need from g0.5.  This opcode, however, tries to
1556  * satisfy the requirements of both by starting with 0 and filling out the
1557  * information required by either set of opcodes.
1558  */
1559 void
generate_scratch_header(fs_inst * inst,struct brw_reg dst)1560 fs_generator::generate_scratch_header(fs_inst *inst, struct brw_reg dst)
1561 {
1562    assert(inst->exec_size == 8 && inst->force_writemask_all);
1563    assert(dst.file == BRW_GENERAL_REGISTER_FILE);
1564 
1565    dst.type = BRW_REGISTER_TYPE_UD;
1566 
1567    brw_inst *insn = brw_MOV(p, dst, brw_imm_ud(0));
1568    if (devinfo->gen >= 12)
1569       brw_set_default_swsb(p, tgl_swsb_null());
1570    else
1571       brw_inst_set_no_dd_clear(p->devinfo, insn, true);
1572 
1573    /* Copy the per-thread scratch space size from g0.3[3:0] */
1574    brw_set_default_exec_size(p, BRW_EXECUTE_1);
1575    insn = brw_AND(p, suboffset(dst, 3),
1576                      retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
1577                      brw_imm_ud(INTEL_MASK(3, 0)));
1578    if (devinfo->gen < 12) {
1579       brw_inst_set_no_dd_clear(p->devinfo, insn, true);
1580       brw_inst_set_no_dd_check(p->devinfo, insn, true);
1581    }
1582 
1583    /* Copy the scratch base address from g0.5[31:10] */
1584    insn = brw_AND(p, suboffset(dst, 5),
1585                      retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
1586                      brw_imm_ud(INTEL_MASK(31, 10)));
1587    if (devinfo->gen < 12)
1588       brw_inst_set_no_dd_check(p->devinfo, insn, true);
1589 }
1590 
1591 void
generate_uniform_pull_constant_load(fs_inst * inst,struct brw_reg dst,struct brw_reg index,struct brw_reg offset)1592 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1593                                                   struct brw_reg dst,
1594                                                   struct brw_reg index,
1595                                                   struct brw_reg offset)
1596 {
1597    assert(type_sz(dst.type) == 4);
1598    assert(inst->mlen != 0);
1599 
1600    assert(index.file == BRW_IMMEDIATE_VALUE &&
1601 	  index.type == BRW_REGISTER_TYPE_UD);
1602    uint32_t surf_index = index.ud;
1603 
1604    assert(offset.file == BRW_IMMEDIATE_VALUE &&
1605 	  offset.type == BRW_REGISTER_TYPE_UD);
1606    uint32_t read_offset = offset.ud;
1607 
1608    brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1609 			read_offset, surf_index);
1610 }
1611 
1612 void
generate_uniform_pull_constant_load_gen7(fs_inst * inst,struct brw_reg dst,struct brw_reg index,struct brw_reg payload)1613 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1614                                                        struct brw_reg dst,
1615                                                        struct brw_reg index,
1616                                                        struct brw_reg payload)
1617 {
1618    assert(index.type == BRW_REGISTER_TYPE_UD);
1619    assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1620    assert(type_sz(dst.type) == 4);
1621 
1622    if (index.file == BRW_IMMEDIATE_VALUE) {
1623       const uint32_t surf_index = index.ud;
1624 
1625       brw_push_insn_state(p);
1626       brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1627       brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1628       brw_pop_insn_state(p);
1629 
1630       brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1631       brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1632       brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1633       brw_set_desc(p, send,
1634                    brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1635                                                              REG_SIZE), true) |
1636                    brw_dp_read_desc(devinfo, surf_index,
1637                                     BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1638                                     GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1639                                     BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1640 
1641    } else {
1642       const tgl_swsb swsb = brw_get_default_swsb(p);
1643       struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1644 
1645       brw_push_insn_state(p);
1646       brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1647 
1648       /* a0.0 = surf_index & 0xff */
1649       brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1650       brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1651       brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1652       brw_set_dest(p, insn_and, addr);
1653       brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1654       brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1655 
1656       /* dst = send(payload, a0.0 | <descriptor>) */
1657       brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1658       brw_send_indirect_message(
1659          p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1660          retype(dst, BRW_REGISTER_TYPE_UD),
1661          retype(payload, BRW_REGISTER_TYPE_UD), addr,
1662          brw_message_desc(devinfo, 1,
1663                           DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1664          brw_dp_read_desc(devinfo, 0 /* surface */,
1665                           BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1666                           GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1667                           BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1668          false /* EOT */);
1669 
1670       brw_pop_insn_state(p);
1671    }
1672 }
1673 
1674 void
generate_varying_pull_constant_load_gen4(fs_inst * inst,struct brw_reg dst,struct brw_reg index)1675 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1676                                                        struct brw_reg dst,
1677                                                        struct brw_reg index)
1678 {
1679    assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1680    assert(inst->header_size != 0);
1681    assert(inst->mlen);
1682 
1683    assert(index.file == BRW_IMMEDIATE_VALUE &&
1684 	  index.type == BRW_REGISTER_TYPE_UD);
1685    uint32_t surf_index = index.ud;
1686 
1687    uint32_t simd_mode, rlen, msg_type;
1688    if (inst->exec_size == 16) {
1689       simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1690       rlen = 8;
1691    } else {
1692       assert(inst->exec_size == 8);
1693       simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1694       rlen = 4;
1695    }
1696 
1697    if (devinfo->gen >= 5)
1698       msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1699    else {
1700       /* We always use the SIMD16 message so that we only have to load U, and
1701        * not V or R.
1702        */
1703       msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1704       assert(inst->mlen == 3);
1705       assert(inst->size_written == 8 * REG_SIZE);
1706       rlen = 8;
1707       simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1708    }
1709 
1710    struct brw_reg header = brw_vec8_grf(0, 0);
1711    gen6_resolve_implied_move(p, &header, inst->base_mrf);
1712 
1713    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1714    brw_inst_set_compression(devinfo, send, false);
1715    brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1716    brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1717    brw_set_src0(p, send, header);
1718    if (devinfo->gen < 6)
1719       brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1720 
1721    /* Our surface is set up as floats, regardless of what actual data is
1722     * stored in it.
1723     */
1724    uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1725    brw_set_desc(p, send,
1726                 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1727                 brw_sampler_desc(devinfo, surf_index,
1728                                  0, /* sampler (unused) */
1729                                  msg_type, simd_mode, return_format));
1730 }
1731 
1732 void
generate_pixel_interpolator_query(fs_inst * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg msg_data,unsigned msg_type)1733 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1734                                                 struct brw_reg dst,
1735                                                 struct brw_reg src,
1736                                                 struct brw_reg msg_data,
1737                                                 unsigned msg_type)
1738 {
1739    const bool has_payload = inst->src[0].file != BAD_FILE;
1740    assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1741    assert(inst->size_written % REG_SIZE == 0);
1742 
1743    brw_pixel_interpolator_query(p,
1744          retype(dst, BRW_REGISTER_TYPE_UW),
1745          /* If we don't have a payload, what we send doesn't matter */
1746          has_payload ? src : brw_vec8_grf(0, 0),
1747          inst->pi_noperspective,
1748          msg_type,
1749          msg_data,
1750          has_payload ? 2 * inst->exec_size / 8 : 1,
1751          inst->size_written / REG_SIZE);
1752 }
1753 
1754 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1755  * the ADD instruction.
1756  */
1757 void
generate_set_sample_id(fs_inst * inst,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)1758 fs_generator::generate_set_sample_id(fs_inst *inst,
1759                                      struct brw_reg dst,
1760                                      struct brw_reg src0,
1761                                      struct brw_reg src1)
1762 {
1763    assert(dst.type == BRW_REGISTER_TYPE_D ||
1764           dst.type == BRW_REGISTER_TYPE_UD);
1765    assert(src0.type == BRW_REGISTER_TYPE_D ||
1766           src0.type == BRW_REGISTER_TYPE_UD);
1767 
1768    const struct brw_reg reg = stride(src1, 1, 4, 0);
1769    const unsigned lower_size = MIN2(inst->exec_size,
1770                                     devinfo->gen >= 8 ? 16 : 8);
1771 
1772    for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1773       brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1774                                offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1775                                              (i * lower_size / (1 << src0.width))) *
1776                                             type_sz(src0.type) / REG_SIZE),
1777                                suboffset(reg, i * lower_size / 4));
1778       brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1779       brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1780       brw_inst_set_compression(devinfo, insn, lower_size > 8);
1781       brw_set_default_swsb(p, tgl_swsb_null());
1782    }
1783 }
1784 
1785 void
generate_pack_half_2x16_split(fs_inst *,struct brw_reg dst,struct brw_reg x,struct brw_reg y)1786 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1787                                             struct brw_reg dst,
1788                                             struct brw_reg x,
1789                                             struct brw_reg y)
1790 {
1791    assert(devinfo->gen >= 7);
1792    assert(dst.type == BRW_REGISTER_TYPE_UD);
1793    assert(x.type == BRW_REGISTER_TYPE_F);
1794    assert(y.type == BRW_REGISTER_TYPE_F);
1795 
1796    /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1797     *
1798     *   Because this instruction does not have a 16-bit floating-point type,
1799     *   the destination data type must be Word (W).
1800     *
1801     *   The destination must be DWord-aligned and specify a horizontal stride
1802     *   (HorzStride) of 2. The 16-bit result is stored in the lower word of
1803     *   each destination channel and the upper word is not modified.
1804     */
1805    struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1806 
1807    /* Give each 32-bit channel of dst the form below, where "." means
1808     * unchanged.
1809     *   0x....hhhh
1810     */
1811    brw_F32TO16(p, dst_w, y);
1812 
1813    /* Now the form:
1814     *   0xhhhh0000
1815     */
1816    brw_set_default_swsb(p, tgl_swsb_regdist(1));
1817    brw_SHL(p, dst, dst, brw_imm_ud(16u));
1818 
1819    /* And, finally the form of packHalf2x16's output:
1820     *   0xhhhhllll
1821     */
1822    brw_F32TO16(p, dst_w, x);
1823 }
1824 
1825 void
generate_shader_time_add(fs_inst *,struct brw_reg payload,struct brw_reg offset,struct brw_reg value)1826 fs_generator::generate_shader_time_add(fs_inst *,
1827                                        struct brw_reg payload,
1828                                        struct brw_reg offset,
1829                                        struct brw_reg value)
1830 {
1831    const tgl_swsb swsb = brw_get_default_swsb(p);
1832 
1833    assert(devinfo->gen >= 7);
1834    brw_push_insn_state(p);
1835    brw_set_default_mask_control(p, true);
1836    brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1837 
1838    assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1839    struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1840                                           offset.type);
1841    struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1842                                          value.type);
1843 
1844    assert(offset.file == BRW_IMMEDIATE_VALUE);
1845    if (value.file == BRW_GENERAL_REGISTER_FILE) {
1846       value.width = BRW_WIDTH_1;
1847       value.hstride = BRW_HORIZONTAL_STRIDE_0;
1848       value.vstride = BRW_VERTICAL_STRIDE_0;
1849    } else {
1850       assert(value.file == BRW_IMMEDIATE_VALUE);
1851    }
1852 
1853    /* Trying to deal with setup of the params from the IR is crazy in the FS8
1854     * case, and we don't really care about squeezing every bit of performance
1855     * out of this path, so we just emit the MOVs from here.
1856     */
1857    brw_MOV(p, payload_offset, offset);
1858    brw_set_default_swsb(p, tgl_swsb_null());
1859    brw_MOV(p, payload_value, value);
1860    brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1861    brw_shader_time_add(p, payload,
1862                        prog_data->binding_table.shader_time_start);
1863    brw_pop_insn_state(p);
1864 }
1865 
1866 void
enable_debug(const char * shader_name)1867 fs_generator::enable_debug(const char *shader_name)
1868 {
1869    debug_flag = true;
1870    this->shader_name = shader_name;
1871 }
1872 
1873 int
generate_code(const cfg_t * cfg,int dispatch_width,struct shader_stats shader_stats,const brw::performance & perf,struct brw_compile_stats * stats)1874 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
1875                             struct shader_stats shader_stats,
1876                             const brw::performance &perf,
1877                             struct brw_compile_stats *stats)
1878 {
1879    /* align to 64 byte boundary. */
1880    brw_realign(p, 64);
1881 
1882    this->dispatch_width = dispatch_width;
1883 
1884    int start_offset = p->next_insn_offset;
1885 
1886    /* `send_count` explicitly does not include spills or fills, as we'd
1887     * like to use it as a metric for intentional memory access or other
1888     * shared function use.  Otherwise, subtle changes to scheduling or
1889     * register allocation could cause it to fluctuate wildly - and that
1890     * effect is already counted in spill/fill counts.
1891     */
1892    int spill_count = 0, fill_count = 0;
1893    int loop_count = 0, send_count = 0, nop_count = 0;
1894    bool is_accum_used = false;
1895 
1896    struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1897 
1898    foreach_block_and_inst (block, fs_inst, inst, cfg) {
1899       if (inst->opcode == SHADER_OPCODE_UNDEF)
1900          continue;
1901 
1902       struct brw_reg src[4], dst;
1903       unsigned int last_insn_offset = p->next_insn_offset;
1904       bool multiple_instructions_emitted = false;
1905 
1906       /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1907        * "Register Region Restrictions" section: for BDW, SKL:
1908        *
1909        *    "A POW/FDIV operation must not be followed by an instruction
1910        *     that requires two destination registers."
1911        *
1912        * The documentation is often lacking annotations for Atom parts,
1913        * and empirically this affects CHV as well.
1914        */
1915       if (devinfo->gen >= 8 &&
1916           devinfo->gen <= 9 &&
1917           p->nr_insn > 1 &&
1918           brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1919           brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1920           inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1921          brw_NOP(p);
1922          last_insn_offset = p->next_insn_offset;
1923 
1924          /* In order to avoid spurious instruction count differences when the
1925           * instruction schedule changes, keep track of the number of inserted
1926           * NOPs.
1927           */
1928          nop_count++;
1929       }
1930 
1931       /* GEN:BUG:14010017096:
1932        *
1933        * Clear accumulator register before end of thread.
1934        */
1935       if (inst->eot && is_accum_used && devinfo->gen >= 12) {
1936          brw_set_default_exec_size(p, BRW_EXECUTE_16);
1937          brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1938          brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1939          brw_MOV(p, brw_acc_reg(8), brw_imm_f(0.0f));
1940          last_insn_offset = p->next_insn_offset;
1941       }
1942 
1943       if (!is_accum_used && !inst->eot) {
1944          is_accum_used = inst->writes_accumulator_implicitly(devinfo) ||
1945                          inst->dst.is_accumulator();
1946       }
1947 
1948       if (unlikely(debug_flag))
1949          disasm_annotate(disasm_info, inst, p->next_insn_offset);
1950 
1951       /* If the instruction writes to more than one register, it needs to be
1952        * explicitly marked as compressed on Gen <= 5.  On Gen >= 6 the
1953        * hardware figures out by itself what the right compression mode is,
1954        * but we still need to know whether the instruction is compressed to
1955        * set up the source register regions appropriately.
1956        *
1957        * XXX - This is wrong for instructions that write a single register but
1958        *       read more than one which should strictly speaking be treated as
1959        *       compressed.  For instructions that don't write any registers it
1960        *       relies on the destination being a null register of the correct
1961        *       type and regioning so the instruction is considered compressed
1962        *       or not accordingly.
1963        */
1964       const bool compressed =
1965            inst->dst.component_size(inst->exec_size) > REG_SIZE;
1966       brw_set_default_compression(p, compressed);
1967       brw_set_default_group(p, inst->group);
1968 
1969       for (unsigned int i = 0; i < inst->sources; i++) {
1970          src[i] = brw_reg_from_fs_reg(devinfo, inst,
1971                                       &inst->src[i], compressed);
1972 	 /* The accumulator result appears to get used for the
1973 	  * conditional modifier generation.  When negating a UD
1974 	  * value, there is a 33rd bit generated for the sign in the
1975 	  * accumulator value, so now you can't check, for example,
1976 	  * equality with a 32-bit value.  See piglit fs-op-neg-uvec4.
1977 	  */
1978 	 assert(!inst->conditional_mod ||
1979 		inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1980 		!inst->src[i].negate);
1981       }
1982       dst = brw_reg_from_fs_reg(devinfo, inst,
1983                                 &inst->dst, compressed);
1984 
1985       brw_set_default_access_mode(p, BRW_ALIGN_1);
1986       brw_set_default_predicate_control(p, inst->predicate);
1987       brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1988       /* On gen7 and above, hardware automatically adds the group onto the
1989        * flag subregister number.  On Sandy Bridge and older, we have to do it
1990        * ourselves.
1991        */
1992       const unsigned flag_subreg = inst->flag_subreg +
1993          (devinfo->gen >= 7 ? 0 : inst->group / 16);
1994       brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1995       brw_set_default_saturate(p, inst->saturate);
1996       brw_set_default_mask_control(p, inst->force_writemask_all);
1997       brw_set_default_acc_write_control(p, inst->writes_accumulator);
1998       brw_set_default_swsb(p, inst->sched);
1999 
2000       unsigned exec_size = inst->exec_size;
2001       if (devinfo->gen == 7 && !devinfo->is_haswell &&
2002           (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
2003          exec_size *= 2;
2004       }
2005 
2006       brw_set_default_exec_size(p, cvt(exec_size) - 1);
2007 
2008       assert(inst->force_writemask_all || inst->exec_size >= 4);
2009       assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
2010       assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
2011       assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
2012 
2013       switch (inst->opcode) {
2014       case BRW_OPCODE_SYNC:
2015          assert(src[0].file == BRW_IMMEDIATE_VALUE);
2016          brw_SYNC(p, tgl_sync_function(src[0].ud));
2017          break;
2018       case BRW_OPCODE_MOV:
2019 	 brw_MOV(p, dst, src[0]);
2020 	 break;
2021       case BRW_OPCODE_ADD:
2022 	 brw_ADD(p, dst, src[0], src[1]);
2023 	 break;
2024       case BRW_OPCODE_MUL:
2025 	 brw_MUL(p, dst, src[0], src[1]);
2026 	 break;
2027       case BRW_OPCODE_AVG:
2028 	 brw_AVG(p, dst, src[0], src[1]);
2029 	 break;
2030       case BRW_OPCODE_MACH:
2031 	 brw_MACH(p, dst, src[0], src[1]);
2032 	 break;
2033 
2034       case BRW_OPCODE_LINE:
2035          brw_LINE(p, dst, src[0], src[1]);
2036          break;
2037 
2038       case BRW_OPCODE_MAD:
2039          assert(devinfo->gen >= 6);
2040          if (devinfo->gen < 10)
2041             brw_set_default_access_mode(p, BRW_ALIGN_16);
2042          brw_MAD(p, dst, src[0], src[1], src[2]);
2043 	 break;
2044 
2045       case BRW_OPCODE_LRP:
2046          assert(devinfo->gen >= 6 && devinfo->gen <= 10);
2047          if (devinfo->gen < 10)
2048             brw_set_default_access_mode(p, BRW_ALIGN_16);
2049          brw_LRP(p, dst, src[0], src[1], src[2]);
2050 	 break;
2051 
2052       case BRW_OPCODE_FRC:
2053 	 brw_FRC(p, dst, src[0]);
2054 	 break;
2055       case BRW_OPCODE_RNDD:
2056 	 brw_RNDD(p, dst, src[0]);
2057 	 break;
2058       case BRW_OPCODE_RNDE:
2059 	 brw_RNDE(p, dst, src[0]);
2060 	 break;
2061       case BRW_OPCODE_RNDZ:
2062 	 brw_RNDZ(p, dst, src[0]);
2063 	 break;
2064 
2065       case BRW_OPCODE_AND:
2066 	 brw_AND(p, dst, src[0], src[1]);
2067 	 break;
2068       case BRW_OPCODE_OR:
2069 	 brw_OR(p, dst, src[0], src[1]);
2070 	 break;
2071       case BRW_OPCODE_XOR:
2072 	 brw_XOR(p, dst, src[0], src[1]);
2073 	 break;
2074       case BRW_OPCODE_NOT:
2075 	 brw_NOT(p, dst, src[0]);
2076 	 break;
2077       case BRW_OPCODE_ASR:
2078 	 brw_ASR(p, dst, src[0], src[1]);
2079 	 break;
2080       case BRW_OPCODE_SHR:
2081 	 brw_SHR(p, dst, src[0], src[1]);
2082 	 break;
2083       case BRW_OPCODE_SHL:
2084 	 brw_SHL(p, dst, src[0], src[1]);
2085 	 break;
2086       case BRW_OPCODE_ROL:
2087 	 assert(devinfo->gen >= 11);
2088 	 assert(src[0].type == dst.type);
2089 	 brw_ROL(p, dst, src[0], src[1]);
2090 	 break;
2091       case BRW_OPCODE_ROR:
2092 	 assert(devinfo->gen >= 11);
2093 	 assert(src[0].type == dst.type);
2094 	 brw_ROR(p, dst, src[0], src[1]);
2095 	 break;
2096       case BRW_OPCODE_F32TO16:
2097          assert(devinfo->gen >= 7);
2098          brw_F32TO16(p, dst, src[0]);
2099          break;
2100       case BRW_OPCODE_F16TO32:
2101          assert(devinfo->gen >= 7);
2102          brw_F16TO32(p, dst, src[0]);
2103          break;
2104       case BRW_OPCODE_CMP:
2105          if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
2106              dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
2107             /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
2108              * implemented in the compiler is not sufficient. Overriding the
2109              * type when the destination is the null register is necessary but
2110              * not sufficient by itself.
2111              */
2112             assert(dst.nr == BRW_ARF_NULL);
2113             dst.type = BRW_REGISTER_TYPE_D;
2114          }
2115          brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
2116 	 break;
2117       case BRW_OPCODE_SEL:
2118 	 brw_SEL(p, dst, src[0], src[1]);
2119 	 break;
2120       case BRW_OPCODE_CSEL:
2121          assert(devinfo->gen >= 8);
2122          if (devinfo->gen < 10)
2123             brw_set_default_access_mode(p, BRW_ALIGN_16);
2124          brw_CSEL(p, dst, src[0], src[1], src[2]);
2125          break;
2126       case BRW_OPCODE_BFREV:
2127          assert(devinfo->gen >= 7);
2128          brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
2129                    retype(src[0], BRW_REGISTER_TYPE_UD));
2130          break;
2131       case BRW_OPCODE_FBH:
2132          assert(devinfo->gen >= 7);
2133          brw_FBH(p, retype(dst, src[0].type), src[0]);
2134          break;
2135       case BRW_OPCODE_FBL:
2136          assert(devinfo->gen >= 7);
2137          brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
2138                  retype(src[0], BRW_REGISTER_TYPE_UD));
2139          break;
2140       case BRW_OPCODE_LZD:
2141          brw_LZD(p, dst, src[0]);
2142          break;
2143       case BRW_OPCODE_CBIT:
2144          assert(devinfo->gen >= 7);
2145          brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
2146                   retype(src[0], BRW_REGISTER_TYPE_UD));
2147          break;
2148       case BRW_OPCODE_ADDC:
2149          assert(devinfo->gen >= 7);
2150          brw_ADDC(p, dst, src[0], src[1]);
2151          break;
2152       case BRW_OPCODE_SUBB:
2153          assert(devinfo->gen >= 7);
2154          brw_SUBB(p, dst, src[0], src[1]);
2155          break;
2156       case BRW_OPCODE_MAC:
2157          brw_MAC(p, dst, src[0], src[1]);
2158          break;
2159 
2160       case BRW_OPCODE_BFE:
2161          assert(devinfo->gen >= 7);
2162          if (devinfo->gen < 10)
2163             brw_set_default_access_mode(p, BRW_ALIGN_16);
2164          brw_BFE(p, dst, src[0], src[1], src[2]);
2165          break;
2166 
2167       case BRW_OPCODE_BFI1:
2168          assert(devinfo->gen >= 7);
2169          brw_BFI1(p, dst, src[0], src[1]);
2170          break;
2171       case BRW_OPCODE_BFI2:
2172          assert(devinfo->gen >= 7);
2173          if (devinfo->gen < 10)
2174             brw_set_default_access_mode(p, BRW_ALIGN_16);
2175          brw_BFI2(p, dst, src[0], src[1], src[2]);
2176          break;
2177 
2178       case BRW_OPCODE_IF:
2179 	 if (inst->src[0].file != BAD_FILE) {
2180 	    /* The instruction has an embedded compare (only allowed on gen6) */
2181 	    assert(devinfo->gen == 6);
2182 	    gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2183 	 } else {
2184 	    brw_IF(p, brw_get_default_exec_size(p));
2185 	 }
2186 	 break;
2187 
2188       case BRW_OPCODE_ELSE:
2189 	 brw_ELSE(p);
2190 	 break;
2191       case BRW_OPCODE_ENDIF:
2192 	 brw_ENDIF(p);
2193 	 break;
2194 
2195       case BRW_OPCODE_DO:
2196 	 brw_DO(p, brw_get_default_exec_size(p));
2197 	 break;
2198 
2199       case BRW_OPCODE_BREAK:
2200 	 brw_BREAK(p);
2201 	 break;
2202       case BRW_OPCODE_CONTINUE:
2203          brw_CONT(p);
2204 	 break;
2205 
2206       case BRW_OPCODE_WHILE:
2207 	 brw_WHILE(p);
2208          loop_count++;
2209 	 break;
2210 
2211       case SHADER_OPCODE_RCP:
2212       case SHADER_OPCODE_RSQ:
2213       case SHADER_OPCODE_SQRT:
2214       case SHADER_OPCODE_EXP2:
2215       case SHADER_OPCODE_LOG2:
2216       case SHADER_OPCODE_SIN:
2217       case SHADER_OPCODE_COS:
2218          assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2219 	 if (devinfo->gen >= 6) {
2220             assert(inst->mlen == 0);
2221             assert(devinfo->gen >= 7 || inst->exec_size == 8);
2222             gen6_math(p, dst, brw_math_function(inst->opcode),
2223                       src[0], brw_null_reg());
2224 	 } else {
2225             assert(inst->mlen >= 1);
2226             assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2227             gen4_math(p, dst,
2228                       brw_math_function(inst->opcode),
2229                       inst->base_mrf, src[0],
2230                       BRW_MATH_PRECISION_FULL);
2231             send_count++;
2232 	 }
2233 	 break;
2234       case SHADER_OPCODE_INT_QUOTIENT:
2235       case SHADER_OPCODE_INT_REMAINDER:
2236       case SHADER_OPCODE_POW:
2237          assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2238          if (devinfo->gen >= 6) {
2239             assert(inst->mlen == 0);
2240             assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2241                    inst->exec_size == 8);
2242             gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2243          } else {
2244             assert(inst->mlen >= 1);
2245             assert(inst->exec_size == 8);
2246             gen4_math(p, dst, brw_math_function(inst->opcode),
2247                       inst->base_mrf, src[0],
2248                       BRW_MATH_PRECISION_FULL);
2249             send_count++;
2250 	 }
2251 	 break;
2252       case FS_OPCODE_LINTERP:
2253 	 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2254 	 break;
2255       case FS_OPCODE_PIXEL_X:
2256          assert(src[0].type == BRW_REGISTER_TYPE_UW);
2257          src[0].subnr = 0 * type_sz(src[0].type);
2258          brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2259          break;
2260       case FS_OPCODE_PIXEL_Y:
2261          assert(src[0].type == BRW_REGISTER_TYPE_UW);
2262          src[0].subnr = 4 * type_sz(src[0].type);
2263          brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2264          break;
2265 
2266       case SHADER_OPCODE_SEND:
2267          generate_send(inst, dst, src[0], src[1], src[2],
2268                        inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2269          if ((inst->desc & 0xff) == BRW_BTI_STATELESS ||
2270              (inst->desc & 0xff) == GEN8_BTI_STATELESS_NON_COHERENT) {
2271             if (inst->size_written)
2272                fill_count++;
2273             else
2274                spill_count++;
2275          } else {
2276             send_count++;
2277          }
2278          break;
2279 
2280       case SHADER_OPCODE_GET_BUFFER_SIZE:
2281          generate_get_buffer_size(inst, dst, src[0], src[1]);
2282          send_count++;
2283          break;
2284       case SHADER_OPCODE_TEX:
2285       case FS_OPCODE_TXB:
2286       case SHADER_OPCODE_TXD:
2287       case SHADER_OPCODE_TXF:
2288       case SHADER_OPCODE_TXF_CMS:
2289       case SHADER_OPCODE_TXL:
2290       case SHADER_OPCODE_TXS:
2291       case SHADER_OPCODE_LOD:
2292       case SHADER_OPCODE_TG4:
2293       case SHADER_OPCODE_SAMPLEINFO:
2294          assert(inst->src[0].file == BAD_FILE);
2295          generate_tex(inst, dst, src[1], src[2]);
2296          send_count++;
2297          break;
2298 
2299       case FS_OPCODE_DDX_COARSE:
2300       case FS_OPCODE_DDX_FINE:
2301          generate_ddx(inst, dst, src[0]);
2302          break;
2303       case FS_OPCODE_DDY_COARSE:
2304       case FS_OPCODE_DDY_FINE:
2305          generate_ddy(inst, dst, src[0]);
2306 	 break;
2307 
2308       case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2309 	 generate_scratch_write(inst, src[0]);
2310          spill_count++;
2311 	 break;
2312 
2313       case SHADER_OPCODE_GEN4_SCRATCH_READ:
2314 	 generate_scratch_read(inst, dst);
2315          fill_count++;
2316 	 break;
2317 
2318       case SHADER_OPCODE_GEN7_SCRATCH_READ:
2319 	 generate_scratch_read_gen7(inst, dst);
2320          fill_count++;
2321 	 break;
2322 
2323       case SHADER_OPCODE_SCRATCH_HEADER:
2324          generate_scratch_header(inst, dst);
2325          break;
2326 
2327       case SHADER_OPCODE_MOV_INDIRECT:
2328          generate_mov_indirect(inst, dst, src[0], src[1]);
2329          break;
2330 
2331       case SHADER_OPCODE_MOV_RELOC_IMM:
2332          assert(src[0].file == BRW_IMMEDIATE_VALUE);
2333          brw_MOV_reloc_imm(p, dst, dst.type, src[0].ud);
2334          break;
2335 
2336       case SHADER_OPCODE_URB_READ_SIMD8:
2337       case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2338          generate_urb_read(inst, dst, src[0]);
2339          send_count++;
2340          break;
2341 
2342       case SHADER_OPCODE_URB_WRITE_SIMD8:
2343       case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2344       case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2345       case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2346 	 generate_urb_write(inst, src[0]);
2347          send_count++;
2348 	 break;
2349 
2350       case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2351          assert(inst->force_writemask_all);
2352 	 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2353          send_count++;
2354 	 break;
2355 
2356       case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2357          assert(inst->force_writemask_all);
2358 	 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2359          send_count++;
2360 	 break;
2361 
2362       case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2363 	 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2364          send_count++;
2365 	 break;
2366 
2367       case FS_OPCODE_REP_FB_WRITE:
2368       case FS_OPCODE_FB_WRITE:
2369 	 generate_fb_write(inst, src[0]);
2370          send_count++;
2371 	 break;
2372 
2373       case FS_OPCODE_FB_READ:
2374          generate_fb_read(inst, dst, src[0]);
2375          send_count++;
2376          break;
2377 
2378       case FS_OPCODE_DISCARD_JUMP:
2379          generate_discard_jump(inst);
2380          break;
2381 
2382       case SHADER_OPCODE_SHADER_TIME_ADD:
2383          generate_shader_time_add(inst, src[0], src[1], src[2]);
2384          break;
2385 
2386       case SHADER_OPCODE_INTERLOCK:
2387       case SHADER_OPCODE_MEMORY_FENCE: {
2388          assert(src[1].file == BRW_IMMEDIATE_VALUE);
2389          assert(src[2].file == BRW_IMMEDIATE_VALUE);
2390 
2391          const enum opcode send_op = inst->opcode == SHADER_OPCODE_INTERLOCK ?
2392             BRW_OPCODE_SENDC : BRW_OPCODE_SEND;
2393 
2394          brw_memory_fence(p, dst, src[0], send_op,
2395                           brw_message_target(inst->sfid),
2396                           /* commit_enable */ src[1].ud,
2397                           /* bti */ src[2].ud);
2398          send_count++;
2399          break;
2400       }
2401 
2402       case FS_OPCODE_SCHEDULING_FENCE:
2403          if (inst->sources == 0 && inst->sched.regdist == 0 &&
2404                                    inst->sched.mode == TGL_SBID_NULL) {
2405             if (unlikely(debug_flag))
2406                disasm_info->use_tail = true;
2407             break;
2408          }
2409 
2410          if (devinfo->gen >= 12) {
2411             /* Use the available SWSB information to stall.  A single SYNC is
2412              * sufficient since if there were multiple dependencies, the
2413              * scoreboard algorithm already injected other SYNCs before this
2414              * instruction.
2415              */
2416             brw_SYNC(p, TGL_SYNC_NOP);
2417          } else {
2418             for (unsigned i = 0; i < inst->sources; i++) {
2419                /* Emit a MOV to force a stall until the instruction producing the
2420                 * registers finishes.
2421                 */
2422                brw_MOV(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW),
2423                        retype(src[i], BRW_REGISTER_TYPE_UW));
2424             }
2425 
2426             if (inst->sources > 1)
2427                multiple_instructions_emitted = true;
2428          }
2429 
2430          break;
2431 
2432       case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2433          const struct brw_reg mask =
2434             brw_stage_has_packed_dispatch(devinfo, stage,
2435                                           prog_data) ? brw_imm_ud(~0u) :
2436             stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2437             brw_dmask_reg();
2438          brw_find_live_channel(p, dst, mask);
2439          break;
2440       }
2441       case FS_OPCODE_LOAD_LIVE_CHANNELS: {
2442          assert(devinfo->gen >= 8);
2443          assert(inst->force_writemask_all && inst->group == 0);
2444          assert(inst->dst.file == BAD_FILE);
2445          brw_set_default_exec_size(p, BRW_EXECUTE_1);
2446          brw_MOV(p, retype(brw_flag_subreg(inst->flag_subreg),
2447                            BRW_REGISTER_TYPE_UD),
2448                  retype(brw_mask_reg(0), BRW_REGISTER_TYPE_UD));
2449          break;
2450       }
2451       case SHADER_OPCODE_BROADCAST:
2452          assert(inst->force_writemask_all);
2453          brw_broadcast(p, dst, src[0], src[1]);
2454          break;
2455 
2456       case SHADER_OPCODE_SHUFFLE:
2457          generate_shuffle(inst, dst, src[0], src[1]);
2458          break;
2459 
2460       case SHADER_OPCODE_SEL_EXEC:
2461          assert(inst->force_writemask_all);
2462          brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2463          brw_MOV(p, dst, src[1]);
2464          brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2465          brw_set_default_swsb(p, tgl_swsb_null());
2466          brw_MOV(p, dst, src[0]);
2467          break;
2468 
2469       case SHADER_OPCODE_QUAD_SWIZZLE:
2470          assert(src[1].file == BRW_IMMEDIATE_VALUE);
2471          assert(src[1].type == BRW_REGISTER_TYPE_UD);
2472          generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2473          break;
2474 
2475       case SHADER_OPCODE_CLUSTER_BROADCAST: {
2476          assert(!src[0].negate && !src[0].abs);
2477          assert(src[1].file == BRW_IMMEDIATE_VALUE);
2478          assert(src[1].type == BRW_REGISTER_TYPE_UD);
2479          assert(src[2].file == BRW_IMMEDIATE_VALUE);
2480          assert(src[2].type == BRW_REGISTER_TYPE_UD);
2481          const unsigned component = src[1].ud;
2482          const unsigned cluster_size = src[2].ud;
2483          unsigned vstride = cluster_size;
2484          unsigned width = cluster_size;
2485 
2486          /* The maximum exec_size is 32, but the maximum width is only 16. */
2487          if (inst->exec_size == width) {
2488             vstride = 0;
2489             width = 1;
2490          }
2491 
2492          struct brw_reg strided = stride(suboffset(src[0], component),
2493                                          vstride, width, 0);
2494          if (type_sz(src[0].type) > 4 &&
2495              (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2496             /* IVB has an issue (which we found empirically) where it reads
2497              * two address register components per channel for indirectly
2498              * addressed 64-bit sources.
2499              *
2500              * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2501              *
2502              *    "When source or destination datatype is 64b or operation is
2503              *    integer DWord multiply, indirect addressing must not be
2504              *    used."
2505              *
2506              * To work around both of these, we do two integer MOVs insead of
2507              * one 64-bit MOV.  Because no double value should ever cross a
2508              * register boundary, it's safe to use the immediate offset in the
2509              * indirect here to handle adding 4 bytes to the offset and avoid
2510              * the extra ADD to the register file.
2511              */
2512             assert(src[0].type == dst.type);
2513             brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2514                        subscript(strided, BRW_REGISTER_TYPE_D, 0));
2515             brw_set_default_swsb(p, tgl_swsb_null());
2516             brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2517                        subscript(strided, BRW_REGISTER_TYPE_D, 1));
2518          } else {
2519             brw_MOV(p, dst, strided);
2520          }
2521          break;
2522       }
2523 
2524       case FS_OPCODE_SET_SAMPLE_ID:
2525          generate_set_sample_id(inst, dst, src[0], src[1]);
2526          break;
2527 
2528       case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2529           generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2530           break;
2531 
2532       case FS_OPCODE_PLACEHOLDER_HALT:
2533          /* This is the place where the final HALT needs to be inserted if
2534           * we've emitted any discards.  If not, this will emit no code.
2535           */
2536          if (!patch_discard_jumps_to_fb_writes()) {
2537             if (unlikely(debug_flag)) {
2538                disasm_info->use_tail = true;
2539             }
2540          }
2541          break;
2542 
2543       case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2544          generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2545                                            GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2546          send_count++;
2547          break;
2548 
2549       case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2550          generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2551                                            GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2552          send_count++;
2553          break;
2554 
2555       case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2556          generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2557                                            GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2558          send_count++;
2559          break;
2560 
2561       case CS_OPCODE_CS_TERMINATE:
2562          generate_cs_terminate(inst, src[0]);
2563          send_count++;
2564          break;
2565 
2566       case SHADER_OPCODE_BARRIER:
2567 	 generate_barrier(inst, src[0]);
2568          send_count++;
2569 	 break;
2570 
2571       case BRW_OPCODE_DIM:
2572          assert(devinfo->is_haswell);
2573          assert(src[0].type == BRW_REGISTER_TYPE_DF);
2574          assert(dst.type == BRW_REGISTER_TYPE_DF);
2575          brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2576          break;
2577 
2578       case SHADER_OPCODE_RND_MODE: {
2579          assert(src[0].file == BRW_IMMEDIATE_VALUE);
2580          /*
2581           * Changes the floating point rounding mode updating the control
2582           * register field defined at cr0.0[5-6] bits.
2583           */
2584          enum brw_rnd_mode mode =
2585             (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT);
2586          brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK);
2587       }
2588          break;
2589 
2590       case SHADER_OPCODE_FLOAT_CONTROL_MODE:
2591          assert(src[0].file == BRW_IMMEDIATE_VALUE);
2592          assert(src[1].file == BRW_IMMEDIATE_VALUE);
2593          brw_float_controls_mode(p, src[0].d, src[1].d);
2594          break;
2595 
2596       default:
2597          unreachable("Unsupported opcode");
2598 
2599       case SHADER_OPCODE_LOAD_PAYLOAD:
2600          unreachable("Should be lowered by lower_load_payload()");
2601       }
2602 
2603       if (multiple_instructions_emitted)
2604          continue;
2605 
2606       if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2607          assert(p->next_insn_offset == last_insn_offset + 16 ||
2608                 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2609                  "emitting more than 1 instruction");
2610 
2611          brw_inst *last = &p->store[last_insn_offset / 16];
2612 
2613          if (inst->conditional_mod)
2614             brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2615          if (devinfo->gen < 12) {
2616             brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2617             brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2618          }
2619       }
2620    }
2621 
2622    brw_set_uip_jip(p, start_offset);
2623 
2624    /* end of program sentinel */
2625    disasm_new_inst_group(disasm_info, p->next_insn_offset);
2626 
2627 #ifndef NDEBUG
2628    bool validated =
2629 #else
2630    if (unlikely(debug_flag))
2631 #endif
2632       brw_validate_instructions(devinfo, p->store,
2633                                 start_offset,
2634                                 p->next_insn_offset,
2635                                 disasm_info);
2636 
2637    int before_size = p->next_insn_offset - start_offset;
2638    brw_compact_instructions(p, start_offset, disasm_info);
2639    int after_size = p->next_insn_offset - start_offset;
2640 
2641    if (unlikely(debug_flag)) {
2642       unsigned char sha1[21];
2643       char sha1buf[41];
2644 
2645       _mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
2646                          after_size, sha1);
2647       _mesa_sha1_format(sha1buf, sha1);
2648 
2649       fprintf(stderr, "Native code for %s (sha1 %s)\n"
2650               "SIMD%d shader: %d instructions. %d loops. %u cycles. "
2651               "%d:%d spills:fills, %u sends, "
2652               "scheduled with mode %s. "
2653               "Promoted %u constants. "
2654               "Compacted %d to %d bytes (%.0f%%)\n",
2655               shader_name, sha1buf,
2656               dispatch_width, before_size / 16,
2657               loop_count, perf.latency,
2658               spill_count, fill_count, send_count,
2659               shader_stats.scheduler_mode,
2660               shader_stats.promoted_constants,
2661               before_size, after_size,
2662               100.0f * (before_size - after_size) / before_size);
2663 
2664       /* overriding the shader makes disasm_info invalid */
2665       if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
2666          dump_assembly(p->store, start_offset, p->next_insn_offset,
2667                        disasm_info, perf.block_latency);
2668       } else {
2669          fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
2670       }
2671    }
2672    ralloc_free(disasm_info);
2673 #ifndef NDEBUG
2674    if (!validated && !debug_flag) {
2675       fprintf(stderr,
2676             "Validation failed. Rerun with INTEL_DEBUG=shaders to get more information.\n");
2677    }
2678 #endif
2679    assert(validated);
2680 
2681    compiler->shader_debug_log(log_data,
2682                               "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2683                               "%d:%d spills:fills, %u sends, "
2684                               "scheduled with mode %s, "
2685                               "Promoted %u constants, "
2686                               "compacted %d to %d bytes.",
2687                               _mesa_shader_stage_to_abbrev(stage),
2688                               dispatch_width, before_size / 16 - nop_count,
2689                               loop_count, perf.latency,
2690                               spill_count, fill_count, send_count,
2691                               shader_stats.scheduler_mode,
2692                               shader_stats.promoted_constants,
2693                               before_size, after_size);
2694    if (stats) {
2695       stats->dispatch_width = dispatch_width;
2696       stats->instructions = before_size / 16 - nop_count;
2697       stats->sends = send_count;
2698       stats->loops = loop_count;
2699       stats->cycles = perf.latency;
2700       stats->spills = spill_count;
2701       stats->fills = fill_count;
2702    }
2703 
2704    return start_offset;
2705 }
2706 
2707 void
add_const_data(void * data,unsigned size)2708 fs_generator::add_const_data(void *data, unsigned size)
2709 {
2710    assert(prog_data->const_data_size == 0);
2711    if (size > 0) {
2712       prog_data->const_data_size = size;
2713       prog_data->const_data_offset = brw_append_data(p, data, size, 32);
2714    }
2715 }
2716 
2717 const unsigned *
get_assembly()2718 fs_generator::get_assembly()
2719 {
2720    prog_data->relocs = brw_get_shader_relocs(p, &prog_data->num_relocs);
2721 
2722    return brw_get_program(p, &prog_data->program_size);
2723 }
2724