1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCInstrDesc.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FormattedStream.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <cstring>
76 #include <iterator>
77 #include <utility>
78
79 using namespace llvm;
80
getMFIfAvailable(const MachineInstr & MI)81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
82 if (const MachineBasicBlock *MBB = MI.getParent())
83 if (const MachineFunction *MF = MBB->getParent())
84 return MF;
85 return nullptr;
86 }
87
88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
89 // it.
tryToGetTargetInfo(const MachineInstr & MI,const TargetRegisterInfo * & TRI,const MachineRegisterInfo * & MRI,const TargetIntrinsicInfo * & IntrinsicInfo,const TargetInstrInfo * & TII)90 static void tryToGetTargetInfo(const MachineInstr &MI,
91 const TargetRegisterInfo *&TRI,
92 const MachineRegisterInfo *&MRI,
93 const TargetIntrinsicInfo *&IntrinsicInfo,
94 const TargetInstrInfo *&TII) {
95
96 if (const MachineFunction *MF = getMFIfAvailable(MI)) {
97 TRI = MF->getSubtarget().getRegisterInfo();
98 MRI = &MF->getRegInfo();
99 IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
100 TII = MF->getSubtarget().getInstrInfo();
101 }
102 }
103
addImplicitDefUseOperands(MachineFunction & MF)104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
105 if (MCID->ImplicitDefs)
106 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
107 ++ImpDefs)
108 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
109 if (MCID->ImplicitUses)
110 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
111 ++ImpUses)
112 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
113 }
114
115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
116 /// implicit operands. It reserves space for the number of operands specified by
117 /// the MCInstrDesc.
MachineInstr(MachineFunction & MF,const MCInstrDesc & tid,DebugLoc dl,bool NoImp)118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
119 DebugLoc dl, bool NoImp)
120 : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) {
121 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
122
123 // Reserve space for the expected number of operands.
124 if (unsigned NumOps = MCID->getNumOperands() +
125 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
126 CapOperands = OperandCapacity::get(NumOps);
127 Operands = MF.allocateOperandArray(CapOperands);
128 }
129
130 if (!NoImp)
131 addImplicitDefUseOperands(MF);
132 }
133
134 /// MachineInstr ctor - Copies MachineInstr arg exactly.
135 /// Does not copy the number from debug instruction numbering, to preserve
136 /// uniqueness.
MachineInstr(MachineFunction & MF,const MachineInstr & MI)137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
138 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()),
139 DebugInstrNum(0) {
140 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
141
142 CapOperands = OperandCapacity::get(MI.getNumOperands());
143 Operands = MF.allocateOperandArray(CapOperands);
144
145 // Copy operands.
146 for (const MachineOperand &MO : MI.operands())
147 addOperand(MF, MO);
148
149 // Copy all the sensible flags.
150 setFlags(MI.Flags);
151 }
152
moveBefore(MachineInstr * MovePos)153 void MachineInstr::moveBefore(MachineInstr *MovePos) {
154 MovePos->getParent()->splice(MovePos, getParent(), getIterator());
155 }
156
157 /// getRegInfo - If this instruction is embedded into a MachineFunction,
158 /// return the MachineRegisterInfo object for the current function, otherwise
159 /// return null.
getRegInfo()160 MachineRegisterInfo *MachineInstr::getRegInfo() {
161 if (MachineBasicBlock *MBB = getParent())
162 return &MBB->getParent()->getRegInfo();
163 return nullptr;
164 }
165
166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
167 /// this instruction from their respective use lists. This requires that the
168 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists(MachineRegisterInfo & MRI)169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
170 for (MachineOperand &MO : operands())
171 if (MO.isReg())
172 MRI.removeRegOperandFromUseList(&MO);
173 }
174
175 /// AddRegOperandsToUseLists - Add all of the register operands in
176 /// this instruction from their respective use lists. This requires that the
177 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & MRI)178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
179 for (MachineOperand &MO : operands())
180 if (MO.isReg())
181 MRI.addRegOperandToUseList(&MO);
182 }
183
addOperand(const MachineOperand & Op)184 void MachineInstr::addOperand(const MachineOperand &Op) {
185 MachineBasicBlock *MBB = getParent();
186 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
187 MachineFunction *MF = MBB->getParent();
188 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
189 addOperand(*MF, Op);
190 }
191
192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
193 /// ranges. If MRI is non-null also update use-def chains.
moveOperands(MachineOperand * Dst,MachineOperand * Src,unsigned NumOps,MachineRegisterInfo * MRI)194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
195 unsigned NumOps, MachineRegisterInfo *MRI) {
196 if (MRI)
197 return MRI->moveOperands(Dst, Src, NumOps);
198 // MachineOperand is a trivially copyable type so we can just use memmove.
199 assert(Dst && Src && "Unknown operands");
200 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
201 }
202
203 /// addOperand - Add the specified operand to the instruction. If it is an
204 /// implicit operand, it is added to the end of the operand list. If it is
205 /// an explicit operand it is added at the end of the explicit operand list
206 /// (before the first implicit operand).
addOperand(MachineFunction & MF,const MachineOperand & Op)207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
208 assert(MCID && "Cannot add operands before providing an instr descriptor");
209
210 // Check if we're adding one of our existing operands.
211 if (&Op >= Operands && &Op < Operands + NumOperands) {
212 // This is unusual: MI->addOperand(MI->getOperand(i)).
213 // If adding Op requires reallocating or moving existing operands around,
214 // the Op reference could go stale. Support it by copying Op.
215 MachineOperand CopyOp(Op);
216 return addOperand(MF, CopyOp);
217 }
218
219 // Find the insert location for the new operand. Implicit registers go at
220 // the end, everything else goes before the implicit regs.
221 //
222 // FIXME: Allow mixed explicit and implicit operands on inline asm.
223 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
224 // implicit-defs, but they must not be moved around. See the FIXME in
225 // InstrEmitter.cpp.
226 unsigned OpNo = getNumOperands();
227 bool isImpReg = Op.isReg() && Op.isImplicit();
228 if (!isImpReg && !isInlineAsm()) {
229 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
230 --OpNo;
231 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
232 }
233 }
234
235 #ifndef NDEBUG
236 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
237 Op.getType() == MachineOperand::MO_MCSymbol;
238 // OpNo now points as the desired insertion point. Unless this is a variadic
239 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
240 // RegMask operands go between the explicit and implicit operands.
241 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
242 OpNo < MCID->getNumOperands() || isDebugOp) &&
243 "Trying to add an operand to a machine instr that is already done!");
244 #endif
245
246 MachineRegisterInfo *MRI = getRegInfo();
247
248 // Determine if the Operands array needs to be reallocated.
249 // Save the old capacity and operand array.
250 OperandCapacity OldCap = CapOperands;
251 MachineOperand *OldOperands = Operands;
252 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
253 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
254 Operands = MF.allocateOperandArray(CapOperands);
255 // Move the operands before the insertion point.
256 if (OpNo)
257 moveOperands(Operands, OldOperands, OpNo, MRI);
258 }
259
260 // Move the operands following the insertion point.
261 if (OpNo != NumOperands)
262 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
263 MRI);
264 ++NumOperands;
265
266 // Deallocate the old operand array.
267 if (OldOperands != Operands && OldOperands)
268 MF.deallocateOperandArray(OldCap, OldOperands);
269
270 // Copy Op into place. It still needs to be inserted into the MRI use lists.
271 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
272 NewMO->ParentMI = this;
273
274 // When adding a register operand, tell MRI about it.
275 if (NewMO->isReg()) {
276 // Ensure isOnRegUseList() returns false, regardless of Op's status.
277 NewMO->Contents.Reg.Prev = nullptr;
278 // Ignore existing ties. This is not a property that can be copied.
279 NewMO->TiedTo = 0;
280 // Add the new operand to MRI, but only for instructions in an MBB.
281 if (MRI)
282 MRI->addRegOperandToUseList(NewMO);
283 // The MCID operand information isn't accurate until we start adding
284 // explicit operands. The implicit operands are added first, then the
285 // explicits are inserted before them.
286 if (!isImpReg) {
287 // Tie uses to defs as indicated in MCInstrDesc.
288 if (NewMO->isUse()) {
289 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
290 if (DefIdx != -1)
291 tieOperands(DefIdx, OpNo);
292 }
293 // If the register operand is flagged as early, mark the operand as such.
294 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
295 NewMO->setIsEarlyClobber(true);
296 }
297 }
298 }
299
300 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
301 /// fewer operand than it started with.
302 ///
RemoveOperand(unsigned OpNo)303 void MachineInstr::RemoveOperand(unsigned OpNo) {
304 assert(OpNo < getNumOperands() && "Invalid operand number");
305 untieRegOperand(OpNo);
306
307 #ifndef NDEBUG
308 // Moving tied operands would break the ties.
309 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
310 if (Operands[i].isReg())
311 assert(!Operands[i].isTied() && "Cannot move tied operands");
312 #endif
313
314 MachineRegisterInfo *MRI = getRegInfo();
315 if (MRI && Operands[OpNo].isReg())
316 MRI->removeRegOperandFromUseList(Operands + OpNo);
317
318 // Don't call the MachineOperand destructor. A lot of this code depends on
319 // MachineOperand having a trivial destructor anyway, and adding a call here
320 // wouldn't make it 'destructor-correct'.
321
322 if (unsigned N = NumOperands - 1 - OpNo)
323 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
324 --NumOperands;
325 }
326
setExtraInfo(MachineFunction & MF,ArrayRef<MachineMemOperand * > MMOs,MCSymbol * PreInstrSymbol,MCSymbol * PostInstrSymbol,MDNode * HeapAllocMarker)327 void MachineInstr::setExtraInfo(MachineFunction &MF,
328 ArrayRef<MachineMemOperand *> MMOs,
329 MCSymbol *PreInstrSymbol,
330 MCSymbol *PostInstrSymbol,
331 MDNode *HeapAllocMarker) {
332 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
333 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
334 bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
335 int NumPointers =
336 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
337
338 // Drop all extra info if there is none.
339 if (NumPointers <= 0) {
340 Info.clear();
341 return;
342 }
343
344 // If more than one pointer, then store out of line. Store heap alloc markers
345 // out of line because PointerSumType cannot hold more than 4 tag types with
346 // 32-bit pointers.
347 // FIXME: Maybe we should make the symbols in the extra info mutable?
348 else if (NumPointers > 1 || HasHeapAllocMarker) {
349 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
350 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
351 return;
352 }
353
354 // Otherwise store the single pointer inline.
355 if (HasPreInstrSymbol)
356 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
357 else if (HasPostInstrSymbol)
358 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
359 else
360 Info.set<EIIK_MMO>(MMOs[0]);
361 }
362
dropMemRefs(MachineFunction & MF)363 void MachineInstr::dropMemRefs(MachineFunction &MF) {
364 if (memoperands_empty())
365 return;
366
367 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
368 getHeapAllocMarker());
369 }
370
setMemRefs(MachineFunction & MF,ArrayRef<MachineMemOperand * > MMOs)371 void MachineInstr::setMemRefs(MachineFunction &MF,
372 ArrayRef<MachineMemOperand *> MMOs) {
373 if (MMOs.empty()) {
374 dropMemRefs(MF);
375 return;
376 }
377
378 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
379 getHeapAllocMarker());
380 }
381
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)382 void MachineInstr::addMemOperand(MachineFunction &MF,
383 MachineMemOperand *MO) {
384 SmallVector<MachineMemOperand *, 2> MMOs;
385 MMOs.append(memoperands_begin(), memoperands_end());
386 MMOs.push_back(MO);
387 setMemRefs(MF, MMOs);
388 }
389
cloneMemRefs(MachineFunction & MF,const MachineInstr & MI)390 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
391 if (this == &MI)
392 // Nothing to do for a self-clone!
393 return;
394
395 assert(&MF == MI.getMF() &&
396 "Invalid machine functions when cloning memory refrences!");
397 // See if we can just steal the extra info already allocated for the
398 // instruction. We can do this whenever the pre- and post-instruction symbols
399 // are the same (including null).
400 if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
401 getPostInstrSymbol() == MI.getPostInstrSymbol() &&
402 getHeapAllocMarker() == MI.getHeapAllocMarker()) {
403 Info = MI.Info;
404 return;
405 }
406
407 // Otherwise, fall back on a copy-based clone.
408 setMemRefs(MF, MI.memoperands());
409 }
410
411 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
412 /// identical.
hasIdenticalMMOs(ArrayRef<MachineMemOperand * > LHS,ArrayRef<MachineMemOperand * > RHS)413 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
414 ArrayRef<MachineMemOperand *> RHS) {
415 if (LHS.size() != RHS.size())
416 return false;
417
418 auto LHSPointees = make_pointee_range(LHS);
419 auto RHSPointees = make_pointee_range(RHS);
420 return std::equal(LHSPointees.begin(), LHSPointees.end(),
421 RHSPointees.begin());
422 }
423
cloneMergedMemRefs(MachineFunction & MF,ArrayRef<const MachineInstr * > MIs)424 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
425 ArrayRef<const MachineInstr *> MIs) {
426 // Try handling easy numbers of MIs with simpler mechanisms.
427 if (MIs.empty()) {
428 dropMemRefs(MF);
429 return;
430 }
431 if (MIs.size() == 1) {
432 cloneMemRefs(MF, *MIs[0]);
433 return;
434 }
435 // Because an empty memoperands list provides *no* information and must be
436 // handled conservatively (assuming the instruction can do anything), the only
437 // way to merge with it is to drop all other memoperands.
438 if (MIs[0]->memoperands_empty()) {
439 dropMemRefs(MF);
440 return;
441 }
442
443 // Handle the general case.
444 SmallVector<MachineMemOperand *, 2> MergedMMOs;
445 // Start with the first instruction.
446 assert(&MF == MIs[0]->getMF() &&
447 "Invalid machine functions when cloning memory references!");
448 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
449 // Now walk all the other instructions and accumulate any different MMOs.
450 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
451 assert(&MF == MI.getMF() &&
452 "Invalid machine functions when cloning memory references!");
453
454 // Skip MIs with identical operands to the first. This is a somewhat
455 // arbitrary hack but will catch common cases without being quadratic.
456 // TODO: We could fully implement merge semantics here if needed.
457 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
458 continue;
459
460 // Because an empty memoperands list provides *no* information and must be
461 // handled conservatively (assuming the instruction can do anything), the
462 // only way to merge with it is to drop all other memoperands.
463 if (MI.memoperands_empty()) {
464 dropMemRefs(MF);
465 return;
466 }
467
468 // Otherwise accumulate these into our temporary buffer of the merged state.
469 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
470 }
471
472 setMemRefs(MF, MergedMMOs);
473 }
474
setPreInstrSymbol(MachineFunction & MF,MCSymbol * Symbol)475 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
476 // Do nothing if old and new symbols are the same.
477 if (Symbol == getPreInstrSymbol())
478 return;
479
480 // If there was only one symbol and we're removing it, just clear info.
481 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
482 Info.clear();
483 return;
484 }
485
486 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
487 getHeapAllocMarker());
488 }
489
setPostInstrSymbol(MachineFunction & MF,MCSymbol * Symbol)490 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
491 // Do nothing if old and new symbols are the same.
492 if (Symbol == getPostInstrSymbol())
493 return;
494
495 // If there was only one symbol and we're removing it, just clear info.
496 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
497 Info.clear();
498 return;
499 }
500
501 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
502 getHeapAllocMarker());
503 }
504
setHeapAllocMarker(MachineFunction & MF,MDNode * Marker)505 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
506 // Do nothing if old and new symbols are the same.
507 if (Marker == getHeapAllocMarker())
508 return;
509
510 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
511 Marker);
512 }
513
cloneInstrSymbols(MachineFunction & MF,const MachineInstr & MI)514 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
515 const MachineInstr &MI) {
516 if (this == &MI)
517 // Nothing to do for a self-clone!
518 return;
519
520 assert(&MF == MI.getMF() &&
521 "Invalid machine functions when cloning instruction symbols!");
522
523 setPreInstrSymbol(MF, MI.getPreInstrSymbol());
524 setPostInstrSymbol(MF, MI.getPostInstrSymbol());
525 setHeapAllocMarker(MF, MI.getHeapAllocMarker());
526 }
527
mergeFlagsWith(const MachineInstr & Other) const528 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
529 // For now, the just return the union of the flags. If the flags get more
530 // complicated over time, we might need more logic here.
531 return getFlags() | Other.getFlags();
532 }
533
copyFlagsFromInstruction(const Instruction & I)534 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
535 uint16_t MIFlags = 0;
536 // Copy the wrapping flags.
537 if (const OverflowingBinaryOperator *OB =
538 dyn_cast<OverflowingBinaryOperator>(&I)) {
539 if (OB->hasNoSignedWrap())
540 MIFlags |= MachineInstr::MIFlag::NoSWrap;
541 if (OB->hasNoUnsignedWrap())
542 MIFlags |= MachineInstr::MIFlag::NoUWrap;
543 }
544
545 // Copy the exact flag.
546 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
547 if (PE->isExact())
548 MIFlags |= MachineInstr::MIFlag::IsExact;
549
550 // Copy the fast-math flags.
551 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
552 const FastMathFlags Flags = FP->getFastMathFlags();
553 if (Flags.noNaNs())
554 MIFlags |= MachineInstr::MIFlag::FmNoNans;
555 if (Flags.noInfs())
556 MIFlags |= MachineInstr::MIFlag::FmNoInfs;
557 if (Flags.noSignedZeros())
558 MIFlags |= MachineInstr::MIFlag::FmNsz;
559 if (Flags.allowReciprocal())
560 MIFlags |= MachineInstr::MIFlag::FmArcp;
561 if (Flags.allowContract())
562 MIFlags |= MachineInstr::MIFlag::FmContract;
563 if (Flags.approxFunc())
564 MIFlags |= MachineInstr::MIFlag::FmAfn;
565 if (Flags.allowReassoc())
566 MIFlags |= MachineInstr::MIFlag::FmReassoc;
567 }
568
569 return MIFlags;
570 }
571
copyIRFlags(const Instruction & I)572 void MachineInstr::copyIRFlags(const Instruction &I) {
573 Flags = copyFlagsFromInstruction(I);
574 }
575
hasPropertyInBundle(uint64_t Mask,QueryType Type) const576 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
577 assert(!isBundledWithPred() && "Must be called on bundle header");
578 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
579 if (MII->getDesc().getFlags() & Mask) {
580 if (Type == AnyInBundle)
581 return true;
582 } else {
583 if (Type == AllInBundle && !MII->isBundle())
584 return false;
585 }
586 // This was the last instruction in the bundle.
587 if (!MII->isBundledWithSucc())
588 return Type == AllInBundle;
589 }
590 }
591
isIdenticalTo(const MachineInstr & Other,MICheckType Check) const592 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
593 MICheckType Check) const {
594 // If opcodes or number of operands are not the same then the two
595 // instructions are obviously not identical.
596 if (Other.getOpcode() != getOpcode() ||
597 Other.getNumOperands() != getNumOperands())
598 return false;
599
600 if (isBundle()) {
601 // We have passed the test above that both instructions have the same
602 // opcode, so we know that both instructions are bundles here. Let's compare
603 // MIs inside the bundle.
604 assert(Other.isBundle() && "Expected that both instructions are bundles.");
605 MachineBasicBlock::const_instr_iterator I1 = getIterator();
606 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
607 // Loop until we analysed the last intruction inside at least one of the
608 // bundles.
609 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
610 ++I1;
611 ++I2;
612 if (!I1->isIdenticalTo(*I2, Check))
613 return false;
614 }
615 // If we've reached the end of just one of the two bundles, but not both,
616 // the instructions are not identical.
617 if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
618 return false;
619 }
620
621 // Check operands to make sure they match.
622 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
623 const MachineOperand &MO = getOperand(i);
624 const MachineOperand &OMO = Other.getOperand(i);
625 if (!MO.isReg()) {
626 if (!MO.isIdenticalTo(OMO))
627 return false;
628 continue;
629 }
630
631 // Clients may or may not want to ignore defs when testing for equality.
632 // For example, machine CSE pass only cares about finding common
633 // subexpressions, so it's safe to ignore virtual register defs.
634 if (MO.isDef()) {
635 if (Check == IgnoreDefs)
636 continue;
637 else if (Check == IgnoreVRegDefs) {
638 if (!Register::isVirtualRegister(MO.getReg()) ||
639 !Register::isVirtualRegister(OMO.getReg()))
640 if (!MO.isIdenticalTo(OMO))
641 return false;
642 } else {
643 if (!MO.isIdenticalTo(OMO))
644 return false;
645 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
646 return false;
647 }
648 } else {
649 if (!MO.isIdenticalTo(OMO))
650 return false;
651 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
652 return false;
653 }
654 }
655 // If DebugLoc does not match then two debug instructions are not identical.
656 if (isDebugInstr())
657 if (getDebugLoc() && Other.getDebugLoc() &&
658 getDebugLoc() != Other.getDebugLoc())
659 return false;
660 return true;
661 }
662
getMF() const663 const MachineFunction *MachineInstr::getMF() const {
664 return getParent()->getParent();
665 }
666
removeFromParent()667 MachineInstr *MachineInstr::removeFromParent() {
668 assert(getParent() && "Not embedded in a basic block!");
669 return getParent()->remove(this);
670 }
671
removeFromBundle()672 MachineInstr *MachineInstr::removeFromBundle() {
673 assert(getParent() && "Not embedded in a basic block!");
674 return getParent()->remove_instr(this);
675 }
676
eraseFromParent()677 void MachineInstr::eraseFromParent() {
678 assert(getParent() && "Not embedded in a basic block!");
679 getParent()->erase(this);
680 }
681
eraseFromParentAndMarkDBGValuesForRemoval()682 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
683 assert(getParent() && "Not embedded in a basic block!");
684 MachineBasicBlock *MBB = getParent();
685 MachineFunction *MF = MBB->getParent();
686 assert(MF && "Not embedded in a function!");
687
688 MachineInstr *MI = (MachineInstr *)this;
689 MachineRegisterInfo &MRI = MF->getRegInfo();
690
691 for (const MachineOperand &MO : MI->operands()) {
692 if (!MO.isReg() || !MO.isDef())
693 continue;
694 Register Reg = MO.getReg();
695 if (!Reg.isVirtual())
696 continue;
697 MRI.markUsesInDebugValueAsUndef(Reg);
698 }
699 MI->eraseFromParent();
700 }
701
eraseFromBundle()702 void MachineInstr::eraseFromBundle() {
703 assert(getParent() && "Not embedded in a basic block!");
704 getParent()->erase_instr(this);
705 }
706
isCandidateForCallSiteEntry(QueryType Type) const707 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
708 if (!isCall(Type))
709 return false;
710 switch (getOpcode()) {
711 case TargetOpcode::PATCHABLE_EVENT_CALL:
712 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
713 case TargetOpcode::PATCHPOINT:
714 case TargetOpcode::STACKMAP:
715 case TargetOpcode::STATEPOINT:
716 case TargetOpcode::FENTRY_CALL:
717 return false;
718 }
719 return true;
720 }
721
shouldUpdateCallSiteInfo() const722 bool MachineInstr::shouldUpdateCallSiteInfo() const {
723 if (isBundle())
724 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
725 return isCandidateForCallSiteEntry();
726 }
727
getNumExplicitOperands() const728 unsigned MachineInstr::getNumExplicitOperands() const {
729 unsigned NumOperands = MCID->getNumOperands();
730 if (!MCID->isVariadic())
731 return NumOperands;
732
733 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
734 const MachineOperand &MO = getOperand(I);
735 // The operands must always be in the following order:
736 // - explicit reg defs,
737 // - other explicit operands (reg uses, immediates, etc.),
738 // - implicit reg defs
739 // - implicit reg uses
740 if (MO.isReg() && MO.isImplicit())
741 break;
742 ++NumOperands;
743 }
744 return NumOperands;
745 }
746
getNumExplicitDefs() const747 unsigned MachineInstr::getNumExplicitDefs() const {
748 unsigned NumDefs = MCID->getNumDefs();
749 if (!MCID->isVariadic())
750 return NumDefs;
751
752 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
753 const MachineOperand &MO = getOperand(I);
754 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
755 break;
756 ++NumDefs;
757 }
758 return NumDefs;
759 }
760
bundleWithPred()761 void MachineInstr::bundleWithPred() {
762 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
763 setFlag(BundledPred);
764 MachineBasicBlock::instr_iterator Pred = getIterator();
765 --Pred;
766 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
767 Pred->setFlag(BundledSucc);
768 }
769
bundleWithSucc()770 void MachineInstr::bundleWithSucc() {
771 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
772 setFlag(BundledSucc);
773 MachineBasicBlock::instr_iterator Succ = getIterator();
774 ++Succ;
775 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
776 Succ->setFlag(BundledPred);
777 }
778
unbundleFromPred()779 void MachineInstr::unbundleFromPred() {
780 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
781 clearFlag(BundledPred);
782 MachineBasicBlock::instr_iterator Pred = getIterator();
783 --Pred;
784 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
785 Pred->clearFlag(BundledSucc);
786 }
787
unbundleFromSucc()788 void MachineInstr::unbundleFromSucc() {
789 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
790 clearFlag(BundledSucc);
791 MachineBasicBlock::instr_iterator Succ = getIterator();
792 ++Succ;
793 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
794 Succ->clearFlag(BundledPred);
795 }
796
isStackAligningInlineAsm() const797 bool MachineInstr::isStackAligningInlineAsm() const {
798 if (isInlineAsm()) {
799 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
800 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
801 return true;
802 }
803 return false;
804 }
805
getInlineAsmDialect() const806 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
807 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
808 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
809 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
810 }
811
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const812 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
813 unsigned *GroupNo) const {
814 assert(isInlineAsm() && "Expected an inline asm instruction");
815 assert(OpIdx < getNumOperands() && "OpIdx out of range");
816
817 // Ignore queries about the initial operands.
818 if (OpIdx < InlineAsm::MIOp_FirstOperand)
819 return -1;
820
821 unsigned Group = 0;
822 unsigned NumOps;
823 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
824 i += NumOps) {
825 const MachineOperand &FlagMO = getOperand(i);
826 // If we reach the implicit register operands, stop looking.
827 if (!FlagMO.isImm())
828 return -1;
829 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
830 if (i + NumOps > OpIdx) {
831 if (GroupNo)
832 *GroupNo = Group;
833 return i;
834 }
835 ++Group;
836 }
837 return -1;
838 }
839
getDebugLabel() const840 const DILabel *MachineInstr::getDebugLabel() const {
841 assert(isDebugLabel() && "not a DBG_LABEL");
842 return cast<DILabel>(getOperand(0).getMetadata());
843 }
844
getDebugVariableOp() const845 const MachineOperand &MachineInstr::getDebugVariableOp() const {
846 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
847 return getOperand(2);
848 }
849
getDebugVariableOp()850 MachineOperand &MachineInstr::getDebugVariableOp() {
851 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
852 return getOperand(2);
853 }
854
getDebugVariable() const855 const DILocalVariable *MachineInstr::getDebugVariable() const {
856 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
857 return cast<DILocalVariable>(getOperand(2).getMetadata());
858 }
859
getDebugExpressionOp()860 MachineOperand &MachineInstr::getDebugExpressionOp() {
861 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
862 return getOperand(3);
863 }
864
getDebugExpression() const865 const DIExpression *MachineInstr::getDebugExpression() const {
866 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
867 return cast<DIExpression>(getOperand(3).getMetadata());
868 }
869
isDebugEntryValue() const870 bool MachineInstr::isDebugEntryValue() const {
871 return isDebugValue() && getDebugExpression()->isEntryValue();
872 }
873
874 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const875 MachineInstr::getRegClassConstraint(unsigned OpIdx,
876 const TargetInstrInfo *TII,
877 const TargetRegisterInfo *TRI) const {
878 assert(getParent() && "Can't have an MBB reference here!");
879 assert(getMF() && "Can't have an MF reference here!");
880 const MachineFunction &MF = *getMF();
881
882 // Most opcodes have fixed constraints in their MCInstrDesc.
883 if (!isInlineAsm())
884 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
885
886 if (!getOperand(OpIdx).isReg())
887 return nullptr;
888
889 // For tied uses on inline asm, get the constraint from the def.
890 unsigned DefIdx;
891 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
892 OpIdx = DefIdx;
893
894 // Inline asm stores register class constraints in the flag word.
895 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
896 if (FlagIdx < 0)
897 return nullptr;
898
899 unsigned Flag = getOperand(FlagIdx).getImm();
900 unsigned RCID;
901 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
902 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
903 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
904 InlineAsm::hasRegClassConstraint(Flag, RCID))
905 return TRI->getRegClass(RCID);
906
907 // Assume that all registers in a memory operand are pointers.
908 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
909 return TRI->getPointerRegClass(MF);
910
911 return nullptr;
912 }
913
getRegClassConstraintEffectForVReg(Register Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,bool ExploreBundle) const914 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
915 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
916 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
917 // Check every operands inside the bundle if we have
918 // been asked to.
919 if (ExploreBundle)
920 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
921 ++OpndIt)
922 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
923 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
924 else
925 // Otherwise, just check the current operands.
926 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
927 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
928 return CurRC;
929 }
930
getRegClassConstraintEffectForVRegImpl(unsigned OpIdx,Register Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const931 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
932 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
933 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
934 assert(CurRC && "Invalid initial register class");
935 // Check if Reg is constrained by some of its use/def from MI.
936 const MachineOperand &MO = getOperand(OpIdx);
937 if (!MO.isReg() || MO.getReg() != Reg)
938 return CurRC;
939 // If yes, accumulate the constraints through the operand.
940 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
941 }
942
getRegClassConstraintEffect(unsigned OpIdx,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const943 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
944 unsigned OpIdx, const TargetRegisterClass *CurRC,
945 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
946 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
947 const MachineOperand &MO = getOperand(OpIdx);
948 assert(MO.isReg() &&
949 "Cannot get register constraints for non-register operand");
950 assert(CurRC && "Invalid initial register class");
951 if (unsigned SubIdx = MO.getSubReg()) {
952 if (OpRC)
953 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
954 else
955 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
956 } else if (OpRC)
957 CurRC = TRI->getCommonSubClass(CurRC, OpRC);
958 return CurRC;
959 }
960
961 /// Return the number of instructions inside the MI bundle, not counting the
962 /// header instruction.
getBundleSize() const963 unsigned MachineInstr::getBundleSize() const {
964 MachineBasicBlock::const_instr_iterator I = getIterator();
965 unsigned Size = 0;
966 while (I->isBundledWithSucc()) {
967 ++Size;
968 ++I;
969 }
970 return Size;
971 }
972
973 /// Returns true if the MachineInstr has an implicit-use operand of exactly
974 /// the given register (not considering sub/super-registers).
hasRegisterImplicitUseOperand(Register Reg) const975 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
976 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
977 const MachineOperand &MO = getOperand(i);
978 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
979 return true;
980 }
981 return false;
982 }
983
984 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
985 /// the specific register or -1 if it is not found. It further tightens
986 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(Register Reg,bool isKill,const TargetRegisterInfo * TRI) const987 int MachineInstr::findRegisterUseOperandIdx(
988 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
989 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
990 const MachineOperand &MO = getOperand(i);
991 if (!MO.isReg() || !MO.isUse())
992 continue;
993 Register MOReg = MO.getReg();
994 if (!MOReg)
995 continue;
996 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
997 if (!isKill || MO.isKill())
998 return i;
999 }
1000 return -1;
1001 }
1002
1003 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1004 /// indicating if this instruction reads or writes Reg. This also considers
1005 /// partial defines.
1006 std::pair<bool,bool>
readsWritesVirtualRegister(Register Reg,SmallVectorImpl<unsigned> * Ops) const1007 MachineInstr::readsWritesVirtualRegister(Register Reg,
1008 SmallVectorImpl<unsigned> *Ops) const {
1009 bool PartDef = false; // Partial redefine.
1010 bool FullDef = false; // Full define.
1011 bool Use = false;
1012
1013 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1014 const MachineOperand &MO = getOperand(i);
1015 if (!MO.isReg() || MO.getReg() != Reg)
1016 continue;
1017 if (Ops)
1018 Ops->push_back(i);
1019 if (MO.isUse())
1020 Use |= !MO.isUndef();
1021 else if (MO.getSubReg() && !MO.isUndef())
1022 // A partial def undef doesn't count as reading the register.
1023 PartDef = true;
1024 else
1025 FullDef = true;
1026 }
1027 // A partial redefine uses Reg unless there is also a full define.
1028 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1029 }
1030
1031 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1032 /// the specified register or -1 if it is not found. If isDead is true, defs
1033 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1034 /// also checks if there is a def of a super-register.
1035 int
findRegisterDefOperandIdx(Register Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1036 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1037 const TargetRegisterInfo *TRI) const {
1038 bool isPhys = Register::isPhysicalRegister(Reg);
1039 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1040 const MachineOperand &MO = getOperand(i);
1041 // Accept regmask operands when Overlap is set.
1042 // Ignore them when looking for a specific def operand (Overlap == false).
1043 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1044 return i;
1045 if (!MO.isReg() || !MO.isDef())
1046 continue;
1047 Register MOReg = MO.getReg();
1048 bool Found = (MOReg == Reg);
1049 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1050 if (Overlap)
1051 Found = TRI->regsOverlap(MOReg, Reg);
1052 else
1053 Found = TRI->isSubRegister(MOReg, Reg);
1054 }
1055 if (Found && (!isDead || MO.isDead()))
1056 return i;
1057 }
1058 return -1;
1059 }
1060
1061 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1062 /// operand list that is used to represent the predicate. It returns -1 if
1063 /// none is found.
findFirstPredOperandIdx() const1064 int MachineInstr::findFirstPredOperandIdx() const {
1065 // Don't call MCID.findFirstPredOperandIdx() because this variant
1066 // is sometimes called on an instruction that's not yet complete, and
1067 // so the number of operands is less than the MCID indicates. In
1068 // particular, the PTX target does this.
1069 const MCInstrDesc &MCID = getDesc();
1070 if (MCID.isPredicable()) {
1071 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1072 if (MCID.OpInfo[i].isPredicate())
1073 return i;
1074 }
1075
1076 return -1;
1077 }
1078
1079 // MachineOperand::TiedTo is 4 bits wide.
1080 const unsigned TiedMax = 15;
1081
1082 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1083 ///
1084 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1085 /// field. TiedTo can have these values:
1086 ///
1087 /// 0: Operand is not tied to anything.
1088 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1089 /// TiedMax: Tied to an operand >= TiedMax-1.
1090 ///
1091 /// The tied def must be one of the first TiedMax operands on a normal
1092 /// instruction. INLINEASM instructions allow more tied defs.
1093 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1094 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1095 MachineOperand &DefMO = getOperand(DefIdx);
1096 MachineOperand &UseMO = getOperand(UseIdx);
1097 assert(DefMO.isDef() && "DefIdx must be a def operand");
1098 assert(UseMO.isUse() && "UseIdx must be a use operand");
1099 assert(!DefMO.isTied() && "Def is already tied to another use");
1100 assert(!UseMO.isTied() && "Use is already tied to another def");
1101
1102 if (DefIdx < TiedMax)
1103 UseMO.TiedTo = DefIdx + 1;
1104 else {
1105 // Inline asm can use the group descriptors to find tied operands,
1106 // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1107 // but on normal instruction, the tied def must be within the first TiedMax
1108 // operands.
1109 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1110 "DefIdx out of range");
1111 UseMO.TiedTo = TiedMax;
1112 }
1113
1114 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1115 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1116 }
1117
1118 /// Given the index of a tied register operand, find the operand it is tied to.
1119 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1120 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1121 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1122 const MachineOperand &MO = getOperand(OpIdx);
1123 assert(MO.isTied() && "Operand isn't tied");
1124
1125 // Normally TiedTo is in range.
1126 if (MO.TiedTo < TiedMax)
1127 return MO.TiedTo - 1;
1128
1129 // Uses on normal instructions can be out of range.
1130 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1131 // Normal tied defs must be in the 0..TiedMax-1 range.
1132 if (MO.isUse())
1133 return TiedMax - 1;
1134 // MO is a def. Search for the tied use.
1135 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1136 const MachineOperand &UseMO = getOperand(i);
1137 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1138 return i;
1139 }
1140 llvm_unreachable("Can't find tied use");
1141 }
1142
1143 if (getOpcode() == TargetOpcode::STATEPOINT) {
1144 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1145 // on registers.
1146 StatepointOpers SO(this);
1147 unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1148 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1149 unsigned NumDefs = getNumDefs();
1150 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1151 while (!getOperand(CurUseIdx).isReg())
1152 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1153 if (OpIdx == CurDefIdx)
1154 return CurUseIdx;
1155 if (OpIdx == CurUseIdx)
1156 return CurDefIdx;
1157 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1158 }
1159 llvm_unreachable("Can't find tied use");
1160 }
1161
1162 // Now deal with inline asm by parsing the operand group descriptor flags.
1163 // Find the beginning of each operand group.
1164 SmallVector<unsigned, 8> GroupIdx;
1165 unsigned OpIdxGroup = ~0u;
1166 unsigned NumOps;
1167 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1168 i += NumOps) {
1169 const MachineOperand &FlagMO = getOperand(i);
1170 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1171 unsigned CurGroup = GroupIdx.size();
1172 GroupIdx.push_back(i);
1173 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1174 // OpIdx belongs to this operand group.
1175 if (OpIdx > i && OpIdx < i + NumOps)
1176 OpIdxGroup = CurGroup;
1177 unsigned TiedGroup;
1178 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1179 continue;
1180 // Operands in this group are tied to operands in TiedGroup which must be
1181 // earlier. Find the number of operands between the two groups.
1182 unsigned Delta = i - GroupIdx[TiedGroup];
1183
1184 // OpIdx is a use tied to TiedGroup.
1185 if (OpIdxGroup == CurGroup)
1186 return OpIdx - Delta;
1187
1188 // OpIdx is a def tied to this use group.
1189 if (OpIdxGroup == TiedGroup)
1190 return OpIdx + Delta;
1191 }
1192 llvm_unreachable("Invalid tied operand on inline asm");
1193 }
1194
1195 /// clearKillInfo - Clears kill flags on all operands.
1196 ///
clearKillInfo()1197 void MachineInstr::clearKillInfo() {
1198 for (MachineOperand &MO : operands()) {
1199 if (MO.isReg() && MO.isUse())
1200 MO.setIsKill(false);
1201 }
1202 }
1203
substituteRegister(Register FromReg,Register ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1204 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1205 unsigned SubIdx,
1206 const TargetRegisterInfo &RegInfo) {
1207 if (Register::isPhysicalRegister(ToReg)) {
1208 if (SubIdx)
1209 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1210 for (MachineOperand &MO : operands()) {
1211 if (!MO.isReg() || MO.getReg() != FromReg)
1212 continue;
1213 MO.substPhysReg(ToReg, RegInfo);
1214 }
1215 } else {
1216 for (MachineOperand &MO : operands()) {
1217 if (!MO.isReg() || MO.getReg() != FromReg)
1218 continue;
1219 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1220 }
1221 }
1222 }
1223
1224 /// isSafeToMove - Return true if it is safe to move this instruction. If
1225 /// SawStore is set to true, it means that there is a store (or call) between
1226 /// the instruction's location and its intended destination.
isSafeToMove(AAResults * AA,bool & SawStore) const1227 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1228 // Ignore stuff that we obviously can't move.
1229 //
1230 // Treat volatile loads as stores. This is not strictly necessary for
1231 // volatiles, but it is required for atomic loads. It is not allowed to move
1232 // a load across an atomic load with Ordering > Monotonic.
1233 if (mayStore() || isCall() || isPHI() ||
1234 (mayLoad() && hasOrderedMemoryRef())) {
1235 SawStore = true;
1236 return false;
1237 }
1238
1239 if (isPosition() || isDebugInstr() || isTerminator() ||
1240 mayRaiseFPException() || hasUnmodeledSideEffects())
1241 return false;
1242
1243 // See if this instruction does a load. If so, we have to guarantee that the
1244 // loaded value doesn't change between the load and the its intended
1245 // destination. The check for isInvariantLoad gives the target the chance to
1246 // classify the load as always returning a constant, e.g. a constant pool
1247 // load.
1248 if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1249 // Otherwise, this is a real load. If there is a store between the load and
1250 // end of block, we can't move it.
1251 return !SawStore;
1252
1253 return true;
1254 }
1255
mayAlias(AAResults * AA,const MachineInstr & Other,bool UseTBAA) const1256 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1257 bool UseTBAA) const {
1258 const MachineFunction *MF = getMF();
1259 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1260 const MachineFrameInfo &MFI = MF->getFrameInfo();
1261
1262 // Execulde call instruction which may alter the memory but can not be handled
1263 // by this function.
1264 if (isCall() || Other.isCall())
1265 return true;
1266
1267 // If neither instruction stores to memory, they can't alias in any
1268 // meaningful way, even if they read from the same address.
1269 if (!mayStore() && !Other.mayStore())
1270 return false;
1271
1272 // Both instructions must be memory operations to be able to alias.
1273 if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1274 return false;
1275
1276 // Let the target decide if memory accesses cannot possibly overlap.
1277 if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1278 return false;
1279
1280 // Memory operations without memory operands may access anything. Be
1281 // conservative and assume `MayAlias`.
1282 if (memoperands_empty() || Other.memoperands_empty())
1283 return true;
1284
1285 // Skip if there are too many memory operands.
1286 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1287 if (NumChecks > TII->getMemOperandAACheckLimit())
1288 return true;
1289
1290 auto HasAlias = [MFI, AA, UseTBAA](const MachineMemOperand *MMOa,
1291 const MachineMemOperand *MMOb) {
1292 // The following interface to AA is fashioned after DAGCombiner::isAlias
1293 // and operates with MachineMemOperand offset with some important
1294 // assumptions:
1295 // - LLVM fundamentally assumes flat address spaces.
1296 // - MachineOperand offset can *only* result from legalization and
1297 // cannot affect queries other than the trivial case of overlap
1298 // checking.
1299 // - These offsets never wrap and never step outside
1300 // of allocated objects.
1301 // - There should never be any negative offsets here.
1302 //
1303 // FIXME: Modify API to hide this math from "user"
1304 // Even before we go to AA we can reason locally about some
1305 // memory objects. It can save compile time, and possibly catch some
1306 // corner cases not currently covered.
1307
1308 int64_t OffsetA = MMOa->getOffset();
1309 int64_t OffsetB = MMOb->getOffset();
1310 int64_t MinOffset = std::min(OffsetA, OffsetB);
1311
1312 uint64_t WidthA = MMOa->getSize();
1313 uint64_t WidthB = MMOb->getSize();
1314 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1315 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1316
1317 const Value *ValA = MMOa->getValue();
1318 const Value *ValB = MMOb->getValue();
1319 bool SameVal = (ValA && ValB && (ValA == ValB));
1320 if (!SameVal) {
1321 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1322 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1323 if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1324 return false;
1325 if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1326 return false;
1327 if (PSVa && PSVb && (PSVa == PSVb))
1328 SameVal = true;
1329 }
1330
1331 if (SameVal) {
1332 if (!KnownWidthA || !KnownWidthB)
1333 return true;
1334 int64_t MaxOffset = std::max(OffsetA, OffsetB);
1335 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1336 return (MinOffset + LowWidth > MaxOffset);
1337 }
1338
1339 if (!AA)
1340 return true;
1341
1342 if (!ValA || !ValB)
1343 return true;
1344
1345 assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1346 assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1347
1348 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1349 : MemoryLocation::UnknownSize;
1350 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1351 : MemoryLocation::UnknownSize;
1352
1353 AliasResult AAResult =
1354 AA->alias(MemoryLocation(ValA, OverlapA,
1355 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1356 MemoryLocation(ValB, OverlapB,
1357 UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1358
1359 return (AAResult != NoAlias);
1360 };
1361
1362 // Check each pair of memory operands from both instructions, which can't
1363 // alias only if all pairs won't alias.
1364 for (auto *MMOa : memoperands())
1365 for (auto *MMOb : Other.memoperands())
1366 if (HasAlias(MMOa, MMOb))
1367 return true;
1368
1369 return false;
1370 }
1371
1372 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1373 /// or volatile memory reference, or if the information describing the memory
1374 /// reference is not available. Return false if it is known to have no ordered
1375 /// memory references.
hasOrderedMemoryRef() const1376 bool MachineInstr::hasOrderedMemoryRef() const {
1377 // An instruction known never to access memory won't have a volatile access.
1378 if (!mayStore() &&
1379 !mayLoad() &&
1380 !isCall() &&
1381 !hasUnmodeledSideEffects())
1382 return false;
1383
1384 // Otherwise, if the instruction has no memory reference information,
1385 // conservatively assume it wasn't preserved.
1386 if (memoperands_empty())
1387 return true;
1388
1389 // Check if any of our memory operands are ordered.
1390 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1391 return !MMO->isUnordered();
1392 });
1393 }
1394
1395 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1396 /// trap and is loading from a location whose value is invariant across a run of
1397 /// this function.
isDereferenceableInvariantLoad(AAResults * AA) const1398 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1399 // If the instruction doesn't load at all, it isn't an invariant load.
1400 if (!mayLoad())
1401 return false;
1402
1403 // If the instruction has lost its memoperands, conservatively assume that
1404 // it may not be an invariant load.
1405 if (memoperands_empty())
1406 return false;
1407
1408 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1409
1410 for (MachineMemOperand *MMO : memoperands()) {
1411 if (!MMO->isUnordered())
1412 // If the memory operand has ordering side effects, we can't move the
1413 // instruction. Such an instruction is technically an invariant load,
1414 // but the caller code would need updated to expect that.
1415 return false;
1416 if (MMO->isStore()) return false;
1417 if (MMO->isInvariant() && MMO->isDereferenceable())
1418 continue;
1419
1420 // A load from a constant PseudoSourceValue is invariant.
1421 if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1422 if (PSV->isConstant(&MFI))
1423 continue;
1424
1425 if (const Value *V = MMO->getValue()) {
1426 // If we have an AliasAnalysis, ask it whether the memory is constant.
1427 if (AA &&
1428 AA->pointsToConstantMemory(
1429 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1430 continue;
1431 }
1432
1433 // Otherwise assume conservatively.
1434 return false;
1435 }
1436
1437 // Everything checks out.
1438 return true;
1439 }
1440
1441 /// isConstantValuePHI - If the specified instruction is a PHI that always
1442 /// merges together the same virtual register, return the register, otherwise
1443 /// return 0.
isConstantValuePHI() const1444 unsigned MachineInstr::isConstantValuePHI() const {
1445 if (!isPHI())
1446 return 0;
1447 assert(getNumOperands() >= 3 &&
1448 "It's illegal to have a PHI without source operands");
1449
1450 Register Reg = getOperand(1).getReg();
1451 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1452 if (getOperand(i).getReg() != Reg)
1453 return 0;
1454 return Reg;
1455 }
1456
hasUnmodeledSideEffects() const1457 bool MachineInstr::hasUnmodeledSideEffects() const {
1458 if (hasProperty(MCID::UnmodeledSideEffects))
1459 return true;
1460 if (isInlineAsm()) {
1461 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1462 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1463 return true;
1464 }
1465
1466 return false;
1467 }
1468
isLoadFoldBarrier() const1469 bool MachineInstr::isLoadFoldBarrier() const {
1470 return mayStore() || isCall() || hasUnmodeledSideEffects();
1471 }
1472
1473 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1474 ///
allDefsAreDead() const1475 bool MachineInstr::allDefsAreDead() const {
1476 for (const MachineOperand &MO : operands()) {
1477 if (!MO.isReg() || MO.isUse())
1478 continue;
1479 if (!MO.isDead())
1480 return false;
1481 }
1482 return true;
1483 }
1484
1485 /// copyImplicitOps - Copy implicit register operands from specified
1486 /// instruction to this instruction.
copyImplicitOps(MachineFunction & MF,const MachineInstr & MI)1487 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1488 const MachineInstr &MI) {
1489 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1490 i != e; ++i) {
1491 const MachineOperand &MO = MI.getOperand(i);
1492 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1493 addOperand(MF, MO);
1494 }
1495 }
1496
hasComplexRegisterTies() const1497 bool MachineInstr::hasComplexRegisterTies() const {
1498 const MCInstrDesc &MCID = getDesc();
1499 if (MCID.Opcode == TargetOpcode::STATEPOINT)
1500 return true;
1501 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1502 const auto &Operand = getOperand(I);
1503 if (!Operand.isReg() || Operand.isDef())
1504 // Ignore the defined registers as MCID marks only the uses as tied.
1505 continue;
1506 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1507 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1508 if (ExpectedTiedIdx != TiedIdx)
1509 return true;
1510 }
1511 return false;
1512 }
1513
getTypeToPrint(unsigned OpIdx,SmallBitVector & PrintedTypes,const MachineRegisterInfo & MRI) const1514 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1515 const MachineRegisterInfo &MRI) const {
1516 const MachineOperand &Op = getOperand(OpIdx);
1517 if (!Op.isReg())
1518 return LLT{};
1519
1520 if (isVariadic() || OpIdx >= getNumExplicitOperands())
1521 return MRI.getType(Op.getReg());
1522
1523 auto &OpInfo = getDesc().OpInfo[OpIdx];
1524 if (!OpInfo.isGenericType())
1525 return MRI.getType(Op.getReg());
1526
1527 if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1528 return LLT{};
1529
1530 LLT TypeToPrint = MRI.getType(Op.getReg());
1531 // Don't mark the type index printed if it wasn't actually printed: maybe
1532 // another operand with the same type index has an actual type attached:
1533 if (TypeToPrint.isValid())
1534 PrintedTypes.set(OpInfo.getGenericTypeIndex());
1535 return TypeToPrint;
1536 }
1537
1538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1539 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1540 dbgs() << " ";
1541 print(dbgs());
1542 }
1543
dumprImpl(const MachineRegisterInfo & MRI,unsigned Depth,unsigned MaxDepth,SmallPtrSetImpl<const MachineInstr * > & AlreadySeenInstrs) const1544 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1545 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1546 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1547 if (Depth >= MaxDepth)
1548 return;
1549 if (!AlreadySeenInstrs.insert(this).second)
1550 return;
1551 // PadToColumn always inserts at least one space.
1552 // Don't mess up the alignment if we don't want any space.
1553 if (Depth)
1554 fdbgs().PadToColumn(Depth * 2);
1555 print(fdbgs());
1556 for (const MachineOperand &MO : operands()) {
1557 if (!MO.isReg() || MO.isDef())
1558 continue;
1559 Register Reg = MO.getReg();
1560 if (Reg.isPhysical())
1561 continue;
1562 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1563 if (NewMI == nullptr)
1564 continue;
1565 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1566 }
1567 }
1568
dumpr(const MachineRegisterInfo & MRI,unsigned MaxDepth) const1569 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1570 unsigned MaxDepth) const {
1571 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1572 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1573 }
1574 #endif
1575
print(raw_ostream & OS,bool IsStandalone,bool SkipOpers,bool SkipDebugLoc,bool AddNewLine,const TargetInstrInfo * TII) const1576 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1577 bool SkipDebugLoc, bool AddNewLine,
1578 const TargetInstrInfo *TII) const {
1579 const Module *M = nullptr;
1580 const Function *F = nullptr;
1581 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1582 F = &MF->getFunction();
1583 M = F->getParent();
1584 if (!TII)
1585 TII = MF->getSubtarget().getInstrInfo();
1586 }
1587
1588 ModuleSlotTracker MST(M);
1589 if (F)
1590 MST.incorporateFunction(*F);
1591 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1592 }
1593
print(raw_ostream & OS,ModuleSlotTracker & MST,bool IsStandalone,bool SkipOpers,bool SkipDebugLoc,bool AddNewLine,const TargetInstrInfo * TII) const1594 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1595 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1596 bool AddNewLine, const TargetInstrInfo *TII) const {
1597 // We can be a bit tidier if we know the MachineFunction.
1598 const TargetRegisterInfo *TRI = nullptr;
1599 const MachineRegisterInfo *MRI = nullptr;
1600 const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1601 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1602
1603 if (isCFIInstruction())
1604 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1605
1606 SmallBitVector PrintedTypes(8);
1607 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1608 auto getTiedOperandIdx = [&](unsigned OpIdx) {
1609 if (!ShouldPrintRegisterTies)
1610 return 0U;
1611 const MachineOperand &MO = getOperand(OpIdx);
1612 if (MO.isReg() && MO.isTied() && !MO.isDef())
1613 return findTiedOperandIdx(OpIdx);
1614 return 0U;
1615 };
1616 unsigned StartOp = 0;
1617 unsigned e = getNumOperands();
1618
1619 // Print explicitly defined operands on the left of an assignment syntax.
1620 while (StartOp < e) {
1621 const MachineOperand &MO = getOperand(StartOp);
1622 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1623 break;
1624
1625 if (StartOp != 0)
1626 OS << ", ";
1627
1628 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1629 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1630 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1631 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1632 ++StartOp;
1633 }
1634
1635 if (StartOp != 0)
1636 OS << " = ";
1637
1638 if (getFlag(MachineInstr::FrameSetup))
1639 OS << "frame-setup ";
1640 if (getFlag(MachineInstr::FrameDestroy))
1641 OS << "frame-destroy ";
1642 if (getFlag(MachineInstr::FmNoNans))
1643 OS << "nnan ";
1644 if (getFlag(MachineInstr::FmNoInfs))
1645 OS << "ninf ";
1646 if (getFlag(MachineInstr::FmNsz))
1647 OS << "nsz ";
1648 if (getFlag(MachineInstr::FmArcp))
1649 OS << "arcp ";
1650 if (getFlag(MachineInstr::FmContract))
1651 OS << "contract ";
1652 if (getFlag(MachineInstr::FmAfn))
1653 OS << "afn ";
1654 if (getFlag(MachineInstr::FmReassoc))
1655 OS << "reassoc ";
1656 if (getFlag(MachineInstr::NoUWrap))
1657 OS << "nuw ";
1658 if (getFlag(MachineInstr::NoSWrap))
1659 OS << "nsw ";
1660 if (getFlag(MachineInstr::IsExact))
1661 OS << "exact ";
1662 if (getFlag(MachineInstr::NoFPExcept))
1663 OS << "nofpexcept ";
1664 if (getFlag(MachineInstr::NoMerge))
1665 OS << "nomerge ";
1666
1667 // Print the opcode name.
1668 if (TII)
1669 OS << TII->getName(getOpcode());
1670 else
1671 OS << "UNKNOWN";
1672
1673 if (SkipOpers)
1674 return;
1675
1676 // Print the rest of the operands.
1677 bool FirstOp = true;
1678 unsigned AsmDescOp = ~0u;
1679 unsigned AsmOpCount = 0;
1680
1681 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1682 // Print asm string.
1683 OS << " ";
1684 const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1685 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1686 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1687 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1688 ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1689 IntrinsicInfo);
1690
1691 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1692 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1693 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1694 OS << " [sideeffect]";
1695 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1696 OS << " [mayload]";
1697 if (ExtraInfo & InlineAsm::Extra_MayStore)
1698 OS << " [maystore]";
1699 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1700 OS << " [isconvergent]";
1701 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1702 OS << " [alignstack]";
1703 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1704 OS << " [attdialect]";
1705 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1706 OS << " [inteldialect]";
1707
1708 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1709 FirstOp = false;
1710 }
1711
1712 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1713 const MachineOperand &MO = getOperand(i);
1714
1715 if (FirstOp) FirstOp = false; else OS << ",";
1716 OS << " ";
1717
1718 if (isDebugValue() && MO.isMetadata()) {
1719 // Pretty print DBG_VALUE instructions.
1720 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1721 if (DIV && !DIV->getName().empty())
1722 OS << "!\"" << DIV->getName() << '\"';
1723 else {
1724 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1725 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1726 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1727 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1728 }
1729 } else if (isDebugLabel() && MO.isMetadata()) {
1730 // Pretty print DBG_LABEL instructions.
1731 auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1732 if (DIL && !DIL->getName().empty())
1733 OS << "\"" << DIL->getName() << '\"';
1734 else {
1735 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1736 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1737 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1738 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1739 }
1740 } else if (i == AsmDescOp && MO.isImm()) {
1741 // Pretty print the inline asm operand descriptor.
1742 OS << '$' << AsmOpCount++;
1743 unsigned Flag = MO.getImm();
1744 OS << ":[";
1745 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1746
1747 unsigned RCID = 0;
1748 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1749 InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1750 if (TRI) {
1751 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1752 } else
1753 OS << ":RC" << RCID;
1754 }
1755
1756 if (InlineAsm::isMemKind(Flag)) {
1757 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1758 OS << ":" << InlineAsm::getMemConstraintName(MCID);
1759 }
1760
1761 unsigned TiedTo = 0;
1762 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1763 OS << " tiedto:$" << TiedTo;
1764
1765 OS << ']';
1766
1767 // Compute the index of the next operand descriptor.
1768 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1769 } else {
1770 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1771 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1772 if (MO.isImm() && isOperandSubregIdx(i))
1773 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1774 else
1775 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1776 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1777 }
1778 }
1779
1780 // Print any optional symbols attached to this instruction as-if they were
1781 // operands.
1782 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1783 if (!FirstOp) {
1784 FirstOp = false;
1785 OS << ',';
1786 }
1787 OS << " pre-instr-symbol ";
1788 MachineOperand::printSymbol(OS, *PreInstrSymbol);
1789 }
1790 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1791 if (!FirstOp) {
1792 FirstOp = false;
1793 OS << ',';
1794 }
1795 OS << " post-instr-symbol ";
1796 MachineOperand::printSymbol(OS, *PostInstrSymbol);
1797 }
1798 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1799 if (!FirstOp) {
1800 FirstOp = false;
1801 OS << ',';
1802 }
1803 OS << " heap-alloc-marker ";
1804 HeapAllocMarker->printAsOperand(OS, MST);
1805 }
1806
1807 if (DebugInstrNum) {
1808 if (!FirstOp)
1809 OS << ",";
1810 OS << " debug-instr-number " << DebugInstrNum;
1811 }
1812
1813 if (!SkipDebugLoc) {
1814 if (const DebugLoc &DL = getDebugLoc()) {
1815 if (!FirstOp)
1816 OS << ',';
1817 OS << " debug-location ";
1818 DL->printAsOperand(OS, MST);
1819 }
1820 }
1821
1822 if (!memoperands_empty()) {
1823 SmallVector<StringRef, 0> SSNs;
1824 const LLVMContext *Context = nullptr;
1825 std::unique_ptr<LLVMContext> CtxPtr;
1826 const MachineFrameInfo *MFI = nullptr;
1827 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1828 MFI = &MF->getFrameInfo();
1829 Context = &MF->getFunction().getContext();
1830 } else {
1831 CtxPtr = std::make_unique<LLVMContext>();
1832 Context = CtxPtr.get();
1833 }
1834
1835 OS << " :: ";
1836 bool NeedComma = false;
1837 for (const MachineMemOperand *Op : memoperands()) {
1838 if (NeedComma)
1839 OS << ", ";
1840 Op->print(OS, MST, SSNs, *Context, MFI, TII);
1841 NeedComma = true;
1842 }
1843 }
1844
1845 if (SkipDebugLoc)
1846 return;
1847
1848 bool HaveSemi = false;
1849
1850 // Print debug location information.
1851 if (const DebugLoc &DL = getDebugLoc()) {
1852 if (!HaveSemi) {
1853 OS << ';';
1854 HaveSemi = true;
1855 }
1856 OS << ' ';
1857 DL.print(OS);
1858 }
1859
1860 // Print extra comments for DEBUG_VALUE.
1861 if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1862 if (!HaveSemi) {
1863 OS << ";";
1864 HaveSemi = true;
1865 }
1866 auto *DV = getDebugVariable();
1867 OS << " line no:" << DV->getLine();
1868 if (isIndirectDebugValue())
1869 OS << " indirect";
1870 }
1871 // TODO: DBG_LABEL
1872
1873 if (AddNewLine)
1874 OS << '\n';
1875 }
1876
addRegisterKilled(Register IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1877 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1878 const TargetRegisterInfo *RegInfo,
1879 bool AddIfNotFound) {
1880 bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1881 bool hasAliases = isPhysReg &&
1882 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1883 bool Found = false;
1884 SmallVector<unsigned,4> DeadOps;
1885 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1886 MachineOperand &MO = getOperand(i);
1887 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1888 continue;
1889
1890 // DEBUG_VALUE nodes do not contribute to code generation and should
1891 // always be ignored. Failure to do so may result in trying to modify
1892 // KILL flags on DEBUG_VALUE nodes.
1893 if (MO.isDebug())
1894 continue;
1895
1896 Register Reg = MO.getReg();
1897 if (!Reg)
1898 continue;
1899
1900 if (Reg == IncomingReg) {
1901 if (!Found) {
1902 if (MO.isKill())
1903 // The register is already marked kill.
1904 return true;
1905 if (isPhysReg && isRegTiedToDefOperand(i))
1906 // Two-address uses of physregs must not be marked kill.
1907 return true;
1908 MO.setIsKill();
1909 Found = true;
1910 }
1911 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1912 // A super-register kill already exists.
1913 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1914 return true;
1915 if (RegInfo->isSubRegister(IncomingReg, Reg))
1916 DeadOps.push_back(i);
1917 }
1918 }
1919
1920 // Trim unneeded kill operands.
1921 while (!DeadOps.empty()) {
1922 unsigned OpIdx = DeadOps.back();
1923 if (getOperand(OpIdx).isImplicit() &&
1924 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1925 RemoveOperand(OpIdx);
1926 else
1927 getOperand(OpIdx).setIsKill(false);
1928 DeadOps.pop_back();
1929 }
1930
1931 // If not found, this means an alias of one of the operands is killed. Add a
1932 // new implicit operand if required.
1933 if (!Found && AddIfNotFound) {
1934 addOperand(MachineOperand::CreateReg(IncomingReg,
1935 false /*IsDef*/,
1936 true /*IsImp*/,
1937 true /*IsKill*/));
1938 return true;
1939 }
1940 return Found;
1941 }
1942
clearRegisterKills(Register Reg,const TargetRegisterInfo * RegInfo)1943 void MachineInstr::clearRegisterKills(Register Reg,
1944 const TargetRegisterInfo *RegInfo) {
1945 if (!Register::isPhysicalRegister(Reg))
1946 RegInfo = nullptr;
1947 for (MachineOperand &MO : operands()) {
1948 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1949 continue;
1950 Register OpReg = MO.getReg();
1951 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1952 MO.setIsKill(false);
1953 }
1954 }
1955
addRegisterDead(Register Reg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1956 bool MachineInstr::addRegisterDead(Register Reg,
1957 const TargetRegisterInfo *RegInfo,
1958 bool AddIfNotFound) {
1959 bool isPhysReg = Register::isPhysicalRegister(Reg);
1960 bool hasAliases = isPhysReg &&
1961 MCRegAliasIterator(Reg, RegInfo, false).isValid();
1962 bool Found = false;
1963 SmallVector<unsigned,4> DeadOps;
1964 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1965 MachineOperand &MO = getOperand(i);
1966 if (!MO.isReg() || !MO.isDef())
1967 continue;
1968 Register MOReg = MO.getReg();
1969 if (!MOReg)
1970 continue;
1971
1972 if (MOReg == Reg) {
1973 MO.setIsDead();
1974 Found = true;
1975 } else if (hasAliases && MO.isDead() &&
1976 Register::isPhysicalRegister(MOReg)) {
1977 // There exists a super-register that's marked dead.
1978 if (RegInfo->isSuperRegister(Reg, MOReg))
1979 return true;
1980 if (RegInfo->isSubRegister(Reg, MOReg))
1981 DeadOps.push_back(i);
1982 }
1983 }
1984
1985 // Trim unneeded dead operands.
1986 while (!DeadOps.empty()) {
1987 unsigned OpIdx = DeadOps.back();
1988 if (getOperand(OpIdx).isImplicit() &&
1989 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1990 RemoveOperand(OpIdx);
1991 else
1992 getOperand(OpIdx).setIsDead(false);
1993 DeadOps.pop_back();
1994 }
1995
1996 // If not found, this means an alias of one of the operands is dead. Add a
1997 // new implicit operand if required.
1998 if (Found || !AddIfNotFound)
1999 return Found;
2000
2001 addOperand(MachineOperand::CreateReg(Reg,
2002 true /*IsDef*/,
2003 true /*IsImp*/,
2004 false /*IsKill*/,
2005 true /*IsDead*/));
2006 return true;
2007 }
2008
clearRegisterDeads(Register Reg)2009 void MachineInstr::clearRegisterDeads(Register Reg) {
2010 for (MachineOperand &MO : operands()) {
2011 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2012 continue;
2013 MO.setIsDead(false);
2014 }
2015 }
2016
setRegisterDefReadUndef(Register Reg,bool IsUndef)2017 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2018 for (MachineOperand &MO : operands()) {
2019 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2020 continue;
2021 MO.setIsUndef(IsUndef);
2022 }
2023 }
2024
addRegisterDefined(Register Reg,const TargetRegisterInfo * RegInfo)2025 void MachineInstr::addRegisterDefined(Register Reg,
2026 const TargetRegisterInfo *RegInfo) {
2027 if (Register::isPhysicalRegister(Reg)) {
2028 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2029 if (MO)
2030 return;
2031 } else {
2032 for (const MachineOperand &MO : operands()) {
2033 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2034 MO.getSubReg() == 0)
2035 return;
2036 }
2037 }
2038 addOperand(MachineOperand::CreateReg(Reg,
2039 true /*IsDef*/,
2040 true /*IsImp*/));
2041 }
2042
setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,const TargetRegisterInfo & TRI)2043 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2044 const TargetRegisterInfo &TRI) {
2045 bool HasRegMask = false;
2046 for (MachineOperand &MO : operands()) {
2047 if (MO.isRegMask()) {
2048 HasRegMask = true;
2049 continue;
2050 }
2051 if (!MO.isReg() || !MO.isDef()) continue;
2052 Register Reg = MO.getReg();
2053 if (!Reg.isPhysical())
2054 continue;
2055 // If there are no uses, including partial uses, the def is dead.
2056 if (llvm::none_of(UsedRegs,
2057 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2058 MO.setIsDead();
2059 }
2060
2061 // This is a call with a register mask operand.
2062 // Mask clobbers are always dead, so add defs for the non-dead defines.
2063 if (HasRegMask)
2064 for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2065 I != E; ++I)
2066 addRegisterDefined(*I, &TRI);
2067 }
2068
2069 unsigned
getHashValue(const MachineInstr * const & MI)2070 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2071 // Build up a buffer of hash code components.
2072 SmallVector<size_t, 16> HashComponents;
2073 HashComponents.reserve(MI->getNumOperands() + 1);
2074 HashComponents.push_back(MI->getOpcode());
2075 for (const MachineOperand &MO : MI->operands()) {
2076 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2077 continue; // Skip virtual register defs.
2078
2079 HashComponents.push_back(hash_value(MO));
2080 }
2081 return hash_combine_range(HashComponents.begin(), HashComponents.end());
2082 }
2083
emitError(StringRef Msg) const2084 void MachineInstr::emitError(StringRef Msg) const {
2085 // Find the source location cookie.
2086 unsigned LocCookie = 0;
2087 const MDNode *LocMD = nullptr;
2088 for (unsigned i = getNumOperands(); i != 0; --i) {
2089 if (getOperand(i-1).isMetadata() &&
2090 (LocMD = getOperand(i-1).getMetadata()) &&
2091 LocMD->getNumOperands() != 0) {
2092 if (const ConstantInt *CI =
2093 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2094 LocCookie = CI->getZExtValue();
2095 break;
2096 }
2097 }
2098 }
2099
2100 if (const MachineBasicBlock *MBB = getParent())
2101 if (const MachineFunction *MF = MBB->getParent())
2102 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2103 report_fatal_error(Msg);
2104 }
2105
BuildMI(MachineFunction & MF,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,Register Reg,const MDNode * Variable,const MDNode * Expr)2106 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2107 const MCInstrDesc &MCID, bool IsIndirect,
2108 Register Reg, const MDNode *Variable,
2109 const MDNode *Expr) {
2110 assert(isa<DILocalVariable>(Variable) && "not a variable");
2111 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2112 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2113 "Expected inlined-at fields to agree");
2114 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2115 if (IsIndirect)
2116 MIB.addImm(0U);
2117 else
2118 MIB.addReg(0U, RegState::Debug);
2119 return MIB.addMetadata(Variable).addMetadata(Expr);
2120 }
2121
BuildMI(MachineFunction & MF,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,MachineOperand & MO,const MDNode * Variable,const MDNode * Expr)2122 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2123 const MCInstrDesc &MCID, bool IsIndirect,
2124 MachineOperand &MO, const MDNode *Variable,
2125 const MDNode *Expr) {
2126 assert(isa<DILocalVariable>(Variable) && "not a variable");
2127 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2128 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2129 "Expected inlined-at fields to agree");
2130 if (MO.isReg())
2131 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2132
2133 auto MIB = BuildMI(MF, DL, MCID).add(MO);
2134 if (IsIndirect)
2135 MIB.addImm(0U);
2136 else
2137 MIB.addReg(0U, RegState::Debug);
2138 return MIB.addMetadata(Variable).addMetadata(Expr);
2139 }
2140
BuildMI(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,Register Reg,const MDNode * Variable,const MDNode * Expr)2141 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2142 MachineBasicBlock::iterator I,
2143 const DebugLoc &DL, const MCInstrDesc &MCID,
2144 bool IsIndirect, Register Reg,
2145 const MDNode *Variable, const MDNode *Expr) {
2146 MachineFunction &MF = *BB.getParent();
2147 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2148 BB.insert(I, MI);
2149 return MachineInstrBuilder(MF, MI);
2150 }
2151
BuildMI(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,MachineOperand & MO,const MDNode * Variable,const MDNode * Expr)2152 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2153 MachineBasicBlock::iterator I,
2154 const DebugLoc &DL, const MCInstrDesc &MCID,
2155 bool IsIndirect, MachineOperand &MO,
2156 const MDNode *Variable, const MDNode *Expr) {
2157 MachineFunction &MF = *BB.getParent();
2158 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2159 BB.insert(I, MI);
2160 return MachineInstrBuilder(MF, *MI);
2161 }
2162
2163 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2164 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
computeExprForSpill(const MachineInstr & MI)2165 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2166 assert(MI.getOperand(0).isReg() && "can't spill non-register");
2167 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2168 "Expected inlined-at fields to agree");
2169
2170 const DIExpression *Expr = MI.getDebugExpression();
2171 if (MI.isIndirectDebugValue()) {
2172 assert(MI.getDebugOffset().getImm() == 0 &&
2173 "DBG_VALUE with nonzero offset");
2174 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2175 }
2176 return Expr;
2177 }
2178
buildDbgValueForSpill(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const MachineInstr & Orig,int FrameIndex)2179 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2180 MachineBasicBlock::iterator I,
2181 const MachineInstr &Orig,
2182 int FrameIndex) {
2183 const DIExpression *Expr = computeExprForSpill(Orig);
2184 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2185 .addFrameIndex(FrameIndex)
2186 .addImm(0U)
2187 .addMetadata(Orig.getDebugVariable())
2188 .addMetadata(Expr);
2189 }
2190
updateDbgValueForSpill(MachineInstr & Orig,int FrameIndex)2191 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2192 const DIExpression *Expr = computeExprForSpill(Orig);
2193 Orig.getDebugOperand(0).ChangeToFrameIndex(FrameIndex);
2194 Orig.getDebugOffset().ChangeToImmediate(0U);
2195 Orig.getDebugExpressionOp().setMetadata(Expr);
2196 }
2197
collectDebugValues(SmallVectorImpl<MachineInstr * > & DbgValues)2198 void MachineInstr::collectDebugValues(
2199 SmallVectorImpl<MachineInstr *> &DbgValues) {
2200 MachineInstr &MI = *this;
2201 if (!MI.getOperand(0).isReg())
2202 return;
2203
2204 MachineBasicBlock::iterator DI = MI; ++DI;
2205 for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2206 DI != DE; ++DI) {
2207 if (!DI->isDebugValue())
2208 return;
2209 if (DI->getDebugOperandForReg(MI.getOperand(0).getReg()))
2210 DbgValues.push_back(&*DI);
2211 }
2212 }
2213
changeDebugValuesDefReg(Register Reg)2214 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2215 // Collect matching debug values.
2216 SmallVector<MachineInstr *, 2> DbgValues;
2217
2218 if (!getOperand(0).isReg())
2219 return;
2220
2221 Register DefReg = getOperand(0).getReg();
2222 auto *MRI = getRegInfo();
2223 for (auto &MO : MRI->use_operands(DefReg)) {
2224 auto *DI = MO.getParent();
2225 if (!DI->isDebugValue())
2226 continue;
2227 if (DI->getDebugOperandForReg(DefReg)) {
2228 DbgValues.push_back(DI);
2229 }
2230 }
2231
2232 // Propagate Reg to debug value instructions.
2233 for (auto *DBI : DbgValues)
2234 DBI->getDebugOperandForReg(DefReg)->setReg(Reg);
2235 }
2236
2237 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2238
getSpillSlotSize(const MMOList & Accesses,const MachineFrameInfo & MFI)2239 static unsigned getSpillSlotSize(const MMOList &Accesses,
2240 const MachineFrameInfo &MFI) {
2241 unsigned Size = 0;
2242 for (auto A : Accesses)
2243 if (MFI.isSpillSlotObjectIndex(
2244 cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2245 ->getFrameIndex()))
2246 Size += A->getSize();
2247 return Size;
2248 }
2249
2250 Optional<unsigned>
getSpillSize(const TargetInstrInfo * TII) const2251 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2252 int FI;
2253 if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2254 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2255 if (MFI.isSpillSlotObjectIndex(FI))
2256 return (*memoperands_begin())->getSize();
2257 }
2258 return None;
2259 }
2260
2261 Optional<unsigned>
getFoldedSpillSize(const TargetInstrInfo * TII) const2262 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2263 MMOList Accesses;
2264 if (TII->hasStoreToStackSlot(*this, Accesses))
2265 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2266 return None;
2267 }
2268
2269 Optional<unsigned>
getRestoreSize(const TargetInstrInfo * TII) const2270 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2271 int FI;
2272 if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2273 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2274 if (MFI.isSpillSlotObjectIndex(FI))
2275 return (*memoperands_begin())->getSize();
2276 }
2277 return None;
2278 }
2279
2280 Optional<unsigned>
getFoldedRestoreSize(const TargetInstrInfo * TII) const2281 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2282 MMOList Accesses;
2283 if (TII->hasLoadFromStackSlot(*this, Accesses))
2284 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2285 return None;
2286 }
2287
getDebugInstrNum()2288 unsigned MachineInstr::getDebugInstrNum() {
2289 if (DebugInstrNum == 0)
2290 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2291 return DebugInstrNum;
2292 }
2293