• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Synthetic sections represent chunks of linker-created data. If you
10 // need to create a chunk of data that to be included in some section
11 // in the result, you probably want to create that as a synthetic section.
12 //
13 // Synthetic sections are designed as input sections as opposed to
14 // output sections because we want to allow them to be manipulated
15 // using linker scripts just like other input sections from regular
16 // files.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLD_ELF_SYNTHETIC_SECTIONS_H
21 #define LLD_ELF_SYNTHETIC_SECTIONS_H
22 
23 #include "DWARF.h"
24 #include "EhFrame.h"
25 #include "InputSection.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/MapVector.h"
28 #include "llvm/MC/StringTableBuilder.h"
29 #include "llvm/Support/Endian.h"
30 #include <functional>
31 
32 namespace lld {
33 namespace elf {
34 class Defined;
35 struct PhdrEntry;
36 class SymbolTableBaseSection;
37 class VersionNeedBaseSection;
38 
39 class SyntheticSection : public InputSection {
40 public:
SyntheticSection(uint64_t flags,uint32_t type,uint32_t alignment,StringRef name)41   SyntheticSection(uint64_t flags, uint32_t type, uint32_t alignment,
42                    StringRef name)
43       : InputSection(nullptr, flags, type, alignment, {}, name,
44                      InputSectionBase::Synthetic) {
45     markLive();
46   }
47 
48   virtual ~SyntheticSection() = default;
49   virtual void writeTo(uint8_t *buf) = 0;
50   virtual size_t getSize() const = 0;
finalizeContents()51   virtual void finalizeContents() {}
52   // If the section has the SHF_ALLOC flag and the size may be changed if
53   // thunks are added, update the section size.
updateAllocSize()54   virtual bool updateAllocSize() { return false; }
isNeeded()55   virtual bool isNeeded() const { return true; }
56 
classof(const SectionBase * d)57   static bool classof(const SectionBase *d) {
58     return d->kind() == InputSectionBase::Synthetic;
59   }
60 };
61 
62 struct CieRecord {
63   EhSectionPiece *cie = nullptr;
64   std::vector<EhSectionPiece *> fdes;
65 };
66 
67 // Section for .eh_frame.
68 class EhFrameSection final : public SyntheticSection {
69 public:
70   EhFrameSection();
71   void writeTo(uint8_t *buf) override;
72   void finalizeContents() override;
isNeeded()73   bool isNeeded() const override { return !sections.empty(); }
getSize()74   size_t getSize() const override { return size; }
75 
classof(const SectionBase * d)76   static bool classof(const SectionBase *d) {
77     return SyntheticSection::classof(d) && d->name == ".eh_frame";
78   }
79 
80   void addSection(EhInputSection *sec);
81 
82   std::vector<EhInputSection *> sections;
83   size_t numFdes = 0;
84 
85   struct FdeData {
86     uint32_t pcRel;
87     uint32_t fdeVARel;
88   };
89 
90   std::vector<FdeData> getFdeData() const;
getCieRecords()91   ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; }
92   template <class ELFT>
93   void iterateFDEWithLSDA(llvm::function_ref<void(InputSection &)> fn);
94 
95 private:
96   // This is used only when parsing EhInputSection. We keep it here to avoid
97   // allocating one for each EhInputSection.
98   llvm::DenseMap<size_t, CieRecord *> offsetToCie;
99 
100   uint64_t size = 0;
101 
102   template <class ELFT, class RelTy>
103   void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels);
104   template <class ELFT> void addSectionAux(EhInputSection *s);
105   template <class ELFT, class RelTy>
106   void iterateFDEWithLSDAAux(EhInputSection &sec, ArrayRef<RelTy> rels,
107                              llvm::DenseSet<size_t> &ciesWithLSDA,
108                              llvm::function_ref<void(InputSection &)> fn);
109 
110   template <class ELFT, class RelTy>
111   CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels);
112 
113   template <class ELFT, class RelTy>
114   Defined *isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels);
115 
116   uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const;
117 
118   std::vector<CieRecord *> cieRecords;
119 
120   // CIE records are uniquified by their contents and personality functions.
121   llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap;
122 };
123 
124 class GotSection : public SyntheticSection {
125 public:
126   GotSection();
getSize()127   size_t getSize() const override { return size; }
128   void finalizeContents() override;
129   bool isNeeded() const override;
130   void writeTo(uint8_t *buf) override;
131 
132   void addEntry(Symbol &sym);
133   bool addDynTlsEntry(Symbol &sym);
134   bool addTlsIndex();
135   uint64_t getGlobalDynAddr(const Symbol &b) const;
136   uint64_t getGlobalDynOffset(const Symbol &b) const;
137 
getTlsIndexVA()138   uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; }
getTlsIndexOff()139   uint32_t getTlsIndexOff() const { return tlsIndexOff; }
140 
141   // Flag to force GOT to be in output if we have relocations
142   // that relies on its address.
143   bool hasGotOffRel = false;
144 
145 protected:
146   size_t numEntries = 0;
147   uint32_t tlsIndexOff = -1;
148   uint64_t size = 0;
149 };
150 
151 // .note.GNU-stack section.
152 class GnuStackSection : public SyntheticSection {
153 public:
GnuStackSection()154   GnuStackSection()
155       : SyntheticSection(0, llvm::ELF::SHT_PROGBITS, 1, ".note.GNU-stack") {}
writeTo(uint8_t * buf)156   void writeTo(uint8_t *buf) override {}
getSize()157   size_t getSize() const override { return 0; }
158 };
159 
160 class GnuPropertySection : public SyntheticSection {
161 public:
162   GnuPropertySection();
163   void writeTo(uint8_t *buf) override;
164   size_t getSize() const override;
165 };
166 
167 // .note.gnu.build-id section.
168 class BuildIdSection : public SyntheticSection {
169   // First 16 bytes are a header.
170   static const unsigned headerSize = 16;
171 
172 public:
173   const size_t hashSize;
174   BuildIdSection();
175   void writeTo(uint8_t *buf) override;
getSize()176   size_t getSize() const override { return headerSize + hashSize; }
177   void writeBuildId(llvm::ArrayRef<uint8_t> buf);
178 
179 private:
180   uint8_t *hashBuf;
181 };
182 
183 // BssSection is used to reserve space for copy relocations and common symbols.
184 // We create three instances of this class for .bss, .bss.rel.ro and "COMMON",
185 // that are used for writable symbols, read-only symbols and common symbols,
186 // respectively.
187 class BssSection final : public SyntheticSection {
188 public:
189   BssSection(StringRef name, uint64_t size, uint32_t alignment);
writeTo(uint8_t *)190   void writeTo(uint8_t *) override {
191     llvm_unreachable("unexpected writeTo() call for SHT_NOBITS section");
192   }
isNeeded()193   bool isNeeded() const override { return size != 0; }
getSize()194   size_t getSize() const override { return size; }
195 
classof(const SectionBase * s)196   static bool classof(const SectionBase *s) { return s->bss; }
197   uint64_t size;
198 };
199 
200 class MipsGotSection final : public SyntheticSection {
201 public:
202   MipsGotSection();
203   void writeTo(uint8_t *buf) override;
getSize()204   size_t getSize() const override { return size; }
205   bool updateAllocSize() override;
206   void finalizeContents() override;
207   bool isNeeded() const override;
208 
209   // Join separate GOTs built for each input file to generate
210   // primary and optional multiple secondary GOTs.
211   void build();
212 
213   void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr);
214   void addDynTlsEntry(InputFile &file, Symbol &sym);
215   void addTlsIndex(InputFile &file);
216 
217   uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s,
218                               int64_t addend) const;
219   uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s,
220                              int64_t addend) const;
221   uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const;
222   uint64_t getTlsIndexOffset(const InputFile *f) const;
223 
224   // Returns the symbol which corresponds to the first entry of the global part
225   // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
226   // table properties.
227   // Returns nullptr if the global part is empty.
228   const Symbol *getFirstGlobalEntry() const;
229 
230   // Returns the number of entries in the local part of GOT including
231   // the number of reserved entries.
232   unsigned getLocalEntriesNum() const;
233 
234   // Return _gp value for primary GOT (nullptr) or particular input file.
235   uint64_t getGp(const InputFile *f = nullptr) const;
236 
237 private:
238   // MIPS GOT consists of three parts: local, global and tls. Each part
239   // contains different types of entries. Here is a layout of GOT:
240   // - Header entries                |
241   // - Page entries                  |   Local part
242   // - Local entries (16-bit access) |
243   // - Local entries (32-bit access) |
244   // - Normal global entries         ||  Global part
245   // - Reloc-only global entries     ||
246   // - TLS entries                   ||| TLS part
247   //
248   // Header:
249   //   Two entries hold predefined value 0x0 and 0x80000000.
250   // Page entries:
251   //   These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
252   //   relocation against local symbols. They are initialized by higher 16-bit
253   //   of the corresponding symbol's value. So each 64kb of address space
254   //   requires a single GOT entry.
255   // Local entries (16-bit access):
256   //   These entries created by GOT relocations against global non-preemptible
257   //   symbols so dynamic linker is not necessary to resolve the symbol's
258   //   values. "16-bit access" means that corresponding relocations address
259   //   GOT using 16-bit index. Each unique Symbol-Addend pair has its own
260   //   GOT entry.
261   // Local entries (32-bit access):
262   //   These entries are the same as above but created by relocations which
263   //   address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
264   // Normal global entries:
265   //   These entries created by GOT relocations against preemptible global
266   //   symbols. They need to be initialized by dynamic linker and they ordered
267   //   exactly as the corresponding entries in the dynamic symbols table.
268   // Reloc-only global entries:
269   //   These entries created for symbols that are referenced by dynamic
270   //   relocations R_MIPS_REL32. These entries are not accessed with gp-relative
271   //   addressing, but MIPS ABI requires that these entries be present in GOT.
272   // TLS entries:
273   //   Entries created by TLS relocations.
274   //
275   // If the sum of local, global and tls entries is less than 64K only single
276   // got is enough. Otherwise, multi-got is created. Series of primary and
277   // multiple secondary GOTs have the following layout:
278   // - Primary GOT
279   //     Header
280   //     Local entries
281   //     Global entries
282   //     Relocation only entries
283   //     TLS entries
284   //
285   // - Secondary GOT
286   //     Local entries
287   //     Global entries
288   //     TLS entries
289   // ...
290   //
291   // All GOT entries required by relocations from a single input file entirely
292   // belong to either primary or one of secondary GOTs. To reference GOT entries
293   // each GOT has its own _gp value points to the "middle" of the GOT.
294   // In the code this value loaded to the register which is used for GOT access.
295   //
296   // MIPS 32 function's prologue:
297   //   lui     v0,0x0
298   //   0: R_MIPS_HI16  _gp_disp
299   //   addiu   v0,v0,0
300   //   4: R_MIPS_LO16  _gp_disp
301   //
302   // MIPS 64:
303   //   lui     at,0x0
304   //   14: R_MIPS_GPREL16  main
305   //
306   // Dynamic linker does not know anything about secondary GOTs and cannot
307   // use a regular MIPS mechanism for GOT entries initialization. So we have
308   // to use an approach accepted by other architectures and create dynamic
309   // relocations R_MIPS_REL32 to initialize global entries (and local in case
310   // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
311   // requires GOT entries and correspondingly ordered dynamic symbol table
312   // entries to deal with dynamic relocations. To handle this problem
313   // relocation-only section in the primary GOT contains entries for all
314   // symbols referenced in global parts of secondary GOTs. Although the sum
315   // of local and normal global entries of the primary got should be less
316   // than 64K, the size of the primary got (including relocation-only entries
317   // can be greater than 64K, because parts of the primary got that overflow
318   // the 64K limit are used only by the dynamic linker at dynamic link-time
319   // and not by 16-bit gp-relative addressing at run-time.
320   //
321   // For complete multi-GOT description see the following link
322   // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT
323 
324   // Number of "Header" entries.
325   static const unsigned headerEntriesNum = 2;
326 
327   uint64_t size = 0;
328 
329   // Symbol and addend.
330   using GotEntry = std::pair<Symbol *, int64_t>;
331 
332   struct FileGot {
333     InputFile *file = nullptr;
334     size_t startIndex = 0;
335 
336     struct PageBlock {
337       size_t firstIndex;
338       size_t count;
PageBlockFileGot::PageBlock339       PageBlock() : firstIndex(0), count(0) {}
340     };
341 
342     // Map output sections referenced by MIPS GOT relocations
343     // to the description (index/count) "page" entries allocated
344     // for this section.
345     llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap;
346     // Maps from Symbol+Addend pair or just Symbol to the GOT entry index.
347     llvm::MapVector<GotEntry, size_t> local16;
348     llvm::MapVector<GotEntry, size_t> local32;
349     llvm::MapVector<Symbol *, size_t> global;
350     llvm::MapVector<Symbol *, size_t> relocs;
351     llvm::MapVector<Symbol *, size_t> tls;
352     // Set of symbols referenced by dynamic TLS relocations.
353     llvm::MapVector<Symbol *, size_t> dynTlsSymbols;
354 
355     // Total number of all entries.
356     size_t getEntriesNum() const;
357     // Number of "page" entries.
358     size_t getPageEntriesNum() const;
359     // Number of entries require 16-bit index to access.
360     size_t getIndexedEntriesNum() const;
361   };
362 
363   // Container of GOT created for each input file.
364   // After building a final series of GOTs this container
365   // holds primary and secondary GOT's.
366   std::vector<FileGot> gots;
367 
368   // Return (and create if necessary) `FileGot`.
369   FileGot &getGot(InputFile &f);
370 
371   // Try to merge two GOTs. In case of success the `Dst` contains
372   // result of merging and the function returns true. In case of
373   // overflow the `Dst` is unchanged and the function returns false.
374   bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary);
375 };
376 
377 class GotPltSection final : public SyntheticSection {
378 public:
379   GotPltSection();
380   void addEntry(Symbol &sym);
381   size_t getSize() const override;
382   void writeTo(uint8_t *buf) override;
383   bool isNeeded() const override;
384 
385   // Flag to force GotPlt to be in output if we have relocations
386   // that relies on its address.
387   bool hasGotPltOffRel = false;
388 
389 private:
390   std::vector<const Symbol *> entries;
391 };
392 
393 // The IgotPltSection is a Got associated with the PltSection for GNU Ifunc
394 // Symbols that will be relocated by Target->IRelativeRel.
395 // On most Targets the IgotPltSection will immediately follow the GotPltSection
396 // on ARM the IgotPltSection will immediately follow the GotSection.
397 class IgotPltSection final : public SyntheticSection {
398 public:
399   IgotPltSection();
400   void addEntry(Symbol &sym);
401   size_t getSize() const override;
402   void writeTo(uint8_t *buf) override;
isNeeded()403   bool isNeeded() const override { return !entries.empty(); }
404 
405 private:
406   std::vector<const Symbol *> entries;
407 };
408 
409 class StringTableSection final : public SyntheticSection {
410 public:
411   StringTableSection(StringRef name, bool dynamic);
412   unsigned addString(StringRef s, bool hashIt = true);
413   void writeTo(uint8_t *buf) override;
getSize()414   size_t getSize() const override { return size; }
isDynamic()415   bool isDynamic() const { return dynamic; }
416 
417 private:
418   const bool dynamic;
419 
420   uint64_t size = 0;
421 
422   llvm::DenseMap<StringRef, unsigned> stringMap;
423   std::vector<StringRef> strings;
424 };
425 
426 class DynamicReloc {
427 public:
DynamicReloc(RelType type,const InputSectionBase * inputSec,uint64_t offsetInSec,bool useSymVA,Symbol * sym,int64_t addend)428   DynamicReloc(RelType type, const InputSectionBase *inputSec,
429                uint64_t offsetInSec, bool useSymVA, Symbol *sym, int64_t addend)
430       : type(type), sym(sym), inputSec(inputSec), offsetInSec(offsetInSec),
431         useSymVA(useSymVA), addend(addend), outputSec(nullptr) {}
432   // This constructor records dynamic relocation settings used by MIPS
433   // multi-GOT implementation. It's to relocate addresses of 64kb pages
434   // lie inside the output section.
DynamicReloc(RelType type,const InputSectionBase * inputSec,uint64_t offsetInSec,const OutputSection * outputSec,int64_t addend)435   DynamicReloc(RelType type, const InputSectionBase *inputSec,
436                uint64_t offsetInSec, const OutputSection *outputSec,
437                int64_t addend)
438       : type(type), sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec),
439         useSymVA(false), addend(addend), outputSec(outputSec) {}
440 
441   uint64_t getOffset() const;
442   uint32_t getSymIndex(SymbolTableBaseSection *symTab) const;
443 
444   // Computes the addend of the dynamic relocation. Note that this is not the
445   // same as the addend member variable as it also includes the symbol address
446   // if useSymVA is true.
447   int64_t computeAddend() const;
448 
449   RelType type;
450 
451   Symbol *sym;
452   const InputSectionBase *inputSec = nullptr;
453   uint64_t offsetInSec;
454   // If this member is true, the dynamic relocation will not be against the
455   // symbol but will instead be a relative relocation that simply adds the
456   // load address. This means we need to write the symbol virtual address
457   // plus the original addend as the final relocation addend.
458   bool useSymVA;
459   int64_t addend;
460   const OutputSection *outputSec;
461 };
462 
463 template <class ELFT> class DynamicSection final : public SyntheticSection {
464   using Elf_Dyn = typename ELFT::Dyn;
465   using Elf_Rel = typename ELFT::Rel;
466   using Elf_Rela = typename ELFT::Rela;
467   using Elf_Relr = typename ELFT::Relr;
468   using Elf_Shdr = typename ELFT::Shdr;
469   using Elf_Sym = typename ELFT::Sym;
470 
471   // finalizeContents() fills this vector with the section contents.
472   std::vector<std::pair<int32_t, std::function<uint64_t()>>> entries;
473 
474 public:
475   DynamicSection();
476   void finalizeContents() override;
477   void writeTo(uint8_t *buf) override;
getSize()478   size_t getSize() const override { return size; }
479 
480 private:
481   void add(int32_t tag, std::function<uint64_t()> fn);
482   void addInt(int32_t tag, uint64_t val);
483   void addInSec(int32_t tag, InputSection *sec);
484   void addInSecRelative(int32_t tag, InputSection *sec);
485   void addOutSec(int32_t tag, OutputSection *sec);
486   void addSize(int32_t tag, OutputSection *sec);
487   void addSym(int32_t tag, Symbol *sym);
488 
489   uint64_t size = 0;
490 };
491 
492 class RelocationBaseSection : public SyntheticSection {
493 public:
494   RelocationBaseSection(StringRef name, uint32_t type, int32_t dynamicTag,
495                         int32_t sizeDynamicTag);
496   void addReloc(RelType dynType, InputSectionBase *isec, uint64_t offsetInSec,
497                 Symbol *sym);
498   // Add a dynamic relocation that might need an addend. This takes care of
499   // writing the addend to the output section if needed.
500   void addReloc(RelType dynType, InputSectionBase *inputSec,
501                 uint64_t offsetInSec, Symbol *sym, int64_t addend, RelExpr expr,
502                 RelType type);
503   void addReloc(const DynamicReloc &reloc);
isNeeded()504   bool isNeeded() const override { return !relocs.empty(); }
getSize()505   size_t getSize() const override { return relocs.size() * this->entsize; }
getRelativeRelocCount()506   size_t getRelativeRelocCount() const { return numRelativeRelocs; }
507   void finalizeContents() override;
508   int32_t dynamicTag, sizeDynamicTag;
509   std::vector<DynamicReloc> relocs;
510 
511 protected:
512   size_t numRelativeRelocs = 0;
513 };
514 
515 template <class ELFT>
516 class RelocationSection final : public RelocationBaseSection {
517   using Elf_Rel = typename ELFT::Rel;
518   using Elf_Rela = typename ELFT::Rela;
519 
520 public:
521   RelocationSection(StringRef name, bool sort);
522   void writeTo(uint8_t *buf) override;
523 
524 private:
525   bool sort;
526 };
527 
528 template <class ELFT>
529 class AndroidPackedRelocationSection final : public RelocationBaseSection {
530   using Elf_Rel = typename ELFT::Rel;
531   using Elf_Rela = typename ELFT::Rela;
532 
533 public:
534   AndroidPackedRelocationSection(StringRef name);
535 
536   bool updateAllocSize() override;
getSize()537   size_t getSize() const override { return relocData.size(); }
writeTo(uint8_t * buf)538   void writeTo(uint8_t *buf) override {
539     memcpy(buf, relocData.data(), relocData.size());
540   }
541 
542 private:
543   SmallVector<char, 0> relocData;
544 };
545 
546 struct RelativeReloc {
getOffsetRelativeReloc547   uint64_t getOffset() const { return inputSec->getVA(offsetInSec); }
548 
549   const InputSectionBase *inputSec;
550   uint64_t offsetInSec;
551 };
552 
553 class RelrBaseSection : public SyntheticSection {
554 public:
555   RelrBaseSection();
isNeeded()556   bool isNeeded() const override { return !relocs.empty(); }
557   std::vector<RelativeReloc> relocs;
558 };
559 
560 // RelrSection is used to encode offsets for relative relocations.
561 // Proposal for adding SHT_RELR sections to generic-abi is here:
562 //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
563 // For more details, see the comment in RelrSection::updateAllocSize().
564 template <class ELFT> class RelrSection final : public RelrBaseSection {
565   using Elf_Relr = typename ELFT::Relr;
566 
567 public:
568   RelrSection();
569 
570   bool updateAllocSize() override;
getSize()571   size_t getSize() const override { return relrRelocs.size() * this->entsize; }
writeTo(uint8_t * buf)572   void writeTo(uint8_t *buf) override {
573     memcpy(buf, relrRelocs.data(), getSize());
574   }
575 
576 private:
577   std::vector<Elf_Relr> relrRelocs;
578 };
579 
580 struct SymbolTableEntry {
581   Symbol *sym;
582   size_t strTabOffset;
583 };
584 
585 class SymbolTableBaseSection : public SyntheticSection {
586 public:
587   SymbolTableBaseSection(StringTableSection &strTabSec);
588   void finalizeContents() override;
getSize()589   size_t getSize() const override { return getNumSymbols() * entsize; }
590   void addSymbol(Symbol *sym);
getNumSymbols()591   unsigned getNumSymbols() const { return symbols.size() + 1; }
592   size_t getSymbolIndex(Symbol *sym);
getSymbols()593   ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; }
594 
595 protected:
596   void sortSymTabSymbols();
597 
598   // A vector of symbols and their string table offsets.
599   std::vector<SymbolTableEntry> symbols;
600 
601   StringTableSection &strTabSec;
602 
603   llvm::once_flag onceFlag;
604   llvm::DenseMap<Symbol *, size_t> symbolIndexMap;
605   llvm::DenseMap<OutputSection *, size_t> sectionIndexMap;
606 };
607 
608 template <class ELFT>
609 class SymbolTableSection final : public SymbolTableBaseSection {
610   using Elf_Sym = typename ELFT::Sym;
611 
612 public:
613   SymbolTableSection(StringTableSection &strTabSec);
614   void writeTo(uint8_t *buf) override;
615 };
616 
617 class SymtabShndxSection final : public SyntheticSection {
618 public:
619   SymtabShndxSection();
620 
621   void writeTo(uint8_t *buf) override;
622   size_t getSize() const override;
623   bool isNeeded() const override;
624   void finalizeContents() override;
625 };
626 
627 // Outputs GNU Hash section. For detailed explanation see:
628 // https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
629 class GnuHashTableSection final : public SyntheticSection {
630 public:
631   GnuHashTableSection();
632   void finalizeContents() override;
633   void writeTo(uint8_t *buf) override;
getSize()634   size_t getSize() const override { return size; }
635 
636   // Adds symbols to the hash table.
637   // Sorts the input to satisfy GNU hash section requirements.
638   void addSymbols(std::vector<SymbolTableEntry> &symbols);
639 
640 private:
641   // See the comment in writeBloomFilter.
642   enum { Shift2 = 26 };
643 
644   void writeBloomFilter(uint8_t *buf);
645   void writeHashTable(uint8_t *buf);
646 
647   struct Entry {
648     Symbol *sym;
649     size_t strTabOffset;
650     uint32_t hash;
651     uint32_t bucketIdx;
652   };
653 
654   std::vector<Entry> symbols;
655   size_t maskWords;
656   size_t nBuckets = 0;
657   size_t size = 0;
658 };
659 
660 class HashTableSection final : public SyntheticSection {
661 public:
662   HashTableSection();
663   void finalizeContents() override;
664   void writeTo(uint8_t *buf) override;
getSize()665   size_t getSize() const override { return size; }
666 
667 private:
668   size_t size = 0;
669 };
670 
671 // Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT
672 // entry is associated with a JUMP_SLOT relocation, which may be resolved lazily
673 // at runtime.
674 //
675 // On PowerPC, this section contains lazy symbol resolvers. A branch instruction
676 // jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a
677 // lazy symbol resolver.
678 //
679 // On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs.
680 // A call instruction jumps to a .plt.sec entry, which will then jump to the
681 // target (BIND_NOW) or a .plt entry.
682 class PltSection : public SyntheticSection {
683 public:
684   PltSection();
685   void writeTo(uint8_t *buf) override;
686   size_t getSize() const override;
687   bool isNeeded() const override;
688   void addSymbols();
689   void addEntry(Symbol &sym);
getNumEntries()690   size_t getNumEntries() const { return entries.size(); }
691 
692   size_t headerSize;
693 
694   std::vector<const Symbol *> entries;
695 };
696 
697 // Used for non-preemptible ifuncs. It does not have a header. Each entry is
698 // associated with an IRELATIVE relocation, which will be resolved eagerly at
699 // runtime. PltSection can only contain entries associated with JUMP_SLOT
700 // relocations, so IPLT entries are in a separate section.
701 class IpltSection final : public SyntheticSection {
702   std::vector<const Symbol *> entries;
703 
704 public:
705   IpltSection();
706   void writeTo(uint8_t *buf) override;
707   size_t getSize() const override;
isNeeded()708   bool isNeeded() const override { return !entries.empty(); }
709   void addSymbols();
710   void addEntry(Symbol &sym);
711 };
712 
713 class PPC32GlinkSection : public PltSection {
714 public:
715   PPC32GlinkSection();
716   void writeTo(uint8_t *buf) override;
717   size_t getSize() const override;
718 
719   std::vector<const Symbol *> canonical_plts;
720   static constexpr size_t footerSize = 64;
721 };
722 
723 // This is x86-only.
724 class IBTPltSection : public SyntheticSection {
725 public:
726   IBTPltSection();
727   void writeTo(uint8_t *Buf) override;
728   size_t getSize() const override;
729 };
730 
731 class GdbIndexSection final : public SyntheticSection {
732 public:
733   struct AddressEntry {
734     InputSection *section;
735     uint64_t lowAddress;
736     uint64_t highAddress;
737     uint32_t cuIndex;
738   };
739 
740   struct CuEntry {
741     uint64_t cuOffset;
742     uint64_t cuLength;
743   };
744 
745   struct NameAttrEntry {
746     llvm::CachedHashStringRef name;
747     uint32_t cuIndexAndAttrs;
748   };
749 
750   struct GdbChunk {
751     InputSection *sec;
752     std::vector<AddressEntry> addressAreas;
753     std::vector<CuEntry> compilationUnits;
754   };
755 
756   struct GdbSymbol {
757     llvm::CachedHashStringRef name;
758     std::vector<uint32_t> cuVector;
759     uint32_t nameOff;
760     uint32_t cuVectorOff;
761   };
762 
763   GdbIndexSection();
764   template <typename ELFT> static GdbIndexSection *create();
765   void writeTo(uint8_t *buf) override;
getSize()766   size_t getSize() const override { return size; }
767   bool isNeeded() const override;
768 
769 private:
770   struct GdbIndexHeader {
771     llvm::support::ulittle32_t version;
772     llvm::support::ulittle32_t cuListOff;
773     llvm::support::ulittle32_t cuTypesOff;
774     llvm::support::ulittle32_t addressAreaOff;
775     llvm::support::ulittle32_t symtabOff;
776     llvm::support::ulittle32_t constantPoolOff;
777   };
778 
779   void initOutputSize();
780   size_t computeSymtabSize() const;
781 
782   // Each chunk contains information gathered from debug sections of a
783   // single object file.
784   std::vector<GdbChunk> chunks;
785 
786   // A symbol table for this .gdb_index section.
787   std::vector<GdbSymbol> symbols;
788 
789   size_t size;
790 };
791 
792 // --eh-frame-hdr option tells linker to construct a header for all the
793 // .eh_frame sections. This header is placed to a section named .eh_frame_hdr
794 // and also to a PT_GNU_EH_FRAME segment.
795 // At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
796 // calling dl_iterate_phdr.
797 // This section contains a lookup table for quick binary search of FDEs.
798 // Detailed info about internals can be found in Ian Lance Taylor's blog:
799 // http://www.airs.com/blog/archives/460 (".eh_frame")
800 // http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
801 class EhFrameHeader final : public SyntheticSection {
802 public:
803   EhFrameHeader();
804   void write();
805   void writeTo(uint8_t *buf) override;
806   size_t getSize() const override;
807   bool isNeeded() const override;
808 };
809 
810 // For more information about .gnu.version and .gnu.version_r see:
811 // https://www.akkadia.org/drepper/symbol-versioning
812 
813 // The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
814 // contain symbol version definitions. The number of entries in this section
815 // shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
816 // The section shall contain an array of Elf_Verdef structures, optionally
817 // followed by an array of Elf_Verdaux structures.
818 class VersionDefinitionSection final : public SyntheticSection {
819 public:
820   VersionDefinitionSection();
821   void finalizeContents() override;
822   size_t getSize() const override;
823   void writeTo(uint8_t *buf) override;
824 
825 private:
826   enum { EntrySize = 28 };
827   void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff);
828   StringRef getFileDefName();
829 
830   unsigned fileDefNameOff;
831   std::vector<unsigned> verDefNameOffs;
832 };
833 
834 // The .gnu.version section specifies the required version of each symbol in the
835 // dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
836 // table entry. An Elf_Versym is just a 16-bit integer that refers to a version
837 // identifier defined in the either .gnu.version_r or .gnu.version_d section.
838 // The values 0 and 1 are reserved. All other values are used for versions in
839 // the own object or in any of the dependencies.
840 class VersionTableSection final : public SyntheticSection {
841 public:
842   VersionTableSection();
843   void finalizeContents() override;
844   size_t getSize() const override;
845   void writeTo(uint8_t *buf) override;
846   bool isNeeded() const override;
847 };
848 
849 // The .gnu.version_r section defines the version identifiers used by
850 // .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
851 // Elf_Verneed specifies the version requirements for a single DSO, and contains
852 // a reference to a linked list of Elf_Vernaux data structures which define the
853 // mapping from version identifiers to version names.
854 template <class ELFT>
855 class VersionNeedSection final : public SyntheticSection {
856   using Elf_Verneed = typename ELFT::Verneed;
857   using Elf_Vernaux = typename ELFT::Vernaux;
858 
859   struct Vernaux {
860     uint64_t hash;
861     uint32_t verneedIndex;
862     uint64_t nameStrTab;
863   };
864 
865   struct Verneed {
866     uint64_t nameStrTab;
867     std::vector<Vernaux> vernauxs;
868   };
869 
870   std::vector<Verneed> verneeds;
871 
872 public:
873   VersionNeedSection();
874   void finalizeContents() override;
875   void writeTo(uint8_t *buf) override;
876   size_t getSize() const override;
877   bool isNeeded() const override;
878 };
879 
880 // MergeSyntheticSection is a class that allows us to put mergeable sections
881 // with different attributes in a single output sections. To do that
882 // we put them into MergeSyntheticSection synthetic input sections which are
883 // attached to regular output sections.
884 class MergeSyntheticSection : public SyntheticSection {
885 public:
886   void addSection(MergeInputSection *ms);
887   std::vector<MergeInputSection *> sections;
888 
889 protected:
MergeSyntheticSection(StringRef name,uint32_t type,uint64_t flags,uint32_t alignment)890   MergeSyntheticSection(StringRef name, uint32_t type, uint64_t flags,
891                         uint32_t alignment)
892       : SyntheticSection(flags, type, alignment, name) {}
893 };
894 
895 class MergeTailSection final : public MergeSyntheticSection {
896 public:
897   MergeTailSection(StringRef name, uint32_t type, uint64_t flags,
898                    uint32_t alignment);
899 
900   size_t getSize() const override;
901   void writeTo(uint8_t *buf) override;
902   void finalizeContents() override;
903 
904 private:
905   llvm::StringTableBuilder builder;
906 };
907 
908 class MergeNoTailSection final : public MergeSyntheticSection {
909 public:
MergeNoTailSection(StringRef name,uint32_t type,uint64_t flags,uint32_t alignment)910   MergeNoTailSection(StringRef name, uint32_t type, uint64_t flags,
911                      uint32_t alignment)
912       : MergeSyntheticSection(name, type, flags, alignment) {}
913 
getSize()914   size_t getSize() const override { return size; }
915   void writeTo(uint8_t *buf) override;
916   void finalizeContents() override;
917 
918 private:
919   // We use the most significant bits of a hash as a shard ID.
920   // The reason why we don't want to use the least significant bits is
921   // because DenseMap also uses lower bits to determine a bucket ID.
922   // If we use lower bits, it significantly increases the probability of
923   // hash collisons.
getShardId(uint32_t hash)924   size_t getShardId(uint32_t hash) {
925     assert((hash >> 31) == 0);
926     return hash >> (31 - llvm::countTrailingZeros(numShards));
927   }
928 
929   // Section size
930   size_t size;
931 
932   // String table contents
933   constexpr static size_t numShards = 32;
934   std::vector<llvm::StringTableBuilder> shards;
935   size_t shardOffsets[numShards];
936 };
937 
938 // .MIPS.abiflags section.
939 template <class ELFT>
940 class MipsAbiFlagsSection final : public SyntheticSection {
941   using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>;
942 
943 public:
944   static MipsAbiFlagsSection *create();
945 
946   MipsAbiFlagsSection(Elf_Mips_ABIFlags flags);
getSize()947   size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
948   void writeTo(uint8_t *buf) override;
949 
950 private:
951   Elf_Mips_ABIFlags flags;
952 };
953 
954 // .MIPS.options section.
955 template <class ELFT> class MipsOptionsSection final : public SyntheticSection {
956   using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>;
957   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
958 
959 public:
960   static MipsOptionsSection *create();
961 
962   MipsOptionsSection(Elf_Mips_RegInfo reginfo);
963   void writeTo(uint8_t *buf) override;
964 
getSize()965   size_t getSize() const override {
966     return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
967   }
968 
969 private:
970   Elf_Mips_RegInfo reginfo;
971 };
972 
973 // MIPS .reginfo section.
974 template <class ELFT> class MipsReginfoSection final : public SyntheticSection {
975   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
976 
977 public:
978   static MipsReginfoSection *create();
979 
980   MipsReginfoSection(Elf_Mips_RegInfo reginfo);
getSize()981   size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
982   void writeTo(uint8_t *buf) override;
983 
984 private:
985   Elf_Mips_RegInfo reginfo;
986 };
987 
988 // This is a MIPS specific section to hold a space within the data segment
989 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
990 // See "Dynamic section" in Chapter 5 in the following document:
991 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
992 class MipsRldMapSection : public SyntheticSection {
993 public:
994   MipsRldMapSection();
getSize()995   size_t getSize() const override { return config->wordsize; }
writeTo(uint8_t * buf)996   void writeTo(uint8_t *buf) override {}
997 };
998 
999 // Representation of the combined .ARM.Exidx input sections. We process these
1000 // as a SyntheticSection like .eh_frame as we need to merge duplicate entries
1001 // and add terminating sentinel entries.
1002 //
1003 // The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form
1004 // a table that the unwinder can derive (Addresses are encoded as offsets from
1005 // table):
1006 // | Address of function | Unwind instructions for function |
1007 // where the unwind instructions are either a small number of unwind or the
1008 // special EXIDX_CANTUNWIND entry representing no unwinding information.
1009 // When an exception is thrown from an address A, the unwinder searches the
1010 // table for the closest table entry with Address of function <= A. This means
1011 // that for two consecutive table entries:
1012 // | A1 | U1 |
1013 // | A2 | U2 |
1014 // The range of addresses described by U1 is [A1, A2)
1015 //
1016 // There are two cases where we need a linker generated table entry to fixup
1017 // the address ranges in the table
1018 // Case 1:
1019 // - A sentinel entry added with an address higher than all
1020 // executable sections. This was needed to work around libunwind bug pr31091.
1021 // - After address assignment we need to find the highest addressed executable
1022 // section and use the limit of that section so that the unwinder never
1023 // matches it.
1024 // Case 2:
1025 // - InputSections without a .ARM.exidx section (usually from Assembly)
1026 // need a table entry so that they terminate the range of the previously
1027 // function. This is pr40277.
1028 //
1029 // Instead of storing pointers to the .ARM.exidx InputSections from
1030 // InputObjects, we store pointers to the executable sections that need
1031 // .ARM.exidx sections. We can then use the dependentSections of these to
1032 // either find the .ARM.exidx section or know that we need to generate one.
1033 class ARMExidxSyntheticSection : public SyntheticSection {
1034 public:
1035   ARMExidxSyntheticSection();
1036 
1037   // Add an input section to the ARMExidxSyntheticSection. Returns whether the
1038   // section needs to be removed from the main input section list.
1039   bool addSection(InputSection *isec);
1040 
getSize()1041   size_t getSize() const override { return size; }
1042   void writeTo(uint8_t *buf) override;
1043   bool isNeeded() const override;
1044   // Sort and remove duplicate entries.
1045   void finalizeContents() override;
1046   InputSection *getLinkOrderDep() const;
1047 
1048   static bool classof(const SectionBase *d);
1049 
1050   // Links to the ARMExidxSections so we can transfer the relocations once the
1051   // layout is known.
1052   std::vector<InputSection *> exidxSections;
1053 
1054 private:
1055   size_t size = 0;
1056 
1057   // Instead of storing pointers to the .ARM.exidx InputSections from
1058   // InputObjects, we store pointers to the executable sections that need
1059   // .ARM.exidx sections. We can then use the dependentSections of these to
1060   // either find the .ARM.exidx section or know that we need to generate one.
1061   std::vector<InputSection *> executableSections;
1062 
1063   // The executable InputSection with the highest address to use for the
1064   // sentinel. We store separately from ExecutableSections as merging of
1065   // duplicate entries may mean this InputSection is removed from
1066   // ExecutableSections.
1067   InputSection *sentinel = nullptr;
1068 };
1069 
1070 // A container for one or more linker generated thunks. Instances of these
1071 // thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
1072 class ThunkSection : public SyntheticSection {
1073 public:
1074   // ThunkSection in OS, with desired outSecOff of Off
1075   ThunkSection(OutputSection *os, uint64_t off);
1076 
1077   // Add a newly created Thunk to this container:
1078   // Thunk is given offset from start of this InputSection
1079   // Thunk defines a symbol in this InputSection that can be used as target
1080   // of a relocation
1081   void addThunk(Thunk *t);
1082   size_t getSize() const override;
1083   void writeTo(uint8_t *buf) override;
1084   InputSection *getTargetInputSection() const;
1085   bool assignOffsets();
1086 
1087   // When true, round up reported size of section to 4 KiB. See comment
1088   // in addThunkSection() for more details.
1089   bool roundUpSizeForErrata = false;
1090 
1091 private:
1092   std::vector<Thunk *> thunks;
1093   size_t size = 0;
1094 };
1095 
1096 // Used to compute outSecOff of .got2 in each object file. This is needed to
1097 // synthesize PLT entries for PPC32 Secure PLT ABI.
1098 class PPC32Got2Section final : public SyntheticSection {
1099 public:
1100   PPC32Got2Section();
getSize()1101   size_t getSize() const override { return 0; }
1102   bool isNeeded() const override;
1103   void finalizeContents() override;
writeTo(uint8_t * buf)1104   void writeTo(uint8_t *buf) override {}
1105 };
1106 
1107 // This section is used to store the addresses of functions that are called
1108 // in range-extending thunks on PowerPC64. When producing position dependent
1109 // code the addresses are link-time constants and the table is written out to
1110 // the binary. When producing position-dependent code the table is allocated and
1111 // filled in by the dynamic linker.
1112 class PPC64LongBranchTargetSection final : public SyntheticSection {
1113 public:
1114   PPC64LongBranchTargetSection();
1115   uint64_t getEntryVA(const Symbol *sym, int64_t addend);
1116   llvm::Optional<uint32_t> addEntry(const Symbol *sym, int64_t addend);
1117   size_t getSize() const override;
1118   void writeTo(uint8_t *buf) override;
1119   bool isNeeded() const override;
finalizeContents()1120   void finalizeContents() override { finalized = true; }
1121 
1122 private:
1123   std::vector<std::pair<const Symbol *, int64_t>> entries;
1124   llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index;
1125   bool finalized = false;
1126 };
1127 
1128 template <typename ELFT>
1129 class PartitionElfHeaderSection : public SyntheticSection {
1130 public:
1131   PartitionElfHeaderSection();
1132   size_t getSize() const override;
1133   void writeTo(uint8_t *buf) override;
1134 };
1135 
1136 template <typename ELFT>
1137 class PartitionProgramHeadersSection : public SyntheticSection {
1138 public:
1139   PartitionProgramHeadersSection();
1140   size_t getSize() const override;
1141   void writeTo(uint8_t *buf) override;
1142 };
1143 
1144 class PartitionIndexSection : public SyntheticSection {
1145 public:
1146   PartitionIndexSection();
1147   size_t getSize() const override;
1148   void finalizeContents() override;
1149   void writeTo(uint8_t *buf) override;
1150 };
1151 
1152 InputSection *createInterpSection();
1153 MergeInputSection *createCommentSection();
1154 MergeSyntheticSection *createMergeSynthetic(StringRef name, uint32_t type,
1155                                             uint64_t flags, uint32_t alignment);
1156 template <class ELFT> void splitSections();
1157 
1158 template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part);
1159 template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part);
1160 
1161 Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
1162                            uint64_t size, InputSectionBase &section);
1163 
1164 void addVerneed(Symbol *ss);
1165 
1166 // Linker generated per-partition sections.
1167 struct Partition {
1168   StringRef name;
1169   uint64_t nameStrTab;
1170 
1171   SyntheticSection *elfHeader;
1172   SyntheticSection *programHeaders;
1173   std::vector<PhdrEntry *> phdrs;
1174 
1175   ARMExidxSyntheticSection *armExidx;
1176   BuildIdSection *buildId;
1177   SyntheticSection *dynamic;
1178   StringTableSection *dynStrTab;
1179   SymbolTableBaseSection *dynSymTab;
1180   EhFrameHeader *ehFrameHdr;
1181   EhFrameSection *ehFrame;
1182   GnuHashTableSection *gnuHashTab;
1183   HashTableSection *hashTab;
1184   RelocationBaseSection *relaDyn;
1185   RelrBaseSection *relrDyn;
1186   VersionDefinitionSection *verDef;
1187   SyntheticSection *verNeed;
1188   VersionTableSection *verSym;
1189 
getNumberPartition1190   unsigned getNumber() const { return this - &partitions[0] + 1; }
1191 };
1192 
1193 extern Partition *mainPart;
1194 
getPartition()1195 inline Partition &SectionBase::getPartition() const {
1196   assert(isLive());
1197   return partitions[partition - 1];
1198 }
1199 
1200 // Linker generated sections which can be used as inputs and are not specific to
1201 // a partition.
1202 struct InStruct {
1203   InputSection *attributes;
1204   BssSection *bss;
1205   BssSection *bssRelRo;
1206   GotSection *got;
1207   GotPltSection *gotPlt;
1208   IgotPltSection *igotPlt;
1209   PPC64LongBranchTargetSection *ppc64LongBranchTarget;
1210   MipsGotSection *mipsGot;
1211   MipsRldMapSection *mipsRldMap;
1212   SyntheticSection *partEnd;
1213   SyntheticSection *partIndex;
1214   PltSection *plt;
1215   IpltSection *iplt;
1216   PPC32Got2Section *ppc32Got2;
1217   IBTPltSection *ibtPlt;
1218   RelocationBaseSection *relaPlt;
1219   RelocationBaseSection *relaIplt;
1220   StringTableSection *shStrTab;
1221   StringTableSection *strTab;
1222   SymbolTableBaseSection *symTab;
1223   SymtabShndxSection *symTabShndx;
1224 };
1225 
1226 extern InStruct in;
1227 
1228 } // namespace elf
1229 } // namespace lld
1230 
1231 #endif
1232