• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright (C) 2007 The Android Open Source Project
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 
18 #pragma once
19 
20 #include <compositionengine/LayerFE.h>
21 #include <gui/BufferQueue.h>
22 #include <gui/ISurfaceComposerClient.h>
23 #include <gui/LayerState.h>
24 #include <input/InputWindow.h>
25 #include <layerproto/LayerProtoHeader.h>
26 #include <math/vec4.h>
27 #include <renderengine/Mesh.h>
28 #include <renderengine/Texture.h>
29 #include <sys/types.h>
30 #include <ui/BlurRegion.h>
31 #include <ui/FloatRect.h>
32 #include <ui/FrameStats.h>
33 #include <ui/GraphicBuffer.h>
34 #include <ui/PixelFormat.h>
35 #include <ui/Region.h>
36 #include <ui/StretchEffect.h>
37 #include <ui/Transform.h>
38 #include <utils/RefBase.h>
39 #include <utils/Timers.h>
40 
41 #include <chrono>
42 #include <cstdint>
43 #include <list>
44 #include <optional>
45 #include <vector>
46 
47 #include "Client.h"
48 #include "ClientCache.h"
49 #include "DisplayHardware/ComposerHal.h"
50 #include "DisplayHardware/HWComposer.h"
51 #include "Fps.h"
52 #include "FrameTracker.h"
53 #include "LayerVector.h"
54 #include "MonitoredProducer.h"
55 #include "RenderArea.h"
56 #include "Scheduler/LayerInfo.h"
57 #include "Scheduler/Seamlessness.h"
58 #include "SurfaceFlinger.h"
59 #include "SurfaceTracing.h"
60 #include "TransactionCallbackInvoker.h"
61 
62 using namespace android::surfaceflinger;
63 
64 namespace android {
65 
66 class Client;
67 class Colorizer;
68 class DisplayDevice;
69 class GraphicBuffer;
70 class SurfaceFlinger;
71 class LayerDebugInfo;
72 
73 namespace compositionengine {
74 class OutputLayer;
75 struct LayerFECompositionState;
76 }
77 
78 namespace impl {
79 class SurfaceInterceptor;
80 }
81 
82 namespace frametimeline {
83 class SurfaceFrame;
84 } // namespace frametimeline
85 
86 struct LayerCreationArgs {
87     LayerCreationArgs(SurfaceFlinger*, sp<Client>, std::string name, uint32_t w, uint32_t h,
88                       uint32_t flags, LayerMetadata);
89 
90     SurfaceFlinger* flinger;
91     const sp<Client> client;
92     std::string name;
93     uint32_t w;
94     uint32_t h;
95     uint32_t flags;
96     LayerMetadata metadata;
97 
98     pid_t callingPid;
99     uid_t callingUid;
100     uint32_t textureName;
101 };
102 
103 class Layer : public virtual RefBase, compositionengine::LayerFE {
104     static std::atomic<int32_t> sSequence;
105     // The following constants represent priority of the window. SF uses this information when
106     // deciding which window has a priority when deciding about the refresh rate of the screen.
107     // Priority 0 is considered the highest priority. -1 means that the priority is unset.
108     static constexpr int32_t PRIORITY_UNSET = -1;
109     // Windows that are in focus and voted for the preferred mode ID
110     static constexpr int32_t PRIORITY_FOCUSED_WITH_MODE = 0;
111     // // Windows that are in focus, but have not requested a specific mode ID.
112     static constexpr int32_t PRIORITY_FOCUSED_WITHOUT_MODE = 1;
113     // Windows that are not in focus, but voted for a specific mode ID.
114     static constexpr int32_t PRIORITY_NOT_FOCUSED_WITH_MODE = 2;
115 
116 public:
117     enum { // flags for doTransaction()
118         eDontUpdateGeometryState = 0x00000001,
119         eVisibleRegion = 0x00000002,
120         eInputInfoChanged = 0x00000004
121     };
122 
123     struct Geometry {
124         uint32_t w;
125         uint32_t h;
126         ui::Transform transform;
127 
128         inline bool operator==(const Geometry& rhs) const {
129             return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
130                     (transform.ty() == rhs.transform.ty());
131         }
132         inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
133     };
134 
135     struct RoundedCornerState {
136         RoundedCornerState() = default;
RoundedCornerStateRoundedCornerState137         RoundedCornerState(FloatRect cropRect, float radius)
138               : cropRect(cropRect), radius(radius) {}
139 
140         // Rounded rectangle in local layer coordinate space.
141         FloatRect cropRect = FloatRect();
142         // Radius of the rounded rectangle.
143         float radius = 0.0f;
144     };
145 
146     using FrameRate = scheduler::LayerInfo::FrameRate;
147     using FrameRateCompatibility = scheduler::LayerInfo::FrameRateCompatibility;
148 
149     struct State {
150         Geometry active_legacy;
151         Geometry requested_legacy;
152         int32_t z;
153 
154         // The identifier of the layer stack this layer belongs to. A layer can
155         // only be associated to a single layer stack. A layer stack is a
156         // z-ordered group of layers which can be associated to one or more
157         // displays. Using the same layer stack on different displays is a way
158         // to achieve mirroring.
159         uint32_t layerStack;
160 
161         uint32_t flags;
162         uint8_t reserved[2];
163         int32_t sequence; // changes when visible regions can change
164         bool modified;
165 
166         // Crop is expressed in layer space coordinate.
167         Rect crop;
168         Rect requestedCrop;
169 
170         // the transparentRegion hint is a bit special, it's latched only
171         // when we receive a buffer -- this is because it's "content"
172         // dependent.
173         Region activeTransparentRegion_legacy;
174         Region requestedTransparentRegion_legacy;
175 
176         LayerMetadata metadata;
177 
178         // If non-null, a Surface this Surface's Z-order is interpreted relative to.
179         wp<Layer> zOrderRelativeOf;
180         bool isRelativeOf{false};
181 
182         // A list of surfaces whose Z-order is interpreted relative to ours.
183         SortedVector<wp<Layer>> zOrderRelatives;
184 
185         half4 color;
186         float cornerRadius;
187         int backgroundBlurRadius;
188 
189         InputWindowInfo inputInfo;
190         wp<Layer> touchableRegionCrop;
191 
192         // dataspace is only used by BufferStateLayer and EffectLayer
193         ui::Dataspace dataspace;
194 
195         // The fields below this point are only used by BufferStateLayer
196         uint64_t frameNumber;
197         uint32_t width;
198         uint32_t height;
199         ui::Transform transform;
200 
201         uint32_t bufferTransform;
202         bool transformToDisplayInverse;
203 
204         Region transparentRegionHint;
205 
206         std::shared_ptr<renderengine::ExternalTexture> buffer;
207         client_cache_t clientCacheId;
208         sp<Fence> acquireFence;
209         std::shared_ptr<FenceTime> acquireFenceTime;
210         HdrMetadata hdrMetadata;
211         Region surfaceDamageRegion;
212         int32_t api;
213 
214         sp<NativeHandle> sidebandStream;
215         mat4 colorTransform;
216         bool hasColorTransform;
217 
218         // pointer to background color layer that, if set, appears below the buffer state layer
219         // and the buffer state layer's children.  Z order will be set to
220         // INT_MIN
221         sp<Layer> bgColorLayer;
222 
223         // The deque of callback handles for this frame. The back of the deque contains the most
224         // recent callback handle.
225         std::deque<sp<CallbackHandle>> callbackHandles;
226         bool colorSpaceAgnostic;
227         nsecs_t desiredPresentTime = 0;
228         bool isAutoTimestamp = true;
229 
230         // Length of the cast shadow. If the radius is > 0, a shadow of length shadowRadius will
231         // be rendered around the layer.
232         float shadowRadius;
233 
234         // Layer regions that are made of custom materials, like frosted glass
235         std::vector<BlurRegion> blurRegions;
236 
237         // Priority of the layer assigned by Window Manager.
238         int32_t frameRateSelectionPriority;
239 
240         FrameRate frameRate;
241 
242         // The combined frame rate of parents / children of this layer
243         FrameRate frameRateForLayerTree;
244 
245         // Set by window manager indicating the layer and all its children are
246         // in a different orientation than the display. The hint suggests that
247         // the graphic producers should receive a transform hint as if the
248         // display was in this orientation. When the display changes to match
249         // the layer orientation, the graphic producer may not need to allocate
250         // a buffer of a different size. ui::Transform::ROT_INVALID means the
251         // a fixed transform hint is not set.
252         ui::Transform::RotationFlags fixedTransformHint;
253 
254         // The vsync info that was used to start the transaction
255         FrameTimelineInfo frameTimelineInfo;
256 
257         // When the transaction was posted
258         nsecs_t postTime;
259 
260         sp<ITransactionCompletedListener> releaseBufferListener;
261         // SurfaceFrame that tracks the timeline of Transactions that contain a Buffer. Only one
262         // such SurfaceFrame exists because only one buffer can be presented on the layer per vsync.
263         // If multiple buffers are queued, the prior ones will be dropped, along with the
264         // SurfaceFrame that's tracking them.
265         std::shared_ptr<frametimeline::SurfaceFrame> bufferSurfaceFrameTX;
266         // A map of token(frametimelineVsyncId) to the SurfaceFrame that's tracking a transaction
267         // that contains the token. Only one SurfaceFrame exisits for transactions that share the
268         // same token, unless they are presented in different vsyncs.
269         std::unordered_map<int64_t, std::shared_ptr<frametimeline::SurfaceFrame>>
270                 bufferlessSurfaceFramesTX;
271         // An arbitrary threshold for the number of BufferlessSurfaceFrames in the state. Used to
272         // trigger a warning if the number of SurfaceFrames crosses the threshold.
273         static constexpr uint32_t kStateSurfaceFramesThreshold = 25;
274 
275         // Stretch effect to apply to this layer
276         StretchEffect stretchEffect;
277 
278         // Whether or not this layer is a trusted overlay for input
279         bool isTrustedOverlay;
280 
281         Rect bufferCrop;
282         Rect destinationFrame;
283     };
284 
285     /*
286      * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
287      * is called.
288      */
289     class LayerCleaner {
290         sp<SurfaceFlinger> mFlinger;
291         sp<Layer> mLayer;
292 
293     protected:
~LayerCleaner()294         ~LayerCleaner() {
295             // destroy client resources
296             mFlinger->onHandleDestroyed(mLayer);
297         }
298 
299     public:
LayerCleaner(const sp<SurfaceFlinger> & flinger,const sp<Layer> & layer)300         LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
301               : mFlinger(flinger), mLayer(layer) {}
302     };
303 
304     /*
305      * The layer handle is just a BBinder object passed to the client
306      * (remote process) -- we don't keep any reference on our side such that
307      * the dtor is called when the remote side let go of its reference.
308      *
309      * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
310      * this layer when the handle is destroyed.
311      */
312     class Handle : public BBinder, public LayerCleaner {
313     public:
Handle(const sp<SurfaceFlinger> & flinger,const sp<Layer> & layer)314         Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
315               : LayerCleaner(flinger, layer), owner(layer) {}
316 
317         wp<Layer> owner;
318     };
319 
320     explicit Layer(const LayerCreationArgs& args);
321     virtual ~Layer();
322 
323     static bool isLayerFocusedBasedOnPriority(int32_t priority);
324     static void miniDumpHeader(std::string& result);
325     static std::string frameRateCompatibilityString(FrameRateCompatibility compatibility);
326 
327     // Provide unique string for each class type in the Layer hierarchy
328     virtual const char* getType() const = 0;
329 
330     // true if this layer is visible, false otherwise
331     virtual bool isVisible() const = 0;
332 
333     virtual sp<Layer> createClone() = 0;
334 
335     // Geometry setting functions.
336     //
337     // The following group of functions are used to specify the layers
338     // bounds, and the mapping of the texture on to those bounds. According
339     // to various settings changes to them may apply immediately, or be delayed until
340     // a pending resize is completed by the producer submitting a buffer. For example
341     // if we were to change the buffer size, and update the matrix ahead of the
342     // new buffer arriving, then we would be stretching the buffer to a different
343     // aspect before and after the buffer arriving, which probably isn't what we wanted.
344     //
345     // The first set of geometry functions are controlled by the scaling mode, described
346     // in window.h. The scaling mode may be set by the client, as it submits buffers.
347     //
348     // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
349     // matrix updates will not be applied while a resize is pending
350     // and the size and transform will remain in their previous state
351     // until a new buffer is submitted. If the scaling mode is another value
352     // then the old-buffer will immediately be scaled to the pending size
353     // and the new matrix will be immediately applied following this scaling
354     // transformation.
355 
356     // Set the default buffer size for the assosciated Producer, in pixels. This is
357     // also the rendered size of the layer prior to any transformations. Parent
358     // or local matrix transformations will not affect the size of the buffer,
359     // but may affect it's on-screen size or clipping.
360     virtual bool setSize(uint32_t w, uint32_t h);
361     // Set a 2x2 transformation matrix on the layer. This transform
362     // will be applied after parent transforms, but before any final
363     // producer specified transform.
364     virtual bool setMatrix(const layer_state_t::matrix22_t& matrix,
365                            bool allowNonRectPreservingTransforms);
366 
367     // This second set of geometry attributes are controlled by
368     // setGeometryAppliesWithResize, and their default mode is to be
369     // immediate. If setGeometryAppliesWithResize is specified
370     // while a resize is pending, then update of these attributes will
371     // be delayed until the resize completes.
372 
373     // setPosition operates in parent buffer space (pre parent-transform) or display
374     // space for top-level layers.
375     virtual bool setPosition(float x, float y);
376     // Buffer space
377     virtual bool setCrop(const Rect& crop);
378 
379     // TODO(b/38182121): Could we eliminate the various latching modes by
380     // using the layer hierarchy?
381     // -----------------------------------------------------------------------
382     virtual bool setLayer(int32_t z);
383     virtual bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
384 
385     virtual bool setAlpha(float alpha);
setColor(const half3 &)386     virtual bool setColor(const half3& /*color*/) { return false; };
387 
388     // Set rounded corner radius for this layer and its children.
389     //
390     // We only support 1 radius per layer in the hierarchy, where parent layers have precedence.
391     // The shape of the rounded corner rectangle is specified by the crop rectangle of the layer
392     // from which we inferred the rounded corner radius.
393     virtual bool setCornerRadius(float cornerRadius);
394     // When non-zero, everything below this layer will be blurred by backgroundBlurRadius, which
395     // is specified in pixels.
396     virtual bool setBackgroundBlurRadius(int backgroundBlurRadius);
397     virtual bool setBlurRegions(const std::vector<BlurRegion>& effectRegions);
398     virtual bool setTransparentRegionHint(const Region& transparent);
399     virtual bool setTrustedOverlay(bool);
400     virtual bool setFlags(uint32_t flags, uint32_t mask);
401     virtual bool setLayerStack(uint32_t layerStack);
402     virtual uint32_t getLayerStack() const;
403     virtual bool setMetadata(const LayerMetadata& data);
404     virtual void setChildrenDrawingParent(const sp<Layer>&);
405     virtual bool reparent(const sp<IBinder>& newParentHandle);
406     virtual bool setColorTransform(const mat4& matrix);
407     virtual mat4 getColorTransform() const;
408     virtual bool hasColorTransform() const;
isColorSpaceAgnostic()409     virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; }
410 
411     // Used only to set BufferStateLayer state
setTransform(uint32_t)412     virtual bool setTransform(uint32_t /*transform*/) { return false; };
setTransformToDisplayInverse(bool)413     virtual bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/) { return false; };
setBuffer(const std::shared_ptr<renderengine::ExternalTexture> &,const sp<Fence> &,nsecs_t,nsecs_t,bool,const client_cache_t &,uint64_t,std::optional<nsecs_t>,const FrameTimelineInfo &,const sp<ITransactionCompletedListener> &)414     virtual bool setBuffer(const std::shared_ptr<renderengine::ExternalTexture>& /*buffer*/,
415                            const sp<Fence>& /*acquireFence*/, nsecs_t /*postTime*/,
416                            nsecs_t /*desiredPresentTime*/, bool /*isAutoTimestamp*/,
417                            const client_cache_t& /*clientCacheId*/, uint64_t /* frameNumber */,
418                            std::optional<nsecs_t> /* dequeueTime */,
419                            const FrameTimelineInfo& /*info*/,
420                            const sp<ITransactionCompletedListener>& /* releaseBufferListener */) {
421         return false;
422     };
setAcquireFence(const sp<Fence> &)423     virtual bool setAcquireFence(const sp<Fence>& /*fence*/) { return false; };
setDataspace(ui::Dataspace)424     virtual bool setDataspace(ui::Dataspace /*dataspace*/) { return false; };
setHdrMetadata(const HdrMetadata &)425     virtual bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/) { return false; };
setSurfaceDamageRegion(const Region &)426     virtual bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/) { return false; };
setApi(int32_t)427     virtual bool setApi(int32_t /*api*/) { return false; };
setSidebandStream(const sp<NativeHandle> &)428     virtual bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/) { return false; };
setTransactionCompletedListeners(const std::vector<sp<CallbackHandle>> &)429     virtual bool setTransactionCompletedListeners(
430             const std::vector<sp<CallbackHandle>>& /*handles*/) {
431         return false;
432     };
addFrameEvent(const sp<Fence> &,nsecs_t,nsecs_t)433     virtual bool addFrameEvent(const sp<Fence>& /*acquireFence*/, nsecs_t /*postedTime*/,
434                                nsecs_t /*requestedPresentTime*/) {
435         return false;
436     }
437     virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace);
438     virtual bool setColorSpaceAgnostic(const bool agnostic);
439     virtual bool setFrameRateSelectionPriority(int32_t priority);
440     virtual bool setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint);
setAutoRefresh(bool)441     virtual void setAutoRefresh(bool /* autoRefresh */) {}
442     //  If the variable is not set on the layer, it traverses up the tree to inherit the frame
443     //  rate priority from its parent.
444     virtual int32_t getFrameRateSelectionPriority() const;
getDataSpace()445     virtual ui::Dataspace getDataSpace() const { return ui::Dataspace::UNKNOWN; }
446 
447     virtual sp<compositionengine::LayerFE> getCompositionEngineLayerFE() const;
448     virtual compositionengine::LayerFECompositionState* editCompositionState();
449 
450     // If we have received a new buffer this frame, we will pass its surface
451     // damage down to hardware composer. Otherwise, we must send a region with
452     // one empty rect.
useSurfaceDamage()453     virtual void useSurfaceDamage() {}
useEmptyDamage()454     virtual void useEmptyDamage() {}
455     Region getVisibleRegion(const DisplayDevice*) const;
456 
457     /*
458      * isOpaque - true if this surface is opaque
459      *
460      * This takes into account the buffer format (i.e. whether or not the
461      * pixel format includes an alpha channel) and the "opaque" flag set
462      * on the layer.  It does not examine the current plane alpha value.
463      */
isOpaque(const Layer::State &)464     virtual bool isOpaque(const Layer::State&) const { return false; }
465 
466     /*
467      * Returns whether this layer can receive input.
468      */
469     virtual bool canReceiveInput() const;
470 
471     /*
472      * isProtected - true if the layer may contain protected contents in the
473      * GRALLOC_USAGE_PROTECTED sense.
474      */
isProtected()475     virtual bool isProtected() const { return false; }
476 
477     /*
478      * isFixedSize - true if content has a fixed size
479      */
isFixedSize()480     virtual bool isFixedSize() const { return true; }
481 
482     /*
483      * usesSourceCrop - true if content should use a source crop
484      */
usesSourceCrop()485     virtual bool usesSourceCrop() const { return false; }
486 
487     // Most layers aren't created from the main thread, and therefore need to
488     // grab the SF state lock to access HWC, but ContainerLayer does, so we need
489     // to avoid grabbing the lock again to avoid deadlock
isCreatedFromMainThread()490     virtual bool isCreatedFromMainThread() const { return false; }
491 
getActiveWidth(const Layer::State & s)492     uint32_t getActiveWidth(const Layer::State& s) const { return s.width; }
getActiveHeight(const Layer::State & s)493     uint32_t getActiveHeight(const Layer::State& s) const { return s.height; }
getActiveTransform(const Layer::State & s)494     ui::Transform getActiveTransform(const Layer::State& s) const { return s.transform; }
getActiveTransparentRegion(const Layer::State & s)495     virtual Region getActiveTransparentRegion(const Layer::State& s) const {
496         return s.activeTransparentRegion_legacy;
497     }
getCrop(const Layer::State & s)498     virtual Rect getCrop(const Layer::State& s) const { return s.crop; }
needsFiltering(const DisplayDevice *)499     virtual bool needsFiltering(const DisplayDevice*) const { return false; }
500 
501     // True if this layer requires filtering
502     // This method is distinct from needsFiltering() in how the filter
503     // requirement is computed. needsFiltering() compares displayFrame and crop,
504     // where as this method transforms the displayFrame to layer-stack space
505     // first. This method should be used if there is no physical display to
506     // project onto when taking screenshots, as the filtering requirements are
507     // different.
508     // If the parent transform needs to be undone when capturing the layer, then
509     // the inverse parent transform is also required.
needsFilteringForScreenshots(const DisplayDevice *,const ui::Transform &)510     virtual bool needsFilteringForScreenshots(const DisplayDevice*, const ui::Transform&) const {
511         return false;
512     }
513 
updateCloneBufferInfo()514     virtual void updateCloneBufferInfo(){};
515 
setDefaultBufferSize(uint32_t,uint32_t)516     virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {}
517 
isHdrY410()518     virtual bool isHdrY410() const { return false; }
519 
shouldPresentNow(nsecs_t)520     virtual bool shouldPresentNow(nsecs_t /*expectedPresentTime*/) const { return false; }
521 
getHeadFrameNumber(nsecs_t)522     virtual uint64_t getHeadFrameNumber(nsecs_t /* expectedPresentTime */) const { return 0; }
523 
524     /*
525      * called after composition.
526      * returns true if the layer latched a new buffer this frame.
527      */
onPostComposition(const DisplayDevice *,const std::shared_ptr<FenceTime> &,const std::shared_ptr<FenceTime> &,const CompositorTiming &)528     virtual bool onPostComposition(const DisplayDevice*,
529                                    const std::shared_ptr<FenceTime>& /*glDoneFence*/,
530                                    const std::shared_ptr<FenceTime>& /*presentFence*/,
531                                    const CompositorTiming&) {
532         return false;
533     }
534 
535     // If a buffer was replaced this frame, release the former buffer
releasePendingBuffer(nsecs_t)536     virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { }
537 
finalizeFrameEventHistory(const std::shared_ptr<FenceTime> &,const CompositorTiming &)538     virtual void finalizeFrameEventHistory(const std::shared_ptr<FenceTime>& /*glDoneFence*/,
539                                            const CompositorTiming& /*compositorTiming*/) {}
540 
541     /*
542      * latchBuffer - called each time the screen is redrawn and returns whether
543      * the visible regions need to be recomputed (this is a fairly heavy
544      * operation, so this should be set only if needed). Typically this is used
545      * to figure out if the content or size of a surface has changed.
546      */
latchBuffer(bool &,nsecs_t,nsecs_t)547     virtual bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/,
548                              nsecs_t /*expectedPresentTime*/) {
549         return false;
550     }
551 
isBufferLatched()552     virtual bool isBufferLatched() const { return false; }
553 
latchAndReleaseBuffer()554     virtual void latchAndReleaseBuffer() {}
555 
556     /*
557      * returns the rectangle that crops the content of the layer and scales it
558      * to the layer's size.
559      */
getBufferCrop()560     virtual Rect getBufferCrop() const { return Rect(); }
561 
562     /*
563      * Returns the transform applied to the buffer.
564      */
getBufferTransform()565     virtual uint32_t getBufferTransform() const { return 0; }
566 
getBuffer()567     virtual sp<GraphicBuffer> getBuffer() const { return nullptr; }
568 
getTransformHint()569     virtual ui::Transform::RotationFlags getTransformHint() const { return ui::Transform::ROT_0; }
570 
571     /*
572      * Returns if a frame is ready
573      */
hasReadyFrame()574     virtual bool hasReadyFrame() const { return false; }
575 
getQueuedFrameCount()576     virtual int32_t getQueuedFrameCount() const { return 0; }
577 
578     /**
579      * Returns active buffer size in the correct orientation. Buffer size is determined by undoing
580      * any buffer transformations. If the layer has no buffer then return INVALID_RECT.
581      */
getBufferSize(const Layer::State &)582     virtual Rect getBufferSize(const Layer::State&) const { return Rect::INVALID_RECT; }
583 
584     /**
585      * Returns the source bounds. If the bounds are not defined, it is inferred from the
586      * buffer size. Failing that, the bounds are determined from the passed in parent bounds.
587      * For the root layer, this is the display viewport size.
588      */
computeSourceBounds(const FloatRect & parentBounds)589     virtual FloatRect computeSourceBounds(const FloatRect& parentBounds) const {
590         return parentBounds;
591     }
592     virtual FrameRate getFrameRateForLayerTree() const;
593 
getOccupancyHistory(bool)594     virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) {
595         return {};
596     }
597 
getTransformToDisplayInverse()598     virtual bool getTransformToDisplayInverse() const { return false; }
599 
600     // Returns how rounded corners should be drawn for this layer.
601     // This will traverse the hierarchy until it reaches its root, finding topmost rounded
602     // corner definition and converting it into current layer's coordinates.
603     // As of now, only 1 corner radius per display list is supported. Subsequent ones will be
604     // ignored.
605     virtual RoundedCornerState getRoundedCornerState() const;
606 
hasRoundedCorners()607     bool hasRoundedCorners() const override { return getRoundedCornerState().radius > .0f; }
608 
getPixelFormat()609     virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; }
610     /**
611      * Return whether this layer needs an input info. For most layer types
612      * this is only true if they explicitly set an input-info but BufferLayer
613      * overrides this so we can generate input-info for Buffered layers that don't
614      * have them (for input occlusion detection checks).
615      */
needsInputInfo()616     virtual bool needsInputInfo() const { return hasInputInfo(); }
617 
618     // Implements RefBase.
619     void onFirstRef() override;
620 
621     // implements compositionengine::LayerFE
622     const compositionengine::LayerFECompositionState* getCompositionState() const override;
623     bool onPreComposition(nsecs_t) override;
624     void prepareCompositionState(compositionengine::LayerFE::StateSubset subset) override;
625     std::vector<compositionengine::LayerFE::LayerSettings> prepareClientCompositionList(
626             compositionengine::LayerFE::ClientCompositionTargetSettings&) override;
627     void onLayerDisplayed(const sp<Fence>& releaseFence) override;
628     const char* getDebugName() const override;
629 
630     bool setShadowRadius(float shadowRadius);
631 
632     // Before color management is introduced, contents on Android have to be
633     // desaturated in order to match what they appears like visually.
634     // With color management, these contents will appear desaturated, thus
635     // needed to be saturated so that they match what they are designed for
636     // visually.
637     bool isLegacyDataSpace() const;
638 
getTransactionFlags()639     uint32_t getTransactionFlags() const { return mTransactionFlags; }
640     uint32_t getTransactionFlags(uint32_t flags);
641     uint32_t setTransactionFlags(uint32_t flags);
642 
643     // Deprecated, please use compositionengine::Output::belongsInOutput()
644     // instead.
645     // TODO(lpique): Move the remaining callers (screencap) to the new function.
belongsToDisplay(uint32_t layerStack)646     bool belongsToDisplay(uint32_t layerStack) const { return getLayerStack() == layerStack; }
647 
648     FloatRect getBounds(const Region& activeTransparentRegion) const;
649     FloatRect getBounds() const;
650 
651     // Compute bounds for the layer and cache the results.
652     void computeBounds(FloatRect parentBounds, ui::Transform parentTransform, float shadowRadius);
653 
getSequence()654     int32_t getSequence() const override { return sequence; }
655 
656     // For tracing.
657     // TODO: Replace with raw buffer id from buffer metadata when that becomes available.
658     // GraphicBuffer::getId() does not provide a reliable global identifier. Since the traces
659     // creates its tracks by buffer id and has no way of associating a buffer back to the process
660     // that created it, the current implementation is only sufficient for cases where a buffer is
661     // only used within a single layer.
getCurrentBufferId()662     uint64_t getCurrentBufferId() const { return getBuffer() ? getBuffer()->getId() : 0; }
663 
664     /*
665      * isSecure - true if this surface is secure, that is if it prevents
666      * screenshots or VNC servers. A surface can be set to be secure by the
667      * application, being secure doesn't mean the surface has DRM contents.
668      */
669     bool isSecure() const;
670 
671     /*
672      * isHiddenByPolicy - true if this layer has been forced invisible.
673      * just because this is false, doesn't mean isVisible() is true.
674      * For example if this layer has no active buffer, it may not be hidden by
675      * policy, but it still can not be visible.
676      */
677     bool isHiddenByPolicy() const;
678 
679     bool isRemovedFromCurrentState() const;
680 
681     LayerProto* writeToProto(LayersProto& layersProto, uint32_t traceFlags, const DisplayDevice*);
682 
683     // Write states that are modified by the main thread. This includes drawing
684     // state as well as buffer data. This should be called in the main or tracing
685     // thread.
686     void writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags, const DisplayDevice*);
687     // Write drawing or current state. If writing current state, the caller should hold the
688     // external mStateLock. If writing drawing state, this function should be called on the
689     // main or tracing thread.
690     void writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet,
691                                  uint32_t traceFlags = SurfaceTracing::TRACE_ALL);
692 
getWindowType()693     InputWindowInfo::Type getWindowType() const { return mWindowType; }
694 
695     bool getPrimaryDisplayOnly() const;
696 
697     void updateMirrorInfo();
698 
699     /*
700      * doTransaction - process the transaction. This is a good place to figure
701      * out which attributes of the surface have changed.
702      */
703     virtual uint32_t doTransaction(uint32_t transactionFlags);
704 
705     /*
706      * Remove relative z for the layer if its relative parent is not part of the
707      * provided layer tree.
708      */
709     void removeRelativeZ(const std::vector<Layer*>& layersInTree);
710 
711     /*
712      * Remove from current state and mark for removal.
713      */
714     void removeFromCurrentState();
715 
716     /*
717      * called with the state lock from a binder thread when the layer is
718      * removed from the current list to the pending removal list
719      */
720     void onRemovedFromCurrentState();
721 
722     /*
723      * Called when the layer is added back to the current state list.
724      */
725     void addToCurrentState();
726 
727     /*
728      * Sets display transform hint on BufferLayerConsumer.
729      */
730     void updateTransformHint(ui::Transform::RotationFlags);
731 
getDrawingState()732     inline const State& getDrawingState() const { return mDrawingState; }
getDrawingState()733     inline State& getDrawingState() { return mDrawingState; }
734 
735     LayerDebugInfo getLayerDebugInfo(const DisplayDevice*) const;
736 
737     void miniDump(std::string& result, const DisplayDevice&) const;
738     void dumpFrameStats(std::string& result) const;
739     void dumpFrameEvents(std::string& result);
740     void dumpCallingUidPid(std::string& result) const;
741     void clearFrameStats();
742     void logFrameStats();
743     void getFrameStats(FrameStats* outStats) const;
744     void onDisconnect();
745     void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
746                                   FrameEventHistoryDelta* outDelta);
747 
748     ui::Transform getTransform() const;
749 
750     // Returns the Alpha of the Surface, accounting for the Alpha
751     // of parent Surfaces in the hierarchy (alpha's will be multiplied
752     // down the hierarchy).
753     half getAlpha() const;
754     half4 getColor() const;
755     int32_t getBackgroundBlurRadius() const;
drawShadows()756     bool drawShadows() const { return mEffectiveShadowRadius > 0.f; };
757 
758     // Returns the transform hint set by Window Manager on the layer or one of its parents.
759     // This traverses the current state because the data is needed when creating
760     // the layer(off drawing thread) and the hint should be available before the producer
761     // is ready to acquire a buffer.
762     ui::Transform::RotationFlags getFixedTransformHint() const;
763 
764     /**
765      * Traverse this layer and it's hierarchy of children directly. Unlike traverseInZOrder
766      * which will not emit children who have relativeZOrder to another layer, this method
767      * just directly emits all children. It also emits them in no particular order.
768      * So this method is not suitable for graphical operations, as it doesn't represent
769      * the scene state, but it's also more efficient than traverseInZOrder and so useful for
770      * book-keeping.
771      */
772     void traverse(LayerVector::StateSet, const LayerVector::Visitor&);
773     void traverseInReverseZOrder(LayerVector::StateSet, const LayerVector::Visitor&);
774     void traverseInZOrder(LayerVector::StateSet, const LayerVector::Visitor&);
775 
776     /**
777      * Traverse only children in z order, ignoring relative layers that are not children of the
778      * parent.
779      */
780     void traverseChildrenInZOrder(LayerVector::StateSet, const LayerVector::Visitor&);
781 
782     size_t getChildrenCount() const;
783 
784     // ONLY CALL THIS FROM THE LAYER DTOR!
785     // See b/141111965.  We need to add current children to offscreen layers in
786     // the layer dtor so as not to dangle layers.  Since the layer has not
787     // committed its transaction when the layer is destroyed, we must add
788     // current children.  This is safe in the dtor as we will no longer update
789     // the current state, but should not be called anywhere else!
getCurrentChildren()790     LayerVector& getCurrentChildren() { return mCurrentChildren; }
791 
792     void addChild(const sp<Layer>&);
793     // Returns index if removed, or negative value otherwise
794     // for symmetry with Vector::remove
795     ssize_t removeChild(const sp<Layer>& layer);
getParent()796     sp<Layer> getParent() const { return mCurrentParent.promote(); }
797 
798     // Should be called with the surfaceflinger statelock held
isAtRoot()799     bool isAtRoot() const { return mIsAtRoot; }
setIsAtRoot(bool isAtRoot)800     void setIsAtRoot(bool isAtRoot) { mIsAtRoot = isAtRoot; }
801 
hasParent()802     bool hasParent() const { return getParent() != nullptr; }
803     Rect getScreenBounds(bool reduceTransparentRegion = true) const;
804     bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
805     bool setChildRelativeLayer(const sp<Layer>& childLayer,
806             const sp<IBinder>& relativeToHandle, int32_t relativeZ);
807 
808     // Copy the current list of children to the drawing state. Called by
809     // SurfaceFlinger to complete a transaction.
810     void commitChildList();
811     int32_t getZ(LayerVector::StateSet) const;
812 
813     /**
814      * Returns the cropped buffer size or the layer crop if the layer has no buffer. Return
815      * INVALID_RECT if the layer has no buffer and no crop.
816      * A layer with an invalid buffer size and no crop is considered to be boundless. The layer
817      * bounds are constrained by its parent bounds.
818      */
819     Rect getCroppedBufferSize(const Layer::State& s) const;
820 
821     bool setFrameRate(FrameRate);
822 
setFrameTimelineInfoForBuffer(const FrameTimelineInfo &)823     virtual void setFrameTimelineInfoForBuffer(const FrameTimelineInfo& /*info*/) {}
824     void setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo& info, nsecs_t postTime);
825     void setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo& info,
826                                                        nsecs_t postTime);
827 
828     void addSurfaceFrameDroppedForBuffer(
829             std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame);
830     void addSurfaceFramePresentedForBuffer(
831             std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame, nsecs_t acquireFenceTime,
832             nsecs_t currentLatchTime);
833 
834     std::shared_ptr<frametimeline::SurfaceFrame> createSurfaceFrameForTransaction(
835             const FrameTimelineInfo& info, nsecs_t postTime);
836     std::shared_ptr<frametimeline::SurfaceFrame> createSurfaceFrameForBuffer(
837             const FrameTimelineInfo& info, nsecs_t queueTime, std::string debugName);
838 
839     // Creates a new handle each time, so we only expect
840     // this to be called once.
841     sp<IBinder> getHandle();
getName()842     const std::string& getName() const { return mName; }
843     bool getPremultipledAlpha() const;
844     void setInputInfo(const InputWindowInfo& info);
845 
846     InputWindowInfo fillInputInfo(const sp<DisplayDevice>& display);
847     /**
848      * Returns whether this layer has an explicitly set input-info.
849      */
850     bool hasInputInfo() const;
851 
852     // Sets the parent's gameMode for this layer and all its children. Parent's gameMode is applied
853     // only to layers that do not have the GAME_MODE_METADATA set by WMShell. Any layer(along with
854     // its children) that has the metadata set will use the gameMode from the metadata.
855     void setGameModeForTree(int32_t parentGameMode);
setGameMode(int32_t gameMode)856     void setGameMode(int32_t gameMode) { mGameMode = gameMode; };
getGameMode()857     int32_t getGameMode() const { return mGameMode; }
858 
getOwnerUid()859     virtual uid_t getOwnerUid() const { return mOwnerUid; }
860 
getOwnerPid()861     pid_t getOwnerPid() { return mOwnerPid; }
862 
863     // This layer is not a clone, but it's the parent to the cloned hierarchy. The
864     // variable mClonedChild represents the top layer that will be cloned so this
865     // layer will be the parent of mClonedChild.
866     // The layers in the cloned hierarchy will match the lifetime of the real layers. That is
867     // if the real layer is destroyed, then the clone layer will also be destroyed.
868     sp<Layer> mClonedChild;
869     bool mHadClonedChild = false;
870     void setClonedChild(const sp<Layer>& mClonedChild);
871 
872     mutable bool contentDirty{false};
873     Region surfaceDamageRegion;
874 
875     // Layer serial number.  This gives layers an explicit ordering, so we
876     // have a stable sort order when their layer stack and Z-order are
877     // the same.
878     int32_t sequence{sSequence++};
879 
880     bool mPendingHWCDestroy{false};
881 
backpressureEnabled()882     bool backpressureEnabled() { return mDrawingState.flags & layer_state_t::eEnableBackpressure; }
883 
884     bool setStretchEffect(const StretchEffect& effect);
885     StretchEffect getStretchEffect() const;
886 
setBufferCrop(const Rect &)887     virtual bool setBufferCrop(const Rect& /* bufferCrop */) { return false; }
setDestinationFrame(const Rect &)888     virtual bool setDestinationFrame(const Rect& /* destinationFrame */) { return false; }
getPendingBufferCounter()889     virtual std::atomic<int32_t>* getPendingBufferCounter() { return nullptr; }
getPendingBufferCounterName()890     virtual std::string getPendingBufferCounterName() { return ""; }
updateGeometry()891     virtual bool updateGeometry() { return false; }
892 
893 protected:
894     friend class impl::SurfaceInterceptor;
895 
896     // For unit tests
897     friend class TestableSurfaceFlinger;
898     friend class FpsReporterTest;
899     friend class RefreshRateSelectionTest;
900     friend class SetFrameRateTest;
901     friend class TransactionFrameTracerTest;
902     friend class TransactionSurfaceFrameTest;
903 
904     virtual void setInitialValuesForClone(const sp<Layer>& clonedFrom);
905     virtual std::optional<compositionengine::LayerFE::LayerSettings> prepareClientComposition(
906             compositionengine::LayerFE::ClientCompositionTargetSettings&);
907     virtual void preparePerFrameCompositionState();
908     virtual void commitTransaction(State& stateToCommit);
onSurfaceFrameCreated(const std::shared_ptr<frametimeline::SurfaceFrame> &)909     virtual void onSurfaceFrameCreated(const std::shared_ptr<frametimeline::SurfaceFrame>&) {}
910 
911     // Returns mCurrentScaling mode (originating from the
912     // Client) or mOverrideScalingMode mode (originating from
913     // the Surface Controller) if set.
getEffectiveScalingMode()914     virtual uint32_t getEffectiveScalingMode() const { return 0; }
915 
916     sp<compositionengine::LayerFE> asLayerFE() const;
getClonedFrom()917     sp<Layer> getClonedFrom() { return mClonedFrom != nullptr ? mClonedFrom.promote() : nullptr; }
isClone()918     bool isClone() { return mClonedFrom != nullptr; }
isClonedFromAlive()919     bool isClonedFromAlive() { return getClonedFrom() != nullptr; }
920 
921     void updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
922     void updateClonedChildren(const sp<Layer>& mirrorRoot,
923                               std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
924     void updateClonedRelatives(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
925     void addChildToDrawing(const sp<Layer>&);
926     void updateClonedInputInfo(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
927 
928     // Modifies the passed in layer settings to clear the contents. If the blackout flag is set,
929     // the settings clears the content with a solid black fill.
930     void prepareClearClientComposition(LayerFE::LayerSettings&, bool blackout) const;
931     void prepareShadowClientComposition(LayerFE::LayerSettings& caster, const Rect& layerStackRect);
932 
933     void prepareBasicGeometryCompositionState();
934     void prepareGeometryCompositionState();
935     void prepareCursorCompositionState();
936 
937     uint32_t getEffectiveUsage(uint32_t usage) const;
938 
939     /**
940      * Setup rounded corners coordinates of this layer, taking into account the layer bounds and
941      * crop coordinates, transforming them into layer space.
942      */
943     void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const;
944     void setParent(const sp<Layer>&);
945     LayerVector makeTraversalList(LayerVector::StateSet, bool* outSkipRelativeZUsers);
946     void addZOrderRelative(const wp<Layer>& relative);
947     void removeZOrderRelative(const wp<Layer>& relative);
948     compositionengine::OutputLayer* findOutputLayerForDisplay(const DisplayDevice*) const;
949     bool usingRelativeZ(LayerVector::StateSet) const;
950 
951     virtual ui::Transform getInputTransform() const;
952     virtual Rect getInputBounds() const;
953 
954     // constant
955     sp<SurfaceFlinger> mFlinger;
956 
957     bool mPremultipliedAlpha{true};
958     const std::string mName;
959     const std::string mTransactionName{"TX - " + mName};
960 
961     // These are only accessed by the main thread or the tracing thread.
962     State mDrawingState;
963 
964     uint32_t mTransactionFlags{0};
965     // Updated in doTransaction, used to track the last sequence number we
966     // committed. Currently this is really only used for updating visible
967     // regions.
968     int32_t mLastCommittedTxSequence = -1;
969 
970     // Timestamp history for UIAutomation. Thread safe.
971     FrameTracker mFrameTracker;
972 
973     // Timestamp history for the consumer to query.
974     // Accessed by both consumer and producer on main and binder threads.
975     Mutex mFrameEventHistoryMutex;
976     ConsumerFrameEventHistory mFrameEventHistory;
977     FenceTimeline mAcquireTimeline;
978     FenceTimeline mReleaseTimeline;
979 
980     // main thread
981     sp<NativeHandle> mSidebandStream;
982     // False if the buffer and its contents have been previously used for GPU
983     // composition, true otherwise.
984     bool mIsActiveBufferUpdatedForGpu = true;
985 
986     // We encode unset as -1.
987     std::atomic<uint64_t> mCurrentFrameNumber{0};
988     // Whether filtering is needed b/c of the drawingstate
989     bool mNeedsFiltering{false};
990 
991     std::atomic<bool> mRemovedFromDrawingState{false};
992 
993     // page-flip thread (currently main thread)
994     bool mProtectedByApp{false}; // application requires protected path to external sink
995 
996     // protected by mLock
997     mutable Mutex mLock;
998 
999     const wp<Client> mClientRef;
1000 
1001     // This layer can be a cursor on some displays.
1002     bool mPotentialCursor{false};
1003 
1004     LayerVector mCurrentChildren{LayerVector::StateSet::Current};
1005     LayerVector mDrawingChildren{LayerVector::StateSet::Drawing};
1006 
1007     wp<Layer> mCurrentParent;
1008     wp<Layer> mDrawingParent;
1009 
1010     // Window types from WindowManager.LayoutParams
1011     const InputWindowInfo::Type mWindowType;
1012 
1013     // The owner of the layer. If created from a non system process, it will be the calling uid.
1014     // If created from a system process, the value can be passed in.
1015     uid_t mOwnerUid;
1016 
1017     // The owner pid of the layer. If created from a non system process, it will be the calling pid.
1018     // If created from a system process, the value can be passed in.
1019     pid_t mOwnerPid;
1020 
1021     // Keeps track of the time SF latched the last buffer from this layer.
1022     // Used in buffer stuffing analysis in FrameTimeline.
1023     nsecs_t mLastLatchTime = 0;
1024 
1025     mutable bool mDrawingStateModified = false;
1026 
1027 private:
setTransformHint(ui::Transform::RotationFlags)1028     virtual void setTransformHint(ui::Transform::RotationFlags) {}
1029 
1030     // Returns true if the layer can draw shadows on its border.
canDrawShadows()1031     virtual bool canDrawShadows() const { return true; }
1032 
1033     Hwc2::IComposerClient::Composition getCompositionType(const DisplayDevice&) const;
1034 
1035     /**
1036      * Returns an unsorted vector of all layers that are part of this tree.
1037      * That includes the current layer and all its descendants.
1038      */
1039     std::vector<Layer*> getLayersInTree(LayerVector::StateSet);
1040     /**
1041      * Traverses layers that are part of this tree in the correct z order.
1042      * layersInTree must be sorted before calling this method.
1043      */
1044     void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
1045                                        LayerVector::StateSet, const LayerVector::Visitor&);
1046     LayerVector makeChildrenTraversalList(LayerVector::StateSet,
1047                                           const std::vector<Layer*>& layersInTree);
1048 
1049     void updateTreeHasFrameRateVote();
1050     bool propagateFrameRateForLayerTree(FrameRate parentFrameRate, bool* transactionNeeded);
1051     bool setFrameRateForLayerTree(FrameRate);
1052     void setZOrderRelativeOf(const wp<Layer>& relativeOf);
1053     bool isTrustedOverlay() const;
1054 
1055     // Find the root of the cloned hierarchy, this means the first non cloned parent.
1056     // This will return null if first non cloned parent is not found.
1057     sp<Layer> getClonedRoot();
1058 
1059     // Finds the top most layer in the hierarchy. This will find the root Layer where the parent is
1060     // null.
1061     sp<Layer> getRootLayer();
1062 
1063     // Fills in the touch occlusion mode of the first parent (including this layer) that
1064     // hasInputInfo() or no-op if no such parent is found.
1065     void fillTouchOcclusionMode(InputWindowInfo& info);
1066 
1067     // Fills in the frame and transform info for the InputWindowInfo
1068     void fillInputFrameInfo(InputWindowInfo& info, const ui::Transform& toPhysicalDisplay);
1069 
1070     // Cached properties computed from drawing state
1071     // Effective transform taking into account parent transforms and any parent scaling, which is
1072     // a transform from the current layer coordinate space to display(screen) coordinate space.
1073     ui::Transform mEffectiveTransform;
1074 
1075     // Bounds of the layer before any transformation is applied and before it has been cropped
1076     // by its parents.
1077     FloatRect mSourceBounds;
1078 
1079     // Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and
1080     // its parent bounds.
1081     FloatRect mBounds;
1082 
1083     // Layer bounds in screen space.
1084     FloatRect mScreenBounds;
1085 
1086     bool mGetHandleCalled = false;
1087 
1088     // Tracks the process and user id of the caller when creating this layer
1089     // to help debugging.
1090     pid_t mCallingPid;
1091     uid_t mCallingUid;
1092 
1093     // The current layer is a clone of mClonedFrom. This means that this layer will update it's
1094     // properties based on mClonedFrom. When mClonedFrom latches a new buffer for BufferLayers,
1095     // this layer will update it's buffer. When mClonedFrom updates it's drawing state, children,
1096     // and relatives, this layer will update as well.
1097     wp<Layer> mClonedFrom;
1098 
1099     // The inherited shadow radius after taking into account the layer hierarchy. This is the
1100     // final shadow radius for this layer. If a shadow is specified for a layer, then effective
1101     // shadow radius is the set shadow radius, otherwise its the parent's shadow radius.
1102     float mEffectiveShadowRadius = 0.f;
1103 
1104     // Game mode for the layer. Set by WindowManagerShell, game mode is used in
1105     // metrics(SurfaceFlingerStats).
1106     int32_t mGameMode = 0;
1107 
1108     // A list of regions on this layer that should have blurs.
1109     const std::vector<BlurRegion> getBlurRegions() const;
1110 
1111     bool mIsAtRoot = false;
1112 };
1113 
1114 std::ostream& operator<<(std::ostream& stream, const Layer::FrameRate& rate);
1115 
1116 } // namespace android
1117