• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 
3   Reference Cycle Garbage Collection
4   ==================================
5 
6   Neil Schemenauer <nas@arctrix.com>
7 
8   Based on a post on the python-dev list.  Ideas from Guido van Rossum,
9   Eric Tiedemann, and various others.
10 
11   http://www.arctrix.com/nas/python/gc/
12   http://www.python.org/pipermail/python-dev/2000-March/003869.html
13   http://www.python.org/pipermail/python-dev/2000-March/004010.html
14   http://www.python.org/pipermail/python-dev/2000-March/004022.html
15 
16   For a highlevel view of the collection process, read the collect
17   function.
18 
19 */
20 
21 #include "Python.h"
22 #include "frameobject.h"        /* for PyFrame_ClearFreeList */
23 
24 /* Get an object's GC head */
25 #define AS_GC(o) ((PyGC_Head *)(o)-1)
26 
27 /* Get the object given the GC head */
28 #define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1))
29 
30 /*** Global GC state ***/
31 
32 struct gc_generation {
33     PyGC_Head head;
34     int threshold; /* collection threshold */
35     int count; /* count of allocations or collections of younger
36                   generations */
37 };
38 
39 #define NUM_GENERATIONS 3
40 #define GEN_HEAD(n) (&generations[n].head)
41 
42 /* linked lists of container objects */
43 static struct gc_generation generations[NUM_GENERATIONS] = {
44     /* PyGC_Head,                               threshold,      count */
45     {{{GEN_HEAD(0), GEN_HEAD(0), 0}},           700,            0},
46     {{{GEN_HEAD(1), GEN_HEAD(1), 0}},           10,             0},
47     {{{GEN_HEAD(2), GEN_HEAD(2), 0}},           10,             0},
48 };
49 
50 PyGC_Head *_PyGC_generation0 = GEN_HEAD(0);
51 
52 static int enabled = 1; /* automatic collection enabled? */
53 
54 /* true if we are currently running the collector */
55 static int collecting = 0;
56 
57 /* list of uncollectable objects */
58 static PyObject *garbage = NULL;
59 
60 /* Python string to use if unhandled exception occurs */
61 static PyObject *gc_str = NULL;
62 
63 /* Python string used to look for __del__ attribute. */
64 static PyObject *delstr = NULL;
65 
66 /* This is the number of objects who survived the last full collection. It
67    approximates the number of long lived objects tracked by the GC.
68 
69    (by "full collection", we mean a collection of the oldest generation).
70 */
71 static Py_ssize_t long_lived_total = 0;
72 
73 /* This is the number of objects who survived all "non-full" collections,
74    and are awaiting to undergo a full collection for the first time.
75 
76 */
77 static Py_ssize_t long_lived_pending = 0;
78 
79 /*
80    NOTE: about the counting of long-lived objects.
81 
82    To limit the cost of garbage collection, there are two strategies;
83      - make each collection faster, e.g. by scanning fewer objects
84      - do less collections
85    This heuristic is about the latter strategy.
86 
87    In addition to the various configurable thresholds, we only trigger a
88    full collection if the ratio
89     long_lived_pending / long_lived_total
90    is above a given value (hardwired to 25%).
91 
92    The reason is that, while "non-full" collections (i.e., collections of
93    the young and middle generations) will always examine roughly the same
94    number of objects -- determined by the aforementioned thresholds --,
95    the cost of a full collection is proportional to the total number of
96    long-lived objects, which is virtually unbounded.
97 
98    Indeed, it has been remarked that doing a full collection every
99    <constant number> of object creations entails a dramatic performance
100    degradation in workloads which consist in creating and storing lots of
101    long-lived objects (e.g. building a large list of GC-tracked objects would
102    show quadratic performance, instead of linear as expected: see issue #4074).
103 
104    Using the above ratio, instead, yields amortized linear performance in
105    the total number of objects (the effect of which can be summarized
106    thusly: "each full garbage collection is more and more costly as the
107    number of objects grows, but we do fewer and fewer of them").
108 
109    This heuristic was suggested by Martin von Löwis on python-dev in
110    June 2008. His original analysis and proposal can be found at:
111     http://mail.python.org/pipermail/python-dev/2008-June/080579.html
112 */
113 
114 /*
115    NOTE: about untracking of mutable objects.
116 
117    Certain types of container cannot participate in a reference cycle, and
118    so do not need to be tracked by the garbage collector. Untracking these
119    objects reduces the cost of garbage collections. However, determining
120    which objects may be untracked is not free, and the costs must be
121    weighed against the benefits for garbage collection.
122 
123    There are two possible strategies for when to untrack a container:
124 
125    i) When the container is created.
126    ii) When the container is examined by the garbage collector.
127 
128    Tuples containing only immutable objects (integers, strings etc, and
129    recursively, tuples of immutable objects) do not need to be tracked.
130    The interpreter creates a large number of tuples, many of which will
131    not survive until garbage collection. It is therefore not worthwhile
132    to untrack eligible tuples at creation time.
133 
134    Instead, all tuples except the empty tuple are tracked when created.
135    During garbage collection it is determined whether any surviving tuples
136    can be untracked. A tuple can be untracked if all of its contents are
137    already not tracked. Tuples are examined for untracking in all garbage
138    collection cycles. It may take more than one cycle to untrack a tuple.
139 
140    Dictionaries containing only immutable objects also do not need to be
141    tracked. Dictionaries are untracked when created. If a tracked item is
142    inserted into a dictionary (either as a key or value), the dictionary
143    becomes tracked. During a full garbage collection (all generations),
144    the collector will untrack any dictionaries whose contents are not
145    tracked.
146 
147    The module provides the python function is_tracked(obj), which returns
148    the CURRENT tracking status of the object. Subsequent garbage
149    collections may change the tracking status of the object.
150 
151    Untracking of certain containers was introduced in issue #4688, and
152    the algorithm was refined in response to issue #14775.
153 */
154 
155 /* set for debugging information */
156 #define DEBUG_STATS             (1<<0) /* print collection statistics */
157 #define DEBUG_COLLECTABLE       (1<<1) /* print collectable objects */
158 #define DEBUG_UNCOLLECTABLE     (1<<2) /* print uncollectable objects */
159 #define DEBUG_INSTANCES         (1<<3) /* print instances */
160 #define DEBUG_OBJECTS           (1<<4) /* print other objects */
161 #define DEBUG_SAVEALL           (1<<5) /* save all garbage in gc.garbage */
162 #define DEBUG_LEAK              DEBUG_COLLECTABLE | \
163                 DEBUG_UNCOLLECTABLE | \
164                 DEBUG_INSTANCES | \
165                 DEBUG_OBJECTS | \
166                 DEBUG_SAVEALL
167 static int debug;
168 static PyObject *tmod = NULL;
169 
170 /*--------------------------------------------------------------------------
171 gc_refs values.
172 
173 Between collections, every gc'ed object has one of two gc_refs values:
174 
175 GC_UNTRACKED
176     The initial state; objects returned by PyObject_GC_Malloc are in this
177     state.  The object doesn't live in any generation list, and its
178     tp_traverse slot must not be called.
179 
180 GC_REACHABLE
181     The object lives in some generation list, and its tp_traverse is safe to
182     call.  An object transitions to GC_REACHABLE when PyObject_GC_Track
183     is called.
184 
185 During a collection, gc_refs can temporarily take on other states:
186 
187 >= 0
188     At the start of a collection, update_refs() copies the true refcount
189     to gc_refs, for each object in the generation being collected.
190     subtract_refs() then adjusts gc_refs so that it equals the number of
191     times an object is referenced directly from outside the generation
192     being collected.
193     gc_refs remains >= 0 throughout these steps.
194 
195 GC_TENTATIVELY_UNREACHABLE
196     move_unreachable() then moves objects not reachable (whether directly or
197     indirectly) from outside the generation into an "unreachable" set.
198     Objects that are found to be reachable have gc_refs set to GC_REACHABLE
199     again.  Objects that are found to be unreachable have gc_refs set to
200     GC_TENTATIVELY_UNREACHABLE.  It's "tentatively" because the pass doing
201     this can't be sure until it ends, and GC_TENTATIVELY_UNREACHABLE may
202     transition back to GC_REACHABLE.
203 
204     Only objects with GC_TENTATIVELY_UNREACHABLE still set are candidates
205     for collection.  If it's decided not to collect such an object (e.g.,
206     it has a __del__ method), its gc_refs is restored to GC_REACHABLE again.
207 ----------------------------------------------------------------------------
208 */
209 #define GC_UNTRACKED                    _PyGC_REFS_UNTRACKED
210 #define GC_REACHABLE                    _PyGC_REFS_REACHABLE
211 #define GC_TENTATIVELY_UNREACHABLE      _PyGC_REFS_TENTATIVELY_UNREACHABLE
212 
213 #define IS_TRACKED(o) ((AS_GC(o))->gc.gc_refs != GC_UNTRACKED)
214 #define IS_REACHABLE(o) ((AS_GC(o))->gc.gc_refs == GC_REACHABLE)
215 #define IS_TENTATIVELY_UNREACHABLE(o) ( \
216     (AS_GC(o))->gc.gc_refs == GC_TENTATIVELY_UNREACHABLE)
217 
218 /*** list functions ***/
219 
220 static void
gc_list_init(PyGC_Head * list)221 gc_list_init(PyGC_Head *list)
222 {
223     list->gc.gc_prev = list;
224     list->gc.gc_next = list;
225 }
226 
227 static int
gc_list_is_empty(PyGC_Head * list)228 gc_list_is_empty(PyGC_Head *list)
229 {
230     return (list->gc.gc_next == list);
231 }
232 
233 #if 0
234 /* This became unused after gc_list_move() was introduced. */
235 /* Append `node` to `list`. */
236 static void
237 gc_list_append(PyGC_Head *node, PyGC_Head *list)
238 {
239     node->gc.gc_next = list;
240     node->gc.gc_prev = list->gc.gc_prev;
241     node->gc.gc_prev->gc.gc_next = node;
242     list->gc.gc_prev = node;
243 }
244 #endif
245 
246 /* Remove `node` from the gc list it's currently in. */
247 static void
gc_list_remove(PyGC_Head * node)248 gc_list_remove(PyGC_Head *node)
249 {
250     node->gc.gc_prev->gc.gc_next = node->gc.gc_next;
251     node->gc.gc_next->gc.gc_prev = node->gc.gc_prev;
252     node->gc.gc_next = NULL; /* object is not currently tracked */
253 }
254 
255 /* Move `node` from the gc list it's currently in (which is not explicitly
256  * named here) to the end of `list`.  This is semantically the same as
257  * gc_list_remove(node) followed by gc_list_append(node, list).
258  */
259 static void
gc_list_move(PyGC_Head * node,PyGC_Head * list)260 gc_list_move(PyGC_Head *node, PyGC_Head *list)
261 {
262     PyGC_Head *new_prev;
263     PyGC_Head *current_prev = node->gc.gc_prev;
264     PyGC_Head *current_next = node->gc.gc_next;
265     /* Unlink from current list. */
266     current_prev->gc.gc_next = current_next;
267     current_next->gc.gc_prev = current_prev;
268     /* Relink at end of new list. */
269     new_prev = node->gc.gc_prev = list->gc.gc_prev;
270     new_prev->gc.gc_next = list->gc.gc_prev = node;
271     node->gc.gc_next = list;
272 }
273 
274 /* append list `from` onto list `to`; `from` becomes an empty list */
275 static void
gc_list_merge(PyGC_Head * from,PyGC_Head * to)276 gc_list_merge(PyGC_Head *from, PyGC_Head *to)
277 {
278     PyGC_Head *tail;
279     assert(from != to);
280     if (!gc_list_is_empty(from)) {
281         tail = to->gc.gc_prev;
282         tail->gc.gc_next = from->gc.gc_next;
283         tail->gc.gc_next->gc.gc_prev = tail;
284         to->gc.gc_prev = from->gc.gc_prev;
285         to->gc.gc_prev->gc.gc_next = to;
286     }
287     gc_list_init(from);
288 }
289 
290 static Py_ssize_t
gc_list_size(PyGC_Head * list)291 gc_list_size(PyGC_Head *list)
292 {
293     PyGC_Head *gc;
294     Py_ssize_t n = 0;
295     for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
296         n++;
297     }
298     return n;
299 }
300 
301 /* Append objects in a GC list to a Python list.
302  * Return 0 if all OK, < 0 if error (out of memory for list).
303  */
304 static int
append_objects(PyObject * py_list,PyGC_Head * gc_list)305 append_objects(PyObject *py_list, PyGC_Head *gc_list)
306 {
307     PyGC_Head *gc;
308     for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) {
309         PyObject *op = FROM_GC(gc);
310         if (op != py_list) {
311             if (PyList_Append(py_list, op)) {
312                 return -1; /* exception */
313             }
314         }
315     }
316     return 0;
317 }
318 
319 /*** end of list stuff ***/
320 
321 
322 /* Set all gc_refs = ob_refcnt.  After this, gc_refs is > 0 for all objects
323  * in containers, and is GC_REACHABLE for all tracked gc objects not in
324  * containers.
325  */
326 static void
update_refs(PyGC_Head * containers)327 update_refs(PyGC_Head *containers)
328 {
329     PyGC_Head *gc = containers->gc.gc_next;
330     for (; gc != containers; gc = gc->gc.gc_next) {
331         assert(gc->gc.gc_refs == GC_REACHABLE);
332         gc->gc.gc_refs = Py_REFCNT(FROM_GC(gc));
333         /* Python's cyclic gc should never see an incoming refcount
334          * of 0:  if something decref'ed to 0, it should have been
335          * deallocated immediately at that time.
336          * Possible cause (if the assert triggers):  a tp_dealloc
337          * routine left a gc-aware object tracked during its teardown
338          * phase, and did something-- or allowed something to happen --
339          * that called back into Python.  gc can trigger then, and may
340          * see the still-tracked dying object.  Before this assert
341          * was added, such mistakes went on to allow gc to try to
342          * delete the object again.  In a debug build, that caused
343          * a mysterious segfault, when _Py_ForgetReference tried
344          * to remove the object from the doubly-linked list of all
345          * objects a second time.  In a release build, an actual
346          * double deallocation occurred, which leads to corruption
347          * of the allocator's internal bookkeeping pointers.  That's
348          * so serious that maybe this should be a release-build
349          * check instead of an assert?
350          */
351         assert(gc->gc.gc_refs != 0);
352     }
353 }
354 
355 /* A traversal callback for subtract_refs. */
356 static int
visit_decref(PyObject * op,void * data)357 visit_decref(PyObject *op, void *data)
358 {
359     assert(op != NULL);
360     if (PyObject_IS_GC(op)) {
361         PyGC_Head *gc = AS_GC(op);
362         /* We're only interested in gc_refs for objects in the
363          * generation being collected, which can be recognized
364          * because only they have positive gc_refs.
365          */
366         assert(gc->gc.gc_refs != 0); /* else refcount was too small */
367         if (gc->gc.gc_refs > 0)
368             gc->gc.gc_refs--;
369     }
370     return 0;
371 }
372 
373 /* Subtract internal references from gc_refs.  After this, gc_refs is >= 0
374  * for all objects in containers, and is GC_REACHABLE for all tracked gc
375  * objects not in containers.  The ones with gc_refs > 0 are directly
376  * reachable from outside containers, and so can't be collected.
377  */
378 static void
subtract_refs(PyGC_Head * containers)379 subtract_refs(PyGC_Head *containers)
380 {
381     traverseproc traverse;
382     PyGC_Head *gc = containers->gc.gc_next;
383     for (; gc != containers; gc=gc->gc.gc_next) {
384         traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
385         (void) traverse(FROM_GC(gc),
386                        (visitproc)visit_decref,
387                        NULL);
388     }
389 }
390 
391 /* A traversal callback for move_unreachable. */
392 static int
visit_reachable(PyObject * op,PyGC_Head * reachable)393 visit_reachable(PyObject *op, PyGC_Head *reachable)
394 {
395     if (PyObject_IS_GC(op)) {
396         PyGC_Head *gc = AS_GC(op);
397         const Py_ssize_t gc_refs = gc->gc.gc_refs;
398 
399         if (gc_refs == 0) {
400             /* This is in move_unreachable's 'young' list, but
401              * the traversal hasn't yet gotten to it.  All
402              * we need to do is tell move_unreachable that it's
403              * reachable.
404              */
405             gc->gc.gc_refs = 1;
406         }
407         else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) {
408             /* This had gc_refs = 0 when move_unreachable got
409              * to it, but turns out it's reachable after all.
410              * Move it back to move_unreachable's 'young' list,
411              * and move_unreachable will eventually get to it
412              * again.
413              */
414             gc_list_move(gc, reachable);
415             gc->gc.gc_refs = 1;
416         }
417         /* Else there's nothing to do.
418          * If gc_refs > 0, it must be in move_unreachable's 'young'
419          * list, and move_unreachable will eventually get to it.
420          * If gc_refs == GC_REACHABLE, it's either in some other
421          * generation so we don't care about it, or move_unreachable
422          * already dealt with it.
423          * If gc_refs == GC_UNTRACKED, it must be ignored.
424          */
425          else {
426             assert(gc_refs > 0
427                    || gc_refs == GC_REACHABLE
428                    || gc_refs == GC_UNTRACKED);
429          }
430     }
431     return 0;
432 }
433 
434 /* Move the unreachable objects from young to unreachable.  After this,
435  * all objects in young have gc_refs = GC_REACHABLE, and all objects in
436  * unreachable have gc_refs = GC_TENTATIVELY_UNREACHABLE.  All tracked
437  * gc objects not in young or unreachable still have gc_refs = GC_REACHABLE.
438  * All objects in young after this are directly or indirectly reachable
439  * from outside the original young; and all objects in unreachable are
440  * not.
441  */
442 static void
move_unreachable(PyGC_Head * young,PyGC_Head * unreachable)443 move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
444 {
445     PyGC_Head *gc = young->gc.gc_next;
446 
447     /* Invariants:  all objects "to the left" of us in young have gc_refs
448      * = GC_REACHABLE, and are indeed reachable (directly or indirectly)
449      * from outside the young list as it was at entry.  All other objects
450      * from the original young "to the left" of us are in unreachable now,
451      * and have gc_refs = GC_TENTATIVELY_UNREACHABLE.  All objects to the
452      * left of us in 'young' now have been scanned, and no objects here
453      * or to the right have been scanned yet.
454      */
455 
456     while (gc != young) {
457         PyGC_Head *next;
458 
459         if (gc->gc.gc_refs) {
460             /* gc is definitely reachable from outside the
461              * original 'young'.  Mark it as such, and traverse
462              * its pointers to find any other objects that may
463              * be directly reachable from it.  Note that the
464              * call to tp_traverse may append objects to young,
465              * so we have to wait until it returns to determine
466              * the next object to visit.
467              */
468             PyObject *op = FROM_GC(gc);
469             traverseproc traverse = Py_TYPE(op)->tp_traverse;
470             assert(gc->gc.gc_refs > 0);
471             gc->gc.gc_refs = GC_REACHABLE;
472             (void) traverse(op,
473                             (visitproc)visit_reachable,
474                             (void *)young);
475             next = gc->gc.gc_next;
476             if (PyTuple_CheckExact(op)) {
477                 _PyTuple_MaybeUntrack(op);
478             }
479         }
480         else {
481             /* This *may* be unreachable.  To make progress,
482              * assume it is.  gc isn't directly reachable from
483              * any object we've already traversed, but may be
484              * reachable from an object we haven't gotten to yet.
485              * visit_reachable will eventually move gc back into
486              * young if that's so, and we'll see it again.
487              */
488             next = gc->gc.gc_next;
489             gc_list_move(gc, unreachable);
490             gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE;
491         }
492         gc = next;
493     }
494 }
495 
496 /* Return true if object has a finalization method.
497  * CAUTION:  An instance of an old-style class has to be checked for a
498  *__del__ method, and earlier versions of this used to call PyObject_HasAttr,
499  * which in turn could call the class's __getattr__ hook (if any).  That
500  * could invoke arbitrary Python code, mutating the object graph in arbitrary
501  * ways, and that was the source of some excruciatingly subtle bugs.
502  */
503 static int
has_finalizer(PyObject * op)504 has_finalizer(PyObject *op)
505 {
506     if (PyInstance_Check(op)) {
507         assert(delstr != NULL);
508         return _PyInstance_Lookup(op, delstr) != NULL;
509     }
510     else if (PyType_HasFeature(op->ob_type, Py_TPFLAGS_HEAPTYPE))
511         return op->ob_type->tp_del != NULL;
512     else if (PyGen_CheckExact(op))
513         return PyGen_NeedsFinalizing((PyGenObject *)op);
514     else
515         return 0;
516 }
517 
518 /* Try to untrack all currently tracked dictionaries */
519 static void
untrack_dicts(PyGC_Head * head)520 untrack_dicts(PyGC_Head *head)
521 {
522     PyGC_Head *next, *gc = head->gc.gc_next;
523     while (gc != head) {
524         PyObject *op = FROM_GC(gc);
525         next = gc->gc.gc_next;
526         if (PyDict_CheckExact(op))
527             _PyDict_MaybeUntrack(op);
528         gc = next;
529     }
530 }
531 
532 /* Move the objects in unreachable with __del__ methods into `finalizers`.
533  * Objects moved into `finalizers` have gc_refs set to GC_REACHABLE; the
534  * objects remaining in unreachable are left at GC_TENTATIVELY_UNREACHABLE.
535  */
536 static void
move_finalizers(PyGC_Head * unreachable,PyGC_Head * finalizers)537 move_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
538 {
539     PyGC_Head *gc;
540     PyGC_Head *next;
541 
542     /* March over unreachable.  Move objects with finalizers into
543      * `finalizers`.
544      */
545     for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
546         PyObject *op = FROM_GC(gc);
547 
548         assert(IS_TENTATIVELY_UNREACHABLE(op));
549         next = gc->gc.gc_next;
550 
551         if (has_finalizer(op)) {
552             gc_list_move(gc, finalizers);
553             gc->gc.gc_refs = GC_REACHABLE;
554         }
555     }
556 }
557 
558 /* A traversal callback for move_finalizer_reachable. */
559 static int
visit_move(PyObject * op,PyGC_Head * tolist)560 visit_move(PyObject *op, PyGC_Head *tolist)
561 {
562     if (PyObject_IS_GC(op)) {
563         if (IS_TENTATIVELY_UNREACHABLE(op)) {
564             PyGC_Head *gc = AS_GC(op);
565             gc_list_move(gc, tolist);
566             gc->gc.gc_refs = GC_REACHABLE;
567         }
568     }
569     return 0;
570 }
571 
572 /* Move objects that are reachable from finalizers, from the unreachable set
573  * into finalizers set.
574  */
575 static void
move_finalizer_reachable(PyGC_Head * finalizers)576 move_finalizer_reachable(PyGC_Head *finalizers)
577 {
578     traverseproc traverse;
579     PyGC_Head *gc = finalizers->gc.gc_next;
580     for (; gc != finalizers; gc = gc->gc.gc_next) {
581         /* Note that the finalizers list may grow during this. */
582         traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
583         (void) traverse(FROM_GC(gc),
584                         (visitproc)visit_move,
585                         (void *)finalizers);
586     }
587 }
588 
589 /* Clear all weakrefs to unreachable objects, and if such a weakref has a
590  * callback, invoke it if necessary.  Note that it's possible for such
591  * weakrefs to be outside the unreachable set -- indeed, those are precisely
592  * the weakrefs whose callbacks must be invoked.  See gc_weakref.txt for
593  * overview & some details.  Some weakrefs with callbacks may be reclaimed
594  * directly by this routine; the number reclaimed is the return value.  Other
595  * weakrefs with callbacks may be moved into the `old` generation.  Objects
596  * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
597  * unreachable are left at GC_TENTATIVELY_UNREACHABLE.  When this returns,
598  * no object in `unreachable` is weakly referenced anymore.
599  */
600 static int
handle_weakrefs(PyGC_Head * unreachable,PyGC_Head * old)601 handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
602 {
603     PyGC_Head *gc;
604     PyObject *op;               /* generally FROM_GC(gc) */
605     PyWeakReference *wr;        /* generally a cast of op */
606     PyGC_Head wrcb_to_call;     /* weakrefs with callbacks to call */
607     PyGC_Head *next;
608     int num_freed = 0;
609 
610     gc_list_init(&wrcb_to_call);
611 
612     /* Clear all weakrefs to the objects in unreachable.  If such a weakref
613      * also has a callback, move it into `wrcb_to_call` if the callback
614      * needs to be invoked.  Note that we cannot invoke any callbacks until
615      * all weakrefs to unreachable objects are cleared, lest the callback
616      * resurrect an unreachable object via a still-active weakref.  We
617      * make another pass over wrcb_to_call, invoking callbacks, after this
618      * pass completes.
619      */
620     for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
621         PyWeakReference **wrlist;
622 
623         op = FROM_GC(gc);
624         assert(IS_TENTATIVELY_UNREACHABLE(op));
625         next = gc->gc.gc_next;
626 
627         if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op)))
628             continue;
629 
630         /* It supports weakrefs.  Does it have any? */
631         wrlist = (PyWeakReference **)
632                                 PyObject_GET_WEAKREFS_LISTPTR(op);
633 
634         /* `op` may have some weakrefs.  March over the list, clear
635          * all the weakrefs, and move the weakrefs with callbacks
636          * that must be called into wrcb_to_call.
637          */
638         for (wr = *wrlist; wr != NULL; wr = *wrlist) {
639             PyGC_Head *wrasgc;                  /* AS_GC(wr) */
640 
641             /* _PyWeakref_ClearRef clears the weakref but leaves
642              * the callback pointer intact.  Obscure:  it also
643              * changes *wrlist.
644              */
645             assert(wr->wr_object == op);
646             _PyWeakref_ClearRef(wr);
647             assert(wr->wr_object == Py_None);
648             if (wr->wr_callback == NULL)
649                 continue;                       /* no callback */
650 
651     /* Headache time.  `op` is going away, and is weakly referenced by
652      * `wr`, which has a callback.  Should the callback be invoked?  If wr
653      * is also trash, no:
654      *
655      * 1. There's no need to call it.  The object and the weakref are
656      *    both going away, so it's legitimate to pretend the weakref is
657      *    going away first.  The user has to ensure a weakref outlives its
658      *    referent if they want a guarantee that the wr callback will get
659      *    invoked.
660      *
661      * 2. It may be catastrophic to call it.  If the callback is also in
662      *    cyclic trash (CT), then although the CT is unreachable from
663      *    outside the current generation, CT may be reachable from the
664      *    callback.  Then the callback could resurrect insane objects.
665      *
666      * Since the callback is never needed and may be unsafe in this case,
667      * wr is simply left in the unreachable set.  Note that because we
668      * already called _PyWeakref_ClearRef(wr), its callback will never
669      * trigger.
670      *
671      * OTOH, if wr isn't part of CT, we should invoke the callback:  the
672      * weakref outlived the trash.  Note that since wr isn't CT in this
673      * case, its callback can't be CT either -- wr acted as an external
674      * root to this generation, and therefore its callback did too.  So
675      * nothing in CT is reachable from the callback either, so it's hard
676      * to imagine how calling it later could create a problem for us.  wr
677      * is moved to wrcb_to_call in this case.
678      */
679             if (IS_TENTATIVELY_UNREACHABLE(wr))
680                 continue;
681             assert(IS_REACHABLE(wr));
682 
683             /* Create a new reference so that wr can't go away
684              * before we can process it again.
685              */
686             Py_INCREF(wr);
687 
688             /* Move wr to wrcb_to_call, for the next pass. */
689             wrasgc = AS_GC(wr);
690             assert(wrasgc != next); /* wrasgc is reachable, but
691                                        next isn't, so they can't
692                                        be the same */
693             gc_list_move(wrasgc, &wrcb_to_call);
694         }
695     }
696 
697     /* Invoke the callbacks we decided to honor.  It's safe to invoke them
698      * because they can't reference unreachable objects.
699      */
700     while (! gc_list_is_empty(&wrcb_to_call)) {
701         PyObject *temp;
702         PyObject *callback;
703 
704         gc = wrcb_to_call.gc.gc_next;
705         op = FROM_GC(gc);
706         assert(IS_REACHABLE(op));
707         assert(PyWeakref_Check(op));
708         wr = (PyWeakReference *)op;
709         callback = wr->wr_callback;
710         assert(callback != NULL);
711 
712         /* copy-paste of weakrefobject.c's handle_callback() */
713         temp = PyObject_CallFunctionObjArgs(callback, wr, NULL);
714         if (temp == NULL)
715             PyErr_WriteUnraisable(callback);
716         else
717             Py_DECREF(temp);
718 
719         /* Give up the reference we created in the first pass.  When
720          * op's refcount hits 0 (which it may or may not do right now),
721          * op's tp_dealloc will decref op->wr_callback too.  Note
722          * that the refcount probably will hit 0 now, and because this
723          * weakref was reachable to begin with, gc didn't already
724          * add it to its count of freed objects.  Example:  a reachable
725          * weak value dict maps some key to this reachable weakref.
726          * The callback removes this key->weakref mapping from the
727          * dict, leaving no other references to the weakref (excepting
728          * ours).
729          */
730         Py_DECREF(op);
731         if (wrcb_to_call.gc.gc_next == gc) {
732             /* object is still alive -- move it */
733             gc_list_move(gc, old);
734         }
735         else
736             ++num_freed;
737     }
738 
739     return num_freed;
740 }
741 
742 static void
debug_instance(char * msg,PyInstanceObject * inst)743 debug_instance(char *msg, PyInstanceObject *inst)
744 {
745     char *cname;
746     /* simple version of instance_repr */
747     PyObject *classname = inst->in_class->cl_name;
748     if (classname != NULL && PyString_Check(classname))
749         cname = PyString_AsString(classname);
750     else
751         cname = "?";
752     PySys_WriteStderr("gc: %.100s <%.100s instance at %p>\n",
753                       msg, cname, inst);
754 }
755 
756 static void
debug_cycle(char * msg,PyObject * op)757 debug_cycle(char *msg, PyObject *op)
758 {
759     if ((debug & DEBUG_INSTANCES) && PyInstance_Check(op)) {
760         debug_instance(msg, (PyInstanceObject *)op);
761     }
762     else if (debug & DEBUG_OBJECTS) {
763         PySys_WriteStderr("gc: %.100s <%.100s %p>\n",
764                           msg, Py_TYPE(op)->tp_name, op);
765     }
766 }
767 
768 /* Handle uncollectable garbage (cycles with finalizers, and stuff reachable
769  * only from such cycles).
770  * If DEBUG_SAVEALL, all objects in finalizers are appended to the module
771  * garbage list (a Python list), else only the objects in finalizers with
772  * __del__ methods are appended to garbage.  All objects in finalizers are
773  * merged into the old list regardless.
774  */
775 static void
handle_finalizers(PyGC_Head * finalizers,PyGC_Head * old)776 handle_finalizers(PyGC_Head *finalizers, PyGC_Head *old)
777 {
778     PyGC_Head *gc = finalizers->gc.gc_next;
779 
780     if (garbage == NULL) {
781         garbage = PyList_New(0);
782         if (garbage == NULL)
783             Py_FatalError("gc couldn't create gc.garbage list");
784     }
785     for (; gc != finalizers; gc = gc->gc.gc_next) {
786         PyObject *op = FROM_GC(gc);
787 
788         if ((debug & DEBUG_SAVEALL) || has_finalizer(op)) {
789             if (PyList_Append(garbage, op) < 0)
790                 break;
791         }
792     }
793 
794     gc_list_merge(finalizers, old);
795 }
796 
797 /* Break reference cycles by clearing the containers involved.  This is
798  * tricky business as the lists can be changing and we don't know which
799  * objects may be freed.  It is possible I screwed something up here.
800  */
801 static void
delete_garbage(PyGC_Head * collectable,PyGC_Head * old)802 delete_garbage(PyGC_Head *collectable, PyGC_Head *old)
803 {
804     inquiry clear;
805 
806     while (!gc_list_is_empty(collectable)) {
807         PyGC_Head *gc = collectable->gc.gc_next;
808         PyObject *op = FROM_GC(gc);
809 
810         assert(IS_TENTATIVELY_UNREACHABLE(op));
811         if (debug & DEBUG_SAVEALL) {
812             PyList_Append(garbage, op);
813         }
814         else {
815             if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
816                 Py_INCREF(op);
817                 clear(op);
818                 Py_DECREF(op);
819             }
820         }
821         if (collectable->gc.gc_next == gc) {
822             /* object is still alive, move it, it may die later */
823             gc_list_move(gc, old);
824             gc->gc.gc_refs = GC_REACHABLE;
825         }
826     }
827 }
828 
829 /* Clear all free lists
830  * All free lists are cleared during the collection of the highest generation.
831  * Allocated items in the free list may keep a pymalloc arena occupied.
832  * Clearing the free lists may give back memory to the OS earlier.
833  */
834 static void
clear_freelists(void)835 clear_freelists(void)
836 {
837     (void)PyMethod_ClearFreeList();
838     (void)PyFrame_ClearFreeList();
839     (void)PyCFunction_ClearFreeList();
840     (void)PyTuple_ClearFreeList();
841 #ifdef Py_USING_UNICODE
842     (void)PyUnicode_ClearFreeList();
843 #endif
844     (void)PyInt_ClearFreeList();
845     (void)PyFloat_ClearFreeList();
846 }
847 
848 static double
get_time(void)849 get_time(void)
850 {
851     double result = 0;
852     if (tmod != NULL) {
853         PyObject *f = PyObject_CallMethod(tmod, "time", NULL);
854         if (f == NULL) {
855             PyErr_Clear();
856         }
857         else {
858             if (PyFloat_Check(f))
859                 result = PyFloat_AsDouble(f);
860             Py_DECREF(f);
861         }
862     }
863     return result;
864 }
865 
866 /* This is the main function.  Read this to understand how the
867  * collection process works. */
868 static Py_ssize_t
collect(int generation)869 collect(int generation)
870 {
871     int i;
872     Py_ssize_t m = 0; /* # objects collected */
873     Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
874     PyGC_Head *young; /* the generation we are examining */
875     PyGC_Head *old; /* next older generation */
876     PyGC_Head unreachable; /* non-problematic unreachable trash */
877     PyGC_Head finalizers;  /* objects with, & reachable from, __del__ */
878     PyGC_Head *gc;
879     double t1 = 0.0;
880 
881     if (delstr == NULL) {
882         delstr = PyString_InternFromString("__del__");
883         if (delstr == NULL)
884             Py_FatalError("gc couldn't allocate \"__del__\"");
885     }
886 
887     if (debug & DEBUG_STATS) {
888         PySys_WriteStderr("gc: collecting generation %d...\n",
889                           generation);
890         PySys_WriteStderr("gc: objects in each generation:");
891         for (i = 0; i < NUM_GENERATIONS; i++)
892             PySys_WriteStderr(" %" PY_FORMAT_SIZE_T "d",
893                               gc_list_size(GEN_HEAD(i)));
894         t1 = get_time();
895         PySys_WriteStderr("\n");
896     }
897 
898     /* update collection and allocation counters */
899     if (generation+1 < NUM_GENERATIONS)
900         generations[generation+1].count += 1;
901     for (i = 0; i <= generation; i++)
902         generations[i].count = 0;
903 
904     /* merge younger generations with one we are currently collecting */
905     for (i = 0; i < generation; i++) {
906         gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation));
907     }
908 
909     /* handy references */
910     young = GEN_HEAD(generation);
911     if (generation < NUM_GENERATIONS-1)
912         old = GEN_HEAD(generation+1);
913     else
914         old = young;
915 
916     /* Using ob_refcnt and gc_refs, calculate which objects in the
917      * container set are reachable from outside the set (i.e., have a
918      * refcount greater than 0 when all the references within the
919      * set are taken into account).
920      */
921     update_refs(young);
922     subtract_refs(young);
923 
924     /* Leave everything reachable from outside young in young, and move
925      * everything else (in young) to unreachable.
926      * NOTE:  This used to move the reachable objects into a reachable
927      * set instead.  But most things usually turn out to be reachable,
928      * so it's more efficient to move the unreachable things.
929      */
930     gc_list_init(&unreachable);
931     move_unreachable(young, &unreachable);
932 
933     /* Move reachable objects to next generation. */
934     if (young != old) {
935         if (generation == NUM_GENERATIONS - 2) {
936             long_lived_pending += gc_list_size(young);
937         }
938         gc_list_merge(young, old);
939     }
940     else {
941         /* We only untrack dicts in full collections, to avoid quadratic
942            dict build-up. See issue #14775. */
943         untrack_dicts(young);
944         long_lived_pending = 0;
945         long_lived_total = gc_list_size(young);
946     }
947 
948     /* All objects in unreachable are trash, but objects reachable from
949      * finalizers can't safely be deleted.  Python programmers should take
950      * care not to create such things.  For Python, finalizers means
951      * instance objects with __del__ methods.  Weakrefs with callbacks
952      * can also call arbitrary Python code but they will be dealt with by
953      * handle_weakrefs().
954      */
955     gc_list_init(&finalizers);
956     move_finalizers(&unreachable, &finalizers);
957     /* finalizers contains the unreachable objects with a finalizer;
958      * unreachable objects reachable *from* those are also uncollectable,
959      * and we move those into the finalizers list too.
960      */
961     move_finalizer_reachable(&finalizers);
962 
963     /* Collect statistics on collectable objects found and print
964      * debugging information.
965      */
966     for (gc = unreachable.gc.gc_next; gc != &unreachable;
967                     gc = gc->gc.gc_next) {
968         m++;
969         if (debug & DEBUG_COLLECTABLE) {
970             debug_cycle("collectable", FROM_GC(gc));
971         }
972     }
973 
974     /* Clear weakrefs and invoke callbacks as necessary. */
975     m += handle_weakrefs(&unreachable, old);
976 
977     /* Call tp_clear on objects in the unreachable set.  This will cause
978      * the reference cycles to be broken.  It may also cause some objects
979      * in finalizers to be freed.
980      */
981     delete_garbage(&unreachable, old);
982 
983     /* Collect statistics on uncollectable objects found and print
984      * debugging information. */
985     for (gc = finalizers.gc.gc_next;
986          gc != &finalizers;
987          gc = gc->gc.gc_next) {
988         n++;
989         if (debug & DEBUG_UNCOLLECTABLE)
990             debug_cycle("uncollectable", FROM_GC(gc));
991     }
992     if (debug & DEBUG_STATS) {
993         double t2 = get_time();
994         if (m == 0 && n == 0)
995             PySys_WriteStderr("gc: done");
996         else
997             PySys_WriteStderr(
998                 "gc: done, "
999                 "%" PY_FORMAT_SIZE_T "d unreachable, "
1000                 "%" PY_FORMAT_SIZE_T "d uncollectable",
1001                 n+m, n);
1002         if (t1 && t2) {
1003             PySys_WriteStderr(", %.4fs elapsed", t2-t1);
1004         }
1005         PySys_WriteStderr(".\n");
1006     }
1007 
1008     /* Append instances in the uncollectable set to a Python
1009      * reachable list of garbage.  The programmer has to deal with
1010      * this if they insist on creating this type of structure.
1011      */
1012     handle_finalizers(&finalizers, old);
1013 
1014     /* Clear free list only during the collection of the highest
1015      * generation */
1016     if (generation == NUM_GENERATIONS-1) {
1017         clear_freelists();
1018     }
1019 
1020     if (PyErr_Occurred()) {
1021         if (gc_str == NULL)
1022             gc_str = PyString_FromString("garbage collection");
1023         PyErr_WriteUnraisable(gc_str);
1024         Py_FatalError("unexpected exception during garbage collection");
1025     }
1026     return n+m;
1027 }
1028 
1029 static Py_ssize_t
collect_generations(void)1030 collect_generations(void)
1031 {
1032     int i;
1033     Py_ssize_t n = 0;
1034 
1035     /* Find the oldest generation (highest numbered) where the count
1036      * exceeds the threshold.  Objects in the that generation and
1037      * generations younger than it will be collected. */
1038     for (i = NUM_GENERATIONS-1; i >= 0; i--) {
1039         if (generations[i].count > generations[i].threshold) {
1040             /* Avoid quadratic performance degradation in number
1041                of tracked objects. See comments at the beginning
1042                of this file, and issue #4074.
1043             */
1044             if (i == NUM_GENERATIONS - 1
1045                 && long_lived_pending < long_lived_total / 4)
1046                 continue;
1047             n = collect(i);
1048             break;
1049         }
1050     }
1051     return n;
1052 }
1053 
1054 PyDoc_STRVAR(gc_enable__doc__,
1055 "enable() -> None\n"
1056 "\n"
1057 "Enable automatic garbage collection.\n");
1058 
1059 static PyObject *
gc_enable(PyObject * self,PyObject * noargs)1060 gc_enable(PyObject *self, PyObject *noargs)
1061 {
1062     enabled = 1;
1063     Py_INCREF(Py_None);
1064     return Py_None;
1065 }
1066 
1067 PyDoc_STRVAR(gc_disable__doc__,
1068 "disable() -> None\n"
1069 "\n"
1070 "Disable automatic garbage collection.\n");
1071 
1072 static PyObject *
gc_disable(PyObject * self,PyObject * noargs)1073 gc_disable(PyObject *self, PyObject *noargs)
1074 {
1075     enabled = 0;
1076     Py_INCREF(Py_None);
1077     return Py_None;
1078 }
1079 
1080 PyDoc_STRVAR(gc_isenabled__doc__,
1081 "isenabled() -> status\n"
1082 "\n"
1083 "Returns true if automatic garbage collection is enabled.\n");
1084 
1085 static PyObject *
gc_isenabled(PyObject * self,PyObject * noargs)1086 gc_isenabled(PyObject *self, PyObject *noargs)
1087 {
1088     return PyBool_FromLong((long)enabled);
1089 }
1090 
1091 PyDoc_STRVAR(gc_collect__doc__,
1092 "collect([generation]) -> n\n"
1093 "\n"
1094 "With no arguments, run a full collection.  The optional argument\n"
1095 "may be an integer specifying which generation to collect.  A ValueError\n"
1096 "is raised if the generation number is invalid.\n\n"
1097 "The number of unreachable objects is returned.\n");
1098 
1099 static PyObject *
gc_collect(PyObject * self,PyObject * args,PyObject * kws)1100 gc_collect(PyObject *self, PyObject *args, PyObject *kws)
1101 {
1102     static char *keywords[] = {"generation", NULL};
1103     int genarg = NUM_GENERATIONS - 1;
1104     Py_ssize_t n;
1105 
1106     if (!PyArg_ParseTupleAndKeywords(args, kws, "|i", keywords, &genarg))
1107         return NULL;
1108 
1109     else if (genarg < 0 || genarg >= NUM_GENERATIONS) {
1110         PyErr_SetString(PyExc_ValueError, "invalid generation");
1111         return NULL;
1112     }
1113 
1114     if (collecting)
1115         n = 0; /* already collecting, don't do anything */
1116     else {
1117         collecting = 1;
1118         n = collect(genarg);
1119         collecting = 0;
1120     }
1121 
1122     return PyInt_FromSsize_t(n);
1123 }
1124 
1125 PyDoc_STRVAR(gc_set_debug__doc__,
1126 "set_debug(flags) -> None\n"
1127 "\n"
1128 "Set the garbage collection debugging flags. Debugging information is\n"
1129 "written to sys.stderr.\n"
1130 "\n"
1131 "flags is an integer and can have the following bits turned on:\n"
1132 "\n"
1133 "  DEBUG_STATS - Print statistics during collection.\n"
1134 "  DEBUG_COLLECTABLE - Print collectable objects found.\n"
1135 "  DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects found.\n"
1136 "  DEBUG_INSTANCES - Print instance objects.\n"
1137 "  DEBUG_OBJECTS - Print objects other than instances.\n"
1138 "  DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them.\n"
1139 "  DEBUG_LEAK - Debug leaking programs (everything but STATS).\n");
1140 
1141 static PyObject *
gc_set_debug(PyObject * self,PyObject * args)1142 gc_set_debug(PyObject *self, PyObject *args)
1143 {
1144     if (!PyArg_ParseTuple(args, "i:set_debug", &debug))
1145         return NULL;
1146 
1147     Py_INCREF(Py_None);
1148     return Py_None;
1149 }
1150 
1151 PyDoc_STRVAR(gc_get_debug__doc__,
1152 "get_debug() -> flags\n"
1153 "\n"
1154 "Get the garbage collection debugging flags.\n");
1155 
1156 static PyObject *
gc_get_debug(PyObject * self,PyObject * noargs)1157 gc_get_debug(PyObject *self, PyObject *noargs)
1158 {
1159     return Py_BuildValue("i", debug);
1160 }
1161 
1162 PyDoc_STRVAR(gc_set_thresh__doc__,
1163 "set_threshold(threshold0, [threshold1, threshold2]) -> None\n"
1164 "\n"
1165 "Sets the collection thresholds.  Setting threshold0 to zero disables\n"
1166 "collection.\n");
1167 
1168 static PyObject *
gc_set_thresh(PyObject * self,PyObject * args)1169 gc_set_thresh(PyObject *self, PyObject *args)
1170 {
1171     int i;
1172     if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
1173                           &generations[0].threshold,
1174                           &generations[1].threshold,
1175                           &generations[2].threshold))
1176         return NULL;
1177     for (i = 2; i < NUM_GENERATIONS; i++) {
1178         /* generations higher than 2 get the same threshold */
1179         generations[i].threshold = generations[2].threshold;
1180     }
1181 
1182     Py_INCREF(Py_None);
1183     return Py_None;
1184 }
1185 
1186 PyDoc_STRVAR(gc_get_thresh__doc__,
1187 "get_threshold() -> (threshold0, threshold1, threshold2)\n"
1188 "\n"
1189 "Return the current collection thresholds\n");
1190 
1191 static PyObject *
gc_get_thresh(PyObject * self,PyObject * noargs)1192 gc_get_thresh(PyObject *self, PyObject *noargs)
1193 {
1194     return Py_BuildValue("(iii)",
1195                          generations[0].threshold,
1196                          generations[1].threshold,
1197                          generations[2].threshold);
1198 }
1199 
1200 PyDoc_STRVAR(gc_get_count__doc__,
1201 "get_count() -> (count0, count1, count2)\n"
1202 "\n"
1203 "Return the current collection counts\n");
1204 
1205 static PyObject *
gc_get_count(PyObject * self,PyObject * noargs)1206 gc_get_count(PyObject *self, PyObject *noargs)
1207 {
1208     return Py_BuildValue("(iii)",
1209                          generations[0].count,
1210                          generations[1].count,
1211                          generations[2].count);
1212 }
1213 
1214 static int
referrersvisit(PyObject * obj,PyObject * objs)1215 referrersvisit(PyObject* obj, PyObject *objs)
1216 {
1217     Py_ssize_t i;
1218     for (i = 0; i < PyTuple_GET_SIZE(objs); i++)
1219         if (PyTuple_GET_ITEM(objs, i) == obj)
1220             return 1;
1221     return 0;
1222 }
1223 
1224 static int
gc_referrers_for(PyObject * objs,PyGC_Head * list,PyObject * resultlist)1225 gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
1226 {
1227     PyGC_Head *gc;
1228     PyObject *obj;
1229     traverseproc traverse;
1230     for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
1231         obj = FROM_GC(gc);
1232         traverse = Py_TYPE(obj)->tp_traverse;
1233         if (obj == objs || obj == resultlist)
1234             continue;
1235         if (traverse(obj, (visitproc)referrersvisit, objs)) {
1236             if (PyList_Append(resultlist, obj) < 0)
1237                 return 0; /* error */
1238         }
1239     }
1240     return 1; /* no error */
1241 }
1242 
1243 PyDoc_STRVAR(gc_get_referrers__doc__,
1244 "get_referrers(*objs) -> list\n\
1245 Return the list of objects that directly refer to any of objs.");
1246 
1247 static PyObject *
gc_get_referrers(PyObject * self,PyObject * args)1248 gc_get_referrers(PyObject *self, PyObject *args)
1249 {
1250     int i;
1251     PyObject *result = PyList_New(0);
1252     if (!result) return NULL;
1253 
1254     for (i = 0; i < NUM_GENERATIONS; i++) {
1255         if (!(gc_referrers_for(args, GEN_HEAD(i), result))) {
1256             Py_DECREF(result);
1257             return NULL;
1258         }
1259     }
1260     return result;
1261 }
1262 
1263 /* Append obj to list; return true if error (out of memory), false if OK. */
1264 static int
referentsvisit(PyObject * obj,PyObject * list)1265 referentsvisit(PyObject *obj, PyObject *list)
1266 {
1267     return PyList_Append(list, obj) < 0;
1268 }
1269 
1270 PyDoc_STRVAR(gc_get_referents__doc__,
1271 "get_referents(*objs) -> list\n\
1272 Return the list of objects that are directly referred to by objs.");
1273 
1274 static PyObject *
gc_get_referents(PyObject * self,PyObject * args)1275 gc_get_referents(PyObject *self, PyObject *args)
1276 {
1277     Py_ssize_t i;
1278     PyObject *result = PyList_New(0);
1279 
1280     if (result == NULL)
1281         return NULL;
1282 
1283     for (i = 0; i < PyTuple_GET_SIZE(args); i++) {
1284         traverseproc traverse;
1285         PyObject *obj = PyTuple_GET_ITEM(args, i);
1286 
1287         if (! PyObject_IS_GC(obj))
1288             continue;
1289         traverse = Py_TYPE(obj)->tp_traverse;
1290         if (! traverse)
1291             continue;
1292         if (traverse(obj, (visitproc)referentsvisit, result)) {
1293             Py_DECREF(result);
1294             return NULL;
1295         }
1296     }
1297     return result;
1298 }
1299 
1300 PyDoc_STRVAR(gc_get_objects__doc__,
1301 "get_objects() -> [...]\n"
1302 "\n"
1303 "Return a list of objects tracked by the collector (excluding the list\n"
1304 "returned).\n");
1305 
1306 static PyObject *
gc_get_objects(PyObject * self,PyObject * noargs)1307 gc_get_objects(PyObject *self, PyObject *noargs)
1308 {
1309     int i;
1310     PyObject* result;
1311 
1312     result = PyList_New(0);
1313     if (result == NULL)
1314         return NULL;
1315     for (i = 0; i < NUM_GENERATIONS; i++) {
1316         if (append_objects(result, GEN_HEAD(i))) {
1317             Py_DECREF(result);
1318             return NULL;
1319         }
1320     }
1321     return result;
1322 }
1323 
1324 PyDoc_STRVAR(gc_is_tracked__doc__,
1325 "is_tracked(obj) -> bool\n"
1326 "\n"
1327 "Returns true if the object is tracked by the garbage collector.\n"
1328 "Simple atomic objects will return false.\n"
1329 );
1330 
1331 static PyObject *
gc_is_tracked(PyObject * self,PyObject * obj)1332 gc_is_tracked(PyObject *self, PyObject *obj)
1333 {
1334     PyObject *result;
1335 
1336     if (PyObject_IS_GC(obj) && IS_TRACKED(obj))
1337         result = Py_True;
1338     else
1339         result = Py_False;
1340     Py_INCREF(result);
1341     return result;
1342 }
1343 
1344 
1345 PyDoc_STRVAR(gc__doc__,
1346 "This module provides access to the garbage collector for reference cycles.\n"
1347 "\n"
1348 "enable() -- Enable automatic garbage collection.\n"
1349 "disable() -- Disable automatic garbage collection.\n"
1350 "isenabled() -- Returns true if automatic collection is enabled.\n"
1351 "collect() -- Do a full collection right now.\n"
1352 "get_count() -- Return the current collection counts.\n"
1353 "set_debug() -- Set debugging flags.\n"
1354 "get_debug() -- Get debugging flags.\n"
1355 "set_threshold() -- Set the collection thresholds.\n"
1356 "get_threshold() -- Return the current the collection thresholds.\n"
1357 "get_objects() -- Return a list of all objects tracked by the collector.\n"
1358 "is_tracked() -- Returns true if a given object is tracked.\n"
1359 "get_referrers() -- Return the list of objects that refer to an object.\n"
1360 "get_referents() -- Return the list of objects that an object refers to.\n");
1361 
1362 static PyMethodDef GcMethods[] = {
1363     {"enable",             gc_enable,     METH_NOARGS,  gc_enable__doc__},
1364     {"disable",            gc_disable,    METH_NOARGS,  gc_disable__doc__},
1365     {"isenabled",          gc_isenabled,  METH_NOARGS,  gc_isenabled__doc__},
1366     {"set_debug",          gc_set_debug,  METH_VARARGS, gc_set_debug__doc__},
1367     {"get_debug",          gc_get_debug,  METH_NOARGS,  gc_get_debug__doc__},
1368     {"get_count",          gc_get_count,  METH_NOARGS,  gc_get_count__doc__},
1369     {"set_threshold",  gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__},
1370     {"get_threshold",  gc_get_thresh, METH_NOARGS,  gc_get_thresh__doc__},
1371     {"collect",            (PyCFunction)gc_collect,
1372         METH_VARARGS | METH_KEYWORDS,           gc_collect__doc__},
1373     {"get_objects",    gc_get_objects,METH_NOARGS,  gc_get_objects__doc__},
1374     {"is_tracked",     gc_is_tracked, METH_O,       gc_is_tracked__doc__},
1375     {"get_referrers",  gc_get_referrers, METH_VARARGS,
1376         gc_get_referrers__doc__},
1377     {"get_referents",  gc_get_referents, METH_VARARGS,
1378         gc_get_referents__doc__},
1379     {NULL,      NULL}           /* Sentinel */
1380 };
1381 
1382 PyMODINIT_FUNC
initgc(void)1383 initgc(void)
1384 {
1385     PyObject *m;
1386 
1387     m = Py_InitModule4("gc",
1388                           GcMethods,
1389                           gc__doc__,
1390                           NULL,
1391                           PYTHON_API_VERSION);
1392     if (m == NULL)
1393         return;
1394 
1395     if (garbage == NULL) {
1396         garbage = PyList_New(0);
1397         if (garbage == NULL)
1398             return;
1399     }
1400     Py_INCREF(garbage);
1401     if (PyModule_AddObject(m, "garbage", garbage) < 0)
1402         return;
1403 
1404     /* Importing can't be done in collect() because collect()
1405      * can be called via PyGC_Collect() in Py_Finalize().
1406      * This wouldn't be a problem, except that <initialized> is
1407      * reset to 0 before calling collect which trips up
1408      * the import and triggers an assertion.
1409      */
1410     if (tmod == NULL) {
1411         tmod = PyImport_ImportModuleNoBlock("time");
1412         if (tmod == NULL)
1413             PyErr_Clear();
1414     }
1415 
1416 #define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return
1417     ADD_INT(DEBUG_STATS);
1418     ADD_INT(DEBUG_COLLECTABLE);
1419     ADD_INT(DEBUG_UNCOLLECTABLE);
1420     ADD_INT(DEBUG_INSTANCES);
1421     ADD_INT(DEBUG_OBJECTS);
1422     ADD_INT(DEBUG_SAVEALL);
1423     ADD_INT(DEBUG_LEAK);
1424 #undef ADD_INT
1425 }
1426 
1427 /* API to invoke gc.collect() from C */
1428 Py_ssize_t
PyGC_Collect(void)1429 PyGC_Collect(void)
1430 {
1431     Py_ssize_t n;
1432 
1433     if (collecting)
1434         n = 0; /* already collecting, don't do anything */
1435     else {
1436         PyObject *exc, *value, *tb;
1437         collecting = 1;
1438         PyErr_Fetch(&exc, &value, &tb);
1439         n = collect(NUM_GENERATIONS - 1);
1440         PyErr_Restore(exc, value, tb);
1441         collecting = 0;
1442     }
1443 
1444     return n;
1445 }
1446 
1447 /* for debugging */
1448 void
_PyGC_Dump(PyGC_Head * g)1449 _PyGC_Dump(PyGC_Head *g)
1450 {
1451     _PyObject_Dump(FROM_GC(g));
1452 }
1453 
1454 /* extension modules might be compiled with GC support so these
1455    functions must always be available */
1456 
1457 #undef PyObject_GC_Track
1458 #undef PyObject_GC_UnTrack
1459 #undef PyObject_GC_Del
1460 #undef _PyObject_GC_Malloc
1461 
1462 void
PyObject_GC_Track(void * op)1463 PyObject_GC_Track(void *op)
1464 {
1465     _PyObject_GC_TRACK(op);
1466 }
1467 
1468 /* for binary compatibility with 2.2 */
1469 void
_PyObject_GC_Track(PyObject * op)1470 _PyObject_GC_Track(PyObject *op)
1471 {
1472     PyObject_GC_Track(op);
1473 }
1474 
1475 void
PyObject_GC_UnTrack(void * op)1476 PyObject_GC_UnTrack(void *op)
1477 {
1478     /* Obscure:  the Py_TRASHCAN mechanism requires that we be able to
1479      * call PyObject_GC_UnTrack twice on an object.
1480      */
1481     if (IS_TRACKED(op))
1482         _PyObject_GC_UNTRACK(op);
1483 }
1484 
1485 /* for binary compatibility with 2.2 */
1486 void
_PyObject_GC_UnTrack(PyObject * op)1487 _PyObject_GC_UnTrack(PyObject *op)
1488 {
1489     PyObject_GC_UnTrack(op);
1490 }
1491 
1492 PyObject *
_PyObject_GC_Malloc(size_t basicsize)1493 _PyObject_GC_Malloc(size_t basicsize)
1494 {
1495     PyObject *op;
1496     PyGC_Head *g;
1497     if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
1498         return PyErr_NoMemory();
1499     g = (PyGC_Head *)PyObject_MALLOC(
1500         sizeof(PyGC_Head) + basicsize);
1501     if (g == NULL)
1502         return PyErr_NoMemory();
1503     g->gc.gc_refs = GC_UNTRACKED;
1504     generations[0].count++; /* number of allocated GC objects */
1505     if (generations[0].count > generations[0].threshold &&
1506         enabled &&
1507         generations[0].threshold &&
1508         !collecting &&
1509         !PyErr_Occurred()) {
1510         collecting = 1;
1511         collect_generations();
1512         collecting = 0;
1513     }
1514     op = FROM_GC(g);
1515     return op;
1516 }
1517 
1518 PyObject *
_PyObject_GC_New(PyTypeObject * tp)1519 _PyObject_GC_New(PyTypeObject *tp)
1520 {
1521     PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp));
1522     if (op != NULL)
1523         op = PyObject_INIT(op, tp);
1524     return op;
1525 }
1526 
1527 PyVarObject *
_PyObject_GC_NewVar(PyTypeObject * tp,Py_ssize_t nitems)1528 _PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
1529 {
1530     const size_t size = _PyObject_VAR_SIZE(tp, nitems);
1531     PyVarObject *op = (PyVarObject *) _PyObject_GC_Malloc(size);
1532     if (op != NULL)
1533         op = PyObject_INIT_VAR(op, tp, nitems);
1534     return op;
1535 }
1536 
1537 PyVarObject *
_PyObject_GC_Resize(PyVarObject * op,Py_ssize_t nitems)1538 _PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
1539 {
1540     const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
1541     PyGC_Head *g = AS_GC(op);
1542     assert(!IS_TRACKED(op));
1543     if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
1544         return (PyVarObject *)PyErr_NoMemory();
1545     g = (PyGC_Head *)PyObject_REALLOC(g,  sizeof(PyGC_Head) + basicsize);
1546     if (g == NULL)
1547         return (PyVarObject *)PyErr_NoMemory();
1548     op = (PyVarObject *) FROM_GC(g);
1549     Py_SIZE(op) = nitems;
1550     return op;
1551 }
1552 
1553 void
PyObject_GC_Del(void * op)1554 PyObject_GC_Del(void *op)
1555 {
1556     PyGC_Head *g = AS_GC(op);
1557     if (IS_TRACKED(op))
1558         gc_list_remove(g);
1559     if (generations[0].count > 0) {
1560         generations[0].count--;
1561     }
1562     PyObject_FREE(g);
1563 }
1564 
1565 /* for binary compatibility with 2.2 */
1566 #undef _PyObject_GC_Del
1567 void
_PyObject_GC_Del(PyObject * op)1568 _PyObject_GC_Del(PyObject *op)
1569 {
1570     PyObject_GC_Del(op);
1571 }
1572