1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "util/format/u_format.h"
33 #include "util/half_float.h"
34 #include "compiler/glsl_types.h"
35 #include "list.h"
36 #include "ir_visitor.h"
37 #include "ir_hierarchical_visitor.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_demote,
80 ir_type_emit_vertex,
81 ir_type_end_primitive,
82 ir_type_barrier,
83 ir_type_max, /**< maximum ir_type enum number, for validation */
84 ir_type_unset = ir_type_max
85 };
86
87
88 /**
89 * Base class of all IR instructions
90 */
91 class ir_instruction : public exec_node {
92 public:
93 enum ir_node_type ir_type;
94
95 /**
96 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
97 * there's a virtual destructor present. Because we almost
98 * universally use ralloc for our memory management of
99 * ir_instructions, the destructor doesn't need to do any work.
100 */
~ir_instruction()101 virtual ~ir_instruction()
102 {
103 }
104
105 /** ir_print_visitor helper for debugging. */
106 void print(void) const;
107 void fprint(FILE *f) const;
108
109 virtual void accept(ir_visitor *) = 0;
110 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
111 virtual ir_instruction *clone(void *mem_ctx,
112 struct hash_table *ht) const = 0;
113
is_rvalue()114 bool is_rvalue() const
115 {
116 return ir_type == ir_type_dereference_array ||
117 ir_type == ir_type_dereference_record ||
118 ir_type == ir_type_dereference_variable ||
119 ir_type == ir_type_constant ||
120 ir_type == ir_type_expression ||
121 ir_type == ir_type_swizzle ||
122 ir_type == ir_type_texture;
123 }
124
is_dereference()125 bool is_dereference() const
126 {
127 return ir_type == ir_type_dereference_array ||
128 ir_type == ir_type_dereference_record ||
129 ir_type == ir_type_dereference_variable;
130 }
131
is_jump()132 bool is_jump() const
133 {
134 return ir_type == ir_type_loop_jump ||
135 ir_type == ir_type_return ||
136 ir_type == ir_type_discard;
137 }
138
139 /**
140 * \name IR instruction downcast functions
141 *
142 * These functions either cast the object to a derived class or return
143 * \c NULL if the object's type does not match the specified derived class.
144 * Additional downcast functions will be added as needed.
145 */
146 /*@{*/
147 #define AS_BASE(TYPE) \
148 class ir_##TYPE *as_##TYPE() \
149 { \
150 assume(this != NULL); \
151 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
152 } \
153 const class ir_##TYPE *as_##TYPE() const \
154 { \
155 assume(this != NULL); \
156 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
157 }
158
159 AS_BASE(rvalue)
160 AS_BASE(dereference)
161 AS_BASE(jump)
162 #undef AS_BASE
163
164 #define AS_CHILD(TYPE) \
165 class ir_##TYPE * as_##TYPE() \
166 { \
167 assume(this != NULL); \
168 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
169 } \
170 const class ir_##TYPE * as_##TYPE() const \
171 { \
172 assume(this != NULL); \
173 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
174 }
175 AS_CHILD(variable)
176 AS_CHILD(function)
177 AS_CHILD(dereference_array)
178 AS_CHILD(dereference_variable)
179 AS_CHILD(dereference_record)
180 AS_CHILD(expression)
181 AS_CHILD(loop)
182 AS_CHILD(assignment)
183 AS_CHILD(call)
184 AS_CHILD(return)
185 AS_CHILD(if)
186 AS_CHILD(swizzle)
187 AS_CHILD(texture)
188 AS_CHILD(constant)
189 AS_CHILD(discard)
190 #undef AS_CHILD
191 /*@}*/
192
193 /**
194 * IR equality method: Return true if the referenced instruction would
195 * return the same value as this one.
196 *
197 * This intended to be used for CSE and algebraic optimizations, on rvalues
198 * in particular. No support for other instruction types (assignments,
199 * jumps, calls, etc.) is planned.
200 */
201 virtual bool equals(const ir_instruction *ir,
202 enum ir_node_type ignore = ir_type_unset) const;
203
204 protected:
ir_instruction(enum ir_node_type t)205 ir_instruction(enum ir_node_type t)
206 : ir_type(t)
207 {
208 }
209
210 private:
ir_instruction()211 ir_instruction()
212 {
213 assert(!"Should not get here.");
214 }
215 };
216
217
218 /**
219 * The base class for all "values"/expression trees.
220 */
221 class ir_rvalue : public ir_instruction {
222 public:
223 const struct glsl_type *type;
224
225 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
226
accept(ir_visitor * v)227 virtual void accept(ir_visitor *v)
228 {
229 v->visit(this);
230 }
231
232 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
233
234 virtual ir_constant *constant_expression_value(void *mem_ctx,
235 struct hash_table *variable_context = NULL);
236
237 ir_rvalue *as_rvalue_to_saturate();
238
239 virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
240 {
241 return false;
242 }
243
244 /**
245 * Get the variable that is ultimately referenced by an r-value
246 */
variable_referenced()247 virtual ir_variable *variable_referenced() const
248 {
249 return NULL;
250 }
251
252
253 /**
254 * If an r-value is a reference to a whole variable, get that variable
255 *
256 * \return
257 * Pointer to a variable that is completely dereferenced by the r-value. If
258 * the r-value is not a dereference or the dereference does not access the
259 * entire variable (i.e., it's just one array element, struct field), \c NULL
260 * is returned.
261 */
whole_variable_referenced()262 virtual ir_variable *whole_variable_referenced()
263 {
264 return NULL;
265 }
266
267 /**
268 * Determine if an r-value has the value zero
269 *
270 * The base implementation of this function always returns \c false. The
271 * \c ir_constant class over-rides this function to return \c true \b only
272 * for vector and scalar types that have all elements set to the value
273 * zero (or \c false for booleans).
274 *
275 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
276 */
277 virtual bool is_zero() const;
278
279 /**
280 * Determine if an r-value has the value one
281 *
282 * The base implementation of this function always returns \c false. The
283 * \c ir_constant class over-rides this function to return \c true \b only
284 * for vector and scalar types that have all elements set to the value
285 * one (or \c true for booleans).
286 *
287 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
288 */
289 virtual bool is_one() const;
290
291 /**
292 * Determine if an r-value has the value negative one
293 *
294 * The base implementation of this function always returns \c false. The
295 * \c ir_constant class over-rides this function to return \c true \b only
296 * for vector and scalar types that have all elements set to the value
297 * negative one. For boolean types, the result is always \c false.
298 *
299 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
300 */
301 virtual bool is_negative_one() const;
302
303 /**
304 * Determine if an r-value is an unsigned integer constant which can be
305 * stored in 16 bits.
306 *
307 * \sa ir_constant::is_uint16_constant.
308 */
is_uint16_constant()309 virtual bool is_uint16_constant() const { return false; }
310
311 /**
312 * Return a generic value of error_type.
313 *
314 * Allocation will be performed with 'mem_ctx' as ralloc owner.
315 */
316 static ir_rvalue *error_value(void *mem_ctx);
317
318 protected:
319 ir_rvalue(enum ir_node_type t);
320 };
321
322
323 /**
324 * Variable storage classes
325 */
326 enum ir_variable_mode {
327 ir_var_auto = 0, /**< Function local variables and globals. */
328 ir_var_uniform, /**< Variable declared as a uniform. */
329 ir_var_shader_storage, /**< Variable declared as an ssbo. */
330 ir_var_shader_shared, /**< Variable declared as shared. */
331 ir_var_shader_in,
332 ir_var_shader_out,
333 ir_var_function_in,
334 ir_var_function_out,
335 ir_var_function_inout,
336 ir_var_const_in, /**< "in" param that must be a constant expression */
337 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
338 ir_var_temporary, /**< Temporary variable generated during compilation. */
339 ir_var_mode_count /**< Number of variable modes */
340 };
341
342 /**
343 * Enum keeping track of how a variable was declared. For error checking of
344 * the gl_PerVertex redeclaration rules.
345 */
346 enum ir_var_declaration_type {
347 /**
348 * Normal declaration (for most variables, this means an explicit
349 * declaration. Exception: temporaries are always implicitly declared, but
350 * they still use ir_var_declared_normally).
351 *
352 * Note: an ir_variable that represents a named interface block uses
353 * ir_var_declared_normally.
354 */
355 ir_var_declared_normally = 0,
356
357 /**
358 * Variable was explicitly declared (or re-declared) in an unnamed
359 * interface block.
360 */
361 ir_var_declared_in_block,
362
363 /**
364 * Variable is an implicitly declared built-in that has not been explicitly
365 * re-declared by the shader.
366 */
367 ir_var_declared_implicitly,
368
369 /**
370 * Variable is implicitly generated by the compiler and should not be
371 * visible via the API.
372 */
373 ir_var_hidden,
374 };
375
376 /**
377 * \brief Layout qualifiers for gl_FragDepth.
378 *
379 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
380 * with a layout qualifier.
381 */
382 enum ir_depth_layout {
383 ir_depth_layout_none, /**< No depth layout is specified. */
384 ir_depth_layout_any,
385 ir_depth_layout_greater,
386 ir_depth_layout_less,
387 ir_depth_layout_unchanged
388 };
389
390 /**
391 * \brief Convert depth layout qualifier to string.
392 */
393 const char*
394 depth_layout_string(ir_depth_layout layout);
395
396 /**
397 * Description of built-in state associated with a uniform
398 *
399 * \sa ir_variable::state_slots
400 */
401 struct ir_state_slot {
402 gl_state_index16 tokens[STATE_LENGTH];
403 int swizzle;
404 };
405
406
407 /**
408 * Get the string value for an interpolation qualifier
409 *
410 * \return The string that would be used in a shader to specify \c
411 * mode will be returned.
412 *
413 * This function is used to generate error messages of the form "shader
414 * uses %s interpolation qualifier", so in the case where there is no
415 * interpolation qualifier, it returns "no".
416 *
417 * This function should only be used on a shader input or output variable.
418 */
419 const char *interpolation_string(unsigned interpolation);
420
421
422 class ir_variable : public ir_instruction {
423 public:
424 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
425
426 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
427
accept(ir_visitor * v)428 virtual void accept(ir_visitor *v)
429 {
430 v->visit(this);
431 }
432
433 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
434
435
436 /**
437 * Determine whether or not a variable is part of a uniform or
438 * shader storage block.
439 */
is_in_buffer_block()440 inline bool is_in_buffer_block() const
441 {
442 return (this->data.mode == ir_var_uniform ||
443 this->data.mode == ir_var_shader_storage) &&
444 this->interface_type != NULL;
445 }
446
447 /**
448 * Determine whether or not a variable is part of a shader storage block.
449 */
is_in_shader_storage_block()450 inline bool is_in_shader_storage_block() const
451 {
452 return this->data.mode == ir_var_shader_storage &&
453 this->interface_type != NULL;
454 }
455
456 /**
457 * Determine whether or not a variable is the declaration of an interface
458 * block
459 *
460 * For the first declaration below, there will be an \c ir_variable named
461 * "instance" whose type and whose instance_type will be the same
462 * \c glsl_type. For the second declaration, there will be an \c ir_variable
463 * named "f" whose type is float and whose instance_type is B2.
464 *
465 * "instance" is an interface instance variable, but "f" is not.
466 *
467 * uniform B1 {
468 * float f;
469 * } instance;
470 *
471 * uniform B2 {
472 * float f;
473 * };
474 */
is_interface_instance()475 inline bool is_interface_instance() const
476 {
477 return this->type->without_array() == this->interface_type;
478 }
479
480 /**
481 * Return whether this variable contains a bindless sampler/image.
482 */
contains_bindless()483 inline bool contains_bindless() const
484 {
485 if (!this->type->contains_sampler() && !this->type->contains_image())
486 return false;
487
488 return this->data.bindless || this->data.mode != ir_var_uniform;
489 }
490
491 /**
492 * Set this->interface_type on a newly created variable.
493 */
init_interface_type(const struct glsl_type * type)494 void init_interface_type(const struct glsl_type *type)
495 {
496 assert(this->interface_type == NULL);
497 this->interface_type = type;
498 if (this->is_interface_instance()) {
499 this->u.max_ifc_array_access =
500 ralloc_array(this, int, type->length);
501 for (unsigned i = 0; i < type->length; i++) {
502 this->u.max_ifc_array_access[i] = -1;
503 }
504 }
505 }
506
507 /**
508 * Change this->interface_type on a variable that previously had a
509 * different, but compatible, interface_type. This is used during linking
510 * to set the size of arrays in interface blocks.
511 */
change_interface_type(const struct glsl_type * type)512 void change_interface_type(const struct glsl_type *type)
513 {
514 if (this->u.max_ifc_array_access != NULL) {
515 /* max_ifc_array_access has already been allocated, so make sure the
516 * new interface has the same number of fields as the old one.
517 */
518 assert(this->interface_type->length == type->length);
519 }
520 this->interface_type = type;
521 }
522
523 /**
524 * Change this->interface_type on a variable that previously had a
525 * different, and incompatible, interface_type. This is used during
526 * compilation to handle redeclaration of the built-in gl_PerVertex
527 * interface block.
528 */
reinit_interface_type(const struct glsl_type * type)529 void reinit_interface_type(const struct glsl_type *type)
530 {
531 if (this->u.max_ifc_array_access != NULL) {
532 #ifndef NDEBUG
533 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
534 * it defines have been accessed yet; so it's safe to throw away the
535 * old max_ifc_array_access pointer, since all of its values are
536 * zero.
537 */
538 for (unsigned i = 0; i < this->interface_type->length; i++)
539 assert(this->u.max_ifc_array_access[i] == -1);
540 #endif
541 ralloc_free(this->u.max_ifc_array_access);
542 this->u.max_ifc_array_access = NULL;
543 }
544 this->interface_type = NULL;
545 init_interface_type(type);
546 }
547
get_interface_type()548 const glsl_type *get_interface_type() const
549 {
550 return this->interface_type;
551 }
552
get_interface_type_packing()553 enum glsl_interface_packing get_interface_type_packing() const
554 {
555 return this->interface_type->get_interface_packing();
556 }
557 /**
558 * Get the max_ifc_array_access pointer
559 *
560 * A "set" function is not needed because the array is dynmically allocated
561 * as necessary.
562 */
get_max_ifc_array_access()563 inline int *get_max_ifc_array_access()
564 {
565 assert(this->data._num_state_slots == 0);
566 return this->u.max_ifc_array_access;
567 }
568
get_num_state_slots()569 inline unsigned get_num_state_slots() const
570 {
571 assert(!this->is_interface_instance()
572 || this->data._num_state_slots == 0);
573 return this->data._num_state_slots;
574 }
575
set_num_state_slots(unsigned n)576 inline void set_num_state_slots(unsigned n)
577 {
578 assert(!this->is_interface_instance()
579 || n == 0);
580 this->data._num_state_slots = n;
581 }
582
get_state_slots()583 inline ir_state_slot *get_state_slots()
584 {
585 return this->is_interface_instance() ? NULL : this->u.state_slots;
586 }
587
get_state_slots()588 inline const ir_state_slot *get_state_slots() const
589 {
590 return this->is_interface_instance() ? NULL : this->u.state_slots;
591 }
592
allocate_state_slots(unsigned n)593 inline ir_state_slot *allocate_state_slots(unsigned n)
594 {
595 assert(!this->is_interface_instance());
596
597 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
598 this->data._num_state_slots = 0;
599
600 if (this->u.state_slots != NULL)
601 this->data._num_state_slots = n;
602
603 return this->u.state_slots;
604 }
605
is_interpolation_flat()606 inline bool is_interpolation_flat() const
607 {
608 return this->data.interpolation == INTERP_MODE_FLAT ||
609 this->type->contains_integer() ||
610 this->type->contains_double();
611 }
612
is_name_ralloced()613 inline bool is_name_ralloced() const
614 {
615 return this->name != ir_variable::tmp_name &&
616 this->name != this->name_storage;
617 }
618
619 /**
620 * Enable emitting extension warnings for this variable
621 */
622 void enable_extension_warning(const char *extension);
623
624 /**
625 * Get the extension warning string for this variable
626 *
627 * If warnings are not enabled, \c NULL is returned.
628 */
629 const char *get_extension_warning() const;
630
631 /**
632 * Declared type of the variable
633 */
634 const struct glsl_type *type;
635
636 /**
637 * Declared name of the variable
638 */
639 const char *name;
640
641 private:
642 /**
643 * If the name length fits into name_storage, it's used, otherwise
644 * the name is ralloc'd. shader-db mining showed that 70% of variables
645 * fit here. This is a win over ralloc where only ralloc_header has
646 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
647 */
648 char name_storage[16];
649
650 public:
651 struct ir_variable_data {
652
653 /**
654 * Is the variable read-only?
655 *
656 * This is set for variables declared as \c const, shader inputs,
657 * and uniforms.
658 */
659 unsigned read_only:1;
660 unsigned centroid:1;
661 unsigned sample:1;
662 unsigned patch:1;
663 /**
664 * Was an 'invariant' qualifier explicitly set in the shader?
665 *
666 * This is used to cross validate qualifiers.
667 */
668 unsigned explicit_invariant:1;
669 /**
670 * Is the variable invariant?
671 *
672 * It can happen either by having the 'invariant' qualifier
673 * explicitly set in the shader or by being used in calculations
674 * of other invariant variables.
675 */
676 unsigned invariant:1;
677 unsigned precise:1;
678
679 /**
680 * Has this variable been used for reading or writing?
681 *
682 * Several GLSL semantic checks require knowledge of whether or not a
683 * variable has been used. For example, it is an error to redeclare a
684 * variable as invariant after it has been used.
685 *
686 * This is maintained in the ast_to_hir.cpp path and during linking,
687 * but not in Mesa's fixed function or ARB program paths.
688 */
689 unsigned used:1;
690
691 /**
692 * Has this variable been statically assigned?
693 *
694 * This answers whether the variable was assigned in any path of
695 * the shader during ast_to_hir. This doesn't answer whether it is
696 * still written after dead code removal, nor is it maintained in
697 * non-ast_to_hir.cpp (GLSL parsing) paths.
698 */
699 unsigned assigned:1;
700
701 /**
702 * When separate shader programs are enabled, only input/outputs between
703 * the stages of a multi-stage separate program can be safely removed
704 * from the shader interface. Other input/outputs must remains active.
705 */
706 unsigned always_active_io:1;
707
708 /**
709 * Enum indicating how the variable was declared. See
710 * ir_var_declaration_type.
711 *
712 * This is used to detect certain kinds of illegal variable redeclarations.
713 */
714 unsigned how_declared:2;
715
716 /**
717 * Storage class of the variable.
718 *
719 * \sa ir_variable_mode
720 */
721 unsigned mode:4;
722
723 /**
724 * Interpolation mode for shader inputs / outputs
725 *
726 * \sa glsl_interp_mode
727 */
728 unsigned interpolation:2;
729
730 /**
731 * Was the location explicitly set in the shader?
732 *
733 * If the location is explicitly set in the shader, it \b cannot be changed
734 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
735 * no effect).
736 */
737 unsigned explicit_location:1;
738 unsigned explicit_index:1;
739
740 /**
741 * Was an initial binding explicitly set in the shader?
742 *
743 * If so, constant_value contains an integer ir_constant representing the
744 * initial binding point.
745 */
746 unsigned explicit_binding:1;
747
748 /**
749 * Was an initial component explicitly set in the shader?
750 */
751 unsigned explicit_component:1;
752
753 /**
754 * Does this variable have an initializer?
755 *
756 * This is used by the linker to cross-validiate initializers of global
757 * variables.
758 */
759 unsigned has_initializer:1;
760
761 /**
762 * Is the initializer created by the compiler (glsl_zero_init)
763 */
764 unsigned is_implicit_initializer:1;
765
766 /**
767 * Is this variable a generic output or input that has not yet been matched
768 * up to a variable in another stage of the pipeline?
769 *
770 * This is used by the linker as scratch storage while assigning locations
771 * to generic inputs and outputs.
772 */
773 unsigned is_unmatched_generic_inout:1;
774
775 /**
776 * Is this varying used by transform feedback?
777 *
778 * This is used by the linker to decide if it's safe to pack the varying.
779 */
780 unsigned is_xfb:1;
781
782 /**
783 * Is this varying used only by transform feedback?
784 *
785 * This is used by the linker to decide if its safe to pack the varying.
786 */
787 unsigned is_xfb_only:1;
788
789 /**
790 * Was a transform feedback buffer set in the shader?
791 */
792 unsigned explicit_xfb_buffer:1;
793
794 /**
795 * Was a transform feedback offset set in the shader?
796 */
797 unsigned explicit_xfb_offset:1;
798
799 /**
800 * Was a transform feedback stride set in the shader?
801 */
802 unsigned explicit_xfb_stride:1;
803
804 /**
805 * If non-zero, then this variable may be packed along with other variables
806 * into a single varying slot, so this offset should be applied when
807 * accessing components. For example, an offset of 1 means that the x
808 * component of this variable is actually stored in component y of the
809 * location specified by \c location.
810 */
811 unsigned location_frac:2;
812
813 /**
814 * Layout of the matrix. Uses glsl_matrix_layout values.
815 */
816 unsigned matrix_layout:2;
817
818 /**
819 * Non-zero if this variable was created by lowering a named interface
820 * block.
821 */
822 unsigned from_named_ifc_block:1;
823
824 /**
825 * Non-zero if the variable must be a shader input. This is useful for
826 * constraints on function parameters.
827 */
828 unsigned must_be_shader_input:1;
829
830 /**
831 * Output index for dual source blending.
832 *
833 * \note
834 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
835 * source blending.
836 */
837 unsigned index:1;
838
839 /**
840 * Precision qualifier.
841 *
842 * In desktop GLSL we do not care about precision qualifiers at all, in
843 * fact, the spec says that precision qualifiers are ignored.
844 *
845 * To make things easy, we make it so that this field is always
846 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
847 * have the same precision value and the checks we add in the compiler
848 * for this field will never break a desktop shader compile.
849 */
850 unsigned precision:2;
851
852 /**
853 * \brief Layout qualifier for gl_FragDepth.
854 *
855 * This is not equal to \c ir_depth_layout_none if and only if this
856 * variable is \c gl_FragDepth and a layout qualifier is specified.
857 */
858 ir_depth_layout depth_layout:3;
859
860 /**
861 * Memory qualifiers.
862 */
863 unsigned memory_read_only:1; /**< "readonly" qualifier. */
864 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
865 unsigned memory_coherent:1;
866 unsigned memory_volatile:1;
867 unsigned memory_restrict:1;
868
869 /**
870 * ARB_shader_storage_buffer_object
871 */
872 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
873
874 unsigned implicit_sized_array:1;
875
876 /**
877 * Whether this is a fragment shader output implicitly initialized with
878 * the previous contents of the specified render target at the
879 * framebuffer location corresponding to this shader invocation.
880 */
881 unsigned fb_fetch_output:1;
882
883 /**
884 * Non-zero if this variable is considered bindless as defined by
885 * ARB_bindless_texture.
886 */
887 unsigned bindless:1;
888
889 /**
890 * Non-zero if this variable is considered bound as defined by
891 * ARB_bindless_texture.
892 */
893 unsigned bound:1;
894
895 /**
896 * Emit a warning if this variable is accessed.
897 */
898 private:
899 uint8_t warn_extension_index;
900
901 public:
902 /**
903 * Image internal format if specified explicitly, otherwise
904 * PIPE_FORMAT_NONE.
905 */
906 enum pipe_format image_format;
907
908 private:
909 /**
910 * Number of state slots used
911 *
912 * \note
913 * This could be stored in as few as 7-bits, if necessary. If it is made
914 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
915 * be safe.
916 */
917 uint16_t _num_state_slots;
918
919 public:
920 /**
921 * Initial binding point for a sampler, atomic, or UBO.
922 *
923 * For array types, this represents the binding point for the first element.
924 */
925 uint16_t binding;
926
927 /**
928 * Storage location of the base of this variable
929 *
930 * The precise meaning of this field depends on the nature of the variable.
931 *
932 * - Vertex shader input: one of the values from \c gl_vert_attrib.
933 * - Vertex shader output: one of the values from \c gl_varying_slot.
934 * - Geometry shader input: one of the values from \c gl_varying_slot.
935 * - Geometry shader output: one of the values from \c gl_varying_slot.
936 * - Fragment shader input: one of the values from \c gl_varying_slot.
937 * - Fragment shader output: one of the values from \c gl_frag_result.
938 * - Uniforms: Per-stage uniform slot number for default uniform block.
939 * - Uniforms: Index within the uniform block definition for UBO members.
940 * - Non-UBO Uniforms: explicit location until linking then reused to
941 * store uniform slot number.
942 * - Other: This field is not currently used.
943 *
944 * If the variable is a uniform, shader input, or shader output, and the
945 * slot has not been assigned, the value will be -1.
946 */
947 int location;
948
949 /**
950 * for glsl->tgsi/mesa IR we need to store the index into the
951 * parameters for uniforms, initially the code overloaded location
952 * but this causes problems with indirect samplers and AoA.
953 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
954 */
955 int param_index;
956
957 /**
958 * Vertex stream output identifier.
959 *
960 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
961 * stream of the i-th component.
962 */
963 unsigned stream;
964
965 /**
966 * Atomic, transform feedback or block member offset.
967 */
968 unsigned offset;
969
970 /**
971 * Highest element accessed with a constant expression array index
972 *
973 * Not used for non-array variables. -1 is never accessed.
974 */
975 int max_array_access;
976
977 /**
978 * Transform feedback buffer.
979 */
980 unsigned xfb_buffer;
981
982 /**
983 * Transform feedback stride.
984 */
985 unsigned xfb_stride;
986
987 /**
988 * Allow (only) ir_variable direct access private members.
989 */
990 friend class ir_variable;
991 } data;
992
993 /**
994 * Value assigned in the initializer of a variable declared "const"
995 */
996 ir_constant *constant_value;
997
998 /**
999 * Constant expression assigned in the initializer of the variable
1000 *
1001 * \warning
1002 * This field and \c ::constant_value are distinct. Even if the two fields
1003 * refer to constants with the same value, they must point to separate
1004 * objects.
1005 */
1006 ir_constant *constant_initializer;
1007
1008 private:
1009 static const char *const warn_extension_table[];
1010
1011 union {
1012 /**
1013 * For variables which satisfy the is_interface_instance() predicate,
1014 * this points to an array of integers such that if the ith member of
1015 * the interface block is an array, max_ifc_array_access[i] is the
1016 * maximum array element of that member that has been accessed. If the
1017 * ith member of the interface block is not an array,
1018 * max_ifc_array_access[i] is unused.
1019 *
1020 * For variables whose type is not an interface block, this pointer is
1021 * NULL.
1022 */
1023 int *max_ifc_array_access;
1024
1025 /**
1026 * Built-in state that backs this uniform
1027 *
1028 * Once set at variable creation, \c state_slots must remain invariant.
1029 *
1030 * If the variable is not a uniform, \c _num_state_slots will be zero
1031 * and \c state_slots will be \c NULL.
1032 */
1033 ir_state_slot *state_slots;
1034 } u;
1035
1036 /**
1037 * For variables that are in an interface block or are an instance of an
1038 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1039 *
1040 * \sa ir_variable::location
1041 */
1042 const glsl_type *interface_type;
1043
1044 /**
1045 * Name used for anonymous compiler temporaries
1046 */
1047 static const char tmp_name[];
1048
1049 public:
1050 /**
1051 * Should the construct keep names for ir_var_temporary variables?
1052 *
1053 * When this global is false, names passed to the constructor for
1054 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1055 * be named "compiler_temp". This name will be in static storage.
1056 *
1057 * \warning
1058 * \b NEVER change the mode of an \c ir_var_temporary.
1059 *
1060 * \warning
1061 * This variable is \b not thread-safe. It is global, \b not
1062 * per-context. It begins life false. A context can, at some point, make
1063 * it true. From that point on, it will be true forever. This should be
1064 * okay since it will only be set true while debugging.
1065 */
1066 static bool temporaries_allocate_names;
1067 };
1068
1069 /**
1070 * A function that returns whether a built-in function is available in the
1071 * current shading language (based on version, ES or desktop, and extensions).
1072 */
1073 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1074
1075 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1076 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1077
1078 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1079 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1080
1081 enum ir_intrinsic_id {
1082 ir_intrinsic_invalid = 0,
1083
1084 /**
1085 * \name Generic intrinsics
1086 *
1087 * Each of these intrinsics has a specific version for shared variables and
1088 * SSBOs.
1089 */
1090 /*@{*/
1091 ir_intrinsic_generic_load,
1092 ir_intrinsic_generic_store,
1093 ir_intrinsic_generic_atomic_add,
1094 ir_intrinsic_generic_atomic_and,
1095 ir_intrinsic_generic_atomic_or,
1096 ir_intrinsic_generic_atomic_xor,
1097 ir_intrinsic_generic_atomic_min,
1098 ir_intrinsic_generic_atomic_max,
1099 ir_intrinsic_generic_atomic_exchange,
1100 ir_intrinsic_generic_atomic_comp_swap,
1101 /*@}*/
1102
1103 ir_intrinsic_atomic_counter_read,
1104 ir_intrinsic_atomic_counter_increment,
1105 ir_intrinsic_atomic_counter_predecrement,
1106 ir_intrinsic_atomic_counter_add,
1107 ir_intrinsic_atomic_counter_and,
1108 ir_intrinsic_atomic_counter_or,
1109 ir_intrinsic_atomic_counter_xor,
1110 ir_intrinsic_atomic_counter_min,
1111 ir_intrinsic_atomic_counter_max,
1112 ir_intrinsic_atomic_counter_exchange,
1113 ir_intrinsic_atomic_counter_comp_swap,
1114
1115 ir_intrinsic_image_load,
1116 ir_intrinsic_image_store,
1117 ir_intrinsic_image_atomic_add,
1118 ir_intrinsic_image_atomic_and,
1119 ir_intrinsic_image_atomic_or,
1120 ir_intrinsic_image_atomic_xor,
1121 ir_intrinsic_image_atomic_min,
1122 ir_intrinsic_image_atomic_max,
1123 ir_intrinsic_image_atomic_exchange,
1124 ir_intrinsic_image_atomic_comp_swap,
1125 ir_intrinsic_image_size,
1126 ir_intrinsic_image_samples,
1127 ir_intrinsic_image_atomic_inc_wrap,
1128 ir_intrinsic_image_atomic_dec_wrap,
1129
1130 ir_intrinsic_ssbo_load,
1131 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1132 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1133 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1134 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1135 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1136 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1137 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1138 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1139 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1140
1141 ir_intrinsic_memory_barrier,
1142 ir_intrinsic_shader_clock,
1143 ir_intrinsic_group_memory_barrier,
1144 ir_intrinsic_memory_barrier_atomic_counter,
1145 ir_intrinsic_memory_barrier_buffer,
1146 ir_intrinsic_memory_barrier_image,
1147 ir_intrinsic_memory_barrier_shared,
1148 ir_intrinsic_begin_invocation_interlock,
1149 ir_intrinsic_end_invocation_interlock,
1150
1151 ir_intrinsic_vote_all,
1152 ir_intrinsic_vote_any,
1153 ir_intrinsic_vote_eq,
1154 ir_intrinsic_ballot,
1155 ir_intrinsic_read_invocation,
1156 ir_intrinsic_read_first_invocation,
1157
1158 ir_intrinsic_helper_invocation,
1159
1160 ir_intrinsic_shared_load,
1161 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1162 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1163 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1164 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1165 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1166 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1167 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1168 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1169 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1170 };
1171
1172 /*@{*/
1173 /**
1174 * The representation of a function instance; may be the full definition or
1175 * simply a prototype.
1176 */
1177 class ir_function_signature : public ir_instruction {
1178 /* An ir_function_signature will be part of the list of signatures in
1179 * an ir_function.
1180 */
1181 public:
1182 ir_function_signature(const glsl_type *return_type,
1183 builtin_available_predicate builtin_avail = NULL);
1184
1185 virtual ir_function_signature *clone(void *mem_ctx,
1186 struct hash_table *ht) const;
1187 ir_function_signature *clone_prototype(void *mem_ctx,
1188 struct hash_table *ht) const;
1189
accept(ir_visitor * v)1190 virtual void accept(ir_visitor *v)
1191 {
1192 v->visit(this);
1193 }
1194
1195 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1196
1197 /**
1198 * Attempt to evaluate this function as a constant expression,
1199 * given a list of the actual parameters and the variable context.
1200 * Returns NULL for non-built-ins.
1201 */
1202 ir_constant *constant_expression_value(void *mem_ctx,
1203 exec_list *actual_parameters,
1204 struct hash_table *variable_context);
1205
1206 /**
1207 * Get the name of the function for which this is a signature
1208 */
1209 const char *function_name() const;
1210
1211 /**
1212 * Get a handle to the function for which this is a signature
1213 *
1214 * There is no setter function, this function returns a \c const pointer,
1215 * and \c ir_function_signature::_function is private for a reason. The
1216 * only way to make a connection between a function and function signature
1217 * is via \c ir_function::add_signature. This helps ensure that certain
1218 * invariants (i.e., a function signature is in the list of signatures for
1219 * its \c _function) are met.
1220 *
1221 * \sa ir_function::add_signature
1222 */
function()1223 inline const class ir_function *function() const
1224 {
1225 return this->_function;
1226 }
1227
1228 /**
1229 * Check whether the qualifiers match between this signature's parameters
1230 * and the supplied parameter list. If not, returns the name of the first
1231 * parameter with mismatched qualifiers (for use in error messages).
1232 */
1233 const char *qualifiers_match(exec_list *params);
1234
1235 /**
1236 * Replace the current parameter list with the given one. This is useful
1237 * if the current information came from a prototype, and either has invalid
1238 * or missing parameter names.
1239 */
1240 void replace_parameters(exec_list *new_params);
1241
1242 /**
1243 * Function return type.
1244 *
1245 * \note The precision qualifier is stored separately in return_precision.
1246 */
1247 const struct glsl_type *return_type;
1248
1249 /**
1250 * List of ir_variable of function parameters.
1251 *
1252 * This represents the storage. The paramaters passed in a particular
1253 * call will be in ir_call::actual_paramaters.
1254 */
1255 struct exec_list parameters;
1256
1257 /** Whether or not this function has a body (which may be empty). */
1258 unsigned is_defined:1;
1259
1260 /*
1261 * Precision qualifier for the return type.
1262 *
1263 * See the comment for ir_variable_data::precision for more details.
1264 */
1265 unsigned return_precision:2;
1266
1267 /** Whether or not this function signature is a built-in. */
1268 bool is_builtin() const;
1269
1270 /**
1271 * Whether or not this function is an intrinsic to be implemented
1272 * by the driver.
1273 */
is_intrinsic()1274 inline bool is_intrinsic() const
1275 {
1276 return intrinsic_id != ir_intrinsic_invalid;
1277 }
1278
1279 /** Indentifier for this intrinsic. */
1280 enum ir_intrinsic_id intrinsic_id;
1281
1282 /** Whether or not a built-in is available for this shader. */
1283 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1284
1285 /** Body of instructions in the function. */
1286 struct exec_list body;
1287
1288 private:
1289 /**
1290 * A function pointer to a predicate that answers whether a built-in
1291 * function is available in the current shader. NULL if not a built-in.
1292 */
1293 builtin_available_predicate builtin_avail;
1294
1295 /** Function of which this signature is one overload. */
1296 class ir_function *_function;
1297
1298 /** Function signature of which this one is a prototype clone */
1299 const ir_function_signature *origin;
1300
1301 friend class ir_function;
1302
1303 /**
1304 * Helper function to run a list of instructions for constant
1305 * expression evaluation.
1306 *
1307 * The hash table represents the values of the visible variables.
1308 * There are no scoping issues because the table is indexed on
1309 * ir_variable pointers, not variable names.
1310 *
1311 * Returns false if the expression is not constant, true otherwise,
1312 * and the value in *result if result is non-NULL.
1313 */
1314 bool constant_expression_evaluate_expression_list(void *mem_ctx,
1315 const struct exec_list &body,
1316 struct hash_table *variable_context,
1317 ir_constant **result);
1318 };
1319
1320
1321 /**
1322 * Header for tracking multiple overloaded functions with the same name.
1323 * Contains a list of ir_function_signatures representing each of the
1324 * actual functions.
1325 */
1326 class ir_function : public ir_instruction {
1327 public:
1328 ir_function(const char *name);
1329
1330 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1331
accept(ir_visitor * v)1332 virtual void accept(ir_visitor *v)
1333 {
1334 v->visit(this);
1335 }
1336
1337 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1338
add_signature(ir_function_signature * sig)1339 void add_signature(ir_function_signature *sig)
1340 {
1341 sig->_function = this;
1342 this->signatures.push_tail(sig);
1343 }
1344
1345 /**
1346 * Find a signature that matches a set of actual parameters, taking implicit
1347 * conversions into account. Also flags whether the match was exact.
1348 */
1349 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1350 const exec_list *actual_param,
1351 bool allow_builtins,
1352 bool *match_is_exact);
1353
1354 /**
1355 * Find a signature that matches a set of actual parameters, taking implicit
1356 * conversions into account.
1357 */
1358 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1359 const exec_list *actual_param,
1360 bool allow_builtins);
1361
1362 /**
1363 * Find a signature that exactly matches a set of actual parameters without
1364 * any implicit type conversions.
1365 */
1366 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1367 const exec_list *actual_ps);
1368
1369 /**
1370 * Name of the function.
1371 */
1372 const char *name;
1373
1374 /** Whether or not this function has a signature that isn't a built-in. */
1375 bool has_user_signature();
1376
1377 /**
1378 * List of ir_function_signature for each overloaded function with this name.
1379 */
1380 struct exec_list signatures;
1381
1382 /**
1383 * is this function a subroutine type declaration
1384 * e.g. subroutine void type1(float arg1);
1385 */
1386 bool is_subroutine;
1387
1388 /**
1389 * is this function associated to a subroutine type
1390 * e.g. subroutine (type1, type2) function_name { function_body };
1391 * would have num_subroutine_types 2,
1392 * and pointers to the type1 and type2 types.
1393 */
1394 int num_subroutine_types;
1395 const struct glsl_type **subroutine_types;
1396
1397 int subroutine_index;
1398 };
1399
function_name()1400 inline const char *ir_function_signature::function_name() const
1401 {
1402 return this->_function->name;
1403 }
1404 /*@}*/
1405
1406
1407 /**
1408 * IR instruction representing high-level if-statements
1409 */
1410 class ir_if : public ir_instruction {
1411 public:
ir_if(ir_rvalue * condition)1412 ir_if(ir_rvalue *condition)
1413 : ir_instruction(ir_type_if), condition(condition)
1414 {
1415 }
1416
1417 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1418
accept(ir_visitor * v)1419 virtual void accept(ir_visitor *v)
1420 {
1421 v->visit(this);
1422 }
1423
1424 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1425
1426 ir_rvalue *condition;
1427 /** List of ir_instruction for the body of the then branch */
1428 exec_list then_instructions;
1429 /** List of ir_instruction for the body of the else branch */
1430 exec_list else_instructions;
1431 };
1432
1433
1434 /**
1435 * IR instruction representing a high-level loop structure.
1436 */
1437 class ir_loop : public ir_instruction {
1438 public:
1439 ir_loop();
1440
1441 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1442
accept(ir_visitor * v)1443 virtual void accept(ir_visitor *v)
1444 {
1445 v->visit(this);
1446 }
1447
1448 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1449
1450 /** List of ir_instruction that make up the body of the loop. */
1451 exec_list body_instructions;
1452 };
1453
1454
1455 class ir_assignment : public ir_instruction {
1456 public:
1457 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1458
1459 /**
1460 * Construct an assignment with an explicit write mask
1461 *
1462 * \note
1463 * Since a write mask is supplied, the LHS must already be a bare
1464 * \c ir_dereference. The cannot be any swizzles in the LHS.
1465 */
1466 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1467 unsigned write_mask);
1468
1469 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1470
1471 virtual ir_constant *constant_expression_value(void *mem_ctx,
1472 struct hash_table *variable_context = NULL);
1473
accept(ir_visitor * v)1474 virtual void accept(ir_visitor *v)
1475 {
1476 v->visit(this);
1477 }
1478
1479 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1480
1481 /**
1482 * Get a whole variable written by an assignment
1483 *
1484 * If the LHS of the assignment writes a whole variable, the variable is
1485 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1486 * assignment are:
1487 *
1488 * - Assigning to a scalar
1489 * - Assigning to all components of a vector
1490 * - Whole array (or matrix) assignment
1491 * - Whole structure assignment
1492 */
1493 ir_variable *whole_variable_written();
1494
1495 /**
1496 * Set the LHS of an assignment
1497 */
1498 void set_lhs(ir_rvalue *lhs);
1499
1500 /**
1501 * Left-hand side of the assignment.
1502 *
1503 * This should be treated as read only. If you need to set the LHS of an
1504 * assignment, use \c ir_assignment::set_lhs.
1505 */
1506 ir_dereference *lhs;
1507
1508 /**
1509 * Value being assigned
1510 */
1511 ir_rvalue *rhs;
1512
1513 /**
1514 * Optional condition for the assignment.
1515 */
1516 ir_rvalue *condition;
1517
1518
1519 /**
1520 * Component mask written
1521 *
1522 * For non-vector types in the LHS, this field will be zero. For vector
1523 * types, a bit will be set for each component that is written. Note that
1524 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1525 *
1526 * A partially-set write mask means that each enabled channel gets
1527 * the value from a consecutive channel of the rhs. For example,
1528 * to write just .xyw of gl_FrontColor with color:
1529 *
1530 * (assign (constant bool (1)) (xyw)
1531 * (var_ref gl_FragColor)
1532 * (swiz xyw (var_ref color)))
1533 */
1534 unsigned write_mask:4;
1535 };
1536
1537 #include "ir_expression_operation.h"
1538
1539 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1540 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1541
1542 class ir_expression : public ir_rvalue {
1543 public:
1544 ir_expression(int op, const struct glsl_type *type,
1545 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1546 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1547
1548 /**
1549 * Constructor for unary operation expressions
1550 */
1551 ir_expression(int op, ir_rvalue *);
1552
1553 /**
1554 * Constructor for binary operation expressions
1555 */
1556 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1557
1558 /**
1559 * Constructor for ternary operation expressions
1560 */
1561 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1562
1563 virtual bool equals(const ir_instruction *ir,
1564 enum ir_node_type ignore = ir_type_unset) const;
1565
1566 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1567
1568 /**
1569 * Attempt to constant-fold the expression
1570 *
1571 * The "variable_context" hash table links ir_variable * to ir_constant *
1572 * that represent the variables' values. \c NULL represents an empty
1573 * context.
1574 *
1575 * If the expression cannot be constant folded, this method will return
1576 * \c NULL.
1577 */
1578 virtual ir_constant *constant_expression_value(void *mem_ctx,
1579 struct hash_table *variable_context = NULL);
1580
1581 /**
1582 * This is only here for ir_reader to used for testing purposes please use
1583 * the precomputed num_operands field if you need the number of operands.
1584 */
1585 static unsigned get_num_operands(ir_expression_operation);
1586
1587 /**
1588 * Return whether the expression operates on vectors horizontally.
1589 */
is_horizontal()1590 bool is_horizontal() const
1591 {
1592 return operation == ir_binop_all_equal ||
1593 operation == ir_binop_any_nequal ||
1594 operation == ir_binop_dot ||
1595 operation == ir_binop_vector_extract ||
1596 operation == ir_triop_vector_insert ||
1597 operation == ir_binop_ubo_load ||
1598 operation == ir_quadop_vector;
1599 }
1600
1601 /**
1602 * Do a reverse-lookup to translate the given string into an operator.
1603 */
1604 static ir_expression_operation get_operator(const char *);
1605
accept(ir_visitor * v)1606 virtual void accept(ir_visitor *v)
1607 {
1608 v->visit(this);
1609 }
1610
1611 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1612
1613 virtual ir_variable *variable_referenced() const;
1614
1615 /**
1616 * Determine the number of operands used by an expression
1617 */
init_num_operands()1618 void init_num_operands()
1619 {
1620 if (operation == ir_quadop_vector) {
1621 num_operands = this->type->vector_elements;
1622 } else {
1623 num_operands = get_num_operands(operation);
1624 }
1625 }
1626
1627 ir_expression_operation operation;
1628 ir_rvalue *operands[4];
1629 uint8_t num_operands;
1630 };
1631
1632
1633 /**
1634 * HIR instruction representing a high-level function call, containing a list
1635 * of parameters and returning a value in the supplied temporary.
1636 */
1637 class ir_call : public ir_instruction {
1638 public:
ir_call(ir_function_signature * callee,ir_dereference_variable * return_deref,exec_list * actual_parameters)1639 ir_call(ir_function_signature *callee,
1640 ir_dereference_variable *return_deref,
1641 exec_list *actual_parameters)
1642 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1643 {
1644 assert(callee->return_type != NULL);
1645 actual_parameters->move_nodes_to(& this->actual_parameters);
1646 }
1647
ir_call(ir_function_signature * callee,ir_dereference_variable * return_deref,exec_list * actual_parameters,ir_variable * var,ir_rvalue * array_idx)1648 ir_call(ir_function_signature *callee,
1649 ir_dereference_variable *return_deref,
1650 exec_list *actual_parameters,
1651 ir_variable *var, ir_rvalue *array_idx)
1652 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1653 {
1654 assert(callee->return_type != NULL);
1655 actual_parameters->move_nodes_to(& this->actual_parameters);
1656 }
1657
1658 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1659
1660 virtual ir_constant *constant_expression_value(void *mem_ctx,
1661 struct hash_table *variable_context = NULL);
1662
accept(ir_visitor * v)1663 virtual void accept(ir_visitor *v)
1664 {
1665 v->visit(this);
1666 }
1667
1668 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1669
1670 /**
1671 * Get the name of the function being called.
1672 */
callee_name()1673 const char *callee_name() const
1674 {
1675 return callee->function_name();
1676 }
1677
1678 /**
1679 * Generates an inline version of the function before @ir,
1680 * storing the return value in return_deref.
1681 */
1682 void generate_inline(ir_instruction *ir);
1683
1684 /**
1685 * Storage for the function's return value.
1686 * This must be NULL if the return type is void.
1687 */
1688 ir_dereference_variable *return_deref;
1689
1690 /**
1691 * The specific function signature being called.
1692 */
1693 ir_function_signature *callee;
1694
1695 /* List of ir_rvalue of paramaters passed in this call. */
1696 exec_list actual_parameters;
1697
1698 /*
1699 * ARB_shader_subroutine support -
1700 * the subroutine uniform variable and array index
1701 * rvalue to be used in the lowering pass later.
1702 */
1703 ir_variable *sub_var;
1704 ir_rvalue *array_idx;
1705 };
1706
1707
1708 /**
1709 * \name Jump-like IR instructions.
1710 *
1711 * These include \c break, \c continue, \c return, and \c discard.
1712 */
1713 /*@{*/
1714 class ir_jump : public ir_instruction {
1715 protected:
ir_jump(enum ir_node_type t)1716 ir_jump(enum ir_node_type t)
1717 : ir_instruction(t)
1718 {
1719 }
1720 };
1721
1722 class ir_return : public ir_jump {
1723 public:
ir_return()1724 ir_return()
1725 : ir_jump(ir_type_return), value(NULL)
1726 {
1727 }
1728
ir_return(ir_rvalue * value)1729 ir_return(ir_rvalue *value)
1730 : ir_jump(ir_type_return), value(value)
1731 {
1732 }
1733
1734 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1735
get_value()1736 ir_rvalue *get_value() const
1737 {
1738 return value;
1739 }
1740
accept(ir_visitor * v)1741 virtual void accept(ir_visitor *v)
1742 {
1743 v->visit(this);
1744 }
1745
1746 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1747
1748 ir_rvalue *value;
1749 };
1750
1751
1752 /**
1753 * Jump instructions used inside loops
1754 *
1755 * These include \c break and \c continue. The \c break within a loop is
1756 * different from the \c break within a switch-statement.
1757 *
1758 * \sa ir_switch_jump
1759 */
1760 class ir_loop_jump : public ir_jump {
1761 public:
1762 enum jump_mode {
1763 jump_break,
1764 jump_continue
1765 };
1766
ir_loop_jump(jump_mode mode)1767 ir_loop_jump(jump_mode mode)
1768 : ir_jump(ir_type_loop_jump)
1769 {
1770 this->mode = mode;
1771 }
1772
1773 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1774
accept(ir_visitor * v)1775 virtual void accept(ir_visitor *v)
1776 {
1777 v->visit(this);
1778 }
1779
1780 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1781
is_break()1782 bool is_break() const
1783 {
1784 return mode == jump_break;
1785 }
1786
is_continue()1787 bool is_continue() const
1788 {
1789 return mode == jump_continue;
1790 }
1791
1792 /** Mode selector for the jump instruction. */
1793 enum jump_mode mode;
1794 };
1795
1796 /**
1797 * IR instruction representing discard statements.
1798 */
1799 class ir_discard : public ir_jump {
1800 public:
ir_discard()1801 ir_discard()
1802 : ir_jump(ir_type_discard)
1803 {
1804 this->condition = NULL;
1805 }
1806
ir_discard(ir_rvalue * cond)1807 ir_discard(ir_rvalue *cond)
1808 : ir_jump(ir_type_discard)
1809 {
1810 this->condition = cond;
1811 }
1812
1813 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1814
accept(ir_visitor * v)1815 virtual void accept(ir_visitor *v)
1816 {
1817 v->visit(this);
1818 }
1819
1820 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1821
1822 ir_rvalue *condition;
1823 };
1824 /*@}*/
1825
1826
1827 /**
1828 * IR instruction representing demote statements from
1829 * GL_EXT_demote_to_helper_invocation.
1830 */
1831 class ir_demote : public ir_instruction {
1832 public:
ir_demote()1833 ir_demote()
1834 : ir_instruction(ir_type_demote)
1835 {
1836 }
1837
1838 virtual ir_demote *clone(void *mem_ctx, struct hash_table *ht) const;
1839
accept(ir_visitor * v)1840 virtual void accept(ir_visitor *v)
1841 {
1842 v->visit(this);
1843 }
1844
1845 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1846 };
1847
1848
1849 /**
1850 * Texture sampling opcodes used in ir_texture
1851 */
1852 enum ir_texture_opcode {
1853 ir_tex, /**< Regular texture look-up */
1854 ir_txb, /**< Texture look-up with LOD bias */
1855 ir_txl, /**< Texture look-up with explicit LOD */
1856 ir_txd, /**< Texture look-up with partial derivatvies */
1857 ir_txf, /**< Texel fetch with explicit LOD */
1858 ir_txf_ms, /**< Multisample texture fetch */
1859 ir_txs, /**< Texture size */
1860 ir_lod, /**< Texture lod query */
1861 ir_tg4, /**< Texture gather */
1862 ir_query_levels, /**< Texture levels query */
1863 ir_texture_samples, /**< Texture samples query */
1864 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1865 };
1866
1867
1868 /**
1869 * IR instruction to sample a texture
1870 *
1871 * The specific form of the IR instruction depends on the \c mode value
1872 * selected from \c ir_texture_opcodes. In the printed IR, these will
1873 * appear as:
1874 *
1875 * Texel offset (0 or an expression)
1876 * | Projection divisor
1877 * | | Shadow comparator
1878 * | | |
1879 * v v v
1880 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1881 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1882 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1883 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1884 * (txf <type> <sampler> <coordinate> 0 <lod>)
1885 * (txf_ms
1886 * <type> <sampler> <coordinate> <sample_index>)
1887 * (txs <type> <sampler> <lod>)
1888 * (lod <type> <sampler> <coordinate>)
1889 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1890 * (query_levels <type> <sampler>)
1891 * (samples_identical <sampler> <coordinate>)
1892 */
1893 class ir_texture : public ir_rvalue {
1894 public:
ir_texture(enum ir_texture_opcode op)1895 ir_texture(enum ir_texture_opcode op)
1896 : ir_rvalue(ir_type_texture),
1897 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1898 shadow_comparator(NULL), offset(NULL)
1899 {
1900 memset(&lod_info, 0, sizeof(lod_info));
1901 }
1902
1903 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1904
1905 virtual ir_constant *constant_expression_value(void *mem_ctx,
1906 struct hash_table *variable_context = NULL);
1907
accept(ir_visitor * v)1908 virtual void accept(ir_visitor *v)
1909 {
1910 v->visit(this);
1911 }
1912
1913 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1914
1915 virtual bool equals(const ir_instruction *ir,
1916 enum ir_node_type ignore = ir_type_unset) const;
1917
1918 /**
1919 * Return a string representing the ir_texture_opcode.
1920 */
1921 const char *opcode_string();
1922
1923 /** Set the sampler and type. */
1924 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1925
1926 /**
1927 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1928 */
1929 static ir_texture_opcode get_opcode(const char *);
1930
1931 enum ir_texture_opcode op;
1932
1933 /** Sampler to use for the texture access. */
1934 ir_dereference *sampler;
1935
1936 /** Texture coordinate to sample */
1937 ir_rvalue *coordinate;
1938
1939 /**
1940 * Value used for projective divide.
1941 *
1942 * If there is no projective divide (the common case), this will be
1943 * \c NULL. Optimization passes should check for this to point to a constant
1944 * of 1.0 and replace that with \c NULL.
1945 */
1946 ir_rvalue *projector;
1947
1948 /**
1949 * Coordinate used for comparison on shadow look-ups.
1950 *
1951 * If there is no shadow comparison, this will be \c NULL. For the
1952 * \c ir_txf opcode, this *must* be \c NULL.
1953 */
1954 ir_rvalue *shadow_comparator;
1955
1956 /** Texel offset. */
1957 ir_rvalue *offset;
1958
1959 union {
1960 ir_rvalue *lod; /**< Floating point LOD */
1961 ir_rvalue *bias; /**< Floating point LOD bias */
1962 ir_rvalue *sample_index; /**< MSAA sample index */
1963 ir_rvalue *component; /**< Gather component selector */
1964 struct {
1965 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1966 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1967 } grad;
1968 } lod_info;
1969 };
1970
1971
1972 struct ir_swizzle_mask {
1973 unsigned x:2;
1974 unsigned y:2;
1975 unsigned z:2;
1976 unsigned w:2;
1977
1978 /**
1979 * Number of components in the swizzle.
1980 */
1981 unsigned num_components:3;
1982
1983 /**
1984 * Does the swizzle contain duplicate components?
1985 *
1986 * L-value swizzles cannot contain duplicate components.
1987 */
1988 unsigned has_duplicates:1;
1989 };
1990
1991
1992 class ir_swizzle : public ir_rvalue {
1993 public:
1994 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1995 unsigned count);
1996
1997 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1998
1999 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2000
2001 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2002
2003 virtual ir_constant *constant_expression_value(void *mem_ctx,
2004 struct hash_table *variable_context = NULL);
2005
2006 /**
2007 * Construct an ir_swizzle from the textual representation. Can fail.
2008 */
2009 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2010
accept(ir_visitor * v)2011 virtual void accept(ir_visitor *v)
2012 {
2013 v->visit(this);
2014 }
2015
2016 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2017
2018 virtual bool equals(const ir_instruction *ir,
2019 enum ir_node_type ignore = ir_type_unset) const;
2020
is_lvalue(const struct _mesa_glsl_parse_state * state)2021 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
2022 {
2023 return val->is_lvalue(state) && !mask.has_duplicates;
2024 }
2025
2026 /**
2027 * Get the variable that is ultimately referenced by an r-value
2028 */
2029 virtual ir_variable *variable_referenced() const;
2030
2031 ir_rvalue *val;
2032 ir_swizzle_mask mask;
2033
2034 private:
2035 /**
2036 * Initialize the mask component of a swizzle
2037 *
2038 * This is used by the \c ir_swizzle constructors.
2039 */
2040 void init_mask(const unsigned *components, unsigned count);
2041 };
2042
2043
2044 class ir_dereference : public ir_rvalue {
2045 public:
2046 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2047
2048 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
2049
2050 /**
2051 * Get the variable that is ultimately referenced by an r-value
2052 */
2053 virtual ir_variable *variable_referenced() const = 0;
2054
2055 /**
2056 * Get the precision. This can either come from the eventual variable that
2057 * is dereferenced, or from a record member.
2058 */
2059 virtual int precision() const = 0;
2060
2061 protected:
ir_dereference(enum ir_node_type t)2062 ir_dereference(enum ir_node_type t)
2063 : ir_rvalue(t)
2064 {
2065 }
2066 };
2067
2068
2069 class ir_dereference_variable : public ir_dereference {
2070 public:
2071 ir_dereference_variable(ir_variable *var);
2072
2073 virtual ir_dereference_variable *clone(void *mem_ctx,
2074 struct hash_table *) const;
2075
2076 virtual ir_constant *constant_expression_value(void *mem_ctx,
2077 struct hash_table *variable_context = NULL);
2078
2079 virtual bool equals(const ir_instruction *ir,
2080 enum ir_node_type ignore = ir_type_unset) const;
2081
2082 /**
2083 * Get the variable that is ultimately referenced by an r-value
2084 */
variable_referenced()2085 virtual ir_variable *variable_referenced() const
2086 {
2087 return this->var;
2088 }
2089
precision()2090 virtual int precision() const
2091 {
2092 return this->var->data.precision;
2093 }
2094
whole_variable_referenced()2095 virtual ir_variable *whole_variable_referenced()
2096 {
2097 /* ir_dereference_variable objects always dereference the entire
2098 * variable. However, if this dereference is dereferenced by anything
2099 * else, the complete deferefernce chain is not a whole-variable
2100 * dereference. This method should only be called on the top most
2101 * ir_rvalue in a dereference chain.
2102 */
2103 return this->var;
2104 }
2105
accept(ir_visitor * v)2106 virtual void accept(ir_visitor *v)
2107 {
2108 v->visit(this);
2109 }
2110
2111 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2112
2113 /**
2114 * Object being dereferenced.
2115 */
2116 ir_variable *var;
2117 };
2118
2119
2120 class ir_dereference_array : public ir_dereference {
2121 public:
2122 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2123
2124 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2125
2126 virtual ir_dereference_array *clone(void *mem_ctx,
2127 struct hash_table *) const;
2128
2129 virtual ir_constant *constant_expression_value(void *mem_ctx,
2130 struct hash_table *variable_context = NULL);
2131
2132 virtual bool equals(const ir_instruction *ir,
2133 enum ir_node_type ignore = ir_type_unset) const;
2134
2135 /**
2136 * Get the variable that is ultimately referenced by an r-value
2137 */
variable_referenced()2138 virtual ir_variable *variable_referenced() const
2139 {
2140 return this->array->variable_referenced();
2141 }
2142
precision()2143 virtual int precision() const
2144 {
2145 ir_dereference *deref = this->array->as_dereference();
2146
2147 if (deref == NULL)
2148 return GLSL_PRECISION_NONE;
2149 else
2150 return deref->precision();
2151 }
2152
accept(ir_visitor * v)2153 virtual void accept(ir_visitor *v)
2154 {
2155 v->visit(this);
2156 }
2157
2158 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2159
2160 ir_rvalue *array;
2161 ir_rvalue *array_index;
2162
2163 private:
2164 void set_array(ir_rvalue *value);
2165 };
2166
2167
2168 class ir_dereference_record : public ir_dereference {
2169 public:
2170 ir_dereference_record(ir_rvalue *value, const char *field);
2171
2172 ir_dereference_record(ir_variable *var, const char *field);
2173
2174 virtual ir_dereference_record *clone(void *mem_ctx,
2175 struct hash_table *) const;
2176
2177 virtual ir_constant *constant_expression_value(void *mem_ctx,
2178 struct hash_table *variable_context = NULL);
2179
2180 /**
2181 * Get the variable that is ultimately referenced by an r-value
2182 */
variable_referenced()2183 virtual ir_variable *variable_referenced() const
2184 {
2185 return this->record->variable_referenced();
2186 }
2187
precision()2188 virtual int precision() const
2189 {
2190 glsl_struct_field *field = record->type->fields.structure + field_idx;
2191
2192 return field->precision;
2193 }
2194
accept(ir_visitor * v)2195 virtual void accept(ir_visitor *v)
2196 {
2197 v->visit(this);
2198 }
2199
2200 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2201
2202 ir_rvalue *record;
2203 int field_idx;
2204 };
2205
2206
2207 /**
2208 * Data stored in an ir_constant
2209 */
2210 union ir_constant_data {
2211 unsigned u[16];
2212 int i[16];
2213 float f[16];
2214 bool b[16];
2215 double d[16];
2216 uint16_t f16[16];
2217 uint16_t u16[16];
2218 int16_t i16[16];
2219 uint64_t u64[16];
2220 int64_t i64[16];
2221 };
2222
2223
2224 class ir_constant : public ir_rvalue {
2225 public:
2226 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2227 ir_constant(bool b, unsigned vector_elements=1);
2228 ir_constant(int16_t i16, unsigned vector_elements=1);
2229 ir_constant(uint16_t u16, unsigned vector_elements=1);
2230 ir_constant(unsigned int u, unsigned vector_elements=1);
2231 ir_constant(int i, unsigned vector_elements=1);
2232 ir_constant(float16_t f16, unsigned vector_elements=1);
2233 ir_constant(float f, unsigned vector_elements=1);
2234 ir_constant(double d, unsigned vector_elements=1);
2235 ir_constant(uint64_t u64, unsigned vector_elements=1);
2236 ir_constant(int64_t i64, unsigned vector_elements=1);
2237
2238 /**
2239 * Construct an ir_constant from a list of ir_constant values
2240 */
2241 ir_constant(const struct glsl_type *type, exec_list *values);
2242
2243 /**
2244 * Construct an ir_constant from a scalar component of another ir_constant
2245 *
2246 * The new \c ir_constant inherits the type of the component from the
2247 * source constant.
2248 *
2249 * \note
2250 * In the case of a matrix constant, the new constant is a scalar, \b not
2251 * a vector.
2252 */
2253 ir_constant(const ir_constant *c, unsigned i);
2254
2255 /**
2256 * Return a new ir_constant of the specified type containing all zeros.
2257 */
2258 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2259
2260 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2261
2262 virtual ir_constant *constant_expression_value(void *mem_ctx,
2263 struct hash_table *variable_context = NULL);
2264
accept(ir_visitor * v)2265 virtual void accept(ir_visitor *v)
2266 {
2267 v->visit(this);
2268 }
2269
2270 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2271
2272 virtual bool equals(const ir_instruction *ir,
2273 enum ir_node_type ignore = ir_type_unset) const;
2274
2275 /**
2276 * Get a particular component of a constant as a specific type
2277 *
2278 * This is useful, for example, to get a value from an integer constant
2279 * as a float or bool. This appears frequently when constructors are
2280 * called with all constant parameters.
2281 */
2282 /*@{*/
2283 bool get_bool_component(unsigned i) const;
2284 float get_float_component(unsigned i) const;
2285 uint16_t get_float16_component(unsigned i) const;
2286 double get_double_component(unsigned i) const;
2287 int16_t get_int16_component(unsigned i) const;
2288 uint16_t get_uint16_component(unsigned i) const;
2289 int get_int_component(unsigned i) const;
2290 unsigned get_uint_component(unsigned i) const;
2291 int64_t get_int64_component(unsigned i) const;
2292 uint64_t get_uint64_component(unsigned i) const;
2293 /*@}*/
2294
2295 ir_constant *get_array_element(unsigned i) const;
2296
2297 ir_constant *get_record_field(int idx);
2298
2299 /**
2300 * Copy the values on another constant at a given offset.
2301 *
2302 * The offset is ignored for array or struct copies, it's only for
2303 * scalars or vectors into vectors or matrices.
2304 *
2305 * With identical types on both sides and zero offset it's clone()
2306 * without creating a new object.
2307 */
2308
2309 void copy_offset(ir_constant *src, int offset);
2310
2311 /**
2312 * Copy the values on another constant at a given offset and
2313 * following an assign-like mask.
2314 *
2315 * The mask is ignored for scalars.
2316 *
2317 * Note that this function only handles what assign can handle,
2318 * i.e. at most a vector as source and a column of a matrix as
2319 * destination.
2320 */
2321
2322 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2323
2324 /**
2325 * Determine whether a constant has the same value as another constant
2326 *
2327 * \sa ir_constant::is_zero, ir_constant::is_one,
2328 * ir_constant::is_negative_one
2329 */
2330 bool has_value(const ir_constant *) const;
2331
2332 /**
2333 * Return true if this ir_constant represents the given value.
2334 *
2335 * For vectors, this checks that each component is the given value.
2336 */
2337 virtual bool is_value(float f, int i) const;
2338 virtual bool is_zero() const;
2339 virtual bool is_one() const;
2340 virtual bool is_negative_one() const;
2341
2342 /**
2343 * Return true for constants that could be stored as 16-bit unsigned values.
2344 *
2345 * Note that this will return true even for signed integer ir_constants, as
2346 * long as the value is non-negative and fits in 16-bits.
2347 */
2348 virtual bool is_uint16_constant() const;
2349
2350 /**
2351 * Value of the constant.
2352 *
2353 * The field used to back the values supplied by the constant is determined
2354 * by the type associated with the \c ir_instruction. Constants may be
2355 * scalars, vectors, or matrices.
2356 */
2357 union ir_constant_data value;
2358
2359 /* Array elements and structure fields */
2360 ir_constant **const_elements;
2361
2362 private:
2363 /**
2364 * Parameterless constructor only used by the clone method
2365 */
2366 ir_constant(void);
2367 };
2368
2369 /**
2370 * IR instruction to emit a vertex in a geometry shader.
2371 */
2372 class ir_emit_vertex : public ir_instruction {
2373 public:
ir_emit_vertex(ir_rvalue * stream)2374 ir_emit_vertex(ir_rvalue *stream)
2375 : ir_instruction(ir_type_emit_vertex),
2376 stream(stream)
2377 {
2378 assert(stream);
2379 }
2380
accept(ir_visitor * v)2381 virtual void accept(ir_visitor *v)
2382 {
2383 v->visit(this);
2384 }
2385
clone(void * mem_ctx,struct hash_table * ht)2386 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2387 {
2388 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2389 }
2390
2391 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2392
stream_id()2393 int stream_id() const
2394 {
2395 return stream->as_constant()->value.i[0];
2396 }
2397
2398 ir_rvalue *stream;
2399 };
2400
2401 /**
2402 * IR instruction to complete the current primitive and start a new one in a
2403 * geometry shader.
2404 */
2405 class ir_end_primitive : public ir_instruction {
2406 public:
ir_end_primitive(ir_rvalue * stream)2407 ir_end_primitive(ir_rvalue *stream)
2408 : ir_instruction(ir_type_end_primitive),
2409 stream(stream)
2410 {
2411 assert(stream);
2412 }
2413
accept(ir_visitor * v)2414 virtual void accept(ir_visitor *v)
2415 {
2416 v->visit(this);
2417 }
2418
clone(void * mem_ctx,struct hash_table * ht)2419 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2420 {
2421 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2422 }
2423
2424 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2425
stream_id()2426 int stream_id() const
2427 {
2428 return stream->as_constant()->value.i[0];
2429 }
2430
2431 ir_rvalue *stream;
2432 };
2433
2434 /**
2435 * IR instruction for tessellation control and compute shader barrier.
2436 */
2437 class ir_barrier : public ir_instruction {
2438 public:
ir_barrier()2439 ir_barrier()
2440 : ir_instruction(ir_type_barrier)
2441 {
2442 }
2443
accept(ir_visitor * v)2444 virtual void accept(ir_visitor *v)
2445 {
2446 v->visit(this);
2447 }
2448
clone(void * mem_ctx,struct hash_table *)2449 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2450 {
2451 return new(mem_ctx) ir_barrier();
2452 }
2453
2454 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2455 };
2456
2457 /*@}*/
2458
2459 /**
2460 * Apply a visitor to each IR node in a list
2461 */
2462 void
2463 visit_exec_list(exec_list *list, ir_visitor *visitor);
2464
2465 /**
2466 * Validate invariants on each IR node in a list
2467 */
2468 void validate_ir_tree(exec_list *instructions);
2469
2470 struct _mesa_glsl_parse_state;
2471 struct gl_shader_program;
2472
2473 /**
2474 * Detect whether an unlinked shader contains static recursion
2475 *
2476 * If the list of instructions is determined to contain static recursion,
2477 * \c _mesa_glsl_error will be called to emit error messages for each function
2478 * that is in the recursion cycle.
2479 */
2480 void
2481 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2482 exec_list *instructions);
2483
2484 /**
2485 * Detect whether a linked shader contains static recursion
2486 *
2487 * If the list of instructions is determined to contain static recursion,
2488 * \c link_error_printf will be called to emit error messages for each function
2489 * that is in the recursion cycle. In addition,
2490 * \c gl_shader_program::LinkStatus will be set to false.
2491 */
2492 void
2493 detect_recursion_linked(struct gl_shader_program *prog,
2494 exec_list *instructions);
2495
2496 /**
2497 * Make a clone of each IR instruction in a list
2498 *
2499 * \param in List of IR instructions that are to be cloned
2500 * \param out List to hold the cloned instructions
2501 */
2502 void
2503 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2504
2505 extern void
2506 _mesa_glsl_initialize_variables(exec_list *instructions,
2507 struct _mesa_glsl_parse_state *state);
2508
2509 extern void
2510 reparent_ir(exec_list *list, void *mem_ctx);
2511
2512 extern void
2513 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2514 gl_shader_stage shader_stage);
2515
2516 extern char *
2517 prototype_string(const glsl_type *return_type, const char *name,
2518 exec_list *parameters);
2519
2520 const char *
2521 mode_string(const ir_variable *var);
2522
2523 /**
2524 * Built-in / reserved GL variables names start with "gl_"
2525 */
2526 static inline bool
is_gl_identifier(const char * s)2527 is_gl_identifier(const char *s)
2528 {
2529 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2530 }
2531
2532 extern "C" {
2533 #endif /* __cplusplus */
2534
2535 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2536 struct _mesa_glsl_parse_state *state);
2537
2538 extern void
2539 fprint_ir(FILE *f, const void *instruction);
2540
2541 extern const struct gl_builtin_uniform_desc *
2542 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2543
2544 #ifdef __cplusplus
2545 } /* extern "C" */
2546 #endif
2547
2548 unsigned
2549 vertices_per_prim(GLenum prim);
2550
2551 #endif /* IR_H */
2552