1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "mlir/Analysis/Presburger/Simplex.h"
10 #include "mlir/Analysis/Presburger/Matrix.h"
11 #include "mlir/Support/MathExtras.h"
12
13 namespace mlir {
14 using Direction = Simplex::Direction;
15
16 const int nullIndex = std::numeric_limits<int>::max();
17
18 /// Construct a Simplex object with `nVar` variables.
Simplex(unsigned nVar)19 Simplex::Simplex(unsigned nVar)
20 : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) {
21 colUnknown.push_back(nullIndex);
22 colUnknown.push_back(nullIndex);
23 for (unsigned i = 0; i < nVar; ++i) {
24 var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol);
25 colUnknown.push_back(i);
26 nCol++;
27 }
28 }
29
Simplex(const FlatAffineConstraints & constraints)30 Simplex::Simplex(const FlatAffineConstraints &constraints)
31 : Simplex(constraints.getNumIds()) {
32 for (unsigned i = 0, numIneqs = constraints.getNumInequalities();
33 i < numIneqs; ++i)
34 addInequality(constraints.getInequality(i));
35 for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i)
36 addEquality(constraints.getEquality(i));
37 }
38
unknownFromIndex(int index) const39 const Simplex::Unknown &Simplex::unknownFromIndex(int index) const {
40 assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
41 return index >= 0 ? var[index] : con[~index];
42 }
43
unknownFromColumn(unsigned col) const44 const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const {
45 assert(col < nCol && "Invalid column");
46 return unknownFromIndex(colUnknown[col]);
47 }
48
unknownFromRow(unsigned row) const49 const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const {
50 assert(row < nRow && "Invalid row");
51 return unknownFromIndex(rowUnknown[row]);
52 }
53
unknownFromIndex(int index)54 Simplex::Unknown &Simplex::unknownFromIndex(int index) {
55 assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
56 return index >= 0 ? var[index] : con[~index];
57 }
58
unknownFromColumn(unsigned col)59 Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) {
60 assert(col < nCol && "Invalid column");
61 return unknownFromIndex(colUnknown[col]);
62 }
63
unknownFromRow(unsigned row)64 Simplex::Unknown &Simplex::unknownFromRow(unsigned row) {
65 assert(row < nRow && "Invalid row");
66 return unknownFromIndex(rowUnknown[row]);
67 }
68
69 /// Add a new row to the tableau corresponding to the given constant term and
70 /// list of coefficients. The coefficients are specified as a vector of
71 /// (variable index, coefficient) pairs.
addRow(ArrayRef<int64_t> coeffs)72 unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) {
73 assert(coeffs.size() == 1 + var.size() &&
74 "Incorrect number of coefficients!");
75
76 ++nRow;
77 // If the tableau is not big enough to accomodate the extra row, we extend it.
78 if (nRow >= tableau.getNumRows())
79 tableau.resizeVertically(nRow);
80 rowUnknown.push_back(~con.size());
81 con.emplace_back(Orientation::Row, false, nRow - 1);
82
83 tableau(nRow - 1, 0) = 1;
84 tableau(nRow - 1, 1) = coeffs.back();
85 for (unsigned col = 2; col < nCol; ++col)
86 tableau(nRow - 1, col) = 0;
87
88 // Process each given variable coefficient.
89 for (unsigned i = 0; i < var.size(); ++i) {
90 unsigned pos = var[i].pos;
91 if (coeffs[i] == 0)
92 continue;
93
94 if (var[i].orientation == Orientation::Column) {
95 // If a variable is in column position at column col, then we just add the
96 // coefficient for that variable (scaled by the common row denominator) to
97 // the corresponding entry in the new row.
98 tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
99 continue;
100 }
101
102 // If the variable is in row position, we need to add that row to the new
103 // row, scaled by the coefficient for the variable, accounting for the two
104 // rows potentially having different denominators. The new denominator is
105 // the lcm of the two.
106 int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
107 int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
108 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
109 tableau(nRow - 1, 0) = lcm;
110 for (unsigned col = 1; col < nCol; ++col)
111 tableau(nRow - 1, col) =
112 nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
113 }
114
115 normalizeRow(nRow - 1);
116 // Push to undo log along with the index of the new constraint.
117 undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
118 return con.size() - 1;
119 }
120
121 /// Normalize the row by removing factors that are common between the
122 /// denominator and all the numerator coefficients.
normalizeRow(unsigned row)123 void Simplex::normalizeRow(unsigned row) {
124 int64_t gcd = 0;
125 for (unsigned col = 0; col < nCol; ++col) {
126 if (gcd == 1)
127 break;
128 gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col)));
129 }
130 for (unsigned col = 0; col < nCol; ++col)
131 tableau(row, col) /= gcd;
132 }
133
134 namespace {
signMatchesDirection(int64_t elem,Direction direction)135 bool signMatchesDirection(int64_t elem, Direction direction) {
136 assert(elem != 0 && "elem should not be 0");
137 return direction == Direction::Up ? elem > 0 : elem < 0;
138 }
139
flippedDirection(Direction direction)140 Direction flippedDirection(Direction direction) {
141 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
142 }
143 } // anonymous namespace
144
145 /// Find a pivot to change the sample value of the row in the specified
146 /// direction. The returned pivot row will involve `row` if and only if the
147 /// unknown is unbounded in the specified direction.
148 ///
149 /// To increase (resp. decrease) the value of a row, we need to find a live
150 /// column with a non-zero coefficient. If the coefficient is positive, we need
151 /// to increase (decrease) the value of the column, and if the coefficient is
152 /// negative, we need to decrease (increase) the value of the column. Also,
153 /// we cannot decrease the sample value of restricted columns.
154 ///
155 /// If multiple columns are valid, we break ties by considering a lexicographic
156 /// ordering where we prefer unknowns with lower index.
findPivot(int row,Direction direction) const157 Optional<Simplex::Pivot> Simplex::findPivot(int row,
158 Direction direction) const {
159 Optional<unsigned> col;
160 for (unsigned j = 2; j < nCol; ++j) {
161 int64_t elem = tableau(row, j);
162 if (elem == 0)
163 continue;
164
165 if (unknownFromColumn(j).restricted &&
166 !signMatchesDirection(elem, direction))
167 continue;
168 if (!col || colUnknown[j] < colUnknown[*col])
169 col = j;
170 }
171
172 if (!col)
173 return {};
174
175 Direction newDirection =
176 tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
177 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
178 return Pivot{maybePivotRow.getValueOr(row), *col};
179 }
180
181 /// Swap the associated unknowns for the row and the column.
182 ///
183 /// First we swap the index associated with the row and column. Then we update
184 /// the unknowns to reflect their new position and orientation.
swapRowWithCol(unsigned row,unsigned col)185 void Simplex::swapRowWithCol(unsigned row, unsigned col) {
186 std::swap(rowUnknown[row], colUnknown[col]);
187 Unknown &uCol = unknownFromColumn(col);
188 Unknown &uRow = unknownFromRow(row);
189 uCol.orientation = Orientation::Column;
190 uRow.orientation = Orientation::Row;
191 uCol.pos = col;
192 uRow.pos = row;
193 }
194
pivot(Pivot pair)195 void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); }
196
197 /// Pivot pivotRow and pivotCol.
198 ///
199 /// Let R be the pivot row unknown and let C be the pivot col unknown.
200 /// Since initially R = a*C + sum b_i * X_i
201 /// (where the sum is over the other column's unknowns, x_i)
202 /// C = (R - (sum b_i * X_i))/a
203 ///
204 /// Let u be some other row unknown.
205 /// u = c*C + sum d_i * X_i
206 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
207 ///
208 /// This results in the following transform:
209 /// pivot col other col pivot col other col
210 /// pivot row a b -> pivot row 1/a -b/a
211 /// other row c d other row c/a d - bc/a
212 ///
213 /// Taking into account the common denominators p and q:
214 ///
215 /// pivot col other col pivot col other col
216 /// pivot row a/p b/p -> pivot row p/a -b/a
217 /// other row c/q d/q other row cp/aq (da - bc)/aq
218 ///
219 /// The pivot row transform is accomplished be swapping a with the pivot row's
220 /// common denominator and negating the pivot row except for the pivot column
221 /// element.
pivot(unsigned pivotRow,unsigned pivotCol)222 void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) {
223 assert(pivotCol >= 2 && "Refusing to pivot invalid column");
224
225 swapRowWithCol(pivotRow, pivotCol);
226 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
227 // We need to negate the whole pivot row except for the pivot column.
228 if (tableau(pivotRow, 0) < 0) {
229 // If the denominator is negative, we negate the row by simply negating the
230 // denominator.
231 tableau(pivotRow, 0) = -tableau(pivotRow, 0);
232 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
233 } else {
234 for (unsigned col = 1; col < nCol; ++col) {
235 if (col == pivotCol)
236 continue;
237 tableau(pivotRow, col) = -tableau(pivotRow, col);
238 }
239 }
240 normalizeRow(pivotRow);
241
242 for (unsigned row = nRedundant; row < nRow; ++row) {
243 if (row == pivotRow)
244 continue;
245 if (tableau(row, pivotCol) == 0) // Nothing to do.
246 continue;
247 tableau(row, 0) *= tableau(pivotRow, 0);
248 for (unsigned j = 1; j < nCol; ++j) {
249 if (j == pivotCol)
250 continue;
251 // Add rather than subtract because the pivot row has been negated.
252 tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
253 tableau(row, pivotCol) * tableau(pivotRow, j);
254 }
255 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
256 normalizeRow(row);
257 }
258 }
259
260 /// Perform pivots until the unknown has a non-negative sample value or until
261 /// no more upward pivots can be performed. Return the sign of the final sample
262 /// value.
restoreRow(Unknown & u)263 LogicalResult Simplex::restoreRow(Unknown &u) {
264 assert(u.orientation == Orientation::Row &&
265 "unknown should be in row position");
266
267 while (tableau(u.pos, 1) < 0) {
268 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
269 if (!maybePivot)
270 break;
271
272 pivot(*maybePivot);
273 if (u.orientation == Orientation::Column)
274 return LogicalResult::Success; // the unknown is unbounded above.
275 }
276 return success(tableau(u.pos, 1) >= 0);
277 }
278
279 /// Find a row that can be used to pivot the column in the specified direction.
280 /// This returns an empty optional if and only if the column is unbounded in the
281 /// specified direction (ignoring skipRow, if skipRow is set).
282 ///
283 /// If skipRow is set, this row is not considered, and (if it is restricted) its
284 /// restriction may be violated by the returned pivot. Usually, skipRow is set
285 /// because we don't want to move it to column position unless it is unbounded,
286 /// and we are either trying to increase the value of skipRow or explicitly
287 /// trying to make skipRow negative, so we are not concerned about this.
288 ///
289 /// If the direction is up (resp. down) and a restricted row has a negative
290 /// (positive) coefficient for the column, then this row imposes a bound on how
291 /// much the sample value of the column can change. Such a row with constant
292 /// term c and coefficient f for the column imposes a bound of c/|f| on the
293 /// change in sample value (in the specified direction). (note that c is
294 /// non-negative here since the row is restricted and the tableau is consistent)
295 ///
296 /// We iterate through the rows and pick the row which imposes the most
297 /// stringent bound, since pivoting with a row changes the row's sample value to
298 /// 0 and hence saturates the bound it imposes. We break ties between rows that
299 /// impose the same bound by considering a lexicographic ordering where we
300 /// prefer unknowns with lower index value.
findPivotRow(Optional<unsigned> skipRow,Direction direction,unsigned col) const301 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
302 Direction direction,
303 unsigned col) const {
304 Optional<unsigned> retRow;
305 int64_t retElem, retConst;
306 for (unsigned row = nRedundant; row < nRow; ++row) {
307 if (skipRow && row == *skipRow)
308 continue;
309 int64_t elem = tableau(row, col);
310 if (elem == 0)
311 continue;
312 if (!unknownFromRow(row).restricted)
313 continue;
314 if (signMatchesDirection(elem, direction))
315 continue;
316 int64_t constTerm = tableau(row, 1);
317
318 if (!retRow) {
319 retRow = row;
320 retElem = elem;
321 retConst = constTerm;
322 continue;
323 }
324
325 int64_t diff = retConst * elem - constTerm * retElem;
326 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
327 (diff != 0 && !signMatchesDirection(diff, direction))) {
328 retRow = row;
329 retElem = elem;
330 retConst = constTerm;
331 }
332 }
333 return retRow;
334 }
335
isEmpty() const336 bool Simplex::isEmpty() const { return empty; }
337
swapRows(unsigned i,unsigned j)338 void Simplex::swapRows(unsigned i, unsigned j) {
339 if (i == j)
340 return;
341 tableau.swapRows(i, j);
342 std::swap(rowUnknown[i], rowUnknown[j]);
343 unknownFromRow(i).pos = i;
344 unknownFromRow(j).pos = j;
345 }
346
347 /// Mark this tableau empty and push an entry to the undo stack.
markEmpty()348 void Simplex::markEmpty() {
349 undoLog.push_back(UndoLogEntry::UnmarkEmpty);
350 empty = true;
351 }
352
353 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
354 /// is the current number of variables, then the corresponding inequality is
355 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
356 ///
357 /// We add the inequality and mark it as restricted. We then try to make its
358 /// sample value non-negative. If this is not possible, the tableau has become
359 /// empty and we mark it as such.
addInequality(ArrayRef<int64_t> coeffs)360 void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
361 unsigned conIndex = addRow(coeffs);
362 Unknown &u = con[conIndex];
363 u.restricted = true;
364 LogicalResult result = restoreRow(u);
365 if (failed(result))
366 markEmpty();
367 }
368
369 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
370 /// is the current number of variables, then the corresponding equality is
371 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
372 ///
373 /// We simply add two opposing inequalities, which force the expression to
374 /// be zero.
addEquality(ArrayRef<int64_t> coeffs)375 void Simplex::addEquality(ArrayRef<int64_t> coeffs) {
376 addInequality(coeffs);
377 SmallVector<int64_t, 8> negatedCoeffs;
378 for (int64_t coeff : coeffs)
379 negatedCoeffs.emplace_back(-coeff);
380 addInequality(negatedCoeffs);
381 }
382
numVariables() const383 unsigned Simplex::numVariables() const { return var.size(); }
numConstraints() const384 unsigned Simplex::numConstraints() const { return con.size(); }
385
386 /// Return a snapshot of the current state. This is just the current size of the
387 /// undo log.
getSnapshot() const388 unsigned Simplex::getSnapshot() const { return undoLog.size(); }
389
undo(UndoLogEntry entry)390 void Simplex::undo(UndoLogEntry entry) {
391 if (entry == UndoLogEntry::RemoveLastConstraint) {
392 Unknown &constraint = con.back();
393 if (constraint.orientation == Orientation::Column) {
394 unsigned column = constraint.pos;
395 Optional<unsigned> row;
396
397 // Try to find any pivot row for this column that preserves tableau
398 // consistency (except possibly the column itself, which is going to be
399 // deallocated anyway).
400 //
401 // If no pivot row is found in either direction, then the unknown is
402 // unbounded in both directions and we are free to
403 // perform any pivot at all. To do this, we just need to find any row with
404 // a non-zero coefficient for the column.
405 if (Optional<unsigned> maybeRow =
406 findPivotRow({}, Direction::Up, column)) {
407 row = *maybeRow;
408 } else if (Optional<unsigned> maybeRow =
409 findPivotRow({}, Direction::Down, column)) {
410 row = *maybeRow;
411 } else {
412 // The loop doesn't find a pivot row only if the column has zero
413 // coefficients for every row. But the unknown is a constraint,
414 // so it was added initially as a row. Such a row could never have been
415 // pivoted to a column. So a pivot row will always be found.
416 for (unsigned i = nRedundant; i < nRow; ++i) {
417 if (tableau(i, column) != 0) {
418 row = i;
419 break;
420 }
421 }
422 }
423 assert(row.hasValue() && "No pivot row found!");
424 pivot(*row, column);
425 }
426
427 // Move this unknown to the last row and remove the last row from the
428 // tableau.
429 swapRows(constraint.pos, nRow - 1);
430 // It is not strictly necessary to shrink the tableau, but for now we
431 // maintain the invariant that the tableau has exactly nRow rows.
432 tableau.resizeVertically(nRow - 1);
433 nRow--;
434 rowUnknown.pop_back();
435 con.pop_back();
436 } else if (entry == UndoLogEntry::UnmarkEmpty) {
437 empty = false;
438 } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
439 nRedundant--;
440 }
441 }
442
443 /// Rollback to the specified snapshot.
444 ///
445 /// We undo all the log entries until the log size when the snapshot was taken
446 /// is reached.
rollback(unsigned snapshot)447 void Simplex::rollback(unsigned snapshot) {
448 while (undoLog.size() > snapshot) {
449 undo(undoLog.back());
450 undoLog.pop_back();
451 }
452 }
453
454 /// Add all the constraints from the given FlatAffineConstraints.
intersectFlatAffineConstraints(const FlatAffineConstraints & fac)455 void Simplex::intersectFlatAffineConstraints(const FlatAffineConstraints &fac) {
456 assert(fac.getNumIds() == numVariables() &&
457 "FlatAffineConstraints must have same dimensionality as simplex");
458 for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i)
459 addInequality(fac.getInequality(i));
460 for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i)
461 addEquality(fac.getEquality(i));
462 }
463
computeRowOptimum(Direction direction,unsigned row)464 Optional<Fraction> Simplex::computeRowOptimum(Direction direction,
465 unsigned row) {
466 // Keep trying to find a pivot for the row in the specified direction.
467 while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
468 // If findPivot returns a pivot involving the row itself, then the optimum
469 // is unbounded, so we return None.
470 if (maybePivot->row == row)
471 return {};
472 pivot(*maybePivot);
473 }
474
475 // The row has reached its optimal sample value, which we return.
476 // The sample value is the entry in the constant column divided by the common
477 // denominator for this row.
478 return Fraction(tableau(row, 1), tableau(row, 0));
479 }
480
481 /// Compute the optimum of the specified expression in the specified direction,
482 /// or None if it is unbounded.
computeOptimum(Direction direction,ArrayRef<int64_t> coeffs)483 Optional<Fraction> Simplex::computeOptimum(Direction direction,
484 ArrayRef<int64_t> coeffs) {
485 assert(!empty && "Tableau should not be empty");
486
487 unsigned snapshot = getSnapshot();
488 unsigned conIndex = addRow(coeffs);
489 unsigned row = con[conIndex].pos;
490 Optional<Fraction> optimum = computeRowOptimum(direction, row);
491 rollback(snapshot);
492 return optimum;
493 }
494
495 /// Redundant constraints are those that are in row orientation and lie in
496 /// rows 0 to nRedundant - 1.
isMarkedRedundant(unsigned constraintIndex) const497 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
498 const Unknown &u = con[constraintIndex];
499 return u.orientation == Orientation::Row && u.pos < nRedundant;
500 }
501
502 /// Mark the specified row redundant.
503 ///
504 /// This is done by moving the unknown to the end of the block of redundant
505 /// rows (namely, to row nRedundant) and incrementing nRedundant to
506 /// accomodate the new redundant row.
markRowRedundant(Unknown & u)507 void Simplex::markRowRedundant(Unknown &u) {
508 assert(u.orientation == Orientation::Row &&
509 "Unknown should be in row position!");
510 swapRows(u.pos, nRedundant);
511 ++nRedundant;
512 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
513 }
514
515 /// Find a subset of constraints that is redundant and mark them redundant.
detectRedundant()516 void Simplex::detectRedundant() {
517 // It is not meaningful to talk about redundancy for empty sets.
518 if (empty)
519 return;
520
521 // Iterate through the constraints and check for each one if it can attain
522 // negative sample values. If it can, it's not redundant. Otherwise, it is.
523 // We mark redundant constraints redundant.
524 //
525 // Constraints that get marked redundant in one iteration are not respected
526 // when checking constraints in later iterations. This prevents, for example,
527 // two identical constraints both being marked redundant since each is
528 // redundant given the other one. In this example, only the first of the
529 // constraints that is processed will get marked redundant, as it should be.
530 for (Unknown &u : con) {
531 if (u.orientation == Orientation::Column) {
532 unsigned column = u.pos;
533 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
534 // If no downward pivot is returned, the constraint is unbounded below
535 // and hence not redundant.
536 if (!pivotRow)
537 continue;
538 pivot(*pivotRow, column);
539 }
540
541 unsigned row = u.pos;
542 Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row);
543 if (!minimum || *minimum < Fraction(0, 1)) {
544 // Constraint is unbounded below or can attain negative sample values and
545 // hence is not redundant.
546 restoreRow(u);
547 continue;
548 }
549
550 markRowRedundant(u);
551 }
552 }
553
isUnbounded()554 bool Simplex::isUnbounded() {
555 if (empty)
556 return false;
557
558 SmallVector<int64_t, 8> dir(var.size() + 1);
559 for (unsigned i = 0; i < var.size(); ++i) {
560 dir[i] = 1;
561
562 Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir);
563 if (!maybeMax)
564 return true;
565
566 Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir);
567 if (!maybeMin)
568 return true;
569
570 dir[i] = 0;
571 }
572 return false;
573 }
574
575 /// Make a tableau to represent a pair of points in the original tableau.
576 ///
577 /// The product constraints and variables are stored as: first A's, then B's.
578 ///
579 /// The product tableau has row layout:
580 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows.
581 ///
582 /// It has column layout:
583 /// denominator, constant, A's columns, B's columns.
makeProduct(const Simplex & a,const Simplex & b)584 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
585 unsigned numVar = a.numVariables() + b.numVariables();
586 unsigned numCon = a.numConstraints() + b.numConstraints();
587 Simplex result(numVar);
588
589 result.tableau.resizeVertically(numCon);
590 result.empty = a.empty || b.empty;
591
592 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
593 SmallVector<Unknown, 8> result;
594 result.reserve(v.size() + w.size());
595 result.insert(result.end(), v.begin(), v.end());
596 result.insert(result.end(), w.begin(), w.end());
597 return result;
598 };
599 result.con = concat(a.con, b.con);
600 result.var = concat(a.var, b.var);
601
602 auto indexFromBIndex = [&](int index) {
603 return index >= 0 ? a.numVariables() + index
604 : ~(a.numConstraints() + ~index);
605 };
606
607 result.colUnknown.assign(2, nullIndex);
608 for (unsigned i = 2; i < a.nCol; ++i) {
609 result.colUnknown.push_back(a.colUnknown[i]);
610 result.unknownFromIndex(result.colUnknown.back()).pos =
611 result.colUnknown.size() - 1;
612 }
613 for (unsigned i = 2; i < b.nCol; ++i) {
614 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
615 result.unknownFromIndex(result.colUnknown.back()).pos =
616 result.colUnknown.size() - 1;
617 }
618
619 auto appendRowFromA = [&](unsigned row) {
620 for (unsigned col = 0; col < a.nCol; ++col)
621 result.tableau(result.nRow, col) = a.tableau(row, col);
622 result.rowUnknown.push_back(a.rowUnknown[row]);
623 result.unknownFromIndex(result.rowUnknown.back()).pos =
624 result.rowUnknown.size() - 1;
625 result.nRow++;
626 };
627
628 // Also fixes the corresponding entry in rowUnknown and var/con (as the case
629 // may be).
630 auto appendRowFromB = [&](unsigned row) {
631 result.tableau(result.nRow, 0) = b.tableau(row, 0);
632 result.tableau(result.nRow, 1) = b.tableau(row, 1);
633
634 unsigned offset = a.nCol - 2;
635 for (unsigned col = 2; col < b.nCol; ++col)
636 result.tableau(result.nRow, offset + col) = b.tableau(row, col);
637 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
638 result.unknownFromIndex(result.rowUnknown.back()).pos =
639 result.rowUnknown.size() - 1;
640 result.nRow++;
641 };
642
643 result.nRedundant = a.nRedundant + b.nRedundant;
644 for (unsigned row = 0; row < a.nRedundant; ++row)
645 appendRowFromA(row);
646 for (unsigned row = 0; row < b.nRedundant; ++row)
647 appendRowFromB(row);
648 for (unsigned row = a.nRedundant; row < a.nRow; ++row)
649 appendRowFromA(row);
650 for (unsigned row = b.nRedundant; row < b.nRow; ++row)
651 appendRowFromB(row);
652
653 return result;
654 }
655
getSamplePointIfIntegral() const656 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
657 // The tableau is empty, so no sample point exists.
658 if (empty)
659 return {};
660
661 SmallVector<int64_t, 8> sample;
662 // Push the sample value for each variable into the vector.
663 for (const Unknown &u : var) {
664 if (u.orientation == Orientation::Column) {
665 // If the variable is in column position, its sample value is zero.
666 sample.push_back(0);
667 } else {
668 // If the variable is in row position, its sample value is the entry in
669 // the constant column divided by the entry in the common denominator
670 // column. If this is not an integer, then the sample point is not
671 // integral so we return None.
672 if (tableau(u.pos, 1) % tableau(u.pos, 0) != 0)
673 return {};
674 sample.push_back(tableau(u.pos, 1) / tableau(u.pos, 0));
675 }
676 }
677 return sample;
678 }
679
680 /// Given a simplex for a polytope, construct a new simplex whose variables are
681 /// identified with a pair of points (x, y) in the original polytope. Supports
682 /// some operations needed for generalized basis reduction. In what follows,
683 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
684 /// dimension of the original polytope.
685 ///
686 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
687 /// also supports rolling back this addition, by maintaining a snapshot stack
688 /// that contains a snapshot of the Simplex's state for each equality, just
689 /// before that equality was added.
690 class GBRSimplex {
691 using Orientation = Simplex::Orientation;
692
693 public:
GBRSimplex(const Simplex & originalSimplex)694 GBRSimplex(const Simplex &originalSimplex)
695 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
696 simplexConstraintOffset(simplex.numConstraints()) {}
697
698 /// Add an equality dotProduct(dir, x - y) == 0.
699 /// First pushes a snapshot for the current simplex state to the stack so
700 /// that this can be rolled back later.
addEqualityForDirection(ArrayRef<int64_t> dir)701 void addEqualityForDirection(ArrayRef<int64_t> dir) {
702 assert(
703 std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) &&
704 "Direction passed is the zero vector!");
705 snapshotStack.push_back(simplex.getSnapshot());
706 simplex.addEquality(getCoeffsForDirection(dir));
707 }
708
709 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
710 /// the direction equalities to `dual`.
computeWidthAndDuals(ArrayRef<int64_t> dir,SmallVectorImpl<int64_t> & dual,int64_t & dualDenom)711 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
712 SmallVectorImpl<int64_t> &dual,
713 int64_t &dualDenom) {
714 unsigned snap = simplex.getSnapshot();
715 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
716 unsigned row = simplex.con[conIndex].pos;
717 Optional<Fraction> maybeWidth =
718 simplex.computeRowOptimum(Simplex::Direction::Up, row);
719 assert(maybeWidth.hasValue() && "Width should not be unbounded!");
720 dualDenom = simplex.tableau(row, 0);
721 dual.clear();
722 // The increment is i += 2 because equalities are added as two inequalities,
723 // one positive and one negative. Each iteration processes one equality.
724 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
725 // The dual variable is the negative of the coefficient of the new row
726 // in the column of the constraint, if the constraint is in a column.
727 // Note that the second inequality for the equality is negated.
728 //
729 // We want the dual for the original equality. If the positive inequality
730 // is in column position, the negative of its row coefficient is the
731 // desired dual. If the negative inequality is in column position, its row
732 // coefficient is the desired dual. (its coefficients are already the
733 // negated coefficients of the original equality, so we don't need to
734 // negate it now.)
735 //
736 // If neither are in column position, we move the negated inequality to
737 // column position. Since the inequality must have sample value zero
738 // (since it corresponds to an equality), we are free to pivot with
739 // any column. Since both the unknowns have sample value before and after
740 // pivoting, no other sample values will change and the tableau will
741 // remain consistent. To pivot, we just need to find a column that has a
742 // non-zero coefficient in this row. There must be one since otherwise the
743 // equality would be 0 == 0, which should never be passed to
744 // addEqualityForDirection.
745 //
746 // After finding a column, we pivot with the column, after which we can
747 // get the dual from the inequality in column position as explained above.
748 if (simplex.con[i].orientation == Orientation::Column) {
749 dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
750 } else {
751 if (simplex.con[i + 1].orientation == Orientation::Row) {
752 unsigned ineqRow = simplex.con[i + 1].pos;
753 // Since it is an equality, the sample value must be zero.
754 assert(simplex.tableau(ineqRow, 1) == 0 &&
755 "Equality's sample value must be zero.");
756 for (unsigned col = 2; col < simplex.nCol; ++col) {
757 if (simplex.tableau(ineqRow, col) != 0) {
758 simplex.pivot(ineqRow, col);
759 break;
760 }
761 }
762 assert(simplex.con[i + 1].orientation == Orientation::Column &&
763 "No pivot found. Equality has all-zeros row in tableau!");
764 }
765 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
766 }
767 }
768 simplex.rollback(snap);
769 return *maybeWidth;
770 }
771
772 /// Remove the last equality that was added through addEqualityForDirection.
773 ///
774 /// We do this by rolling back to the snapshot at the top of the stack, which
775 /// should be a snapshot taken just before the last equality was added.
removeLastEquality()776 void removeLastEquality() {
777 assert(!snapshotStack.empty() && "Snapshot stack is empty!");
778 simplex.rollback(snapshotStack.back());
779 snapshotStack.pop_back();
780 }
781
782 private:
783 /// Returns coefficients of the expression 'dot_product(dir, x - y)',
784 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
785 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
786 /// where n is the dimension of the original polytope.
getCoeffsForDirection(ArrayRef<int64_t> dir)787 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
788 assert(2 * dir.size() == simplex.numVariables() &&
789 "Direction vector has wrong dimensionality");
790 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
791 coeffs.reserve(2 * dir.size());
792 for (int64_t coeff : dir)
793 coeffs.push_back(-coeff);
794 coeffs.push_back(0); // constant term
795 return coeffs;
796 }
797
798 Simplex simplex;
799 /// The first index of the equality constraints, the index immediately after
800 /// the last constraint in the initial product simplex.
801 unsigned simplexConstraintOffset;
802 /// A stack of snapshots, used for rolling back.
803 SmallVector<unsigned, 8> snapshotStack;
804 };
805
806 /// Reduce the basis to try and find a direction in which the polytope is
807 /// "thin". This only works for bounded polytopes.
808 ///
809 /// This is an implementation of the algorithm described in the paper
810 /// "An Implementation of Generalized Basis Reduction for Integer Programming"
811 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
812 ///
813 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
814 /// Let width_i(v) = max <v, x - y> where x and y are points in the original
815 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
816 ///
817 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
818 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
819 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when
820 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
821 /// minimizing value of u, if it were allowed to be fractional. Due to
822 /// convexity, the minimizing integer value is either floor(dual_i) or
823 /// ceil(dual_i), so we just need to check which of these gives a lower
824 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
825 ///
826 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
827 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
828 /// same i). Otherwise, we increment i.
829 ///
830 /// We keep f values and duals cached and invalidate them when necessary.
831 /// Whenever possible, we use them instead of recomputing them. We implement the
832 /// algorithm as follows.
833 ///
834 /// In an iteration at i we need to compute:
835 /// a) width_i(b_{i + 1})
836 /// b) width_i(b_i)
837 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
838 ///
839 /// If width_i(b_i) is not already cached, we compute it.
840 ///
841 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
842 /// store the duals from this computation.
843 ///
844 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
845 /// of u as explained before, caches the duals from this computation, sets
846 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
847 ///
848 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
849 /// decrement i, resulting in the basis
850 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
851 /// with corresponding f values
852 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
853 /// The values up to i - 1 remain unchanged. We have just gotten the middle
854 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the
855 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
856 /// the cache. The iteration after decrementing needs exactly the duals from the
857 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
858 ///
859 /// When incrementing i, no cached f values get invalidated. However, the cached
860 /// duals do get invalidated as the duals for the higher levels are different.
reduceBasis(Matrix & basis,unsigned level)861 void Simplex::reduceBasis(Matrix &basis, unsigned level) {
862 const Fraction epsilon(3, 4);
863
864 if (level == basis.getNumRows() - 1)
865 return;
866
867 GBRSimplex gbrSimplex(*this);
868 SmallVector<Fraction, 8> width;
869 SmallVector<int64_t, 8> dual;
870 int64_t dualDenom;
871
872 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
873 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
874 // the new value of width_i(b_{i+1}).
875 //
876 // If dual_i is not an integer, the minimizing value must be either
877 // floor(dual_i) or ceil(dual_i). We compute the expression for both and
878 // choose the minimizing value.
879 //
880 // If dual_i is an integer, we don't need to perform these computations. We
881 // know that in this case,
882 // a) u = dual_i.
883 // b) one can show that dual_j for j < i are the same duals we would have
884 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
885 // are the ones already in the cache.
886 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
887 // which
888 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must
889 // be in the cache, so we get it from there and return it.
890 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
891 assert(i < level + dual.size() && "dual_i is not known!");
892
893 int64_t u = floorDiv(dual[i - level], dualDenom);
894 basis.addToRow(i, i + 1, u);
895 if (dual[i - level] % dualDenom != 0) {
896 SmallVector<int64_t, 8> candidateDual[2];
897 int64_t candidateDualDenom[2];
898 Fraction widthI[2];
899
900 // Initially u is floor(dual) and basis reflects this.
901 widthI[0] = gbrSimplex.computeWidthAndDuals(
902 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
903
904 // Now try ceil(dual), i.e. floor(dual) + 1.
905 ++u;
906 basis.addToRow(i, i + 1, 1);
907 widthI[1] = gbrSimplex.computeWidthAndDuals(
908 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
909
910 unsigned j = widthI[0] < widthI[1] ? 0 : 1;
911 if (j == 0)
912 // Subtract 1 to go from u = ceil(dual) back to floor(dual).
913 basis.addToRow(i, i + 1, -1);
914 dual = std::move(candidateDual[j]);
915 dualDenom = candidateDualDenom[j];
916 return widthI[j];
917 }
918 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
919 // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to
920 // width_{i+1}(b_{i+1}).
921 return width[i + 1 - level];
922 };
923
924 // In the ith iteration of the loop, gbrSimplex has constraints for directions
925 // from `level` to i - 1.
926 unsigned i = level;
927 while (i < basis.getNumRows() - 1) {
928 if (i >= level + width.size()) {
929 // We don't even know the value of f_i(b_i), so let's find that first.
930 // We have to do this first since later we assume that width already
931 // contains values up to and including i.
932
933 assert((i == 0 || i - 1 < level + width.size()) &&
934 "We are at level i but we don't know the value of width_{i-1}");
935
936 // We don't actually use these duals at all, but it doesn't matter
937 // because this case should only occur when i is level, and there are no
938 // duals in that case anyway.
939 assert(i == level && "This case should only occur when i == level");
940 width.push_back(
941 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
942 }
943
944 if (i >= level + dual.size()) {
945 assert(i + 1 >= level + width.size() &&
946 "We don't know dual_i but we know width_{i+1}");
947 // We don't know dual for our level, so let's find it.
948 gbrSimplex.addEqualityForDirection(basis.getRow(i));
949 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
950 dualDenom));
951 gbrSimplex.removeLastEquality();
952 }
953
954 // This variable stores width_i(b_{i+1} + u*b_i).
955 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
956 if (widthICandidate < epsilon * width[i - level]) {
957 basis.swapRows(i, i + 1);
958 width[i - level] = widthICandidate;
959 // The values of width_{i+1}(b_{i+1}) and higher may change after the
960 // swap, so we remove the cached values here.
961 width.resize(i - level + 1);
962 if (i == level) {
963 dual.clear();
964 continue;
965 }
966
967 gbrSimplex.removeLastEquality();
968 i--;
969 continue;
970 }
971
972 // Invalidate duals since the higher level needs to recompute its own duals.
973 dual.clear();
974 gbrSimplex.addEqualityForDirection(basis.getRow(i));
975 i++;
976 }
977 }
978
979 /// Search for an integer sample point using a branch and bound algorithm.
980 ///
981 /// Each row in the basis matrix is a vector, and the set of basis vectors
982 /// should span the space. Initially this is the identity matrix,
983 /// i.e., the basis vectors are just the variables.
984 ///
985 /// In every level, a value is assigned to the level-th basis vector, as
986 /// follows. Compute the minimum and maximum rational values of this direction.
987 /// If only one integer point lies in this range, constrain the variable to
988 /// have this value and recurse to the next variable.
989 ///
990 /// If the range has multiple values, perform generalized basis reduction via
991 /// reduceBasis and then compute the bounds again. Now we try constraining
992 /// this direction in the first value in this range and "recurse" to the next
993 /// level. If we fail to find a sample, we try assigning the direction the next
994 /// value in this range, and so on.
995 ///
996 /// If no integer sample is found from any of the assignments, or if the range
997 /// contains no integer value, then of course the polytope is empty for the
998 /// current assignment of the values in previous levels, so we return to
999 /// the previous level.
1000 ///
1001 /// If we reach the last level where all the variables have been assigned values
1002 /// already, then we simply return the current sample point if it is integral,
1003 /// and go back to the previous level otherwise.
1004 ///
1005 /// To avoid potentially arbitrarily large recursion depths leading to stack
1006 /// overflows, this algorithm is implemented iteratively.
findIntegerSample()1007 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
1008 if (empty)
1009 return {};
1010
1011 unsigned nDims = var.size();
1012 Matrix basis = Matrix::identity(nDims);
1013
1014 unsigned level = 0;
1015 // The snapshot just before constraining a direction to a value at each level.
1016 SmallVector<unsigned, 8> snapshotStack;
1017 // The maximum value in the range of the direction for each level.
1018 SmallVector<int64_t, 8> upperBoundStack;
1019 // The next value to try constraining the basis vector to at each level.
1020 SmallVector<int64_t, 8> nextValueStack;
1021
1022 snapshotStack.reserve(basis.getNumRows());
1023 upperBoundStack.reserve(basis.getNumRows());
1024 nextValueStack.reserve(basis.getNumRows());
1025 while (level != -1u) {
1026 if (level == basis.getNumRows()) {
1027 // We've assigned values to all variables. Return if we have a sample,
1028 // or go back up to the previous level otherwise.
1029 if (auto maybeSample = getSamplePointIfIntegral())
1030 return maybeSample;
1031 level--;
1032 continue;
1033 }
1034
1035 if (level >= upperBoundStack.size()) {
1036 // We haven't populated the stack values for this level yet, so we have
1037 // just come down a level ("recursed"). Find the lower and upper bounds.
1038 // If there is more than one integer point in the range, perform
1039 // generalized basis reduction.
1040 SmallVector<int64_t, 8> basisCoeffs =
1041 llvm::to_vector<8>(basis.getRow(level));
1042 basisCoeffs.push_back(0);
1043
1044 int64_t minRoundedUp, maxRoundedDown;
1045 std::tie(minRoundedUp, maxRoundedDown) =
1046 computeIntegerBounds(basisCoeffs);
1047
1048 // Heuristic: if the sample point is integral at this point, just return
1049 // it.
1050 if (auto maybeSample = getSamplePointIfIntegral())
1051 return *maybeSample;
1052
1053 if (minRoundedUp < maxRoundedDown) {
1054 reduceBasis(basis, level);
1055 basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
1056 basisCoeffs.push_back(0);
1057 std::tie(minRoundedUp, maxRoundedDown) =
1058 computeIntegerBounds(basisCoeffs);
1059 }
1060
1061 snapshotStack.push_back(getSnapshot());
1062 // The smallest value in the range is the next value to try.
1063 nextValueStack.push_back(minRoundedUp);
1064 upperBoundStack.push_back(maxRoundedDown);
1065 }
1066
1067 assert((snapshotStack.size() - 1 == level &&
1068 nextValueStack.size() - 1 == level &&
1069 upperBoundStack.size() - 1 == level) &&
1070 "Mismatched variable stack sizes!");
1071
1072 // Whether we "recursed" or "returned" from a lower level, we rollback
1073 // to the snapshot of the starting state at this level. (in the "recursed"
1074 // case this has no effect)
1075 rollback(snapshotStack.back());
1076 int64_t nextValue = nextValueStack.back();
1077 nextValueStack.back()++;
1078 if (nextValue > upperBoundStack.back()) {
1079 // We have exhausted the range and found no solution. Pop the stack and
1080 // return up a level.
1081 snapshotStack.pop_back();
1082 nextValueStack.pop_back();
1083 upperBoundStack.pop_back();
1084 level--;
1085 continue;
1086 }
1087
1088 // Try the next value in the range and "recurse" into the next level.
1089 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
1090 basis.getRow(level).end());
1091 basisCoeffs.push_back(-nextValue);
1092 addEquality(basisCoeffs);
1093 level++;
1094 }
1095
1096 return {};
1097 }
1098
1099 /// Compute the minimum and maximum integer values the expression can take. We
1100 /// compute each separately.
1101 std::pair<int64_t, int64_t>
computeIntegerBounds(ArrayRef<int64_t> coeffs)1102 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
1103 int64_t minRoundedUp;
1104 if (Optional<Fraction> maybeMin =
1105 computeOptimum(Simplex::Direction::Down, coeffs))
1106 minRoundedUp = ceil(*maybeMin);
1107 else
1108 llvm_unreachable("Tableau should not be unbounded");
1109
1110 int64_t maxRoundedDown;
1111 if (Optional<Fraction> maybeMax =
1112 computeOptimum(Simplex::Direction::Up, coeffs))
1113 maxRoundedDown = floor(*maybeMax);
1114 else
1115 llvm_unreachable("Tableau should not be unbounded");
1116
1117 return {minRoundedUp, maxRoundedDown};
1118 }
1119
print(raw_ostream & os) const1120 void Simplex::print(raw_ostream &os) const {
1121 os << "rows = " << nRow << ", columns = " << nCol << "\n";
1122 if (empty)
1123 os << "Simplex marked empty!\n";
1124 os << "var: ";
1125 for (unsigned i = 0; i < var.size(); ++i) {
1126 if (i > 0)
1127 os << ", ";
1128 var[i].print(os);
1129 }
1130 os << "\ncon: ";
1131 for (unsigned i = 0; i < con.size(); ++i) {
1132 if (i > 0)
1133 os << ", ";
1134 con[i].print(os);
1135 }
1136 os << '\n';
1137 for (unsigned row = 0; row < nRow; ++row) {
1138 if (row > 0)
1139 os << ", ";
1140 os << "r" << row << ": " << rowUnknown[row];
1141 }
1142 os << '\n';
1143 os << "c0: denom, c1: const";
1144 for (unsigned col = 2; col < nCol; ++col)
1145 os << ", c" << col << ": " << colUnknown[col];
1146 os << '\n';
1147 for (unsigned row = 0; row < nRow; ++row) {
1148 for (unsigned col = 0; col < nCol; ++col)
1149 os << tableau(row, col) << '\t';
1150 os << '\n';
1151 }
1152 os << '\n';
1153 }
1154
dump() const1155 void Simplex::dump() const { print(llvm::errs()); }
1156
1157 } // namespace mlir
1158