• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_VALUE_H
15 #define LLVM_IR_VALUE_H
16 
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/IR/Use.h"
19 #include "llvm/Support/CBindingWrapping.h"
20 #include "llvm/Support/Casting.h"
21 
22 namespace llvm {
23 
24 class APInt;
25 class Argument;
26 class AssemblyAnnotationWriter;
27 class BasicBlock;
28 class Constant;
29 class ConstantData;
30 class ConstantAggregate;
31 class DataLayout;
32 class Function;
33 class GlobalAlias;
34 class GlobalIFunc;
35 class GlobalIndirectSymbol;
36 class GlobalObject;
37 class GlobalValue;
38 class GlobalVariable;
39 class InlineAsm;
40 class Instruction;
41 class LLVMContext;
42 class Module;
43 class ModuleSlotTracker;
44 class StringRef;
45 class Twine;
46 class Type;
47 class ValueHandleBase;
48 class ValueSymbolTable;
49 class raw_ostream;
50 
51 template<typename ValueTy> class StringMapEntry;
52 typedef StringMapEntry<Value*> ValueName;
53 
54 //===----------------------------------------------------------------------===//
55 //                                 Value Class
56 //===----------------------------------------------------------------------===//
57 
58 /// \brief LLVM Value Representation
59 ///
60 /// This is a very important LLVM class. It is the base class of all values
61 /// computed by a program that may be used as operands to other values. Value is
62 /// the super class of other important classes such as Instruction and Function.
63 /// All Values have a Type. Type is not a subclass of Value. Some values can
64 /// have a name and they belong to some Module.  Setting the name on the Value
65 /// automatically updates the module's symbol table.
66 ///
67 /// Every value has a "use list" that keeps track of which other Values are
68 /// using this Value.  A Value can also have an arbitrary number of ValueHandle
69 /// objects that watch it and listen to RAUW and Destroy events.  See
70 /// llvm/IR/ValueHandle.h for details.
71 class Value {
72   Type *VTy;
73   Use *UseList;
74 
75   friend class ValueAsMetadata; // Allow access to IsUsedByMD.
76   friend class ValueHandleBase;
77 
78   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
79   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
80 protected:
81   /// \brief Hold subclass data that can be dropped.
82   ///
83   /// This member is similar to SubclassData, however it is for holding
84   /// information which may be used to aid optimization, but which may be
85   /// cleared to zero without affecting conservative interpretation.
86   unsigned char SubclassOptionalData : 7;
87 
88 private:
89   /// \brief Hold arbitrary subclass data.
90   ///
91   /// This member is defined by this class, but is not used for anything.
92   /// Subclasses can use it to hold whatever state they find useful.  This
93   /// field is initialized to zero by the ctor.
94   unsigned short SubclassData;
95 
96 protected:
97   /// \brief The number of operands in the subclass.
98   ///
99   /// This member is defined by this class, but not used for anything.
100   /// Subclasses can use it to store their number of operands, if they have
101   /// any.
102   ///
103   /// This is stored here to save space in User on 64-bit hosts.  Since most
104   /// instances of Value have operands, 32-bit hosts aren't significantly
105   /// affected.
106   ///
107   /// Note, this should *NOT* be used directly by any class other than User.
108   /// User uses this value to find the Use list.
109   enum : unsigned { NumUserOperandsBits = 28 };
110   unsigned NumUserOperands : NumUserOperandsBits;
111 
112   // Use the same type as the bitfield above so that MSVC will pack them.
113   unsigned IsUsedByMD : 1;
114   unsigned HasName : 1;
115   unsigned HasHungOffUses : 1;
116   unsigned HasDescriptor : 1;
117 
118 private:
119   template <typename UseT> // UseT == 'Use' or 'const Use'
120   class use_iterator_impl
121       : public std::iterator<std::forward_iterator_tag, UseT *> {
122     UseT *U;
use_iterator_impl(UseT * u)123     explicit use_iterator_impl(UseT *u) : U(u) {}
124     friend class Value;
125 
126   public:
use_iterator_impl()127     use_iterator_impl() : U() {}
128 
129     bool operator==(const use_iterator_impl &x) const { return U == x.U; }
130     bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
131 
132     use_iterator_impl &operator++() { // Preincrement
133       assert(U && "Cannot increment end iterator!");
134       U = U->getNext();
135       return *this;
136     }
137     use_iterator_impl operator++(int) { // Postincrement
138       auto tmp = *this;
139       ++*this;
140       return tmp;
141     }
142 
143     UseT &operator*() const {
144       assert(U && "Cannot dereference end iterator!");
145       return *U;
146     }
147 
148     UseT *operator->() const { return &operator*(); }
149 
150     operator use_iterator_impl<const UseT>() const {
151       return use_iterator_impl<const UseT>(U);
152     }
153   };
154 
155   template <typename UserTy> // UserTy == 'User' or 'const User'
156   class user_iterator_impl
157       : public std::iterator<std::forward_iterator_tag, UserTy *> {
158     use_iterator_impl<Use> UI;
user_iterator_impl(Use * U)159     explicit user_iterator_impl(Use *U) : UI(U) {}
160     friend class Value;
161 
162   public:
user_iterator_impl()163     user_iterator_impl() {}
164 
165     bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
166     bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
167 
168     /// \brief Returns true if this iterator is equal to user_end() on the value.
atEnd()169     bool atEnd() const { return *this == user_iterator_impl(); }
170 
171     user_iterator_impl &operator++() { // Preincrement
172       ++UI;
173       return *this;
174     }
175     user_iterator_impl operator++(int) { // Postincrement
176       auto tmp = *this;
177       ++*this;
178       return tmp;
179     }
180 
181     // Retrieve a pointer to the current User.
182     UserTy *operator*() const {
183       return UI->getUser();
184     }
185 
186     UserTy *operator->() const { return operator*(); }
187 
188     operator user_iterator_impl<const UserTy>() const {
189       return user_iterator_impl<const UserTy>(*UI);
190     }
191 
getUse()192     Use &getUse() const { return *UI; }
193   };
194 
195   void operator=(const Value &) = delete;
196   Value(const Value &) = delete;
197 
198 protected:
199   Value(Type *Ty, unsigned scid);
200 public:
201   virtual ~Value();
202 
203   /// \brief Support for debugging, callable in GDB: V->dump()
204   void dump() const;
205 
206   /// \brief Implement operator<< on Value.
207   /// @{
208   void print(raw_ostream &O, bool IsForDebug = false) const;
209   void print(raw_ostream &O, ModuleSlotTracker &MST,
210              bool IsForDebug = false) const;
211   /// @}
212 
213   /// \brief Print the name of this Value out to the specified raw_ostream.
214   ///
215   /// This is useful when you just want to print 'int %reg126', not the
216   /// instruction that generated it. If you specify a Module for context, then
217   /// even constanst get pretty-printed; for example, the type of a null
218   /// pointer is printed symbolically.
219   /// @{
220   void printAsOperand(raw_ostream &O, bool PrintType = true,
221                       const Module *M = nullptr) const;
222   void printAsOperand(raw_ostream &O, bool PrintType,
223                       ModuleSlotTracker &MST) const;
224   /// @}
225 
226   /// \brief All values are typed, get the type of this value.
getType()227   Type *getType() const { return VTy; }
228 
229   /// \brief All values hold a context through their type.
230   LLVMContext &getContext() const;
231 
232   // \brief All values can potentially be named.
hasName()233   bool hasName() const { return HasName; }
234   ValueName *getValueName() const;
235   void setValueName(ValueName *VN);
236 
237 private:
238   void destroyValueName();
239   void setNameImpl(const Twine &Name);
240 
241 public:
242   /// \brief Return a constant reference to the value's name.
243   ///
244   /// This is cheap and guaranteed to return the same reference as long as the
245   /// value is not modified.
246   StringRef getName() const;
247 
248   /// \brief Change the name of the value.
249   ///
250   /// Choose a new unique name if the provided name is taken.
251   ///
252   /// \param Name The new name; or "" if the value's name should be removed.
253   void setName(const Twine &Name);
254 
255 
256   /// \brief Transfer the name from V to this value.
257   ///
258   /// After taking V's name, sets V's name to empty.
259   ///
260   /// \note It is an error to call V->takeName(V).
261   void takeName(Value *V);
262 
263   /// \brief Change all uses of this to point to a new Value.
264   ///
265   /// Go through the uses list for this definition and make each use point to
266   /// "V" instead of "this".  After this completes, 'this's use list is
267   /// guaranteed to be empty.
268   void replaceAllUsesWith(Value *V);
269 
270   /// replaceUsesOutsideBlock - Go through the uses list for this definition and
271   /// make each use point to "V" instead of "this" when the use is outside the
272   /// block. 'This's use list is expected to have at least one element.
273   /// Unlike replaceAllUsesWith this function does not support basic block
274   /// values or constant users.
275   void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
276 
277   //----------------------------------------------------------------------
278   // Methods for handling the chain of uses of this Value.
279   //
280   // Materializing a function can introduce new uses, so these methods come in
281   // two variants:
282   // The methods that start with materialized_ check the uses that are
283   // currently known given which functions are materialized. Be very careful
284   // when using them since you might not get all uses.
285   // The methods that don't start with materialized_ assert that modules is
286   // fully materialized.
287   void assertModuleIsMaterialized() const;
288 
use_empty()289   bool use_empty() const {
290     assertModuleIsMaterialized();
291     return UseList == nullptr;
292   }
293 
294   typedef use_iterator_impl<Use> use_iterator;
295   typedef use_iterator_impl<const Use> const_use_iterator;
materialized_use_begin()296   use_iterator materialized_use_begin() { return use_iterator(UseList); }
materialized_use_begin()297   const_use_iterator materialized_use_begin() const {
298     return const_use_iterator(UseList);
299   }
use_begin()300   use_iterator use_begin() {
301     assertModuleIsMaterialized();
302     return materialized_use_begin();
303   }
use_begin()304   const_use_iterator use_begin() const {
305     assertModuleIsMaterialized();
306     return materialized_use_begin();
307   }
use_end()308   use_iterator use_end() { return use_iterator(); }
use_end()309   const_use_iterator use_end() const { return const_use_iterator(); }
materialized_uses()310   iterator_range<use_iterator> materialized_uses() {
311     return make_range(materialized_use_begin(), use_end());
312   }
materialized_uses()313   iterator_range<const_use_iterator> materialized_uses() const {
314     return make_range(materialized_use_begin(), use_end());
315   }
uses()316   iterator_range<use_iterator> uses() {
317     assertModuleIsMaterialized();
318     return materialized_uses();
319   }
uses()320   iterator_range<const_use_iterator> uses() const {
321     assertModuleIsMaterialized();
322     return materialized_uses();
323   }
324 
user_empty()325   bool user_empty() const {
326     assertModuleIsMaterialized();
327     return UseList == nullptr;
328   }
329 
330   typedef user_iterator_impl<User> user_iterator;
331   typedef user_iterator_impl<const User> const_user_iterator;
materialized_user_begin()332   user_iterator materialized_user_begin() { return user_iterator(UseList); }
materialized_user_begin()333   const_user_iterator materialized_user_begin() const {
334     return const_user_iterator(UseList);
335   }
user_begin()336   user_iterator user_begin() {
337     assertModuleIsMaterialized();
338     return materialized_user_begin();
339   }
user_begin()340   const_user_iterator user_begin() const {
341     assertModuleIsMaterialized();
342     return materialized_user_begin();
343   }
user_end()344   user_iterator user_end() { return user_iterator(); }
user_end()345   const_user_iterator user_end() const { return const_user_iterator(); }
user_back()346   User *user_back() {
347     assertModuleIsMaterialized();
348     return *materialized_user_begin();
349   }
user_back()350   const User *user_back() const {
351     assertModuleIsMaterialized();
352     return *materialized_user_begin();
353   }
materialized_users()354   iterator_range<user_iterator> materialized_users() {
355     return make_range(materialized_user_begin(), user_end());
356   }
materialized_users()357   iterator_range<const_user_iterator> materialized_users() const {
358     return make_range(materialized_user_begin(), user_end());
359   }
users()360   iterator_range<user_iterator> users() {
361     assertModuleIsMaterialized();
362     return materialized_users();
363   }
users()364   iterator_range<const_user_iterator> users() const {
365     assertModuleIsMaterialized();
366     return materialized_users();
367   }
368 
369   /// \brief Return true if there is exactly one user of this value.
370   ///
371   /// This is specialized because it is a common request and does not require
372   /// traversing the whole use list.
hasOneUse()373   bool hasOneUse() const {
374     const_use_iterator I = use_begin(), E = use_end();
375     if (I == E) return false;
376     return ++I == E;
377   }
378 
379   /// \brief Return true if this Value has exactly N users.
380   bool hasNUses(unsigned N) const;
381 
382   /// \brief Return true if this value has N users or more.
383   ///
384   /// This is logically equivalent to getNumUses() >= N.
385   bool hasNUsesOrMore(unsigned N) const;
386 
387   /// \brief Check if this value is used in the specified basic block.
388   bool isUsedInBasicBlock(const BasicBlock *BB) const;
389 
390   /// \brief This method computes the number of uses of this Value.
391   ///
392   /// This is a linear time operation.  Use hasOneUse, hasNUses, or
393   /// hasNUsesOrMore to check for specific values.
394   unsigned getNumUses() const;
395 
396   /// \brief This method should only be used by the Use class.
addUse(Use & U)397   void addUse(Use &U) { U.addToList(&UseList); }
398 
399   /// \brief Concrete subclass of this.
400   ///
401   /// An enumeration for keeping track of the concrete subclass of Value that
402   /// is actually instantiated. Values of this enumeration are kept in the
403   /// Value classes SubclassID field. They are used for concrete type
404   /// identification.
405   enum ValueTy {
406 #define HANDLE_VALUE(Name) Name##Val,
407 #include "llvm/IR/Value.def"
408 
409     // Markers:
410 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
411 #include "llvm/IR/Value.def"
412   };
413 
414   /// \brief Return an ID for the concrete type of this object.
415   ///
416   /// This is used to implement the classof checks.  This should not be used
417   /// for any other purpose, as the values may change as LLVM evolves.  Also,
418   /// note that for instructions, the Instruction's opcode is added to
419   /// InstructionVal. So this means three things:
420   /// # there is no value with code InstructionVal (no opcode==0).
421   /// # there are more possible values for the value type than in ValueTy enum.
422   /// # the InstructionVal enumerator must be the highest valued enumerator in
423   ///   the ValueTy enum.
getValueID()424   unsigned getValueID() const {
425     return SubclassID;
426   }
427 
428   /// \brief Return the raw optional flags value contained in this value.
429   ///
430   /// This should only be used when testing two Values for equivalence.
getRawSubclassOptionalData()431   unsigned getRawSubclassOptionalData() const {
432     return SubclassOptionalData;
433   }
434 
435   /// \brief Clear the optional flags contained in this value.
clearSubclassOptionalData()436   void clearSubclassOptionalData() {
437     SubclassOptionalData = 0;
438   }
439 
440   /// \brief Check the optional flags for equality.
hasSameSubclassOptionalData(const Value * V)441   bool hasSameSubclassOptionalData(const Value *V) const {
442     return SubclassOptionalData == V->SubclassOptionalData;
443   }
444 
445   /// \brief Clear any optional flags not set in the given Value.
intersectOptionalDataWith(const Value * V)446   void intersectOptionalDataWith(const Value *V) {
447     SubclassOptionalData &= V->SubclassOptionalData;
448   }
449 
450   /// \brief Return true if there is a value handle associated with this value.
hasValueHandle()451   bool hasValueHandle() const { return HasValueHandle; }
452 
453   /// \brief Return true if there is metadata referencing this value.
isUsedByMetadata()454   bool isUsedByMetadata() const { return IsUsedByMD; }
455 
456   /// \brief Strip off pointer casts, all-zero GEPs, and aliases.
457   ///
458   /// Returns the original uncasted value.  If this is called on a non-pointer
459   /// value, it returns 'this'.
460   Value *stripPointerCasts();
stripPointerCasts()461   const Value *stripPointerCasts() const {
462     return const_cast<Value*>(this)->stripPointerCasts();
463   }
464 
465   /// \brief Strip off pointer casts and all-zero GEPs.
466   ///
467   /// Returns the original uncasted value.  If this is called on a non-pointer
468   /// value, it returns 'this'.
469   Value *stripPointerCastsNoFollowAliases();
stripPointerCastsNoFollowAliases()470   const Value *stripPointerCastsNoFollowAliases() const {
471     return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
472   }
473 
474   /// \brief Strip off pointer casts and all-constant inbounds GEPs.
475   ///
476   /// Returns the original pointer value.  If this is called on a non-pointer
477   /// value, it returns 'this'.
478   Value *stripInBoundsConstantOffsets();
stripInBoundsConstantOffsets()479   const Value *stripInBoundsConstantOffsets() const {
480     return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
481   }
482 
483   /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets().
484   ///
485   /// Stores the resulting constant offset stripped into the APInt provided.
486   /// The provided APInt will be extended or truncated as needed to be the
487   /// correct bitwidth for an offset of this pointer type.
488   ///
489   /// If this is called on a non-pointer value, it returns 'this'.
490   Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
491                                                    APInt &Offset);
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)492   const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
493                                                          APInt &Offset) const {
494     return const_cast<Value *>(this)
495         ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
496   }
497 
498   /// \brief Strip off pointer casts and inbounds GEPs.
499   ///
500   /// Returns the original pointer value.  If this is called on a non-pointer
501   /// value, it returns 'this'.
502   Value *stripInBoundsOffsets();
stripInBoundsOffsets()503   const Value *stripInBoundsOffsets() const {
504     return const_cast<Value*>(this)->stripInBoundsOffsets();
505   }
506 
507   /// \brief Returns the number of bytes known to be dereferenceable for the
508   /// pointer value.
509   ///
510   /// If CanBeNull is set by this function the pointer can either be null or be
511   /// dereferenceable up to the returned number of bytes.
512   unsigned getPointerDereferenceableBytes(const DataLayout &DL,
513                                           bool &CanBeNull) const;
514 
515   /// \brief Returns an alignment of the pointer value.
516   ///
517   /// Returns an alignment which is either specified explicitly, e.g. via
518   /// align attribute of a function argument, or guaranteed by DataLayout.
519   unsigned getPointerAlignment(const DataLayout &DL) const;
520 
521   /// \brief Translate PHI node to its predecessor from the given basic block.
522   ///
523   /// If this value is a PHI node with CurBB as its parent, return the value in
524   /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
525   /// useful if you want to know the value something has in a predecessor
526   /// block.
527   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
528 
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)529   const Value *DoPHITranslation(const BasicBlock *CurBB,
530                                 const BasicBlock *PredBB) const{
531     return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
532   }
533 
534   /// \brief The maximum alignment for instructions.
535   ///
536   /// This is the greatest alignment value supported by load, store, and alloca
537   /// instructions, and global values.
538   static const unsigned MaxAlignmentExponent = 29;
539   static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
540 
541   /// \brief Mutate the type of this Value to be of the specified type.
542   ///
543   /// Note that this is an extremely dangerous operation which can create
544   /// completely invalid IR very easily.  It is strongly recommended that you
545   /// recreate IR objects with the right types instead of mutating them in
546   /// place.
mutateType(Type * Ty)547   void mutateType(Type *Ty) {
548     VTy = Ty;
549   }
550 
551   /// \brief Sort the use-list.
552   ///
553   /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
554   /// expected to compare two \a Use references.
555   template <class Compare> void sortUseList(Compare Cmp);
556 
557   /// \brief Reverse the use-list.
558   void reverseUseList();
559 
560 private:
561   /// \brief Merge two lists together.
562   ///
563   /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
564   /// "equal" items from L before items from R.
565   ///
566   /// \return the first element in the list.
567   ///
568   /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
569   template <class Compare>
mergeUseLists(Use * L,Use * R,Compare Cmp)570   static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
571     Use *Merged;
572     Use **Next = &Merged;
573 
574     for (;;) {
575       if (!L) {
576         *Next = R;
577         break;
578       }
579       if (!R) {
580         *Next = L;
581         break;
582       }
583       if (Cmp(*R, *L)) {
584         *Next = R;
585         Next = &R->Next;
586         R = R->Next;
587       } else {
588         *Next = L;
589         Next = &L->Next;
590         L = L->Next;
591       }
592     }
593 
594     return Merged;
595   }
596 
597   /// \brief Tail-recursive helper for \a mergeUseLists().
598   ///
599   /// \param[out] Next the first element in the list.
600   template <class Compare>
601   static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp);
602 
603 protected:
getSubclassDataFromValue()604   unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)605   void setValueSubclassData(unsigned short D) { SubclassData = D; }
606 };
607 
608 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
609   V.print(OS);
610   return OS;
611 }
612 
set(Value * V)613 void Use::set(Value *V) {
614   if (Val) removeFromList();
615   Val = V;
616   if (V) V->addUse(*this);
617 }
618 
619 Value *Use::operator=(Value *RHS) {
620   set(RHS);
621   return RHS;
622 }
623 
624 const Use &Use::operator=(const Use &RHS) {
625   set(RHS.Val);
626   return *this;
627 }
628 
sortUseList(Compare Cmp)629 template <class Compare> void Value::sortUseList(Compare Cmp) {
630   if (!UseList || !UseList->Next)
631     // No need to sort 0 or 1 uses.
632     return;
633 
634   // Note: this function completely ignores Prev pointers until the end when
635   // they're fixed en masse.
636 
637   // Create a binomial vector of sorted lists, visiting uses one at a time and
638   // merging lists as necessary.
639   const unsigned MaxSlots = 32;
640   Use *Slots[MaxSlots];
641 
642   // Collect the first use, turning it into a single-item list.
643   Use *Next = UseList->Next;
644   UseList->Next = nullptr;
645   unsigned NumSlots = 1;
646   Slots[0] = UseList;
647 
648   // Collect all but the last use.
649   while (Next->Next) {
650     Use *Current = Next;
651     Next = Current->Next;
652 
653     // Turn Current into a single-item list.
654     Current->Next = nullptr;
655 
656     // Save Current in the first available slot, merging on collisions.
657     unsigned I;
658     for (I = 0; I < NumSlots; ++I) {
659       if (!Slots[I])
660         break;
661 
662       // Merge two lists, doubling the size of Current and emptying slot I.
663       //
664       // Since the uses in Slots[I] originally preceded those in Current, send
665       // Slots[I] in as the left parameter to maintain a stable sort.
666       Current = mergeUseLists(Slots[I], Current, Cmp);
667       Slots[I] = nullptr;
668     }
669     // Check if this is a new slot.
670     if (I == NumSlots) {
671       ++NumSlots;
672       assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
673     }
674 
675     // Found an open slot.
676     Slots[I] = Current;
677   }
678 
679   // Merge all the lists together.
680   assert(Next && "Expected one more Use");
681   assert(!Next->Next && "Expected only one Use");
682   UseList = Next;
683   for (unsigned I = 0; I < NumSlots; ++I)
684     if (Slots[I])
685       // Since the uses in Slots[I] originally preceded those in UseList, send
686       // Slots[I] in as the left parameter to maintain a stable sort.
687       UseList = mergeUseLists(Slots[I], UseList, Cmp);
688 
689   // Fix the Prev pointers.
690   for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
691     I->setPrev(Prev);
692     Prev = &I->Next;
693   }
694 }
695 
696 // isa - Provide some specializations of isa so that we don't have to include
697 // the subtype header files to test to see if the value is a subclass...
698 //
699 template <> struct isa_impl<Constant, Value> {
700   static inline bool doit(const Value &Val) {
701     return Val.getValueID() >= Value::ConstantFirstVal &&
702       Val.getValueID() <= Value::ConstantLastVal;
703   }
704 };
705 
706 template <> struct isa_impl<ConstantData, Value> {
707   static inline bool doit(const Value &Val) {
708     return Val.getValueID() >= Value::ConstantDataFirstVal &&
709            Val.getValueID() <= Value::ConstantDataLastVal;
710   }
711 };
712 
713 template <> struct isa_impl<ConstantAggregate, Value> {
714   static inline bool doit(const Value &Val) {
715     return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
716            Val.getValueID() <= Value::ConstantAggregateLastVal;
717   }
718 };
719 
720 template <> struct isa_impl<Argument, Value> {
721   static inline bool doit (const Value &Val) {
722     return Val.getValueID() == Value::ArgumentVal;
723   }
724 };
725 
726 template <> struct isa_impl<InlineAsm, Value> {
727   static inline bool doit(const Value &Val) {
728     return Val.getValueID() == Value::InlineAsmVal;
729   }
730 };
731 
732 template <> struct isa_impl<Instruction, Value> {
733   static inline bool doit(const Value &Val) {
734     return Val.getValueID() >= Value::InstructionVal;
735   }
736 };
737 
738 template <> struct isa_impl<BasicBlock, Value> {
739   static inline bool doit(const Value &Val) {
740     return Val.getValueID() == Value::BasicBlockVal;
741   }
742 };
743 
744 template <> struct isa_impl<Function, Value> {
745   static inline bool doit(const Value &Val) {
746     return Val.getValueID() == Value::FunctionVal;
747   }
748 };
749 
750 template <> struct isa_impl<GlobalVariable, Value> {
751   static inline bool doit(const Value &Val) {
752     return Val.getValueID() == Value::GlobalVariableVal;
753   }
754 };
755 
756 template <> struct isa_impl<GlobalAlias, Value> {
757   static inline bool doit(const Value &Val) {
758     return Val.getValueID() == Value::GlobalAliasVal;
759   }
760 };
761 
762 template <> struct isa_impl<GlobalIFunc, Value> {
763   static inline bool doit(const Value &Val) {
764     return Val.getValueID() == Value::GlobalIFuncVal;
765   }
766 };
767 
768 template <> struct isa_impl<GlobalIndirectSymbol, Value> {
769   static inline bool doit(const Value &Val) {
770     return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
771   }
772 };
773 
774 template <> struct isa_impl<GlobalValue, Value> {
775   static inline bool doit(const Value &Val) {
776     return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
777   }
778 };
779 
780 template <> struct isa_impl<GlobalObject, Value> {
781   static inline bool doit(const Value &Val) {
782     return isa<GlobalVariable>(Val) || isa<Function>(Val);
783   }
784 };
785 
786 // Value* is only 4-byte aligned.
787 template<>
788 class PointerLikeTypeTraits<Value*> {
789   typedef Value* PT;
790 public:
791   static inline void *getAsVoidPointer(PT P) { return P; }
792   static inline PT getFromVoidPointer(void *P) {
793     return static_cast<PT>(P);
794   }
795   enum { NumLowBitsAvailable = 2 };
796 };
797 
798 // Create wrappers for C Binding types (see CBindingWrapping.h).
799 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
800 
801 // Specialized opaque value conversions.
802 inline Value **unwrap(LLVMValueRef *Vals) {
803   return reinterpret_cast<Value**>(Vals);
804 }
805 
806 template<typename T>
807 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
808 #ifdef DEBUG
809   for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
810     cast<T>(*I);
811 #endif
812   (void)Length;
813   return reinterpret_cast<T**>(Vals);
814 }
815 
816 inline LLVMValueRef *wrap(const Value **Vals) {
817   return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
818 }
819 
820 } // End llvm namespace
821 
822 #endif
823