1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_IR_VALUE_H
15 #define LLVM_IR_VALUE_H
16
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/IR/Use.h"
19 #include "llvm/Support/CBindingWrapping.h"
20 #include "llvm/Support/Casting.h"
21
22 namespace llvm {
23
24 class APInt;
25 class Argument;
26 class AssemblyAnnotationWriter;
27 class BasicBlock;
28 class Constant;
29 class ConstantData;
30 class ConstantAggregate;
31 class DataLayout;
32 class Function;
33 class GlobalAlias;
34 class GlobalIFunc;
35 class GlobalIndirectSymbol;
36 class GlobalObject;
37 class GlobalValue;
38 class GlobalVariable;
39 class InlineAsm;
40 class Instruction;
41 class LLVMContext;
42 class Module;
43 class ModuleSlotTracker;
44 class StringRef;
45 class Twine;
46 class Type;
47 class ValueHandleBase;
48 class ValueSymbolTable;
49 class raw_ostream;
50
51 template<typename ValueTy> class StringMapEntry;
52 typedef StringMapEntry<Value*> ValueName;
53
54 //===----------------------------------------------------------------------===//
55 // Value Class
56 //===----------------------------------------------------------------------===//
57
58 /// \brief LLVM Value Representation
59 ///
60 /// This is a very important LLVM class. It is the base class of all values
61 /// computed by a program that may be used as operands to other values. Value is
62 /// the super class of other important classes such as Instruction and Function.
63 /// All Values have a Type. Type is not a subclass of Value. Some values can
64 /// have a name and they belong to some Module. Setting the name on the Value
65 /// automatically updates the module's symbol table.
66 ///
67 /// Every value has a "use list" that keeps track of which other Values are
68 /// using this Value. A Value can also have an arbitrary number of ValueHandle
69 /// objects that watch it and listen to RAUW and Destroy events. See
70 /// llvm/IR/ValueHandle.h for details.
71 class Value {
72 Type *VTy;
73 Use *UseList;
74
75 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
76 friend class ValueHandleBase;
77
78 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
79 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
80 protected:
81 /// \brief Hold subclass data that can be dropped.
82 ///
83 /// This member is similar to SubclassData, however it is for holding
84 /// information which may be used to aid optimization, but which may be
85 /// cleared to zero without affecting conservative interpretation.
86 unsigned char SubclassOptionalData : 7;
87
88 private:
89 /// \brief Hold arbitrary subclass data.
90 ///
91 /// This member is defined by this class, but is not used for anything.
92 /// Subclasses can use it to hold whatever state they find useful. This
93 /// field is initialized to zero by the ctor.
94 unsigned short SubclassData;
95
96 protected:
97 /// \brief The number of operands in the subclass.
98 ///
99 /// This member is defined by this class, but not used for anything.
100 /// Subclasses can use it to store their number of operands, if they have
101 /// any.
102 ///
103 /// This is stored here to save space in User on 64-bit hosts. Since most
104 /// instances of Value have operands, 32-bit hosts aren't significantly
105 /// affected.
106 ///
107 /// Note, this should *NOT* be used directly by any class other than User.
108 /// User uses this value to find the Use list.
109 enum : unsigned { NumUserOperandsBits = 28 };
110 unsigned NumUserOperands : NumUserOperandsBits;
111
112 // Use the same type as the bitfield above so that MSVC will pack them.
113 unsigned IsUsedByMD : 1;
114 unsigned HasName : 1;
115 unsigned HasHungOffUses : 1;
116 unsigned HasDescriptor : 1;
117
118 private:
119 template <typename UseT> // UseT == 'Use' or 'const Use'
120 class use_iterator_impl
121 : public std::iterator<std::forward_iterator_tag, UseT *> {
122 UseT *U;
use_iterator_impl(UseT * u)123 explicit use_iterator_impl(UseT *u) : U(u) {}
124 friend class Value;
125
126 public:
use_iterator_impl()127 use_iterator_impl() : U() {}
128
129 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
130 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
131
132 use_iterator_impl &operator++() { // Preincrement
133 assert(U && "Cannot increment end iterator!");
134 U = U->getNext();
135 return *this;
136 }
137 use_iterator_impl operator++(int) { // Postincrement
138 auto tmp = *this;
139 ++*this;
140 return tmp;
141 }
142
143 UseT &operator*() const {
144 assert(U && "Cannot dereference end iterator!");
145 return *U;
146 }
147
148 UseT *operator->() const { return &operator*(); }
149
150 operator use_iterator_impl<const UseT>() const {
151 return use_iterator_impl<const UseT>(U);
152 }
153 };
154
155 template <typename UserTy> // UserTy == 'User' or 'const User'
156 class user_iterator_impl
157 : public std::iterator<std::forward_iterator_tag, UserTy *> {
158 use_iterator_impl<Use> UI;
user_iterator_impl(Use * U)159 explicit user_iterator_impl(Use *U) : UI(U) {}
160 friend class Value;
161
162 public:
user_iterator_impl()163 user_iterator_impl() {}
164
165 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
166 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
167
168 /// \brief Returns true if this iterator is equal to user_end() on the value.
atEnd()169 bool atEnd() const { return *this == user_iterator_impl(); }
170
171 user_iterator_impl &operator++() { // Preincrement
172 ++UI;
173 return *this;
174 }
175 user_iterator_impl operator++(int) { // Postincrement
176 auto tmp = *this;
177 ++*this;
178 return tmp;
179 }
180
181 // Retrieve a pointer to the current User.
182 UserTy *operator*() const {
183 return UI->getUser();
184 }
185
186 UserTy *operator->() const { return operator*(); }
187
188 operator user_iterator_impl<const UserTy>() const {
189 return user_iterator_impl<const UserTy>(*UI);
190 }
191
getUse()192 Use &getUse() const { return *UI; }
193 };
194
195 void operator=(const Value &) = delete;
196 Value(const Value &) = delete;
197
198 protected:
199 Value(Type *Ty, unsigned scid);
200 public:
201 virtual ~Value();
202
203 /// \brief Support for debugging, callable in GDB: V->dump()
204 void dump() const;
205
206 /// \brief Implement operator<< on Value.
207 /// @{
208 void print(raw_ostream &O, bool IsForDebug = false) const;
209 void print(raw_ostream &O, ModuleSlotTracker &MST,
210 bool IsForDebug = false) const;
211 /// @}
212
213 /// \brief Print the name of this Value out to the specified raw_ostream.
214 ///
215 /// This is useful when you just want to print 'int %reg126', not the
216 /// instruction that generated it. If you specify a Module for context, then
217 /// even constanst get pretty-printed; for example, the type of a null
218 /// pointer is printed symbolically.
219 /// @{
220 void printAsOperand(raw_ostream &O, bool PrintType = true,
221 const Module *M = nullptr) const;
222 void printAsOperand(raw_ostream &O, bool PrintType,
223 ModuleSlotTracker &MST) const;
224 /// @}
225
226 /// \brief All values are typed, get the type of this value.
getType()227 Type *getType() const { return VTy; }
228
229 /// \brief All values hold a context through their type.
230 LLVMContext &getContext() const;
231
232 // \brief All values can potentially be named.
hasName()233 bool hasName() const { return HasName; }
234 ValueName *getValueName() const;
235 void setValueName(ValueName *VN);
236
237 private:
238 void destroyValueName();
239 void setNameImpl(const Twine &Name);
240
241 public:
242 /// \brief Return a constant reference to the value's name.
243 ///
244 /// This is cheap and guaranteed to return the same reference as long as the
245 /// value is not modified.
246 StringRef getName() const;
247
248 /// \brief Change the name of the value.
249 ///
250 /// Choose a new unique name if the provided name is taken.
251 ///
252 /// \param Name The new name; or "" if the value's name should be removed.
253 void setName(const Twine &Name);
254
255
256 /// \brief Transfer the name from V to this value.
257 ///
258 /// After taking V's name, sets V's name to empty.
259 ///
260 /// \note It is an error to call V->takeName(V).
261 void takeName(Value *V);
262
263 /// \brief Change all uses of this to point to a new Value.
264 ///
265 /// Go through the uses list for this definition and make each use point to
266 /// "V" instead of "this". After this completes, 'this's use list is
267 /// guaranteed to be empty.
268 void replaceAllUsesWith(Value *V);
269
270 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
271 /// make each use point to "V" instead of "this" when the use is outside the
272 /// block. 'This's use list is expected to have at least one element.
273 /// Unlike replaceAllUsesWith this function does not support basic block
274 /// values or constant users.
275 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
276
277 //----------------------------------------------------------------------
278 // Methods for handling the chain of uses of this Value.
279 //
280 // Materializing a function can introduce new uses, so these methods come in
281 // two variants:
282 // The methods that start with materialized_ check the uses that are
283 // currently known given which functions are materialized. Be very careful
284 // when using them since you might not get all uses.
285 // The methods that don't start with materialized_ assert that modules is
286 // fully materialized.
287 void assertModuleIsMaterialized() const;
288
use_empty()289 bool use_empty() const {
290 assertModuleIsMaterialized();
291 return UseList == nullptr;
292 }
293
294 typedef use_iterator_impl<Use> use_iterator;
295 typedef use_iterator_impl<const Use> const_use_iterator;
materialized_use_begin()296 use_iterator materialized_use_begin() { return use_iterator(UseList); }
materialized_use_begin()297 const_use_iterator materialized_use_begin() const {
298 return const_use_iterator(UseList);
299 }
use_begin()300 use_iterator use_begin() {
301 assertModuleIsMaterialized();
302 return materialized_use_begin();
303 }
use_begin()304 const_use_iterator use_begin() const {
305 assertModuleIsMaterialized();
306 return materialized_use_begin();
307 }
use_end()308 use_iterator use_end() { return use_iterator(); }
use_end()309 const_use_iterator use_end() const { return const_use_iterator(); }
materialized_uses()310 iterator_range<use_iterator> materialized_uses() {
311 return make_range(materialized_use_begin(), use_end());
312 }
materialized_uses()313 iterator_range<const_use_iterator> materialized_uses() const {
314 return make_range(materialized_use_begin(), use_end());
315 }
uses()316 iterator_range<use_iterator> uses() {
317 assertModuleIsMaterialized();
318 return materialized_uses();
319 }
uses()320 iterator_range<const_use_iterator> uses() const {
321 assertModuleIsMaterialized();
322 return materialized_uses();
323 }
324
user_empty()325 bool user_empty() const {
326 assertModuleIsMaterialized();
327 return UseList == nullptr;
328 }
329
330 typedef user_iterator_impl<User> user_iterator;
331 typedef user_iterator_impl<const User> const_user_iterator;
materialized_user_begin()332 user_iterator materialized_user_begin() { return user_iterator(UseList); }
materialized_user_begin()333 const_user_iterator materialized_user_begin() const {
334 return const_user_iterator(UseList);
335 }
user_begin()336 user_iterator user_begin() {
337 assertModuleIsMaterialized();
338 return materialized_user_begin();
339 }
user_begin()340 const_user_iterator user_begin() const {
341 assertModuleIsMaterialized();
342 return materialized_user_begin();
343 }
user_end()344 user_iterator user_end() { return user_iterator(); }
user_end()345 const_user_iterator user_end() const { return const_user_iterator(); }
user_back()346 User *user_back() {
347 assertModuleIsMaterialized();
348 return *materialized_user_begin();
349 }
user_back()350 const User *user_back() const {
351 assertModuleIsMaterialized();
352 return *materialized_user_begin();
353 }
materialized_users()354 iterator_range<user_iterator> materialized_users() {
355 return make_range(materialized_user_begin(), user_end());
356 }
materialized_users()357 iterator_range<const_user_iterator> materialized_users() const {
358 return make_range(materialized_user_begin(), user_end());
359 }
users()360 iterator_range<user_iterator> users() {
361 assertModuleIsMaterialized();
362 return materialized_users();
363 }
users()364 iterator_range<const_user_iterator> users() const {
365 assertModuleIsMaterialized();
366 return materialized_users();
367 }
368
369 /// \brief Return true if there is exactly one user of this value.
370 ///
371 /// This is specialized because it is a common request and does not require
372 /// traversing the whole use list.
hasOneUse()373 bool hasOneUse() const {
374 const_use_iterator I = use_begin(), E = use_end();
375 if (I == E) return false;
376 return ++I == E;
377 }
378
379 /// \brief Return true if this Value has exactly N users.
380 bool hasNUses(unsigned N) const;
381
382 /// \brief Return true if this value has N users or more.
383 ///
384 /// This is logically equivalent to getNumUses() >= N.
385 bool hasNUsesOrMore(unsigned N) const;
386
387 /// \brief Check if this value is used in the specified basic block.
388 bool isUsedInBasicBlock(const BasicBlock *BB) const;
389
390 /// \brief This method computes the number of uses of this Value.
391 ///
392 /// This is a linear time operation. Use hasOneUse, hasNUses, or
393 /// hasNUsesOrMore to check for specific values.
394 unsigned getNumUses() const;
395
396 /// \brief This method should only be used by the Use class.
addUse(Use & U)397 void addUse(Use &U) { U.addToList(&UseList); }
398
399 /// \brief Concrete subclass of this.
400 ///
401 /// An enumeration for keeping track of the concrete subclass of Value that
402 /// is actually instantiated. Values of this enumeration are kept in the
403 /// Value classes SubclassID field. They are used for concrete type
404 /// identification.
405 enum ValueTy {
406 #define HANDLE_VALUE(Name) Name##Val,
407 #include "llvm/IR/Value.def"
408
409 // Markers:
410 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
411 #include "llvm/IR/Value.def"
412 };
413
414 /// \brief Return an ID for the concrete type of this object.
415 ///
416 /// This is used to implement the classof checks. This should not be used
417 /// for any other purpose, as the values may change as LLVM evolves. Also,
418 /// note that for instructions, the Instruction's opcode is added to
419 /// InstructionVal. So this means three things:
420 /// # there is no value with code InstructionVal (no opcode==0).
421 /// # there are more possible values for the value type than in ValueTy enum.
422 /// # the InstructionVal enumerator must be the highest valued enumerator in
423 /// the ValueTy enum.
getValueID()424 unsigned getValueID() const {
425 return SubclassID;
426 }
427
428 /// \brief Return the raw optional flags value contained in this value.
429 ///
430 /// This should only be used when testing two Values for equivalence.
getRawSubclassOptionalData()431 unsigned getRawSubclassOptionalData() const {
432 return SubclassOptionalData;
433 }
434
435 /// \brief Clear the optional flags contained in this value.
clearSubclassOptionalData()436 void clearSubclassOptionalData() {
437 SubclassOptionalData = 0;
438 }
439
440 /// \brief Check the optional flags for equality.
hasSameSubclassOptionalData(const Value * V)441 bool hasSameSubclassOptionalData(const Value *V) const {
442 return SubclassOptionalData == V->SubclassOptionalData;
443 }
444
445 /// \brief Clear any optional flags not set in the given Value.
intersectOptionalDataWith(const Value * V)446 void intersectOptionalDataWith(const Value *V) {
447 SubclassOptionalData &= V->SubclassOptionalData;
448 }
449
450 /// \brief Return true if there is a value handle associated with this value.
hasValueHandle()451 bool hasValueHandle() const { return HasValueHandle; }
452
453 /// \brief Return true if there is metadata referencing this value.
isUsedByMetadata()454 bool isUsedByMetadata() const { return IsUsedByMD; }
455
456 /// \brief Strip off pointer casts, all-zero GEPs, and aliases.
457 ///
458 /// Returns the original uncasted value. If this is called on a non-pointer
459 /// value, it returns 'this'.
460 Value *stripPointerCasts();
stripPointerCasts()461 const Value *stripPointerCasts() const {
462 return const_cast<Value*>(this)->stripPointerCasts();
463 }
464
465 /// \brief Strip off pointer casts and all-zero GEPs.
466 ///
467 /// Returns the original uncasted value. If this is called on a non-pointer
468 /// value, it returns 'this'.
469 Value *stripPointerCastsNoFollowAliases();
stripPointerCastsNoFollowAliases()470 const Value *stripPointerCastsNoFollowAliases() const {
471 return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
472 }
473
474 /// \brief Strip off pointer casts and all-constant inbounds GEPs.
475 ///
476 /// Returns the original pointer value. If this is called on a non-pointer
477 /// value, it returns 'this'.
478 Value *stripInBoundsConstantOffsets();
stripInBoundsConstantOffsets()479 const Value *stripInBoundsConstantOffsets() const {
480 return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
481 }
482
483 /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets().
484 ///
485 /// Stores the resulting constant offset stripped into the APInt provided.
486 /// The provided APInt will be extended or truncated as needed to be the
487 /// correct bitwidth for an offset of this pointer type.
488 ///
489 /// If this is called on a non-pointer value, it returns 'this'.
490 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
491 APInt &Offset);
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)492 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
493 APInt &Offset) const {
494 return const_cast<Value *>(this)
495 ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
496 }
497
498 /// \brief Strip off pointer casts and inbounds GEPs.
499 ///
500 /// Returns the original pointer value. If this is called on a non-pointer
501 /// value, it returns 'this'.
502 Value *stripInBoundsOffsets();
stripInBoundsOffsets()503 const Value *stripInBoundsOffsets() const {
504 return const_cast<Value*>(this)->stripInBoundsOffsets();
505 }
506
507 /// \brief Returns the number of bytes known to be dereferenceable for the
508 /// pointer value.
509 ///
510 /// If CanBeNull is set by this function the pointer can either be null or be
511 /// dereferenceable up to the returned number of bytes.
512 unsigned getPointerDereferenceableBytes(const DataLayout &DL,
513 bool &CanBeNull) const;
514
515 /// \brief Returns an alignment of the pointer value.
516 ///
517 /// Returns an alignment which is either specified explicitly, e.g. via
518 /// align attribute of a function argument, or guaranteed by DataLayout.
519 unsigned getPointerAlignment(const DataLayout &DL) const;
520
521 /// \brief Translate PHI node to its predecessor from the given basic block.
522 ///
523 /// If this value is a PHI node with CurBB as its parent, return the value in
524 /// the PHI node corresponding to PredBB. If not, return ourself. This is
525 /// useful if you want to know the value something has in a predecessor
526 /// block.
527 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
528
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)529 const Value *DoPHITranslation(const BasicBlock *CurBB,
530 const BasicBlock *PredBB) const{
531 return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
532 }
533
534 /// \brief The maximum alignment for instructions.
535 ///
536 /// This is the greatest alignment value supported by load, store, and alloca
537 /// instructions, and global values.
538 static const unsigned MaxAlignmentExponent = 29;
539 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
540
541 /// \brief Mutate the type of this Value to be of the specified type.
542 ///
543 /// Note that this is an extremely dangerous operation which can create
544 /// completely invalid IR very easily. It is strongly recommended that you
545 /// recreate IR objects with the right types instead of mutating them in
546 /// place.
mutateType(Type * Ty)547 void mutateType(Type *Ty) {
548 VTy = Ty;
549 }
550
551 /// \brief Sort the use-list.
552 ///
553 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
554 /// expected to compare two \a Use references.
555 template <class Compare> void sortUseList(Compare Cmp);
556
557 /// \brief Reverse the use-list.
558 void reverseUseList();
559
560 private:
561 /// \brief Merge two lists together.
562 ///
563 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
564 /// "equal" items from L before items from R.
565 ///
566 /// \return the first element in the list.
567 ///
568 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
569 template <class Compare>
mergeUseLists(Use * L,Use * R,Compare Cmp)570 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
571 Use *Merged;
572 Use **Next = &Merged;
573
574 for (;;) {
575 if (!L) {
576 *Next = R;
577 break;
578 }
579 if (!R) {
580 *Next = L;
581 break;
582 }
583 if (Cmp(*R, *L)) {
584 *Next = R;
585 Next = &R->Next;
586 R = R->Next;
587 } else {
588 *Next = L;
589 Next = &L->Next;
590 L = L->Next;
591 }
592 }
593
594 return Merged;
595 }
596
597 /// \brief Tail-recursive helper for \a mergeUseLists().
598 ///
599 /// \param[out] Next the first element in the list.
600 template <class Compare>
601 static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp);
602
603 protected:
getSubclassDataFromValue()604 unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)605 void setValueSubclassData(unsigned short D) { SubclassData = D; }
606 };
607
608 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
609 V.print(OS);
610 return OS;
611 }
612
set(Value * V)613 void Use::set(Value *V) {
614 if (Val) removeFromList();
615 Val = V;
616 if (V) V->addUse(*this);
617 }
618
619 Value *Use::operator=(Value *RHS) {
620 set(RHS);
621 return RHS;
622 }
623
624 const Use &Use::operator=(const Use &RHS) {
625 set(RHS.Val);
626 return *this;
627 }
628
sortUseList(Compare Cmp)629 template <class Compare> void Value::sortUseList(Compare Cmp) {
630 if (!UseList || !UseList->Next)
631 // No need to sort 0 or 1 uses.
632 return;
633
634 // Note: this function completely ignores Prev pointers until the end when
635 // they're fixed en masse.
636
637 // Create a binomial vector of sorted lists, visiting uses one at a time and
638 // merging lists as necessary.
639 const unsigned MaxSlots = 32;
640 Use *Slots[MaxSlots];
641
642 // Collect the first use, turning it into a single-item list.
643 Use *Next = UseList->Next;
644 UseList->Next = nullptr;
645 unsigned NumSlots = 1;
646 Slots[0] = UseList;
647
648 // Collect all but the last use.
649 while (Next->Next) {
650 Use *Current = Next;
651 Next = Current->Next;
652
653 // Turn Current into a single-item list.
654 Current->Next = nullptr;
655
656 // Save Current in the first available slot, merging on collisions.
657 unsigned I;
658 for (I = 0; I < NumSlots; ++I) {
659 if (!Slots[I])
660 break;
661
662 // Merge two lists, doubling the size of Current and emptying slot I.
663 //
664 // Since the uses in Slots[I] originally preceded those in Current, send
665 // Slots[I] in as the left parameter to maintain a stable sort.
666 Current = mergeUseLists(Slots[I], Current, Cmp);
667 Slots[I] = nullptr;
668 }
669 // Check if this is a new slot.
670 if (I == NumSlots) {
671 ++NumSlots;
672 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
673 }
674
675 // Found an open slot.
676 Slots[I] = Current;
677 }
678
679 // Merge all the lists together.
680 assert(Next && "Expected one more Use");
681 assert(!Next->Next && "Expected only one Use");
682 UseList = Next;
683 for (unsigned I = 0; I < NumSlots; ++I)
684 if (Slots[I])
685 // Since the uses in Slots[I] originally preceded those in UseList, send
686 // Slots[I] in as the left parameter to maintain a stable sort.
687 UseList = mergeUseLists(Slots[I], UseList, Cmp);
688
689 // Fix the Prev pointers.
690 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
691 I->setPrev(Prev);
692 Prev = &I->Next;
693 }
694 }
695
696 // isa - Provide some specializations of isa so that we don't have to include
697 // the subtype header files to test to see if the value is a subclass...
698 //
699 template <> struct isa_impl<Constant, Value> {
700 static inline bool doit(const Value &Val) {
701 return Val.getValueID() >= Value::ConstantFirstVal &&
702 Val.getValueID() <= Value::ConstantLastVal;
703 }
704 };
705
706 template <> struct isa_impl<ConstantData, Value> {
707 static inline bool doit(const Value &Val) {
708 return Val.getValueID() >= Value::ConstantDataFirstVal &&
709 Val.getValueID() <= Value::ConstantDataLastVal;
710 }
711 };
712
713 template <> struct isa_impl<ConstantAggregate, Value> {
714 static inline bool doit(const Value &Val) {
715 return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
716 Val.getValueID() <= Value::ConstantAggregateLastVal;
717 }
718 };
719
720 template <> struct isa_impl<Argument, Value> {
721 static inline bool doit (const Value &Val) {
722 return Val.getValueID() == Value::ArgumentVal;
723 }
724 };
725
726 template <> struct isa_impl<InlineAsm, Value> {
727 static inline bool doit(const Value &Val) {
728 return Val.getValueID() == Value::InlineAsmVal;
729 }
730 };
731
732 template <> struct isa_impl<Instruction, Value> {
733 static inline bool doit(const Value &Val) {
734 return Val.getValueID() >= Value::InstructionVal;
735 }
736 };
737
738 template <> struct isa_impl<BasicBlock, Value> {
739 static inline bool doit(const Value &Val) {
740 return Val.getValueID() == Value::BasicBlockVal;
741 }
742 };
743
744 template <> struct isa_impl<Function, Value> {
745 static inline bool doit(const Value &Val) {
746 return Val.getValueID() == Value::FunctionVal;
747 }
748 };
749
750 template <> struct isa_impl<GlobalVariable, Value> {
751 static inline bool doit(const Value &Val) {
752 return Val.getValueID() == Value::GlobalVariableVal;
753 }
754 };
755
756 template <> struct isa_impl<GlobalAlias, Value> {
757 static inline bool doit(const Value &Val) {
758 return Val.getValueID() == Value::GlobalAliasVal;
759 }
760 };
761
762 template <> struct isa_impl<GlobalIFunc, Value> {
763 static inline bool doit(const Value &Val) {
764 return Val.getValueID() == Value::GlobalIFuncVal;
765 }
766 };
767
768 template <> struct isa_impl<GlobalIndirectSymbol, Value> {
769 static inline bool doit(const Value &Val) {
770 return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
771 }
772 };
773
774 template <> struct isa_impl<GlobalValue, Value> {
775 static inline bool doit(const Value &Val) {
776 return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
777 }
778 };
779
780 template <> struct isa_impl<GlobalObject, Value> {
781 static inline bool doit(const Value &Val) {
782 return isa<GlobalVariable>(Val) || isa<Function>(Val);
783 }
784 };
785
786 // Value* is only 4-byte aligned.
787 template<>
788 class PointerLikeTypeTraits<Value*> {
789 typedef Value* PT;
790 public:
791 static inline void *getAsVoidPointer(PT P) { return P; }
792 static inline PT getFromVoidPointer(void *P) {
793 return static_cast<PT>(P);
794 }
795 enum { NumLowBitsAvailable = 2 };
796 };
797
798 // Create wrappers for C Binding types (see CBindingWrapping.h).
799 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
800
801 // Specialized opaque value conversions.
802 inline Value **unwrap(LLVMValueRef *Vals) {
803 return reinterpret_cast<Value**>(Vals);
804 }
805
806 template<typename T>
807 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
808 #ifdef DEBUG
809 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
810 cast<T>(*I);
811 #endif
812 (void)Length;
813 return reinterpret_cast<T**>(Vals);
814 }
815
816 inline LLVMValueRef *wrap(const Value **Vals) {
817 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
818 }
819
820 } // End llvm namespace
821
822 #endif
823