1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputFiles.h"
10 #include "Chunks.h"
11 #include "Config.h"
12 #include "DebugTypes.h"
13 #include "Driver.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm-c/lto.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/BinaryFormat/COFF.h"
24 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
25 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
26 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
27 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
28 #include "llvm/DebugInfo/PDB/Native/NativeSession.h"
29 #include "llvm/DebugInfo/PDB/Native/PDBFile.h"
30 #include "llvm/LTO/LTO.h"
31 #include "llvm/Object/Binary.h"
32 #include "llvm/Object/COFF.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/Endian.h"
35 #include "llvm/Support/Error.h"
36 #include "llvm/Support/ErrorOr.h"
37 #include "llvm/Support/FileSystem.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include <cstring>
41 #include <system_error>
42 #include <utility>
43
44 using namespace llvm;
45 using namespace llvm::COFF;
46 using namespace llvm::codeview;
47 using namespace llvm::object;
48 using namespace llvm::support::endian;
49 using namespace lld;
50 using namespace lld::coff;
51
52 using llvm::Triple;
53 using llvm::support::ulittle32_t;
54
55 // Returns the last element of a path, which is supposed to be a filename.
getBasename(StringRef path)56 static StringRef getBasename(StringRef path) {
57 return sys::path::filename(path, sys::path::Style::windows);
58 }
59
60 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
toString(const coff::InputFile * file)61 std::string lld::toString(const coff::InputFile *file) {
62 if (!file)
63 return "<internal>";
64 if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind)
65 return std::string(file->getName());
66
67 return (getBasename(file->parentName) + "(" + getBasename(file->getName()) +
68 ")")
69 .str();
70 }
71
72 std::vector<ObjFile *> ObjFile::instances;
73 std::map<std::string, PDBInputFile *> PDBInputFile::instances;
74 std::vector<ImportFile *> ImportFile::instances;
75 std::vector<BitcodeFile *> BitcodeFile::instances;
76
77 /// Checks that Source is compatible with being a weak alias to Target.
78 /// If Source is Undefined and has no weak alias set, makes it a weak
79 /// alias to Target.
checkAndSetWeakAlias(SymbolTable * symtab,InputFile * f,Symbol * source,Symbol * target)80 static void checkAndSetWeakAlias(SymbolTable *symtab, InputFile *f,
81 Symbol *source, Symbol *target) {
82 if (auto *u = dyn_cast<Undefined>(source)) {
83 if (u->weakAlias && u->weakAlias != target) {
84 // Weak aliases as produced by GCC are named in the form
85 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
86 // of another symbol emitted near the weak symbol.
87 // Just use the definition from the first object file that defined
88 // this weak symbol.
89 if (config->mingw)
90 return;
91 symtab->reportDuplicate(source, f);
92 }
93 u->weakAlias = target;
94 }
95 }
96
ignoredSymbolName(StringRef name)97 static bool ignoredSymbolName(StringRef name) {
98 return name == "@feat.00" || name == "@comp.id";
99 }
100
ArchiveFile(MemoryBufferRef m)101 ArchiveFile::ArchiveFile(MemoryBufferRef m) : InputFile(ArchiveKind, m) {}
102
parse()103 void ArchiveFile::parse() {
104 // Parse a MemoryBufferRef as an archive file.
105 file = CHECK(Archive::create(mb), this);
106
107 // Read the symbol table to construct Lazy objects.
108 for (const Archive::Symbol &sym : file->symbols())
109 symtab->addLazyArchive(this, sym);
110 }
111
112 // Returns a buffer pointing to a member file containing a given symbol.
addMember(const Archive::Symbol & sym)113 void ArchiveFile::addMember(const Archive::Symbol &sym) {
114 const Archive::Child &c =
115 CHECK(sym.getMember(),
116 "could not get the member for symbol " + toCOFFString(sym));
117
118 // Return an empty buffer if we have already returned the same buffer.
119 if (!seen.insert(c.getChildOffset()).second)
120 return;
121
122 driver->enqueueArchiveMember(c, sym, getName());
123 }
124
getArchiveMembers(Archive * file)125 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) {
126 std::vector<MemoryBufferRef> v;
127 Error err = Error::success();
128 for (const Archive::Child &c : file->children(err)) {
129 MemoryBufferRef mbref =
130 CHECK(c.getMemoryBufferRef(),
131 file->getFileName() +
132 ": could not get the buffer for a child of the archive");
133 v.push_back(mbref);
134 }
135 if (err)
136 fatal(file->getFileName() +
137 ": Archive::children failed: " + toString(std::move(err)));
138 return v;
139 }
140
fetch()141 void LazyObjFile::fetch() {
142 if (mb.getBuffer().empty())
143 return;
144
145 InputFile *file;
146 if (isBitcode(mb))
147 file = make<BitcodeFile>(mb, "", 0, std::move(symbols));
148 else
149 file = make<ObjFile>(mb, std::move(symbols));
150 mb = {};
151 symtab->addFile(file);
152 }
153
parse()154 void LazyObjFile::parse() {
155 if (isBitcode(this->mb)) {
156 // Bitcode file.
157 std::unique_ptr<lto::InputFile> obj =
158 CHECK(lto::InputFile::create(this->mb), this);
159 for (const lto::InputFile::Symbol &sym : obj->symbols()) {
160 if (!sym.isUndefined())
161 symtab->addLazyObject(this, sym.getName());
162 }
163 return;
164 }
165
166 // Native object file.
167 std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this);
168 COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get());
169 uint32_t numSymbols = coffObj->getNumberOfSymbols();
170 for (uint32_t i = 0; i < numSymbols; ++i) {
171 COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
172 if (coffSym.isUndefined() || !coffSym.isExternal() ||
173 coffSym.isWeakExternal())
174 continue;
175 StringRef name = check(coffObj->getSymbolName(coffSym));
176 if (coffSym.isAbsolute() && ignoredSymbolName(name))
177 continue;
178 symtab->addLazyObject(this, name);
179 i += coffSym.getNumberOfAuxSymbols();
180 }
181 }
182
parse()183 void ObjFile::parse() {
184 // Parse a memory buffer as a COFF file.
185 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
186
187 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
188 bin.release();
189 coffObj.reset(obj);
190 } else {
191 fatal(toString(this) + " is not a COFF file");
192 }
193
194 // Read section and symbol tables.
195 initializeChunks();
196 initializeSymbols();
197 initializeFlags();
198 initializeDependencies();
199 }
200
getSection(uint32_t i)201 const coff_section *ObjFile::getSection(uint32_t i) {
202 auto sec = coffObj->getSection(i);
203 if (!sec)
204 fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError()));
205 return *sec;
206 }
207
208 // We set SectionChunk pointers in the SparseChunks vector to this value
209 // temporarily to mark comdat sections as having an unknown resolution. As we
210 // walk the object file's symbol table, once we visit either a leader symbol or
211 // an associative section definition together with the parent comdat's leader,
212 // we set the pointer to either nullptr (to mark the section as discarded) or a
213 // valid SectionChunk for that section.
214 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1);
215
initializeChunks()216 void ObjFile::initializeChunks() {
217 uint32_t numSections = coffObj->getNumberOfSections();
218 sparseChunks.resize(numSections + 1);
219 for (uint32_t i = 1; i < numSections + 1; ++i) {
220 const coff_section *sec = getSection(i);
221 if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT)
222 sparseChunks[i] = pendingComdat;
223 else
224 sparseChunks[i] = readSection(i, nullptr, "");
225 }
226 }
227
readSection(uint32_t sectionNumber,const coff_aux_section_definition * def,StringRef leaderName)228 SectionChunk *ObjFile::readSection(uint32_t sectionNumber,
229 const coff_aux_section_definition *def,
230 StringRef leaderName) {
231 const coff_section *sec = getSection(sectionNumber);
232
233 StringRef name;
234 if (Expected<StringRef> e = coffObj->getSectionName(sec))
235 name = *e;
236 else
237 fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " +
238 toString(e.takeError()));
239
240 if (name == ".drectve") {
241 ArrayRef<uint8_t> data;
242 cantFail(coffObj->getSectionContents(sec, data));
243 directives = StringRef((const char *)data.data(), data.size());
244 return nullptr;
245 }
246
247 if (name == ".llvm_addrsig") {
248 addrsigSec = sec;
249 return nullptr;
250 }
251
252 if (name == ".llvm.call-graph-profile") {
253 callgraphSec = sec;
254 return nullptr;
255 }
256
257 // Object files may have DWARF debug info or MS CodeView debug info
258 // (or both).
259 //
260 // DWARF sections don't need any special handling from the perspective
261 // of the linker; they are just a data section containing relocations.
262 // We can just link them to complete debug info.
263 //
264 // CodeView needs linker support. We need to interpret debug info,
265 // and then write it to a separate .pdb file.
266
267 // Ignore DWARF debug info unless /debug is given.
268 if (!config->debug && name.startswith(".debug_"))
269 return nullptr;
270
271 if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
272 return nullptr;
273 auto *c = make<SectionChunk>(this, sec);
274 if (def)
275 c->checksum = def->CheckSum;
276
277 // CodeView sections are stored to a different vector because they are not
278 // linked in the regular manner.
279 if (c->isCodeView())
280 debugChunks.push_back(c);
281 else if (name == ".gfids$y")
282 guardFidChunks.push_back(c);
283 else if (name == ".giats$y")
284 guardIATChunks.push_back(c);
285 else if (name == ".gljmp$y")
286 guardLJmpChunks.push_back(c);
287 else if (name == ".sxdata")
288 sxDataChunks.push_back(c);
289 else if (config->tailMerge && sec->NumberOfRelocations == 0 &&
290 name == ".rdata" && leaderName.startswith("??_C@"))
291 // COFF sections that look like string literal sections (i.e. no
292 // relocations, in .rdata, leader symbol name matches the MSVC name mangling
293 // for string literals) are subject to string tail merging.
294 MergeChunk::addSection(c);
295 else if (name == ".rsrc" || name.startswith(".rsrc$"))
296 resourceChunks.push_back(c);
297 else
298 chunks.push_back(c);
299
300 return c;
301 }
302
includeResourceChunks()303 void ObjFile::includeResourceChunks() {
304 chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end());
305 }
306
readAssociativeDefinition(COFFSymbolRef sym,const coff_aux_section_definition * def)307 void ObjFile::readAssociativeDefinition(
308 COFFSymbolRef sym, const coff_aux_section_definition *def) {
309 readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj()));
310 }
311
readAssociativeDefinition(COFFSymbolRef sym,const coff_aux_section_definition * def,uint32_t parentIndex)312 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym,
313 const coff_aux_section_definition *def,
314 uint32_t parentIndex) {
315 SectionChunk *parent = sparseChunks[parentIndex];
316 int32_t sectionNumber = sym.getSectionNumber();
317
318 auto diag = [&]() {
319 StringRef name = check(coffObj->getSymbolName(sym));
320
321 StringRef parentName;
322 const coff_section *parentSec = getSection(parentIndex);
323 if (Expected<StringRef> e = coffObj->getSectionName(parentSec))
324 parentName = *e;
325 error(toString(this) + ": associative comdat " + name + " (sec " +
326 Twine(sectionNumber) + ") has invalid reference to section " +
327 parentName + " (sec " + Twine(parentIndex) + ")");
328 };
329
330 if (parent == pendingComdat) {
331 // This can happen if an associative comdat refers to another associative
332 // comdat that appears after it (invalid per COFF spec) or to a section
333 // without any symbols.
334 diag();
335 return;
336 }
337
338 // Check whether the parent is prevailing. If it is, so are we, and we read
339 // the section; otherwise mark it as discarded.
340 if (parent) {
341 SectionChunk *c = readSection(sectionNumber, def, "");
342 sparseChunks[sectionNumber] = c;
343 if (c) {
344 c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE;
345 parent->addAssociative(c);
346 }
347 } else {
348 sparseChunks[sectionNumber] = nullptr;
349 }
350 }
351
recordPrevailingSymbolForMingw(COFFSymbolRef sym,DenseMap<StringRef,uint32_t> & prevailingSectionMap)352 void ObjFile::recordPrevailingSymbolForMingw(
353 COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
354 // For comdat symbols in executable sections, where this is the copy
355 // of the section chunk we actually include instead of discarding it,
356 // add the symbol to a map to allow using it for implicitly
357 // associating .[px]data$<func> sections to it.
358 // Use the suffix from the .text$<func> instead of the leader symbol
359 // name, for cases where the names differ (i386 mangling/decorations,
360 // cases where the leader is a weak symbol named .weak.func.default*).
361 int32_t sectionNumber = sym.getSectionNumber();
362 SectionChunk *sc = sparseChunks[sectionNumber];
363 if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) {
364 StringRef name = sc->getSectionName().split('$').second;
365 prevailingSectionMap[name] = sectionNumber;
366 }
367 }
368
maybeAssociateSEHForMingw(COFFSymbolRef sym,const coff_aux_section_definition * def,const DenseMap<StringRef,uint32_t> & prevailingSectionMap)369 void ObjFile::maybeAssociateSEHForMingw(
370 COFFSymbolRef sym, const coff_aux_section_definition *def,
371 const DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
372 StringRef name = check(coffObj->getSymbolName(sym));
373 if (name.consume_front(".pdata$") || name.consume_front(".xdata$") ||
374 name.consume_front(".eh_frame$")) {
375 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
376 // associative to the symbol <func>.
377 auto parentSym = prevailingSectionMap.find(name);
378 if (parentSym != prevailingSectionMap.end())
379 readAssociativeDefinition(sym, def, parentSym->second);
380 }
381 }
382
createRegular(COFFSymbolRef sym)383 Symbol *ObjFile::createRegular(COFFSymbolRef sym) {
384 SectionChunk *sc = sparseChunks[sym.getSectionNumber()];
385 if (sym.isExternal()) {
386 StringRef name = check(coffObj->getSymbolName(sym));
387 if (sc)
388 return symtab->addRegular(this, name, sym.getGeneric(), sc,
389 sym.getValue());
390 // For MinGW symbols named .weak.* that point to a discarded section,
391 // don't create an Undefined symbol. If nothing ever refers to the symbol,
392 // everything should be fine. If something actually refers to the symbol
393 // (e.g. the undefined weak alias), linking will fail due to undefined
394 // references at the end.
395 if (config->mingw && name.startswith(".weak."))
396 return nullptr;
397 return symtab->addUndefined(name, this, false);
398 }
399 if (sc)
400 return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
401 /*IsExternal*/ false, sym.getGeneric(), sc);
402 return nullptr;
403 }
404
initializeSymbols()405 void ObjFile::initializeSymbols() {
406 uint32_t numSymbols = coffObj->getNumberOfSymbols();
407 symbols.resize(numSymbols);
408
409 SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases;
410 std::vector<uint32_t> pendingIndexes;
411 pendingIndexes.reserve(numSymbols);
412
413 DenseMap<StringRef, uint32_t> prevailingSectionMap;
414 std::vector<const coff_aux_section_definition *> comdatDefs(
415 coffObj->getNumberOfSections() + 1);
416
417 for (uint32_t i = 0; i < numSymbols; ++i) {
418 COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
419 bool prevailingComdat;
420 if (coffSym.isUndefined()) {
421 symbols[i] = createUndefined(coffSym);
422 } else if (coffSym.isWeakExternal()) {
423 symbols[i] = createUndefined(coffSym);
424 uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex;
425 weakAliases.emplace_back(symbols[i], tagIndex);
426 } else if (Optional<Symbol *> optSym =
427 createDefined(coffSym, comdatDefs, prevailingComdat)) {
428 symbols[i] = *optSym;
429 if (config->mingw && prevailingComdat)
430 recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap);
431 } else {
432 // createDefined() returns None if a symbol belongs to a section that
433 // was pending at the point when the symbol was read. This can happen in
434 // two cases:
435 // 1) section definition symbol for a comdat leader;
436 // 2) symbol belongs to a comdat section associated with another section.
437 // In both of these cases, we can expect the section to be resolved by
438 // the time we finish visiting the remaining symbols in the symbol
439 // table. So we postpone the handling of this symbol until that time.
440 pendingIndexes.push_back(i);
441 }
442 i += coffSym.getNumberOfAuxSymbols();
443 }
444
445 for (uint32_t i : pendingIndexes) {
446 COFFSymbolRef sym = check(coffObj->getSymbol(i));
447 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
448 if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE)
449 readAssociativeDefinition(sym, def);
450 else if (config->mingw)
451 maybeAssociateSEHForMingw(sym, def, prevailingSectionMap);
452 }
453 if (sparseChunks[sym.getSectionNumber()] == pendingComdat) {
454 StringRef name = check(coffObj->getSymbolName(sym));
455 log("comdat section " + name +
456 " without leader and unassociated, discarding");
457 continue;
458 }
459 symbols[i] = createRegular(sym);
460 }
461
462 for (auto &kv : weakAliases) {
463 Symbol *sym = kv.first;
464 uint32_t idx = kv.second;
465 checkAndSetWeakAlias(symtab, this, sym, symbols[idx]);
466 }
467
468 // Free the memory used by sparseChunks now that symbol loading is finished.
469 decltype(sparseChunks)().swap(sparseChunks);
470 }
471
createUndefined(COFFSymbolRef sym)472 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) {
473 StringRef name = check(coffObj->getSymbolName(sym));
474 return symtab->addUndefined(name, this, sym.isWeakExternal());
475 }
476
findSectionDef(COFFObjectFile * obj,int32_t section)477 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj,
478 int32_t section) {
479 uint32_t numSymbols = obj->getNumberOfSymbols();
480 for (uint32_t i = 0; i < numSymbols; ++i) {
481 COFFSymbolRef sym = check(obj->getSymbol(i));
482 if (sym.getSectionNumber() != section)
483 continue;
484 if (const coff_aux_section_definition *def = sym.getSectionDefinition())
485 return def;
486 }
487 return nullptr;
488 }
489
handleComdatSelection(COFFSymbolRef sym,COMDATType & selection,bool & prevailing,DefinedRegular * leader,const llvm::object::coff_aux_section_definition * def)490 void ObjFile::handleComdatSelection(
491 COFFSymbolRef sym, COMDATType &selection, bool &prevailing,
492 DefinedRegular *leader,
493 const llvm::object::coff_aux_section_definition *def) {
494 if (prevailing)
495 return;
496 // There's already an existing comdat for this symbol: `Leader`.
497 // Use the comdats's selection field to determine if the new
498 // symbol in `Sym` should be discarded, produce a duplicate symbol
499 // error, etc.
500
501 SectionChunk *leaderChunk = nullptr;
502 COMDATType leaderSelection = IMAGE_COMDAT_SELECT_ANY;
503
504 if (leader->data) {
505 leaderChunk = leader->getChunk();
506 leaderSelection = leaderChunk->selection;
507 } else {
508 // FIXME: comdats from LTO files don't know their selection; treat them
509 // as "any".
510 selection = leaderSelection;
511 }
512
513 if ((selection == IMAGE_COMDAT_SELECT_ANY &&
514 leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) ||
515 (selection == IMAGE_COMDAT_SELECT_LARGEST &&
516 leaderSelection == IMAGE_COMDAT_SELECT_ANY)) {
517 // cl.exe picks "any" for vftables when building with /GR- and
518 // "largest" when building with /GR. To be able to link object files
519 // compiled with each flag, "any" and "largest" are merged as "largest".
520 leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST;
521 }
522
523 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
524 // Clang on the other hand picks "any". To be able to link two object files
525 // with a __declspec(selectany) declaration, one compiled with gcc and the
526 // other with clang, we merge them as proper "same size as"
527 if (config->mingw && ((selection == IMAGE_COMDAT_SELECT_ANY &&
528 leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) ||
529 (selection == IMAGE_COMDAT_SELECT_SAME_SIZE &&
530 leaderSelection == IMAGE_COMDAT_SELECT_ANY))) {
531 leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE;
532 }
533
534 // Other than that, comdat selections must match. This is a bit more
535 // strict than link.exe which allows merging "any" and "largest" if "any"
536 // is the first symbol the linker sees, and it allows merging "largest"
537 // with everything (!) if "largest" is the first symbol the linker sees.
538 // Making this symmetric independent of which selection is seen first
539 // seems better though.
540 // (This behavior matches ModuleLinker::getComdatResult().)
541 if (selection != leaderSelection) {
542 log(("conflicting comdat type for " + toString(*leader) + ": " +
543 Twine((int)leaderSelection) + " in " + toString(leader->getFile()) +
544 " and " + Twine((int)selection) + " in " + toString(this))
545 .str());
546 symtab->reportDuplicate(leader, this);
547 return;
548 }
549
550 switch (selection) {
551 case IMAGE_COMDAT_SELECT_NODUPLICATES:
552 symtab->reportDuplicate(leader, this);
553 break;
554
555 case IMAGE_COMDAT_SELECT_ANY:
556 // Nothing to do.
557 break;
558
559 case IMAGE_COMDAT_SELECT_SAME_SIZE:
560 if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) {
561 if (!config->mingw) {
562 symtab->reportDuplicate(leader, this);
563 } else {
564 const coff_aux_section_definition *leaderDef = findSectionDef(
565 leaderChunk->file->getCOFFObj(), leaderChunk->getSectionNumber());
566 if (!leaderDef || leaderDef->Length != def->Length)
567 symtab->reportDuplicate(leader, this);
568 }
569 }
570 break;
571
572 case IMAGE_COMDAT_SELECT_EXACT_MATCH: {
573 SectionChunk newChunk(this, getSection(sym));
574 // link.exe only compares section contents here and doesn't complain
575 // if the two comdat sections have e.g. different alignment.
576 // Match that.
577 if (leaderChunk->getContents() != newChunk.getContents())
578 symtab->reportDuplicate(leader, this, &newChunk, sym.getValue());
579 break;
580 }
581
582 case IMAGE_COMDAT_SELECT_ASSOCIATIVE:
583 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
584 // (This means lld-link doesn't produce duplicate symbol errors for
585 // associative comdats while link.exe does, but associate comdats
586 // are never extern in practice.)
587 llvm_unreachable("createDefined not called for associative comdats");
588
589 case IMAGE_COMDAT_SELECT_LARGEST:
590 if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) {
591 // Replace the existing comdat symbol with the new one.
592 StringRef name = check(coffObj->getSymbolName(sym));
593 // FIXME: This is incorrect: With /opt:noref, the previous sections
594 // make it into the final executable as well. Correct handling would
595 // be to undo reading of the whole old section that's being replaced,
596 // or doing one pass that determines what the final largest comdat
597 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
598 // only the largest one.
599 replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true,
600 /*IsExternal*/ true, sym.getGeneric(),
601 nullptr);
602 prevailing = true;
603 }
604 break;
605
606 case IMAGE_COMDAT_SELECT_NEWEST:
607 llvm_unreachable("should have been rejected earlier");
608 }
609 }
610
createDefined(COFFSymbolRef sym,std::vector<const coff_aux_section_definition * > & comdatDefs,bool & prevailing)611 Optional<Symbol *> ObjFile::createDefined(
612 COFFSymbolRef sym,
613 std::vector<const coff_aux_section_definition *> &comdatDefs,
614 bool &prevailing) {
615 prevailing = false;
616 auto getName = [&]() { return check(coffObj->getSymbolName(sym)); };
617
618 if (sym.isCommon()) {
619 auto *c = make<CommonChunk>(sym);
620 chunks.push_back(c);
621 return symtab->addCommon(this, getName(), sym.getValue(), sym.getGeneric(),
622 c);
623 }
624
625 if (sym.isAbsolute()) {
626 StringRef name = getName();
627
628 if (name == "@feat.00")
629 feat00Flags = sym.getValue();
630 // Skip special symbols.
631 if (ignoredSymbolName(name))
632 return nullptr;
633
634 if (sym.isExternal())
635 return symtab->addAbsolute(name, sym);
636 return make<DefinedAbsolute>(name, sym);
637 }
638
639 int32_t sectionNumber = sym.getSectionNumber();
640 if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
641 return nullptr;
642
643 if (llvm::COFF::isReservedSectionNumber(sectionNumber))
644 fatal(toString(this) + ": " + getName() +
645 " should not refer to special section " + Twine(sectionNumber));
646
647 if ((uint32_t)sectionNumber >= sparseChunks.size())
648 fatal(toString(this) + ": " + getName() +
649 " should not refer to non-existent section " + Twine(sectionNumber));
650
651 // Comdat handling.
652 // A comdat symbol consists of two symbol table entries.
653 // The first symbol entry has the name of the section (e.g. .text), fixed
654 // values for the other fields, and one auxiliary record.
655 // The second symbol entry has the name of the comdat symbol, called the
656 // "comdat leader".
657 // When this function is called for the first symbol entry of a comdat,
658 // it sets comdatDefs and returns None, and when it's called for the second
659 // symbol entry it reads comdatDefs and then sets it back to nullptr.
660
661 // Handle comdat leader.
662 if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) {
663 comdatDefs[sectionNumber] = nullptr;
664 DefinedRegular *leader;
665
666 if (sym.isExternal()) {
667 std::tie(leader, prevailing) =
668 symtab->addComdat(this, getName(), sym.getGeneric());
669 } else {
670 leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
671 /*IsExternal*/ false, sym.getGeneric());
672 prevailing = true;
673 }
674
675 if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES ||
676 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
677 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
678 def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) {
679 fatal("unknown comdat type " + std::to_string((int)def->Selection) +
680 " for " + getName() + " in " + toString(this));
681 }
682 COMDATType selection = (COMDATType)def->Selection;
683
684 if (leader->isCOMDAT)
685 handleComdatSelection(sym, selection, prevailing, leader, def);
686
687 if (prevailing) {
688 SectionChunk *c = readSection(sectionNumber, def, getName());
689 sparseChunks[sectionNumber] = c;
690 c->sym = cast<DefinedRegular>(leader);
691 c->selection = selection;
692 cast<DefinedRegular>(leader)->data = &c->repl;
693 } else {
694 sparseChunks[sectionNumber] = nullptr;
695 }
696 return leader;
697 }
698
699 // Prepare to handle the comdat leader symbol by setting the section's
700 // ComdatDefs pointer if we encounter a non-associative comdat.
701 if (sparseChunks[sectionNumber] == pendingComdat) {
702 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
703 if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE)
704 comdatDefs[sectionNumber] = def;
705 }
706 return None;
707 }
708
709 return createRegular(sym);
710 }
711
getMachineType()712 MachineTypes ObjFile::getMachineType() {
713 if (coffObj)
714 return static_cast<MachineTypes>(coffObj->getMachine());
715 return IMAGE_FILE_MACHINE_UNKNOWN;
716 }
717
getDebugSection(StringRef secName)718 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) {
719 if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName))
720 return sec->consumeDebugMagic();
721 return {};
722 }
723
724 // OBJ files systematically store critical information in a .debug$S stream,
725 // even if the TU was compiled with no debug info. At least two records are
726 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
727 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
728 // currently used to initialize the hotPatchable member.
initializeFlags()729 void ObjFile::initializeFlags() {
730 ArrayRef<uint8_t> data = getDebugSection(".debug$S");
731 if (data.empty())
732 return;
733
734 DebugSubsectionArray subsections;
735
736 BinaryStreamReader reader(data, support::little);
737 ExitOnError exitOnErr;
738 exitOnErr(reader.readArray(subsections, data.size()));
739
740 for (const DebugSubsectionRecord &ss : subsections) {
741 if (ss.kind() != DebugSubsectionKind::Symbols)
742 continue;
743
744 unsigned offset = 0;
745
746 // Only parse the first two records. We are only looking for S_OBJNAME
747 // and S_COMPILE3, and they usually appear at the beginning of the
748 // stream.
749 for (unsigned i = 0; i < 2; ++i) {
750 Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset);
751 if (!sym) {
752 consumeError(sym.takeError());
753 return;
754 }
755 if (sym->kind() == SymbolKind::S_COMPILE3) {
756 auto cs =
757 cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get()));
758 hotPatchable =
759 (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None;
760 }
761 if (sym->kind() == SymbolKind::S_OBJNAME) {
762 auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>(
763 sym.get()));
764 pchSignature = objName.Signature;
765 }
766 offset += sym->length();
767 }
768 }
769 }
770
771 // Depending on the compilation flags, OBJs can refer to external files,
772 // necessary to merge this OBJ into the final PDB. We currently support two
773 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
774 // And PDB type servers, when compiling with /Zi. This function extracts these
775 // dependencies and makes them available as a TpiSource interface (see
776 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
777 // output even with /Yc and /Yu and with /Zi.
initializeDependencies()778 void ObjFile::initializeDependencies() {
779 if (!config->debug)
780 return;
781
782 bool isPCH = false;
783
784 ArrayRef<uint8_t> data = getDebugSection(".debug$P");
785 if (!data.empty())
786 isPCH = true;
787 else
788 data = getDebugSection(".debug$T");
789
790 // Don't make a TpiSource for objects with no debug info. If the object has
791 // symbols but no types, make a plain, empty TpiSource anyway, because it
792 // simplifies adding the symbols later.
793 if (data.empty()) {
794 if (!debugChunks.empty())
795 debugTypesObj = makeTpiSource(this);
796 return;
797 }
798
799 // Get the first type record. It will indicate if this object uses a type
800 // server (/Zi) or a PCH file (/Yu).
801 CVTypeArray types;
802 BinaryStreamReader reader(data, support::little);
803 cantFail(reader.readArray(types, reader.getLength()));
804 CVTypeArray::Iterator firstType = types.begin();
805 if (firstType == types.end())
806 return;
807
808 // Remember the .debug$T or .debug$P section.
809 debugTypes = data;
810
811 // This object file is a PCH file that others will depend on.
812 if (isPCH) {
813 debugTypesObj = makePrecompSource(this);
814 return;
815 }
816
817 // This object file was compiled with /Zi. Enqueue the PDB dependency.
818 if (firstType->kind() == LF_TYPESERVER2) {
819 TypeServer2Record ts = cantFail(
820 TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data()));
821 debugTypesObj = makeUseTypeServerSource(this, ts);
822 PDBInputFile::enqueue(ts.getName(), this);
823 return;
824 }
825
826 // This object was compiled with /Yu. It uses types from another object file
827 // with a matching signature.
828 if (firstType->kind() == LF_PRECOMP) {
829 PrecompRecord precomp = cantFail(
830 TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data()));
831 debugTypesObj = makeUsePrecompSource(this, precomp);
832 // Drop the LF_PRECOMP record from the input stream.
833 debugTypes = debugTypes.drop_front(firstType->RecordData.size());
834 return;
835 }
836
837 // This is a plain old object file.
838 debugTypesObj = makeTpiSource(this);
839 }
840
841 // Make a PDB path assuming the PDB is in the same folder as the OBJ
getPdbBaseName(ObjFile * file,StringRef tSPath)842 static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) {
843 StringRef localPath =
844 !file->parentName.empty() ? file->parentName : file->getName();
845 SmallString<128> path = sys::path::parent_path(localPath);
846
847 // Currently, type server PDBs are only created by MSVC cl, which only runs
848 // on Windows, so we can assume type server paths are Windows style.
849 sys::path::append(path,
850 sys::path::filename(tSPath, sys::path::Style::windows));
851 return std::string(path.str());
852 }
853
854 // The casing of the PDB path stamped in the OBJ can differ from the actual path
855 // on disk. With this, we ensure to always use lowercase as a key for the
856 // PDBInputFile::instances map, at least on Windows.
normalizePdbPath(StringRef path)857 static std::string normalizePdbPath(StringRef path) {
858 #if defined(_WIN32)
859 return path.lower();
860 #else // LINUX
861 return std::string(path);
862 #endif
863 }
864
865 // If existing, return the actual PDB path on disk.
findPdbPath(StringRef pdbPath,ObjFile * dependentFile)866 static Optional<std::string> findPdbPath(StringRef pdbPath,
867 ObjFile *dependentFile) {
868 // Ensure the file exists before anything else. In some cases, if the path
869 // points to a removable device, Driver::enqueuePath() would fail with an
870 // error (EAGAIN, "resource unavailable try again") which we want to skip
871 // silently.
872 if (llvm::sys::fs::exists(pdbPath))
873 return normalizePdbPath(pdbPath);
874 std::string ret = getPdbBaseName(dependentFile, pdbPath);
875 if (llvm::sys::fs::exists(ret))
876 return normalizePdbPath(ret);
877 return None;
878 }
879
PDBInputFile(MemoryBufferRef m)880 PDBInputFile::PDBInputFile(MemoryBufferRef m) : InputFile(PDBKind, m) {}
881
882 PDBInputFile::~PDBInputFile() = default;
883
findFromRecordPath(StringRef path,ObjFile * fromFile)884 PDBInputFile *PDBInputFile::findFromRecordPath(StringRef path,
885 ObjFile *fromFile) {
886 auto p = findPdbPath(path.str(), fromFile);
887 if (!p)
888 return nullptr;
889 auto it = PDBInputFile::instances.find(*p);
890 if (it != PDBInputFile::instances.end())
891 return it->second;
892 return nullptr;
893 }
894
enqueue(StringRef path,ObjFile * fromFile)895 void PDBInputFile::enqueue(StringRef path, ObjFile *fromFile) {
896 auto p = findPdbPath(path.str(), fromFile);
897 if (!p)
898 return;
899 auto it = PDBInputFile::instances.emplace(*p, nullptr);
900 if (!it.second)
901 return; // already scheduled for load
902 driver->enqueuePDB(*p);
903 }
904
parse()905 void PDBInputFile::parse() {
906 PDBInputFile::instances[mb.getBufferIdentifier().str()] = this;
907
908 std::unique_ptr<pdb::IPDBSession> thisSession;
909 loadErr.emplace(pdb::NativeSession::createFromPdb(
910 MemoryBuffer::getMemBuffer(mb, false), thisSession));
911 if (*loadErr)
912 return; // fail silently at this point - the error will be handled later,
913 // when merging the debug type stream
914
915 session.reset(static_cast<pdb::NativeSession *>(thisSession.release()));
916
917 pdb::PDBFile &pdbFile = session->getPDBFile();
918 auto expectedInfo = pdbFile.getPDBInfoStream();
919 // All PDB Files should have an Info stream.
920 if (!expectedInfo) {
921 loadErr.emplace(expectedInfo.takeError());
922 return;
923 }
924 debugTypesObj = makeTypeServerSource(this);
925 }
926
927 // Used only for DWARF debug info, which is not common (except in MinGW
928 // environments). This returns an optional pair of file name and line
929 // number for where the variable was defined.
930 Optional<std::pair<StringRef, uint32_t>>
getVariableLocation(StringRef var)931 ObjFile::getVariableLocation(StringRef var) {
932 if (!dwarf) {
933 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
934 if (!dwarf)
935 return None;
936 }
937 if (config->machine == I386)
938 var.consume_front("_");
939 Optional<std::pair<std::string, unsigned>> ret = dwarf->getVariableLoc(var);
940 if (!ret)
941 return None;
942 return std::make_pair(saver.save(ret->first), ret->second);
943 }
944
945 // Used only for DWARF debug info, which is not common (except in MinGW
946 // environments).
getDILineInfo(uint32_t offset,uint32_t sectionIndex)947 Optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset,
948 uint32_t sectionIndex) {
949 if (!dwarf) {
950 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
951 if (!dwarf)
952 return None;
953 }
954
955 return dwarf->getDILineInfo(offset, sectionIndex);
956 }
957
ltrim1(StringRef s,const char * chars)958 static StringRef ltrim1(StringRef s, const char *chars) {
959 if (!s.empty() && strchr(chars, s[0]))
960 return s.substr(1);
961 return s;
962 }
963
parse()964 void ImportFile::parse() {
965 const char *buf = mb.getBufferStart();
966 const auto *hdr = reinterpret_cast<const coff_import_header *>(buf);
967
968 // Check if the total size is valid.
969 if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData)
970 fatal("broken import library");
971
972 // Read names and create an __imp_ symbol.
973 StringRef name = saver.save(StringRef(buf + sizeof(*hdr)));
974 StringRef impName = saver.save("__imp_" + name);
975 const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1;
976 dllName = std::string(StringRef(nameStart));
977 StringRef extName;
978 switch (hdr->getNameType()) {
979 case IMPORT_ORDINAL:
980 extName = "";
981 break;
982 case IMPORT_NAME:
983 extName = name;
984 break;
985 case IMPORT_NAME_NOPREFIX:
986 extName = ltrim1(name, "?@_");
987 break;
988 case IMPORT_NAME_UNDECORATE:
989 extName = ltrim1(name, "?@_");
990 extName = extName.substr(0, extName.find('@'));
991 break;
992 }
993
994 this->hdr = hdr;
995 externalName = extName;
996
997 impSym = symtab->addImportData(impName, this);
998 // If this was a duplicate, we logged an error but may continue;
999 // in this case, impSym is nullptr.
1000 if (!impSym)
1001 return;
1002
1003 if (hdr->getType() == llvm::COFF::IMPORT_CONST)
1004 static_cast<void>(symtab->addImportData(name, this));
1005
1006 // If type is function, we need to create a thunk which jump to an
1007 // address pointed by the __imp_ symbol. (This allows you to call
1008 // DLL functions just like regular non-DLL functions.)
1009 if (hdr->getType() == llvm::COFF::IMPORT_CODE)
1010 thunkSym = symtab->addImportThunk(
1011 name, cast_or_null<DefinedImportData>(impSym), hdr->Machine);
1012 }
1013
BitcodeFile(MemoryBufferRef mb,StringRef archiveName,uint64_t offsetInArchive)1014 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1015 uint64_t offsetInArchive)
1016 : BitcodeFile(mb, archiveName, offsetInArchive, {}) {}
1017
BitcodeFile(MemoryBufferRef mb,StringRef archiveName,uint64_t offsetInArchive,std::vector<Symbol * > && symbols)1018 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1019 uint64_t offsetInArchive,
1020 std::vector<Symbol *> &&symbols)
1021 : InputFile(BitcodeKind, mb), symbols(std::move(symbols)) {
1022 std::string path = mb.getBufferIdentifier().str();
1023 if (config->thinLTOIndexOnly)
1024 path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1025
1026 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1027 // name. If two archives define two members with the same name, this
1028 // causes a collision which result in only one of the objects being taken
1029 // into consideration at LTO time (which very likely causes undefined
1030 // symbols later in the link stage). So we append file offset to make
1031 // filename unique.
1032 MemoryBufferRef mbref(
1033 mb.getBuffer(),
1034 saver.save(archiveName.empty() ? path
1035 : archiveName + sys::path::filename(path) +
1036 utostr(offsetInArchive)));
1037
1038 obj = check(lto::InputFile::create(mbref));
1039 }
1040
1041 BitcodeFile::~BitcodeFile() = default;
1042
parse()1043 void BitcodeFile::parse() {
1044 std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size());
1045 for (size_t i = 0; i != obj->getComdatTable().size(); ++i)
1046 // FIXME: lto::InputFile doesn't keep enough data to do correct comdat
1047 // selection handling.
1048 comdat[i] = symtab->addComdat(this, saver.save(obj->getComdatTable()[i]));
1049 for (const lto::InputFile::Symbol &objSym : obj->symbols()) {
1050 StringRef symName = saver.save(objSym.getName());
1051 int comdatIndex = objSym.getComdatIndex();
1052 Symbol *sym;
1053 if (objSym.isUndefined()) {
1054 sym = symtab->addUndefined(symName, this, false);
1055 } else if (objSym.isCommon()) {
1056 sym = symtab->addCommon(this, symName, objSym.getCommonSize());
1057 } else if (objSym.isWeak() && objSym.isIndirect()) {
1058 // Weak external.
1059 sym = symtab->addUndefined(symName, this, true);
1060 std::string fallback = std::string(objSym.getCOFFWeakExternalFallback());
1061 Symbol *alias = symtab->addUndefined(saver.save(fallback));
1062 checkAndSetWeakAlias(symtab, this, sym, alias);
1063 } else if (comdatIndex != -1) {
1064 if (symName == obj->getComdatTable()[comdatIndex])
1065 sym = comdat[comdatIndex].first;
1066 else if (comdat[comdatIndex].second)
1067 sym = symtab->addRegular(this, symName);
1068 else
1069 sym = symtab->addUndefined(symName, this, false);
1070 } else {
1071 sym = symtab->addRegular(this, symName);
1072 }
1073 symbols.push_back(sym);
1074 if (objSym.isUsed())
1075 config->gcroot.push_back(sym);
1076 }
1077 directives = obj->getCOFFLinkerOpts();
1078 }
1079
getMachineType()1080 MachineTypes BitcodeFile::getMachineType() {
1081 switch (Triple(obj->getTargetTriple()).getArch()) {
1082 case Triple::x86_64:
1083 return AMD64;
1084 case Triple::x86:
1085 return I386;
1086 case Triple::arm:
1087 return ARMNT;
1088 case Triple::aarch64:
1089 return ARM64;
1090 default:
1091 return IMAGE_FILE_MACHINE_UNKNOWN;
1092 }
1093 }
1094
replaceThinLTOSuffix(StringRef path)1095 std::string lld::coff::replaceThinLTOSuffix(StringRef path) {
1096 StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1097 StringRef repl = config->thinLTOObjectSuffixReplace.second;
1098
1099 if (path.consume_back(suffix))
1100 return (path + repl).str();
1101 return std::string(path);
1102 }
1103