• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <stdint.h>
10 
11 #include <arch.h>
12 #include <arch_features.h>
13 #include <arch_helpers.h>
14 #include <lib/cassert.h>
15 #include <lib/utils_def.h>
16 #include <lib/xlat_tables/xlat_tables_v2.h>
17 
18 #include "../xlat_tables_private.h"
19 
20 /*
21  * Returns true if the provided granule size is supported, false otherwise.
22  */
xlat_arch_is_granule_size_supported(size_t size)23 bool xlat_arch_is_granule_size_supported(size_t size)
24 {
25 	u_register_t id_aa64mmfr0_el1 = read_id_aa64mmfr0_el1();
26 
27 	if (size == PAGE_SIZE_4KB) {
28 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN4_SHIFT) &
29 			 ID_AA64MMFR0_EL1_TGRAN4_MASK) ==
30 			 ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED;
31 	} else if (size == PAGE_SIZE_16KB) {
32 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN16_SHIFT) &
33 			 ID_AA64MMFR0_EL1_TGRAN16_MASK) ==
34 			 ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED;
35 	} else if (size == PAGE_SIZE_64KB) {
36 		return ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN64_SHIFT) &
37 			 ID_AA64MMFR0_EL1_TGRAN64_MASK) ==
38 			 ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED;
39 	} else {
40 		return 0;
41 	}
42 }
43 
xlat_arch_get_max_supported_granule_size(void)44 size_t xlat_arch_get_max_supported_granule_size(void)
45 {
46 	if (xlat_arch_is_granule_size_supported(PAGE_SIZE_64KB)) {
47 		return PAGE_SIZE_64KB;
48 	} else if (xlat_arch_is_granule_size_supported(PAGE_SIZE_16KB)) {
49 		return PAGE_SIZE_16KB;
50 	} else {
51 		assert(xlat_arch_is_granule_size_supported(PAGE_SIZE_4KB));
52 		return PAGE_SIZE_4KB;
53 	}
54 }
55 
tcr_physical_addr_size_bits(unsigned long long max_addr)56 unsigned long long tcr_physical_addr_size_bits(unsigned long long max_addr)
57 {
58 	/* Physical address can't exceed 48 bits */
59 	assert((max_addr & ADDR_MASK_48_TO_63) == 0U);
60 
61 	/* 48 bits address */
62 	if ((max_addr & ADDR_MASK_44_TO_47) != 0U)
63 		return TCR_PS_BITS_256TB;
64 
65 	/* 44 bits address */
66 	if ((max_addr & ADDR_MASK_42_TO_43) != 0U)
67 		return TCR_PS_BITS_16TB;
68 
69 	/* 42 bits address */
70 	if ((max_addr & ADDR_MASK_40_TO_41) != 0U)
71 		return TCR_PS_BITS_4TB;
72 
73 	/* 40 bits address */
74 	if ((max_addr & ADDR_MASK_36_TO_39) != 0U)
75 		return TCR_PS_BITS_1TB;
76 
77 	/* 36 bits address */
78 	if ((max_addr & ADDR_MASK_32_TO_35) != 0U)
79 		return TCR_PS_BITS_64GB;
80 
81 	return TCR_PS_BITS_4GB;
82 }
83 
84 #if ENABLE_ASSERTIONS
85 /*
86  * Physical Address ranges supported in the AArch64 Memory Model. Value 0b110 is
87  * supported in ARMv8.2 onwards.
88  */
89 static const unsigned int pa_range_bits_arr[] = {
90 	PARANGE_0000, PARANGE_0001, PARANGE_0010, PARANGE_0011, PARANGE_0100,
91 	PARANGE_0101, PARANGE_0110
92 };
93 
xlat_arch_get_max_supported_pa(void)94 unsigned long long xlat_arch_get_max_supported_pa(void)
95 {
96 	u_register_t pa_range = read_id_aa64mmfr0_el1() &
97 						ID_AA64MMFR0_EL1_PARANGE_MASK;
98 
99 	/* All other values are reserved */
100 	assert(pa_range < ARRAY_SIZE(pa_range_bits_arr));
101 
102 	return (1ULL << pa_range_bits_arr[pa_range]) - 1ULL;
103 }
104 
105 /*
106  * Return minimum virtual address space size supported by the architecture
107  */
xlat_get_min_virt_addr_space_size(void)108 uintptr_t xlat_get_min_virt_addr_space_size(void)
109 {
110 	uintptr_t ret;
111 
112 	if (is_armv8_4_ttst_present())
113 		ret = MIN_VIRT_ADDR_SPACE_SIZE_TTST;
114 	else
115 		ret = MIN_VIRT_ADDR_SPACE_SIZE;
116 
117 	return ret;
118 }
119 #endif /* ENABLE_ASSERTIONS*/
120 
is_mmu_enabled_ctx(const xlat_ctx_t * ctx)121 bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
122 {
123 	if (ctx->xlat_regime == EL1_EL0_REGIME) {
124 		assert(xlat_arch_current_el() >= 1U);
125 		return (read_sctlr_el1() & SCTLR_M_BIT) != 0U;
126 	} else if (ctx->xlat_regime == EL2_REGIME) {
127 		assert(xlat_arch_current_el() >= 2U);
128 		return (read_sctlr_el2() & SCTLR_M_BIT) != 0U;
129 	} else {
130 		assert(ctx->xlat_regime == EL3_REGIME);
131 		assert(xlat_arch_current_el() >= 3U);
132 		return (read_sctlr_el3() & SCTLR_M_BIT) != 0U;
133 	}
134 }
135 
is_dcache_enabled(void)136 bool is_dcache_enabled(void)
137 {
138 	unsigned int el = get_current_el_maybe_constant();
139 
140 	if (el == 1U) {
141 		return (read_sctlr_el1() & SCTLR_C_BIT) != 0U;
142 	} else if (el == 2U) {
143 		return (read_sctlr_el2() & SCTLR_C_BIT) != 0U;
144 	} else {
145 		return (read_sctlr_el3() & SCTLR_C_BIT) != 0U;
146 	}
147 }
148 
xlat_arch_regime_get_xn_desc(int xlat_regime)149 uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime)
150 {
151 	if (xlat_regime == EL1_EL0_REGIME) {
152 		return UPPER_ATTRS(UXN) | UPPER_ATTRS(PXN);
153 	} else {
154 		assert((xlat_regime == EL2_REGIME) ||
155 		       (xlat_regime == EL3_REGIME));
156 		return UPPER_ATTRS(XN);
157 	}
158 }
159 
xlat_arch_tlbi_va(uintptr_t va,int xlat_regime)160 void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime)
161 {
162 	/*
163 	 * Ensure the translation table write has drained into memory before
164 	 * invalidating the TLB entry.
165 	 */
166 	dsbishst();
167 
168 	/*
169 	 * This function only supports invalidation of TLB entries for the EL3
170 	 * and EL1&0 translation regimes.
171 	 *
172 	 * Also, it is architecturally UNDEFINED to invalidate TLBs of a higher
173 	 * exception level (see section D4.9.2 of the ARM ARM rev B.a).
174 	 */
175 	if (xlat_regime == EL1_EL0_REGIME) {
176 		assert(xlat_arch_current_el() >= 1U);
177 		tlbivaae1is(TLBI_ADDR(va));
178 	} else if (xlat_regime == EL2_REGIME) {
179 		assert(xlat_arch_current_el() >= 2U);
180 		tlbivae2is(TLBI_ADDR(va));
181 	} else {
182 		assert(xlat_regime == EL3_REGIME);
183 		assert(xlat_arch_current_el() >= 3U);
184 		tlbivae3is(TLBI_ADDR(va));
185 	}
186 }
187 
xlat_arch_tlbi_va_sync(void)188 void xlat_arch_tlbi_va_sync(void)
189 {
190 	/*
191 	 * A TLB maintenance instruction can complete at any time after
192 	 * it is issued, but is only guaranteed to be complete after the
193 	 * execution of DSB by the PE that executed the TLB maintenance
194 	 * instruction. After the TLB invalidate instruction is
195 	 * complete, no new memory accesses using the invalidated TLB
196 	 * entries will be observed by any observer of the system
197 	 * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
198 	 * "Ordering and completion of TLB maintenance instructions".
199 	 */
200 	dsbish();
201 
202 	/*
203 	 * The effects of a completed TLB maintenance instruction are
204 	 * only guaranteed to be visible on the PE that executed the
205 	 * instruction after the execution of an ISB instruction by the
206 	 * PE that executed the TLB maintenance instruction.
207 	 */
208 	isb();
209 }
210 
xlat_arch_current_el(void)211 unsigned int xlat_arch_current_el(void)
212 {
213 	unsigned int el = (unsigned int)GET_EL(read_CurrentEl());
214 
215 	assert(el > 0U);
216 
217 	return el;
218 }
219 
setup_mmu_cfg(uint64_t * params,unsigned int flags,const uint64_t * base_table,unsigned long long max_pa,uintptr_t max_va,int xlat_regime)220 void setup_mmu_cfg(uint64_t *params, unsigned int flags,
221 		   const uint64_t *base_table, unsigned long long max_pa,
222 		   uintptr_t max_va, int xlat_regime)
223 {
224 	uint64_t mair, ttbr0, tcr;
225 	uintptr_t virtual_addr_space_size;
226 
227 	/* Set attributes in the right indices of the MAIR. */
228 	mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
229 	mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX);
230 	mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);
231 
232 	/*
233 	 * Limit the input address ranges and memory region sizes translated
234 	 * using TTBR0 to the given virtual address space size.
235 	 */
236 	assert(max_va < ((uint64_t)UINTPTR_MAX));
237 
238 	virtual_addr_space_size = (uintptr_t)max_va + 1U;
239 
240 	assert(virtual_addr_space_size >=
241 		xlat_get_min_virt_addr_space_size());
242 	assert(virtual_addr_space_size <= MAX_VIRT_ADDR_SPACE_SIZE);
243 	assert(IS_POWER_OF_TWO(virtual_addr_space_size));
244 
245 	/*
246 	 * __builtin_ctzll(0) is undefined but here we are guaranteed that
247 	 * virtual_addr_space_size is in the range [1,UINTPTR_MAX].
248 	 */
249 	int t0sz = 64 - __builtin_ctzll(virtual_addr_space_size);
250 
251 	tcr = (uint64_t)t0sz << TCR_T0SZ_SHIFT;
252 
253 	/*
254 	 * Set the cacheability and shareability attributes for memory
255 	 * associated with translation table walks.
256 	 */
257 	if ((flags & XLAT_TABLE_NC) != 0U) {
258 		/* Inner & outer non-cacheable non-shareable. */
259 		tcr |= TCR_SH_NON_SHAREABLE |
260 			TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC;
261 	} else {
262 		/* Inner & outer WBWA & shareable. */
263 		tcr |= TCR_SH_INNER_SHAREABLE |
264 			TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA;
265 	}
266 
267 	/*
268 	 * It is safer to restrict the max physical address accessible by the
269 	 * hardware as much as possible.
270 	 */
271 	unsigned long long tcr_ps_bits = tcr_physical_addr_size_bits(max_pa);
272 
273 	if (xlat_regime == EL1_EL0_REGIME) {
274 		/*
275 		 * TCR_EL1.EPD1: Disable translation table walk for addresses
276 		 * that are translated using TTBR1_EL1.
277 		 */
278 		tcr |= TCR_EPD1_BIT | (tcr_ps_bits << TCR_EL1_IPS_SHIFT);
279 	} else if (xlat_regime == EL2_REGIME) {
280 		tcr |= TCR_EL2_RES1 | (tcr_ps_bits << TCR_EL2_PS_SHIFT);
281 	} else {
282 		assert(xlat_regime == EL3_REGIME);
283 		tcr |= TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT);
284 	}
285 
286 	/* Set TTBR bits as well */
287 	ttbr0 = (uint64_t) base_table;
288 
289 	if (is_armv8_2_ttcnp_present()) {
290 		/* Enable CnP bit so as to share page tables with all PEs. */
291 		ttbr0 |= TTBR_CNP_BIT;
292 	}
293 
294 	params[MMU_CFG_MAIR] = mair;
295 	params[MMU_CFG_TCR] = tcr;
296 	params[MMU_CFG_TTBR0] = ttbr0;
297 }
298