1 /*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/sksl/SkSLInliner.h"
9
10 #include <limits.h>
11 #include <memory>
12 #include <unordered_set>
13
14 #include "include/private/SkSLLayout.h"
15 #include "src/sksl/SkSLAnalysis.h"
16 #include "src/sksl/ir/SkSLBinaryExpression.h"
17 #include "src/sksl/ir/SkSLBoolLiteral.h"
18 #include "src/sksl/ir/SkSLBreakStatement.h"
19 #include "src/sksl/ir/SkSLConstructor.h"
20 #include "src/sksl/ir/SkSLConstructorArray.h"
21 #include "src/sksl/ir/SkSLConstructorCompound.h"
22 #include "src/sksl/ir/SkSLConstructorCompoundCast.h"
23 #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
24 #include "src/sksl/ir/SkSLConstructorMatrixResize.h"
25 #include "src/sksl/ir/SkSLConstructorScalarCast.h"
26 #include "src/sksl/ir/SkSLConstructorSplat.h"
27 #include "src/sksl/ir/SkSLConstructorStruct.h"
28 #include "src/sksl/ir/SkSLContinueStatement.h"
29 #include "src/sksl/ir/SkSLDiscardStatement.h"
30 #include "src/sksl/ir/SkSLDoStatement.h"
31 #include "src/sksl/ir/SkSLEnum.h"
32 #include "src/sksl/ir/SkSLExpressionStatement.h"
33 #include "src/sksl/ir/SkSLExternalFunctionCall.h"
34 #include "src/sksl/ir/SkSLExternalFunctionReference.h"
35 #include "src/sksl/ir/SkSLField.h"
36 #include "src/sksl/ir/SkSLFieldAccess.h"
37 #include "src/sksl/ir/SkSLFloatLiteral.h"
38 #include "src/sksl/ir/SkSLForStatement.h"
39 #include "src/sksl/ir/SkSLFunctionCall.h"
40 #include "src/sksl/ir/SkSLFunctionDeclaration.h"
41 #include "src/sksl/ir/SkSLFunctionDefinition.h"
42 #include "src/sksl/ir/SkSLFunctionReference.h"
43 #include "src/sksl/ir/SkSLIfStatement.h"
44 #include "src/sksl/ir/SkSLIndexExpression.h"
45 #include "src/sksl/ir/SkSLInlineMarker.h"
46 #include "src/sksl/ir/SkSLIntLiteral.h"
47 #include "src/sksl/ir/SkSLInterfaceBlock.h"
48 #include "src/sksl/ir/SkSLNop.h"
49 #include "src/sksl/ir/SkSLPostfixExpression.h"
50 #include "src/sksl/ir/SkSLPrefixExpression.h"
51 #include "src/sksl/ir/SkSLReturnStatement.h"
52 #include "src/sksl/ir/SkSLSetting.h"
53 #include "src/sksl/ir/SkSLSwitchCase.h"
54 #include "src/sksl/ir/SkSLSwitchStatement.h"
55 #include "src/sksl/ir/SkSLSwizzle.h"
56 #include "src/sksl/ir/SkSLTernaryExpression.h"
57 #include "src/sksl/ir/SkSLUnresolvedFunction.h"
58 #include "src/sksl/ir/SkSLVarDeclarations.h"
59 #include "src/sksl/ir/SkSLVariable.h"
60 #include "src/sksl/ir/SkSLVariableReference.h"
61
62 namespace SkSL {
63 namespace {
64
65 static constexpr int kInlinedStatementLimit = 2500;
66
count_returns_at_end_of_control_flow(const FunctionDefinition & funcDef)67 static int count_returns_at_end_of_control_flow(const FunctionDefinition& funcDef) {
68 class CountReturnsAtEndOfControlFlow : public ProgramVisitor {
69 public:
70 CountReturnsAtEndOfControlFlow(const FunctionDefinition& funcDef) {
71 this->visitProgramElement(funcDef);
72 }
73
74 bool visitExpression(const Expression& expr) override {
75 // Do not recurse into expressions.
76 return false;
77 }
78
79 bool visitStatement(const Statement& stmt) override {
80 switch (stmt.kind()) {
81 case Statement::Kind::kBlock: {
82 // Check only the last statement of a block.
83 const auto& block = stmt.as<Block>();
84 return block.children().size() &&
85 this->visitStatement(*block.children().back());
86 }
87 case Statement::Kind::kSwitch:
88 case Statement::Kind::kDo:
89 case Statement::Kind::kFor:
90 // Don't introspect switches or loop structures at all.
91 return false;
92
93 case Statement::Kind::kReturn:
94 ++fNumReturns;
95 [[fallthrough]];
96
97 default:
98 return INHERITED::visitStatement(stmt);
99 }
100 }
101
102 int fNumReturns = 0;
103 using INHERITED = ProgramVisitor;
104 };
105
106 return CountReturnsAtEndOfControlFlow{funcDef}.fNumReturns;
107 }
108
contains_recursive_call(const FunctionDeclaration & funcDecl)109 static bool contains_recursive_call(const FunctionDeclaration& funcDecl) {
110 class ContainsRecursiveCall : public ProgramVisitor {
111 public:
112 bool visit(const FunctionDeclaration& funcDecl) {
113 fFuncDecl = &funcDecl;
114 return funcDecl.definition() ? this->visitProgramElement(*funcDecl.definition())
115 : false;
116 }
117
118 bool visitExpression(const Expression& expr) override {
119 if (expr.is<FunctionCall>() && expr.as<FunctionCall>().function().matches(*fFuncDecl)) {
120 return true;
121 }
122 return INHERITED::visitExpression(expr);
123 }
124
125 bool visitStatement(const Statement& stmt) override {
126 if (stmt.is<InlineMarker>() &&
127 stmt.as<InlineMarker>().function().matches(*fFuncDecl)) {
128 return true;
129 }
130 return INHERITED::visitStatement(stmt);
131 }
132
133 const FunctionDeclaration* fFuncDecl;
134 using INHERITED = ProgramVisitor;
135 };
136
137 return ContainsRecursiveCall{}.visit(funcDecl);
138 }
139
find_parent_statement(const std::vector<std::unique_ptr<Statement> * > & stmtStack)140 static std::unique_ptr<Statement>* find_parent_statement(
141 const std::vector<std::unique_ptr<Statement>*>& stmtStack) {
142 SkASSERT(!stmtStack.empty());
143
144 // Walk the statement stack from back to front, ignoring the last element (which is the
145 // enclosing statement).
146 auto iter = stmtStack.rbegin();
147 ++iter;
148
149 // Anything counts as a parent statement other than a scopeless Block.
150 for (; iter != stmtStack.rend(); ++iter) {
151 std::unique_ptr<Statement>* stmt = *iter;
152 if (!(*stmt)->is<Block>() || (*stmt)->as<Block>().isScope()) {
153 return stmt;
154 }
155 }
156
157 // There wasn't any parent statement to be found.
158 return nullptr;
159 }
160
clone_with_ref_kind(const Expression & expr,VariableReference::RefKind refKind)161 std::unique_ptr<Expression> clone_with_ref_kind(const Expression& expr,
162 VariableReference::RefKind refKind) {
163 std::unique_ptr<Expression> clone = expr.clone();
164 Analysis::UpdateRefKind(clone.get(), refKind);
165 return clone;
166 }
167
168 class CountReturnsWithLimit : public ProgramVisitor {
169 public:
CountReturnsWithLimit(const FunctionDefinition & funcDef,int limit)170 CountReturnsWithLimit(const FunctionDefinition& funcDef, int limit) : fLimit(limit) {
171 this->visitProgramElement(funcDef);
172 }
173
visitExpression(const Expression & expr)174 bool visitExpression(const Expression& expr) override {
175 // Do not recurse into expressions.
176 return false;
177 }
178
visitStatement(const Statement & stmt)179 bool visitStatement(const Statement& stmt) override {
180 switch (stmt.kind()) {
181 case Statement::Kind::kReturn: {
182 ++fNumReturns;
183 fDeepestReturn = std::max(fDeepestReturn, fScopedBlockDepth);
184 return (fNumReturns >= fLimit) || INHERITED::visitStatement(stmt);
185 }
186 case Statement::Kind::kVarDeclaration: {
187 if (fScopedBlockDepth > 1) {
188 fVariablesInBlocks = true;
189 }
190 return INHERITED::visitStatement(stmt);
191 }
192 case Statement::Kind::kBlock: {
193 int depthIncrement = stmt.as<Block>().isScope() ? 1 : 0;
194 fScopedBlockDepth += depthIncrement;
195 bool result = INHERITED::visitStatement(stmt);
196 fScopedBlockDepth -= depthIncrement;
197 if (fNumReturns == 0 && fScopedBlockDepth <= 1) {
198 // If closing this block puts us back at the top level, and we haven't
199 // encountered any return statements yet, any vardecls we may have encountered
200 // up until this point can be ignored. They are out of scope now, and they were
201 // never used in a return statement.
202 fVariablesInBlocks = false;
203 }
204 return result;
205 }
206 default:
207 return INHERITED::visitStatement(stmt);
208 }
209 }
210
211 int fNumReturns = 0;
212 int fDeepestReturn = 0;
213 int fLimit = 0;
214 int fScopedBlockDepth = 0;
215 bool fVariablesInBlocks = false;
216 using INHERITED = ProgramVisitor;
217 };
218
219 } // namespace
220
GetReturnComplexity(const FunctionDefinition & funcDef)221 Inliner::ReturnComplexity Inliner::GetReturnComplexity(const FunctionDefinition& funcDef) {
222 int returnsAtEndOfControlFlow = count_returns_at_end_of_control_flow(funcDef);
223 CountReturnsWithLimit counter{funcDef, returnsAtEndOfControlFlow + 1};
224 if (counter.fNumReturns > returnsAtEndOfControlFlow) {
225 return ReturnComplexity::kEarlyReturns;
226 }
227 if (counter.fNumReturns > 1) {
228 return ReturnComplexity::kScopedReturns;
229 }
230 if (counter.fVariablesInBlocks && counter.fDeepestReturn > 1) {
231 return ReturnComplexity::kScopedReturns;
232 }
233 return ReturnComplexity::kSingleSafeReturn;
234 }
235
ensureScopedBlocks(Statement * inlinedBody,Statement * parentStmt)236 void Inliner::ensureScopedBlocks(Statement* inlinedBody, Statement* parentStmt) {
237 // No changes necessary if this statement isn't actually a block.
238 if (!inlinedBody || !inlinedBody->is<Block>()) {
239 return;
240 }
241
242 // No changes necessary if the parent statement doesn't require a scope.
243 if (!parentStmt || !(parentStmt->is<IfStatement>() || parentStmt->is<ForStatement>() ||
244 parentStmt->is<DoStatement>())) {
245 return;
246 }
247
248 Block& block = inlinedBody->as<Block>();
249
250 // The inliner will create inlined function bodies as a Block containing multiple statements,
251 // but no scope. Normally, this is fine, but if this block is used as the statement for a
252 // do/for/if/while, this isn't actually possible to represent textually; a scope must be added
253 // for the generated code to match the intent. In the case of Blocks nested inside other Blocks,
254 // we add the scope to the outermost block if needed. Zero-statement blocks have similar
255 // issues--if we don't represent the Block textually somehow, we run the risk of accidentally
256 // absorbing the following statement into our loop--so we also add a scope to these.
257 for (Block* nestedBlock = █; ) {
258 if (nestedBlock->isScope()) {
259 // We found an explicit scope; all is well.
260 return;
261 }
262 if (nestedBlock->children().size() != 1) {
263 // We found a block with multiple (or zero) statements, but no scope? Let's add a scope
264 // to the outermost block.
265 block.setIsScope(true);
266 return;
267 }
268 if (!nestedBlock->children()[0]->is<Block>()) {
269 // This block has exactly one thing inside, and it's not another block. No need to scope
270 // it.
271 return;
272 }
273 // We have to go deeper.
274 nestedBlock = &nestedBlock->children()[0]->as<Block>();
275 }
276 }
277
reset()278 void Inliner::reset() {
279 fMangler.reset();
280 fInlinedStatementCounter = 0;
281 }
282
inlineExpression(int offset,VariableRewriteMap * varMap,SymbolTable * symbolTableForExpression,const Expression & expression)283 std::unique_ptr<Expression> Inliner::inlineExpression(int offset,
284 VariableRewriteMap* varMap,
285 SymbolTable* symbolTableForExpression,
286 const Expression& expression) {
287 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
288 if (e) {
289 return this->inlineExpression(offset, varMap, symbolTableForExpression, *e);
290 }
291 return nullptr;
292 };
293 auto argList = [&](const ExpressionArray& originalArgs) -> ExpressionArray {
294 ExpressionArray args;
295 args.reserve_back(originalArgs.size());
296 for (const std::unique_ptr<Expression>& arg : originalArgs) {
297 args.push_back(expr(arg));
298 }
299 return args;
300 };
301
302 switch (expression.kind()) {
303 case Expression::Kind::kBinary: {
304 const BinaryExpression& binaryExpr = expression.as<BinaryExpression>();
305 return BinaryExpression::Make(*fContext,
306 expr(binaryExpr.left()),
307 binaryExpr.getOperator(),
308 expr(binaryExpr.right()));
309 }
310 case Expression::Kind::kBoolLiteral:
311 case Expression::Kind::kIntLiteral:
312 case Expression::Kind::kFloatLiteral:
313 return expression.clone();
314 case Expression::Kind::kConstructorArray: {
315 const ConstructorArray& ctor = expression.as<ConstructorArray>();
316 return ConstructorArray::Make(*fContext, offset,
317 *ctor.type().clone(symbolTableForExpression),
318 argList(ctor.arguments()));
319 }
320 case Expression::Kind::kConstructorCompound: {
321 const ConstructorCompound& ctor = expression.as<ConstructorCompound>();
322 return ConstructorCompound::Make(*fContext, offset,
323 *ctor.type().clone(symbolTableForExpression),
324 argList(ctor.arguments()));
325 }
326 case Expression::Kind::kConstructorCompoundCast: {
327 const ConstructorCompoundCast& ctor = expression.as<ConstructorCompoundCast>();
328 return ConstructorCompoundCast::Make(*fContext, offset,
329 *ctor.type().clone(symbolTableForExpression),
330 expr(ctor.argument()));
331 }
332 case Expression::Kind::kConstructorDiagonalMatrix: {
333 const ConstructorDiagonalMatrix& ctor = expression.as<ConstructorDiagonalMatrix>();
334 return ConstructorDiagonalMatrix::Make(*fContext, offset,
335 *ctor.type().clone(symbolTableForExpression),
336 expr(ctor.argument()));
337 }
338 case Expression::Kind::kConstructorMatrixResize: {
339 const ConstructorMatrixResize& ctor = expression.as<ConstructorMatrixResize>();
340 return ConstructorMatrixResize::Make(*fContext, offset,
341 *ctor.type().clone(symbolTableForExpression),
342 expr(ctor.argument()));
343 }
344 case Expression::Kind::kConstructorScalarCast: {
345 const ConstructorScalarCast& ctor = expression.as<ConstructorScalarCast>();
346 return ConstructorScalarCast::Make(*fContext, offset,
347 *ctor.type().clone(symbolTableForExpression),
348 expr(ctor.argument()));
349 }
350 case Expression::Kind::kConstructorSplat: {
351 const ConstructorSplat& ctor = expression.as<ConstructorSplat>();
352 return ConstructorSplat::Make(*fContext, offset,
353 *ctor.type().clone(symbolTableForExpression),
354 expr(ctor.argument()));
355 }
356 case Expression::Kind::kConstructorStruct: {
357 const ConstructorStruct& ctor = expression.as<ConstructorStruct>();
358 return ConstructorStruct::Make(*fContext, offset,
359 *ctor.type().clone(symbolTableForExpression),
360 argList(ctor.arguments()));
361 }
362 case Expression::Kind::kExternalFunctionCall: {
363 const ExternalFunctionCall& externalCall = expression.as<ExternalFunctionCall>();
364 return std::make_unique<ExternalFunctionCall>(offset, &externalCall.function(),
365 argList(externalCall.arguments()));
366 }
367 case Expression::Kind::kExternalFunctionReference:
368 return expression.clone();
369 case Expression::Kind::kFieldAccess: {
370 const FieldAccess& f = expression.as<FieldAccess>();
371 return FieldAccess::Make(*fContext, expr(f.base()), f.fieldIndex(), f.ownerKind());
372 }
373 case Expression::Kind::kFunctionCall: {
374 const FunctionCall& funcCall = expression.as<FunctionCall>();
375 return FunctionCall::Make(*fContext,
376 offset,
377 funcCall.type().clone(symbolTableForExpression),
378 funcCall.function(),
379 argList(funcCall.arguments()));
380 }
381 case Expression::Kind::kFunctionReference:
382 return expression.clone();
383 case Expression::Kind::kIndex: {
384 const IndexExpression& idx = expression.as<IndexExpression>();
385 return IndexExpression::Make(*fContext, expr(idx.base()), expr(idx.index()));
386 }
387 case Expression::Kind::kPrefix: {
388 const PrefixExpression& p = expression.as<PrefixExpression>();
389 return PrefixExpression::Make(*fContext, p.getOperator(), expr(p.operand()));
390 }
391 case Expression::Kind::kPostfix: {
392 const PostfixExpression& p = expression.as<PostfixExpression>();
393 return PostfixExpression::Make(*fContext, expr(p.operand()), p.getOperator());
394 }
395 case Expression::Kind::kSetting:
396 return expression.clone();
397 case Expression::Kind::kSwizzle: {
398 const Swizzle& s = expression.as<Swizzle>();
399 return Swizzle::Make(*fContext, expr(s.base()), s.components());
400 }
401 case Expression::Kind::kTernary: {
402 const TernaryExpression& t = expression.as<TernaryExpression>();
403 return TernaryExpression::Make(*fContext, expr(t.test()),
404 expr(t.ifTrue()), expr(t.ifFalse()));
405 }
406 case Expression::Kind::kTypeReference:
407 return expression.clone();
408 case Expression::Kind::kVariableReference: {
409 const VariableReference& v = expression.as<VariableReference>();
410 auto varMapIter = varMap->find(v.variable());
411 if (varMapIter != varMap->end()) {
412 return clone_with_ref_kind(*varMapIter->second, v.refKind());
413 }
414 return v.clone();
415 }
416 default:
417 SkASSERT(false);
418 return nullptr;
419 }
420 }
421
inlineStatement(int offset,VariableRewriteMap * varMap,SymbolTable * symbolTableForStatement,std::unique_ptr<Expression> * resultExpr,ReturnComplexity returnComplexity,const Statement & statement,bool isBuiltinCode)422 std::unique_ptr<Statement> Inliner::inlineStatement(int offset,
423 VariableRewriteMap* varMap,
424 SymbolTable* symbolTableForStatement,
425 std::unique_ptr<Expression>* resultExpr,
426 ReturnComplexity returnComplexity,
427 const Statement& statement,
428 bool isBuiltinCode) {
429 auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> {
430 if (s) {
431 return this->inlineStatement(offset, varMap, symbolTableForStatement, resultExpr,
432 returnComplexity, *s, isBuiltinCode);
433 }
434 return nullptr;
435 };
436 auto blockStmts = [&](const Block& block) {
437 StatementArray result;
438 result.reserve_back(block.children().size());
439 for (const std::unique_ptr<Statement>& child : block.children()) {
440 result.push_back(stmt(child));
441 }
442 return result;
443 };
444 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
445 if (e) {
446 return this->inlineExpression(offset, varMap, symbolTableForStatement, *e);
447 }
448 return nullptr;
449 };
450
451 ++fInlinedStatementCounter;
452
453 switch (statement.kind()) {
454 case Statement::Kind::kBlock: {
455 const Block& b = statement.as<Block>();
456 return Block::Make(offset, blockStmts(b),
457 SymbolTable::WrapIfBuiltin(b.symbolTable()),
458 b.isScope());
459 }
460
461 case Statement::Kind::kBreak:
462 case Statement::Kind::kContinue:
463 case Statement::Kind::kDiscard:
464 return statement.clone();
465
466 case Statement::Kind::kDo: {
467 const DoStatement& d = statement.as<DoStatement>();
468 return DoStatement::Make(*fContext, stmt(d.statement()), expr(d.test()));
469 }
470 case Statement::Kind::kExpression: {
471 const ExpressionStatement& e = statement.as<ExpressionStatement>();
472 return ExpressionStatement::Make(*fContext, expr(e.expression()));
473 }
474 case Statement::Kind::kFor: {
475 const ForStatement& f = statement.as<ForStatement>();
476 // need to ensure initializer is evaluated first so that we've already remapped its
477 // declarations by the time we evaluate test & next
478 std::unique_ptr<Statement> initializer = stmt(f.initializer());
479 return ForStatement::Make(*fContext, offset, std::move(initializer), expr(f.test()),
480 expr(f.next()), stmt(f.statement()),
481 SymbolTable::WrapIfBuiltin(f.symbols()));
482 }
483 case Statement::Kind::kIf: {
484 const IfStatement& i = statement.as<IfStatement>();
485 return IfStatement::Make(*fContext, offset, i.isStatic(), expr(i.test()),
486 stmt(i.ifTrue()), stmt(i.ifFalse()));
487 }
488 case Statement::Kind::kInlineMarker:
489 case Statement::Kind::kNop:
490 return statement.clone();
491
492 case Statement::Kind::kReturn: {
493 const ReturnStatement& r = statement.as<ReturnStatement>();
494 if (!r.expression()) {
495 // This function doesn't return a value. We won't inline functions with early
496 // returns, so a return statement is a no-op and can be treated as such.
497 return Nop::Make();
498 }
499
500 // If a function only contains a single return, and it doesn't reference variables from
501 // inside an Block's scope, we don't need to store the result in a variable at all. Just
502 // replace the function-call expression with the function's return expression.
503 SkASSERT(resultExpr);
504 if (returnComplexity <= ReturnComplexity::kSingleSafeReturn) {
505 *resultExpr = expr(r.expression());
506 return Nop::Make();
507 }
508
509 // For more complex functions, assign their result into a variable.
510 SkASSERT(*resultExpr);
511 auto assignment = ExpressionStatement::Make(
512 *fContext,
513 BinaryExpression::Make(
514 *fContext,
515 clone_with_ref_kind(**resultExpr, VariableRefKind::kWrite),
516 Token::Kind::TK_EQ,
517 expr(r.expression())));
518
519 // Functions without early returns aren't wrapped in a for loop and don't need to worry
520 // about breaking out of the control flow.
521 return assignment;
522 }
523 case Statement::Kind::kSwitch: {
524 const SwitchStatement& ss = statement.as<SwitchStatement>();
525 StatementArray cases;
526 cases.reserve_back(ss.cases().size());
527 for (const std::unique_ptr<Statement>& statement : ss.cases()) {
528 const SwitchCase& sc = statement->as<SwitchCase>();
529 cases.push_back(std::make_unique<SwitchCase>(offset, expr(sc.value()),
530 stmt(sc.statement())));
531 }
532 return SwitchStatement::Make(*fContext, offset, ss.isStatic(), expr(ss.value()),
533 std::move(cases), SymbolTable::WrapIfBuiltin(ss.symbols()));
534 }
535 case Statement::Kind::kVarDeclaration: {
536 const VarDeclaration& decl = statement.as<VarDeclaration>();
537 std::unique_ptr<Expression> initialValue = expr(decl.value());
538 const Variable& variable = decl.var();
539
540 // We assign unique names to inlined variables--scopes hide most of the problems in this
541 // regard, but see `InlinerAvoidsVariableNameOverlap` for a counterexample where unique
542 // names are important.
543 const String* name = symbolTableForStatement->takeOwnershipOfString(
544 fMangler.uniqueName(variable.name(), symbolTableForStatement));
545 auto clonedVar = std::make_unique<Variable>(
546 offset,
547 &variable.modifiers(),
548 name->c_str(),
549 variable.type().clone(symbolTableForStatement),
550 isBuiltinCode,
551 variable.storage());
552 (*varMap)[&variable] = VariableReference::Make(offset, clonedVar.get());
553 auto result = VarDeclaration::Make(*fContext,
554 clonedVar.get(),
555 decl.baseType().clone(symbolTableForStatement),
556 decl.arraySize(),
557 std::move(initialValue));
558 symbolTableForStatement->takeOwnershipOfSymbol(std::move(clonedVar));
559 return result;
560 }
561 default:
562 SkASSERT(false);
563 return nullptr;
564 }
565 }
566
makeInlineVariable(const String & baseName,const Type * type,SymbolTable * symbolTable,Modifiers modifiers,bool isBuiltinCode,std::unique_ptr<Expression> * initialValue)567 Inliner::InlineVariable Inliner::makeInlineVariable(const String& baseName,
568 const Type* type,
569 SymbolTable* symbolTable,
570 Modifiers modifiers,
571 bool isBuiltinCode,
572 std::unique_ptr<Expression>* initialValue) {
573 // $floatLiteral or $intLiteral aren't real types that we can use for scratch variables, so
574 // replace them if they ever appear here. If this happens, we likely forgot to coerce a type
575 // somewhere during compilation.
576 if (type->isLiteral()) {
577 SkDEBUGFAIL("found a $literal type while inlining");
578 type = &type->scalarTypeForLiteral();
579 }
580
581 // Out parameters aren't supported.
582 SkASSERT(!(modifiers.fFlags & Modifiers::kOut_Flag));
583
584 // Provide our new variable with a unique name, and add it to our symbol table.
585 const String* name =
586 symbolTable->takeOwnershipOfString(fMangler.uniqueName(baseName, symbolTable));
587
588 // Create our new variable and add it to the symbol table.
589 InlineVariable result;
590 auto var = std::make_unique<Variable>(/*offset=*/-1,
591 this->modifiersPool().add(Modifiers{}),
592 name->c_str(),
593 type,
594 isBuiltinCode,
595 Variable::Storage::kLocal);
596
597 // Create our variable declaration.
598 result.fVarDecl = VarDeclaration::Make(*fContext, var.get(), type, /*arraySize=*/0,
599 std::move(*initialValue));
600 result.fVarSymbol = symbolTable->add(std::move(var));
601 return result;
602 }
603
inlineCall(FunctionCall * call,std::shared_ptr<SymbolTable> symbolTable,const ProgramUsage & usage,const FunctionDeclaration * caller)604 Inliner::InlinedCall Inliner::inlineCall(FunctionCall* call,
605 std::shared_ptr<SymbolTable> symbolTable,
606 const ProgramUsage& usage,
607 const FunctionDeclaration* caller) {
608 // Inlining is more complicated here than in a typical compiler, because we have to have a
609 // high-level IR and can't just drop statements into the middle of an expression or even use
610 // gotos.
611 //
612 // Since we can't insert statements into an expression, we run the inline function as extra
613 // statements before the statement we're currently processing, relying on a lack of execution
614 // order guarantees. Since we can't use gotos (which are normally used to replace return
615 // statements), we wrap the whole function in a loop and use break statements to jump to the
616 // end.
617 SkASSERT(fContext);
618 SkASSERT(call);
619 SkASSERT(this->isSafeToInline(call->function().definition()));
620
621 ExpressionArray& arguments = call->arguments();
622 const int offset = call->fOffset;
623 const FunctionDefinition& function = *call->function().definition();
624 const Block& body = function.body()->as<Block>();
625 const ReturnComplexity returnComplexity = GetReturnComplexity(function);
626
627 StatementArray inlineStatements;
628 int expectedStmtCount = 1 + // Inline marker
629 1 + // Result variable
630 arguments.size() + // Function argument temp-vars
631 body.children().size(); // Inlined code
632
633 inlineStatements.reserve_back(expectedStmtCount);
634 inlineStatements.push_back(InlineMarker::Make(&call->function()));
635
636 std::unique_ptr<Expression> resultExpr;
637 if (returnComplexity > ReturnComplexity::kSingleSafeReturn &&
638 !function.declaration().returnType().isVoid()) {
639 // Create a variable to hold the result in the extra statements. We don't need to do this
640 // for void-return functions, or in cases that are simple enough that we can just replace
641 // the function-call node with the result expression.
642 std::unique_ptr<Expression> noInitialValue;
643 InlineVariable var = this->makeInlineVariable(function.declaration().name(),
644 &function.declaration().returnType(),
645 symbolTable.get(), Modifiers{},
646 caller->isBuiltin(), &noInitialValue);
647 inlineStatements.push_back(std::move(var.fVarDecl));
648 resultExpr = VariableReference::Make(/*offset=*/-1, var.fVarSymbol);
649 }
650
651 // Create variables in the extra statements to hold the arguments, and assign the arguments to
652 // them.
653 VariableRewriteMap varMap;
654 for (int i = 0; i < arguments.count(); ++i) {
655 // If the parameter isn't written to within the inline function ...
656 const Variable* param = function.declaration().parameters()[i];
657 const ProgramUsage::VariableCounts& paramUsage = usage.get(*param);
658 if (!paramUsage.fWrite) {
659 // ... and can be inlined trivially (e.g. a swizzle, or a constant array index),
660 // or any expression without side effects that is only accessed at most once...
661 if ((paramUsage.fRead > 1) ? Analysis::IsTrivialExpression(*arguments[i])
662 : !arguments[i]->hasSideEffects()) {
663 // ... we don't need to copy it at all! We can just use the existing expression.
664 varMap[param] = arguments[i]->clone();
665 continue;
666 }
667 }
668 InlineVariable var = this->makeInlineVariable(param->name(), &arguments[i]->type(),
669 symbolTable.get(), param->modifiers(),
670 caller->isBuiltin(), &arguments[i]);
671 inlineStatements.push_back(std::move(var.fVarDecl));
672 varMap[param] = VariableReference::Make(/*offset=*/-1, var.fVarSymbol);
673 }
674
675 for (const std::unique_ptr<Statement>& stmt : body.children()) {
676 inlineStatements.push_back(this->inlineStatement(offset, &varMap, symbolTable.get(),
677 &resultExpr, returnComplexity, *stmt,
678 caller->isBuiltin()));
679 }
680
681 SkASSERT(inlineStatements.count() <= expectedStmtCount);
682
683 // Wrap all of the generated statements in a block. We need a real Block here, so we can't use
684 // MakeUnscoped. This is because we need to add another child statement to the Block later.
685 InlinedCall inlinedCall;
686 inlinedCall.fInlinedBody = Block::Make(offset, std::move(inlineStatements),
687 /*symbols=*/nullptr, /*isScope=*/false);
688
689 if (resultExpr) {
690 // Return our result expression as-is.
691 inlinedCall.fReplacementExpr = std::move(resultExpr);
692 } else if (function.declaration().returnType().isVoid()) {
693 // It's a void function, so it doesn't actually result in anything, but we have to return
694 // something non-null as a standin.
695 inlinedCall.fReplacementExpr = BoolLiteral::Make(*fContext, offset, /*value=*/false);
696 } else {
697 // It's a non-void function, but it never created a result expression--that is, it never
698 // returned anything on any path! This should have been detected in the function finalizer.
699 // Still, discard our output and generate an error.
700 SkDEBUGFAIL("inliner found non-void function that fails to return a value on any path");
701 fContext->fErrors.error(function.fOffset, "inliner found non-void function '" +
702 function.declaration().name() +
703 "' that fails to return a value on any path");
704 inlinedCall = {};
705 }
706
707 return inlinedCall;
708 }
709
isSafeToInline(const FunctionDefinition * functionDef)710 bool Inliner::isSafeToInline(const FunctionDefinition* functionDef) {
711 // A threshold of zero indicates that the inliner is completely disabled, so we can just return.
712 if (this->settings().fInlineThreshold <= 0) {
713 return false;
714 }
715
716 // Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
717 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
718 return false;
719 }
720
721 if (functionDef == nullptr) {
722 // Can't inline something if we don't actually have its definition.
723 return false;
724 }
725
726 if (functionDef->declaration().modifiers().fFlags & Modifiers::kNoInline_Flag) {
727 // Refuse to inline functions decorated with `noinline`.
728 return false;
729 }
730
731 // We don't allow inlining a function with out parameters. (See skia:11326 for rationale.)
732 for (const Variable* param : functionDef->declaration().parameters()) {
733 if (param->modifiers().fFlags & Modifiers::Flag::kOut_Flag) {
734 return false;
735 }
736 }
737
738 // We don't have a mechanism to simulate early returns, so we can't inline if there is one.
739 return GetReturnComplexity(*functionDef) < ReturnComplexity::kEarlyReturns;
740 }
741
742 // A candidate function for inlining, containing everything that `inlineCall` needs.
743 struct InlineCandidate {
744 std::shared_ptr<SymbolTable> fSymbols; // the SymbolTable of the candidate
745 std::unique_ptr<Statement>* fParentStmt; // the parent Statement of the enclosing stmt
746 std::unique_ptr<Statement>* fEnclosingStmt; // the Statement containing the candidate
747 std::unique_ptr<Expression>* fCandidateExpr; // the candidate FunctionCall to be inlined
748 FunctionDefinition* fEnclosingFunction; // the Function containing the candidate
749 };
750
751 struct InlineCandidateList {
752 std::vector<InlineCandidate> fCandidates;
753 };
754
755 class InlineCandidateAnalyzer {
756 public:
757 // A list of all the inlining candidates we found during analysis.
758 InlineCandidateList* fCandidateList;
759
760 // A stack of the symbol tables; since most nodes don't have one, expected to be shallower than
761 // the enclosing-statement stack.
762 std::vector<std::shared_ptr<SymbolTable>> fSymbolTableStack;
763 // A stack of "enclosing" statements--these would be suitable for the inliner to use for adding
764 // new instructions. Not all statements are suitable (e.g. a for-loop's initializer). The
765 // inliner might replace a statement with a block containing the statement.
766 std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack;
767 // The function that we're currently processing (i.e. inlining into).
768 FunctionDefinition* fEnclosingFunction = nullptr;
769
visit(const std::vector<std::unique_ptr<ProgramElement>> & elements,std::shared_ptr<SymbolTable> symbols,InlineCandidateList * candidateList)770 void visit(const std::vector<std::unique_ptr<ProgramElement>>& elements,
771 std::shared_ptr<SymbolTable> symbols,
772 InlineCandidateList* candidateList) {
773 fCandidateList = candidateList;
774 fSymbolTableStack.push_back(symbols);
775
776 for (const std::unique_ptr<ProgramElement>& pe : elements) {
777 this->visitProgramElement(pe.get());
778 }
779
780 fSymbolTableStack.pop_back();
781 fCandidateList = nullptr;
782 }
783
visitProgramElement(ProgramElement * pe)784 void visitProgramElement(ProgramElement* pe) {
785 switch (pe->kind()) {
786 case ProgramElement::Kind::kFunction: {
787 FunctionDefinition& funcDef = pe->as<FunctionDefinition>();
788 fEnclosingFunction = &funcDef;
789 this->visitStatement(&funcDef.body());
790 break;
791 }
792 default:
793 // The inliner can't operate outside of a function's scope.
794 break;
795 }
796 }
797
visitStatement(std::unique_ptr<Statement> * stmt,bool isViableAsEnclosingStatement=true)798 void visitStatement(std::unique_ptr<Statement>* stmt,
799 bool isViableAsEnclosingStatement = true) {
800 if (!*stmt) {
801 return;
802 }
803
804 size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size();
805 size_t oldSymbolStackSize = fSymbolTableStack.size();
806
807 if (isViableAsEnclosingStatement) {
808 fEnclosingStmtStack.push_back(stmt);
809 }
810
811 switch ((*stmt)->kind()) {
812 case Statement::Kind::kBreak:
813 case Statement::Kind::kContinue:
814 case Statement::Kind::kDiscard:
815 case Statement::Kind::kInlineMarker:
816 case Statement::Kind::kNop:
817 break;
818
819 case Statement::Kind::kBlock: {
820 Block& block = (*stmt)->as<Block>();
821 if (block.symbolTable()) {
822 fSymbolTableStack.push_back(block.symbolTable());
823 }
824
825 for (std::unique_ptr<Statement>& stmt : block.children()) {
826 this->visitStatement(&stmt);
827 }
828 break;
829 }
830 case Statement::Kind::kDo: {
831 DoStatement& doStmt = (*stmt)->as<DoStatement>();
832 // The loop body is a candidate for inlining.
833 this->visitStatement(&doStmt.statement());
834 // The inliner isn't smart enough to inline the test-expression for a do-while
835 // loop at this time. There are two limitations:
836 // - We would need to insert the inlined-body block at the very end of the do-
837 // statement's inner fStatement. We don't support that today, but it's doable.
838 // - We cannot inline the test expression if the loop uses `continue` anywhere; that
839 // would skip over the inlined block that evaluates the test expression. There
840 // isn't a good fix for this--any workaround would be more complex than the cost
841 // of a function call. However, loops that don't use `continue` would still be
842 // viable candidates for inlining.
843 break;
844 }
845 case Statement::Kind::kExpression: {
846 ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>();
847 this->visitExpression(&expr.expression());
848 break;
849 }
850 case Statement::Kind::kFor: {
851 ForStatement& forStmt = (*stmt)->as<ForStatement>();
852 if (forStmt.symbols()) {
853 fSymbolTableStack.push_back(forStmt.symbols());
854 }
855
856 // The initializer and loop body are candidates for inlining.
857 this->visitStatement(&forStmt.initializer(),
858 /*isViableAsEnclosingStatement=*/false);
859 this->visitStatement(&forStmt.statement());
860
861 // The inliner isn't smart enough to inline the test- or increment-expressions
862 // of a for loop loop at this time. There are a handful of limitations:
863 // - We would need to insert the test-expression block at the very beginning of the
864 // for-loop's inner fStatement, and the increment-expression block at the very
865 // end. We don't support that today, but it's doable.
866 // - The for-loop's built-in test-expression would need to be dropped entirely,
867 // and the loop would be halted via a break statement at the end of the inlined
868 // test-expression. This is again something we don't support today, but it could
869 // be implemented.
870 // - We cannot inline the increment-expression if the loop uses `continue` anywhere;
871 // that would skip over the inlined block that evaluates the increment expression.
872 // There isn't a good fix for this--any workaround would be more complex than the
873 // cost of a function call. However, loops that don't use `continue` would still
874 // be viable candidates for increment-expression inlining.
875 break;
876 }
877 case Statement::Kind::kIf: {
878 IfStatement& ifStmt = (*stmt)->as<IfStatement>();
879 this->visitExpression(&ifStmt.test());
880 this->visitStatement(&ifStmt.ifTrue());
881 this->visitStatement(&ifStmt.ifFalse());
882 break;
883 }
884 case Statement::Kind::kReturn: {
885 ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>();
886 this->visitExpression(&returnStmt.expression());
887 break;
888 }
889 case Statement::Kind::kSwitch: {
890 SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>();
891 if (switchStmt.symbols()) {
892 fSymbolTableStack.push_back(switchStmt.symbols());
893 }
894
895 this->visitExpression(&switchStmt.value());
896 for (const std::unique_ptr<Statement>& switchCase : switchStmt.cases()) {
897 // The switch-case's fValue cannot be a FunctionCall; skip it.
898 this->visitStatement(&switchCase->as<SwitchCase>().statement());
899 }
900 break;
901 }
902 case Statement::Kind::kVarDeclaration: {
903 VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>();
904 // Don't need to scan the declaration's sizes; those are always IntLiterals.
905 this->visitExpression(&varDeclStmt.value());
906 break;
907 }
908 default:
909 SkUNREACHABLE;
910 }
911
912 // Pop our symbol and enclosing-statement stacks.
913 fSymbolTableStack.resize(oldSymbolStackSize);
914 fEnclosingStmtStack.resize(oldEnclosingStmtStackSize);
915 }
916
visitExpression(std::unique_ptr<Expression> * expr)917 void visitExpression(std::unique_ptr<Expression>* expr) {
918 if (!*expr) {
919 return;
920 }
921
922 switch ((*expr)->kind()) {
923 case Expression::Kind::kBoolLiteral:
924 case Expression::Kind::kExternalFunctionReference:
925 case Expression::Kind::kFieldAccess:
926 case Expression::Kind::kFloatLiteral:
927 case Expression::Kind::kFunctionReference:
928 case Expression::Kind::kIntLiteral:
929 case Expression::Kind::kSetting:
930 case Expression::Kind::kTypeReference:
931 case Expression::Kind::kVariableReference:
932 // Nothing to scan here.
933 break;
934
935 case Expression::Kind::kBinary: {
936 BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>();
937 this->visitExpression(&binaryExpr.left());
938
939 // Logical-and and logical-or binary expressions do not inline the right side,
940 // because that would invalidate short-circuiting. That is, when evaluating
941 // expressions like these:
942 // (false && x()) // always false
943 // (true || y()) // always true
944 // It is illegal for side-effects from x() or y() to occur. The simplest way to
945 // enforce that rule is to avoid inlining the right side entirely. However, it is
946 // safe for other types of binary expression to inline both sides.
947 Operator op = binaryExpr.getOperator();
948 bool shortCircuitable = (op.kind() == Token::Kind::TK_LOGICALAND ||
949 op.kind() == Token::Kind::TK_LOGICALOR);
950 if (!shortCircuitable) {
951 this->visitExpression(&binaryExpr.right());
952 }
953 break;
954 }
955 case Expression::Kind::kConstructorArray:
956 case Expression::Kind::kConstructorCompound:
957 case Expression::Kind::kConstructorCompoundCast:
958 case Expression::Kind::kConstructorDiagonalMatrix:
959 case Expression::Kind::kConstructorMatrixResize:
960 case Expression::Kind::kConstructorScalarCast:
961 case Expression::Kind::kConstructorSplat:
962 case Expression::Kind::kConstructorStruct: {
963 AnyConstructor& constructorExpr = (*expr)->asAnyConstructor();
964 for (std::unique_ptr<Expression>& arg : constructorExpr.argumentSpan()) {
965 this->visitExpression(&arg);
966 }
967 break;
968 }
969 case Expression::Kind::kExternalFunctionCall: {
970 ExternalFunctionCall& funcCallExpr = (*expr)->as<ExternalFunctionCall>();
971 for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
972 this->visitExpression(&arg);
973 }
974 break;
975 }
976 case Expression::Kind::kFunctionCall: {
977 FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>();
978 for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
979 this->visitExpression(&arg);
980 }
981 this->addInlineCandidate(expr);
982 break;
983 }
984 case Expression::Kind::kIndex: {
985 IndexExpression& indexExpr = (*expr)->as<IndexExpression>();
986 this->visitExpression(&indexExpr.base());
987 this->visitExpression(&indexExpr.index());
988 break;
989 }
990 case Expression::Kind::kPostfix: {
991 PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>();
992 this->visitExpression(&postfixExpr.operand());
993 break;
994 }
995 case Expression::Kind::kPrefix: {
996 PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>();
997 this->visitExpression(&prefixExpr.operand());
998 break;
999 }
1000 case Expression::Kind::kSwizzle: {
1001 Swizzle& swizzleExpr = (*expr)->as<Swizzle>();
1002 this->visitExpression(&swizzleExpr.base());
1003 break;
1004 }
1005 case Expression::Kind::kTernary: {
1006 TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>();
1007 // The test expression is a candidate for inlining.
1008 this->visitExpression(&ternaryExpr.test());
1009 // The true- and false-expressions cannot be inlined, because we are only allowed to
1010 // evaluate one side.
1011 break;
1012 }
1013 default:
1014 SkUNREACHABLE;
1015 }
1016 }
1017
addInlineCandidate(std::unique_ptr<Expression> * candidate)1018 void addInlineCandidate(std::unique_ptr<Expression>* candidate) {
1019 fCandidateList->fCandidates.push_back(
1020 InlineCandidate{fSymbolTableStack.back(),
1021 find_parent_statement(fEnclosingStmtStack),
1022 fEnclosingStmtStack.back(),
1023 candidate,
1024 fEnclosingFunction});
1025 }
1026 };
1027
candidate_func(const InlineCandidate & candidate)1028 static const FunctionDeclaration& candidate_func(const InlineCandidate& candidate) {
1029 return (*candidate.fCandidateExpr)->as<FunctionCall>().function();
1030 }
1031
candidateCanBeInlined(const InlineCandidate & candidate,InlinabilityCache * cache)1032 bool Inliner::candidateCanBeInlined(const InlineCandidate& candidate, InlinabilityCache* cache) {
1033 const FunctionDeclaration& funcDecl = candidate_func(candidate);
1034 auto [iter, wasInserted] = cache->insert({&funcDecl, false});
1035 if (wasInserted) {
1036 // Recursion is forbidden here to avoid an infinite death spiral of inlining.
1037 iter->second = this->isSafeToInline(funcDecl.definition()) &&
1038 !contains_recursive_call(funcDecl);
1039 }
1040
1041 return iter->second;
1042 }
1043
getFunctionSize(const FunctionDeclaration & funcDecl,FunctionSizeCache * cache)1044 int Inliner::getFunctionSize(const FunctionDeclaration& funcDecl, FunctionSizeCache* cache) {
1045 auto [iter, wasInserted] = cache->insert({&funcDecl, 0});
1046 if (wasInserted) {
1047 iter->second = Analysis::NodeCountUpToLimit(*funcDecl.definition(),
1048 this->settings().fInlineThreshold);
1049 }
1050 return iter->second;
1051 }
1052
buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>> & elements,std::shared_ptr<SymbolTable> symbols,ProgramUsage * usage,InlineCandidateList * candidateList)1053 void Inliner::buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>>& elements,
1054 std::shared_ptr<SymbolTable> symbols, ProgramUsage* usage,
1055 InlineCandidateList* candidateList) {
1056 // This is structured much like a ProgramVisitor, but does not actually use ProgramVisitor.
1057 // The analyzer needs to keep track of the `unique_ptr<T>*` of statements and expressions so
1058 // that they can later be replaced, and ProgramVisitor does not provide this; it only provides a
1059 // `const T&`.
1060 InlineCandidateAnalyzer analyzer;
1061 analyzer.visit(elements, symbols, candidateList);
1062
1063 // Early out if there are no inlining candidates.
1064 std::vector<InlineCandidate>& candidates = candidateList->fCandidates;
1065 if (candidates.empty()) {
1066 return;
1067 }
1068
1069 // Remove candidates that are not safe to inline.
1070 InlinabilityCache cache;
1071 candidates.erase(std::remove_if(candidates.begin(),
1072 candidates.end(),
1073 [&](const InlineCandidate& candidate) {
1074 return !this->candidateCanBeInlined(candidate, &cache);
1075 }),
1076 candidates.end());
1077
1078 // If the inline threshold is unlimited, or if we have no candidates left, our candidate list is
1079 // complete.
1080 if (this->settings().fInlineThreshold == INT_MAX || candidates.empty()) {
1081 return;
1082 }
1083
1084 // Remove candidates on a per-function basis if the effect of inlining would be to make more
1085 // than `inlineThreshold` nodes. (i.e. if Func() would be inlined six times and its size is
1086 // 10 nodes, it should be inlined if the inlineThreshold is 60 or higher.)
1087 FunctionSizeCache functionSizeCache;
1088 FunctionSizeCache candidateTotalCost;
1089 for (InlineCandidate& candidate : candidates) {
1090 const FunctionDeclaration& fnDecl = candidate_func(candidate);
1091 candidateTotalCost[&fnDecl] += this->getFunctionSize(fnDecl, &functionSizeCache);
1092 }
1093
1094 candidates.erase(std::remove_if(candidates.begin(), candidates.end(),
1095 [&](const InlineCandidate& candidate) {
1096 const FunctionDeclaration& fnDecl = candidate_func(candidate);
1097 if (fnDecl.modifiers().fFlags & Modifiers::kInline_Flag) {
1098 // Functions marked `inline` ignore size limitations.
1099 return false;
1100 }
1101 if (usage->get(fnDecl) == 1) {
1102 // If a function is only used once, it's cost-free to inline.
1103 return false;
1104 }
1105 if (candidateTotalCost[&fnDecl] <= this->settings().fInlineThreshold) {
1106 // We won't exceed the inline threshold by inlining this.
1107 return false;
1108 }
1109 // Inlining this function will add too many IRNodes.
1110 return true;
1111 }),
1112 candidates.end());
1113 }
1114
analyze(const std::vector<std::unique_ptr<ProgramElement>> & elements,std::shared_ptr<SymbolTable> symbols,ProgramUsage * usage)1115 bool Inliner::analyze(const std::vector<std::unique_ptr<ProgramElement>>& elements,
1116 std::shared_ptr<SymbolTable> symbols,
1117 ProgramUsage* usage) {
1118 // A threshold of zero indicates that the inliner is completely disabled, so we can just return.
1119 if (this->settings().fInlineThreshold <= 0) {
1120 return false;
1121 }
1122
1123 // Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
1124 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
1125 return false;
1126 }
1127
1128 InlineCandidateList candidateList;
1129 this->buildCandidateList(elements, symbols, usage, &candidateList);
1130
1131 // Inline the candidates where we've determined that it's safe to do so.
1132 using StatementRemappingTable = std::unordered_map<std::unique_ptr<Statement>*,
1133 std::unique_ptr<Statement>*>;
1134 StatementRemappingTable statementRemappingTable;
1135
1136 bool madeChanges = false;
1137 for (const InlineCandidate& candidate : candidateList.fCandidates) {
1138 FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>();
1139
1140 // Convert the function call to its inlined equivalent.
1141 InlinedCall inlinedCall = this->inlineCall(&funcCall, candidate.fSymbols, *usage,
1142 &candidate.fEnclosingFunction->declaration());
1143
1144 // Stop if an error was detected during the inlining process.
1145 if (!inlinedCall.fInlinedBody && !inlinedCall.fReplacementExpr) {
1146 break;
1147 }
1148
1149 // Ensure that the inlined body has a scope if it needs one.
1150 this->ensureScopedBlocks(inlinedCall.fInlinedBody.get(), candidate.fParentStmt->get());
1151
1152 // Add references within the inlined body
1153 usage->add(inlinedCall.fInlinedBody.get());
1154
1155 // Look up the enclosing statement; remap it if necessary.
1156 std::unique_ptr<Statement>* enclosingStmt = candidate.fEnclosingStmt;
1157 for (;;) {
1158 auto iter = statementRemappingTable.find(enclosingStmt);
1159 if (iter == statementRemappingTable.end()) {
1160 break;
1161 }
1162 enclosingStmt = iter->second;
1163 }
1164
1165 // Move the enclosing statement to the end of the unscoped Block containing the inlined
1166 // function, then replace the enclosing statement with that Block.
1167 // Before:
1168 // fInlinedBody = Block{ stmt1, stmt2, stmt3 }
1169 // fEnclosingStmt = stmt4
1170 // After:
1171 // fInlinedBody = null
1172 // fEnclosingStmt = Block{ stmt1, stmt2, stmt3, stmt4 }
1173 inlinedCall.fInlinedBody->children().push_back(std::move(*enclosingStmt));
1174 *enclosingStmt = std::move(inlinedCall.fInlinedBody);
1175
1176 // Replace the candidate function call with our replacement expression.
1177 usage->replace(candidate.fCandidateExpr->get(), inlinedCall.fReplacementExpr.get());
1178 *candidate.fCandidateExpr = std::move(inlinedCall.fReplacementExpr);
1179 madeChanges = true;
1180
1181 // If anything else pointed at our enclosing statement, it's now pointing at a Block
1182 // containing many other statements as well. Maintain a fix-up table to account for this.
1183 statementRemappingTable[enclosingStmt] = &(*enclosingStmt)->as<Block>().children().back();
1184
1185 // Stop inlining if we've reached our hard cap on new statements.
1186 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
1187 break;
1188 }
1189
1190 // Note that nothing was destroyed except for the FunctionCall. All other nodes should
1191 // remain valid.
1192 }
1193
1194 return madeChanges;
1195 }
1196
1197 } // namespace SkSL
1198