1 //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Small functions that help with Scop and LLVM-IR.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "polly/Support/ScopHelper.h"
14 #include "polly/Options.h"
15 #include "polly/ScopInfo.h"
16 #include "polly/Support/SCEVValidator.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/RegionInfo.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
23
24 using namespace llvm;
25 using namespace polly;
26
27 #define DEBUG_TYPE "polly-scop-helper"
28
29 static cl::opt<bool> PollyAllowErrorBlocks(
30 "polly-allow-error-blocks",
31 cl::desc("Allow to speculate on the execution of 'error blocks'."),
32 cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
33
34 static cl::list<std::string> DebugFunctions(
35 "polly-debug-func",
36 cl::desc("Allow calls to the specified functions in SCoPs even if their "
37 "side-effects are unknown. This can be used to do debug output in "
38 "Polly-transformed code."),
39 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
40
41 // Ensures that there is just one predecessor to the entry node from outside the
42 // region.
43 // The identity of the region entry node is preserved.
simplifyRegionEntry(Region * R,DominatorTree * DT,LoopInfo * LI,RegionInfo * RI)44 static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI,
45 RegionInfo *RI) {
46 BasicBlock *EnteringBB = R->getEnteringBlock();
47 BasicBlock *Entry = R->getEntry();
48
49 // Before (one of):
50 //
51 // \ / //
52 // EnteringBB //
53 // | \------> //
54 // \ / | //
55 // Entry <--\ Entry <--\ //
56 // / \ / / \ / //
57 // .... .... //
58
59 // Create single entry edge if the region has multiple entry edges.
60 if (!EnteringBB) {
61 SmallVector<BasicBlock *, 4> Preds;
62 for (BasicBlock *P : predecessors(Entry))
63 if (!R->contains(P))
64 Preds.push_back(P);
65
66 BasicBlock *NewEntering =
67 SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI);
68
69 if (RI) {
70 // The exit block of predecessing regions must be changed to NewEntering
71 for (BasicBlock *ExitPred : predecessors(NewEntering)) {
72 Region *RegionOfPred = RI->getRegionFor(ExitPred);
73 if (RegionOfPred->getExit() != Entry)
74 continue;
75
76 while (!RegionOfPred->isTopLevelRegion() &&
77 RegionOfPred->getExit() == Entry) {
78 RegionOfPred->replaceExit(NewEntering);
79 RegionOfPred = RegionOfPred->getParent();
80 }
81 }
82
83 // Make all ancestors use EnteringBB as entry; there might be edges to it
84 Region *AncestorR = R->getParent();
85 RI->setRegionFor(NewEntering, AncestorR);
86 while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) {
87 AncestorR->replaceEntry(NewEntering);
88 AncestorR = AncestorR->getParent();
89 }
90 }
91
92 EnteringBB = NewEntering;
93 }
94 assert(R->getEnteringBlock() == EnteringBB);
95
96 // After:
97 //
98 // \ / //
99 // EnteringBB //
100 // | //
101 // | //
102 // Entry <--\ //
103 // / \ / //
104 // .... //
105 }
106
107 // Ensure that the region has a single block that branches to the exit node.
simplifyRegionExit(Region * R,DominatorTree * DT,LoopInfo * LI,RegionInfo * RI)108 static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI,
109 RegionInfo *RI) {
110 BasicBlock *ExitBB = R->getExit();
111 BasicBlock *ExitingBB = R->getExitingBlock();
112
113 // Before:
114 //
115 // (Region) ______/ //
116 // \ | / //
117 // ExitBB //
118 // / \ //
119
120 if (!ExitingBB) {
121 SmallVector<BasicBlock *, 4> Preds;
122 for (BasicBlock *P : predecessors(ExitBB))
123 if (R->contains(P))
124 Preds.push_back(P);
125
126 // Preds[0] Preds[1] otherBB //
127 // \ | ________/ //
128 // \ | / //
129 // BB //
130 ExitingBB =
131 SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI);
132 // Preds[0] Preds[1] otherBB //
133 // \ / / //
134 // BB.region_exiting / //
135 // \ / //
136 // BB //
137
138 if (RI)
139 RI->setRegionFor(ExitingBB, R);
140
141 // Change the exit of nested regions, but not the region itself,
142 R->replaceExitRecursive(ExitingBB);
143 R->replaceExit(ExitBB);
144 }
145 assert(ExitingBB == R->getExitingBlock());
146
147 // After:
148 //
149 // \ / //
150 // ExitingBB _____/ //
151 // \ / //
152 // ExitBB //
153 // / \ //
154 }
155
simplifyRegion(Region * R,DominatorTree * DT,LoopInfo * LI,RegionInfo * RI)156 void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI,
157 RegionInfo *RI) {
158 assert(R && !R->isTopLevelRegion());
159 assert(!RI || RI == R->getRegionInfo());
160 assert((!RI || DT) &&
161 "RegionInfo requires DominatorTree to be updated as well");
162
163 simplifyRegionEntry(R, DT, LI, RI);
164 simplifyRegionExit(R, DT, LI, RI);
165 assert(R->isSimple());
166 }
167
168 // Split the block into two successive blocks.
169 //
170 // Like llvm::SplitBlock, but also preserves RegionInfo
splitBlock(BasicBlock * Old,Instruction * SplitPt,DominatorTree * DT,llvm::LoopInfo * LI,RegionInfo * RI)171 static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt,
172 DominatorTree *DT, llvm::LoopInfo *LI,
173 RegionInfo *RI) {
174 assert(Old && SplitPt);
175
176 // Before:
177 //
178 // \ / //
179 // Old //
180 // / \ //
181
182 BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI);
183
184 if (RI) {
185 Region *R = RI->getRegionFor(Old);
186 RI->setRegionFor(NewBlock, R);
187 }
188
189 // After:
190 //
191 // \ / //
192 // Old //
193 // | //
194 // NewBlock //
195 // / \ //
196
197 return NewBlock;
198 }
199
splitEntryBlockForAlloca(BasicBlock * EntryBlock,DominatorTree * DT,LoopInfo * LI,RegionInfo * RI)200 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT,
201 LoopInfo *LI, RegionInfo *RI) {
202 // Find first non-alloca instruction. Every basic block has a non-alloca
203 // instruction, as every well formed basic block has a terminator.
204 BasicBlock::iterator I = EntryBlock->begin();
205 while (isa<AllocaInst>(I))
206 ++I;
207
208 // splitBlock updates DT, LI and RI.
209 splitBlock(EntryBlock, &*I, DT, LI, RI);
210 }
211
splitEntryBlockForAlloca(BasicBlock * EntryBlock,Pass * P)212 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
213 auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
214 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
215 auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
216 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
217 RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>();
218 RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr;
219
220 // splitBlock updates DT, LI and RI.
221 polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI);
222 }
223
recordAssumption(polly::RecordedAssumptionsTy * RecordedAssumptions,polly::AssumptionKind Kind,isl::set Set,DebugLoc Loc,polly::AssumptionSign Sign,BasicBlock * BB)224 void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions,
225 polly::AssumptionKind Kind, isl::set Set,
226 DebugLoc Loc, polly::AssumptionSign Sign,
227 BasicBlock *BB) {
228 assert((Set.is_params() || BB) &&
229 "Assumptions without a basic block must be parameter sets");
230 if (RecordedAssumptions)
231 RecordedAssumptions->push_back({Kind, Sign, Set, Loc, BB});
232 }
233
234 /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem
235 /// instruction but just use it, if it is referenced as a SCEVUnknown. We want
236 /// however to generate new code if the instruction is in the analyzed region
237 /// and we generate code outside/in front of that region. Hence, we generate the
238 /// code for the SDiv/SRem operands in front of the analyzed region and then
239 /// create a new SDiv/SRem operation there too.
240 struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> {
241 friend struct SCEVVisitor<ScopExpander, const SCEV *>;
242
ScopExpanderScopExpander243 explicit ScopExpander(const Region &R, ScalarEvolution &SE,
244 const DataLayout &DL, const char *Name, ValueMapT *VMap,
245 BasicBlock *RTCBB)
246 : Expander(SE, DL, Name, /*PreserveLCSSA=*/false), SE(SE), Name(Name),
247 R(R), VMap(VMap), RTCBB(RTCBB) {}
248
expandCodeForScopExpander249 Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) {
250 // If we generate code in the region we will immediately fall back to the
251 // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if
252 // needed replace them by copies computed in the entering block.
253 if (!R.contains(I))
254 E = visit(E);
255 return Expander.expandCodeFor(E, Ty, I);
256 }
257
visitScopExpander258 const SCEV *visit(const SCEV *E) {
259 // Cache the expansion results for intermediate SCEV expressions. A SCEV
260 // expression can refer to an operand multiple times (e.g. "x*x), so
261 // a naive visitor takes exponential time.
262 if (SCEVCache.count(E))
263 return SCEVCache[E];
264 const SCEV *Result = SCEVVisitor::visit(E);
265 SCEVCache[E] = Result;
266 return Result;
267 }
268
269 private:
270 SCEVExpander Expander;
271 ScalarEvolution &SE;
272 const char *Name;
273 const Region &R;
274 ValueMapT *VMap;
275 BasicBlock *RTCBB;
276 DenseMap<const SCEV *, const SCEV *> SCEVCache;
277
visitGenericInstScopExpander278 const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst,
279 Instruction *IP) {
280 if (!Inst || !R.contains(Inst))
281 return E;
282
283 assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() &&
284 !isa<PHINode>(Inst));
285
286 auto *InstClone = Inst->clone();
287 for (auto &Op : Inst->operands()) {
288 assert(SE.isSCEVable(Op->getType()));
289 auto *OpSCEV = SE.getSCEV(Op);
290 auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP);
291 InstClone->replaceUsesOfWith(Op, OpClone);
292 }
293
294 InstClone->setName(Name + Inst->getName());
295 InstClone->insertBefore(IP);
296 return SE.getSCEV(InstClone);
297 }
298
visitUnknownScopExpander299 const SCEV *visitUnknown(const SCEVUnknown *E) {
300
301 // If a value mapping was given try if the underlying value is remapped.
302 Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr;
303 if (NewVal) {
304 auto *NewE = SE.getSCEV(NewVal);
305
306 // While the mapped value might be different the SCEV representation might
307 // not be. To this end we will check before we go into recursion here.
308 if (E != NewE)
309 return visit(NewE);
310 }
311
312 Instruction *Inst = dyn_cast<Instruction>(E->getValue());
313 Instruction *IP;
314 if (Inst && !R.contains(Inst))
315 IP = Inst;
316 else if (Inst && RTCBB->getParent() == Inst->getFunction())
317 IP = RTCBB->getTerminator();
318 else
319 IP = RTCBB->getParent()->getEntryBlock().getTerminator();
320
321 if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
322 Inst->getOpcode() != Instruction::SDiv))
323 return visitGenericInst(E, Inst, IP);
324
325 const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0));
326 const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1));
327
328 if (!SE.isKnownNonZero(RHSScev))
329 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
330
331 Value *LHS = expandCodeFor(LHSScev, E->getType(), IP);
332 Value *RHS = expandCodeFor(RHSScev, E->getType(), IP);
333
334 Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(),
335 LHS, RHS, Inst->getName() + Name, IP);
336 return SE.getSCEV(Inst);
337 }
338
339 /// The following functions will just traverse the SCEV and rebuild it with
340 /// the new operands returned by the traversal.
341 ///
342 ///{
visitConstantScopExpander343 const SCEV *visitConstant(const SCEVConstant *E) { return E; }
visitPtrToIntExprScopExpander344 const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) {
345 return SE.getPtrToIntExpr(visit(E->getOperand()), E->getType());
346 }
visitTruncateExprScopExpander347 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
348 return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
349 }
visitZeroExtendExprScopExpander350 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
351 return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
352 }
visitSignExtendExprScopExpander353 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
354 return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
355 }
visitUDivExprScopExpander356 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
357 auto *RHSScev = visit(E->getRHS());
358 if (!SE.isKnownNonZero(RHSScev))
359 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
360 return SE.getUDivExpr(visit(E->getLHS()), RHSScev);
361 }
visitAddExprScopExpander362 const SCEV *visitAddExpr(const SCEVAddExpr *E) {
363 SmallVector<const SCEV *, 4> NewOps;
364 for (const SCEV *Op : E->operands())
365 NewOps.push_back(visit(Op));
366 return SE.getAddExpr(NewOps);
367 }
visitMulExprScopExpander368 const SCEV *visitMulExpr(const SCEVMulExpr *E) {
369 SmallVector<const SCEV *, 4> NewOps;
370 for (const SCEV *Op : E->operands())
371 NewOps.push_back(visit(Op));
372 return SE.getMulExpr(NewOps);
373 }
visitUMaxExprScopExpander374 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
375 SmallVector<const SCEV *, 4> NewOps;
376 for (const SCEV *Op : E->operands())
377 NewOps.push_back(visit(Op));
378 return SE.getUMaxExpr(NewOps);
379 }
visitSMaxExprScopExpander380 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
381 SmallVector<const SCEV *, 4> NewOps;
382 for (const SCEV *Op : E->operands())
383 NewOps.push_back(visit(Op));
384 return SE.getSMaxExpr(NewOps);
385 }
visitUMinExprScopExpander386 const SCEV *visitUMinExpr(const SCEVUMinExpr *E) {
387 SmallVector<const SCEV *, 4> NewOps;
388 for (const SCEV *Op : E->operands())
389 NewOps.push_back(visit(Op));
390 return SE.getUMinExpr(NewOps);
391 }
visitSMinExprScopExpander392 const SCEV *visitSMinExpr(const SCEVSMinExpr *E) {
393 SmallVector<const SCEV *, 4> NewOps;
394 for (const SCEV *Op : E->operands())
395 NewOps.push_back(visit(Op));
396 return SE.getSMinExpr(NewOps);
397 }
visitAddRecExprScopExpander398 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
399 SmallVector<const SCEV *, 4> NewOps;
400 for (const SCEV *Op : E->operands())
401 NewOps.push_back(visit(Op));
402 return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags());
403 }
404 ///}
405 };
406
expandCodeFor(Scop & S,ScalarEvolution & SE,const DataLayout & DL,const char * Name,const SCEV * E,Type * Ty,Instruction * IP,ValueMapT * VMap,BasicBlock * RTCBB)407 Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL,
408 const char *Name, const SCEV *E, Type *Ty,
409 Instruction *IP, ValueMapT *VMap,
410 BasicBlock *RTCBB) {
411 ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB);
412 return Expander.expandCodeFor(E, Ty, IP);
413 }
414
isErrorBlock(BasicBlock & BB,const Region & R,LoopInfo & LI,const DominatorTree & DT)415 bool polly::isErrorBlock(BasicBlock &BB, const Region &R, LoopInfo &LI,
416 const DominatorTree &DT) {
417 if (!PollyAllowErrorBlocks)
418 return false;
419
420 if (isa<UnreachableInst>(BB.getTerminator()))
421 return true;
422
423 if (LI.isLoopHeader(&BB))
424 return false;
425
426 // Basic blocks that are always executed are not considered error blocks,
427 // as their execution can not be a rare event.
428 bool DominatesAllPredecessors = true;
429 if (R.isTopLevelRegion()) {
430 for (BasicBlock &I : *R.getEntry()->getParent())
431 if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I))
432 DominatesAllPredecessors = false;
433 } else {
434 for (auto Pred : predecessors(R.getExit()))
435 if (R.contains(Pred) && !DT.dominates(&BB, Pred))
436 DominatesAllPredecessors = false;
437 }
438
439 if (DominatesAllPredecessors)
440 return false;
441
442 for (Instruction &Inst : BB)
443 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
444 if (isDebugCall(CI))
445 continue;
446
447 if (isIgnoredIntrinsic(CI))
448 continue;
449
450 // memset, memcpy and memmove are modeled intrinsics.
451 if (isa<MemSetInst>(CI) || isa<MemTransferInst>(CI))
452 continue;
453
454 if (!CI->doesNotAccessMemory())
455 return true;
456 if (CI->doesNotReturn())
457 return true;
458 }
459
460 return false;
461 }
462
getConditionFromTerminator(Instruction * TI)463 Value *polly::getConditionFromTerminator(Instruction *TI) {
464 if (BranchInst *BR = dyn_cast<BranchInst>(TI)) {
465 if (BR->isUnconditional())
466 return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext()));
467
468 return BR->getCondition();
469 }
470
471 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
472 return SI->getCondition();
473
474 return nullptr;
475 }
476
getLoopSurroundingScop(Scop & S,LoopInfo & LI)477 Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) {
478 // Start with the smallest loop containing the entry and expand that
479 // loop until it contains all blocks in the region. If there is a loop
480 // containing all blocks in the region check if it is itself contained
481 // and if so take the parent loop as it will be the smallest containing
482 // the region but not contained by it.
483 Loop *L = LI.getLoopFor(S.getEntry());
484 while (L) {
485 bool AllContained = true;
486 for (auto *BB : S.blocks())
487 AllContained &= L->contains(BB);
488 if (AllContained)
489 break;
490 L = L->getParentLoop();
491 }
492
493 return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr;
494 }
495
getNumBlocksInLoop(Loop * L)496 unsigned polly::getNumBlocksInLoop(Loop *L) {
497 unsigned NumBlocks = L->getNumBlocks();
498 SmallVector<BasicBlock *, 4> ExitBlocks;
499 L->getExitBlocks(ExitBlocks);
500
501 for (auto ExitBlock : ExitBlocks) {
502 if (isa<UnreachableInst>(ExitBlock->getTerminator()))
503 NumBlocks++;
504 }
505 return NumBlocks;
506 }
507
getNumBlocksInRegionNode(RegionNode * RN)508 unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) {
509 if (!RN->isSubRegion())
510 return 1;
511
512 Region *R = RN->getNodeAs<Region>();
513 return std::distance(R->block_begin(), R->block_end());
514 }
515
getRegionNodeLoop(RegionNode * RN,LoopInfo & LI)516 Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
517 if (!RN->isSubRegion()) {
518 BasicBlock *BB = RN->getNodeAs<BasicBlock>();
519 Loop *L = LI.getLoopFor(BB);
520
521 // Unreachable statements are not considered to belong to a LLVM loop, as
522 // they are not part of an actual loop in the control flow graph.
523 // Nevertheless, we handle certain unreachable statements that are common
524 // when modeling run-time bounds checks as being part of the loop to be
525 // able to model them and to later eliminate the run-time bounds checks.
526 //
527 // Specifically, for basic blocks that terminate in an unreachable and
528 // where the immediate predecessor is part of a loop, we assume these
529 // basic blocks belong to the loop the predecessor belongs to. This
530 // allows us to model the following code.
531 //
532 // for (i = 0; i < N; i++) {
533 // if (i > 1024)
534 // abort(); <- this abort might be translated to an
535 // unreachable
536 //
537 // A[i] = ...
538 // }
539 if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode())
540 L = LI.getLoopFor(BB->getPrevNode());
541 return L;
542 }
543
544 Region *NonAffineSubRegion = RN->getNodeAs<Region>();
545 Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
546 while (L && NonAffineSubRegion->contains(L))
547 L = L->getParentLoop();
548 return L;
549 }
550
hasVariantIndex(GetElementPtrInst * Gep,Loop * L,Region & R,ScalarEvolution & SE)551 static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R,
552 ScalarEvolution &SE) {
553 for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) {
554 const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L);
555 Loop *OuterLoop = R.outermostLoopInRegion(L);
556 if (!SE.isLoopInvariant(PtrSCEV, OuterLoop))
557 return true;
558 }
559 return false;
560 }
561
isHoistableLoad(LoadInst * LInst,Region & R,LoopInfo & LI,ScalarEvolution & SE,const DominatorTree & DT,const InvariantLoadsSetTy & KnownInvariantLoads)562 bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI,
563 ScalarEvolution &SE, const DominatorTree &DT,
564 const InvariantLoadsSetTy &KnownInvariantLoads) {
565 Loop *L = LI.getLoopFor(LInst->getParent());
566 auto *Ptr = LInst->getPointerOperand();
567
568 // A LoadInst is hoistable if the address it is loading from is also
569 // invariant; in this case: another invariant load (whether that address
570 // is also not written to has to be checked separately)
571 // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst
572 // pattern generated by the Chapel frontend, but generally this applies
573 // for any chain of instruction that does not also depend on any
574 // induction variable
575 if (auto *GepInst = dyn_cast<GetElementPtrInst>(Ptr)) {
576 if (!hasVariantIndex(GepInst, L, R, SE)) {
577 if (auto *DecidingLoad =
578 dyn_cast<LoadInst>(GepInst->getPointerOperand())) {
579 if (KnownInvariantLoads.count(DecidingLoad))
580 return true;
581 }
582 }
583 }
584
585 const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L);
586 while (L && R.contains(L)) {
587 if (!SE.isLoopInvariant(PtrSCEV, L))
588 return false;
589 L = L->getParentLoop();
590 }
591
592 for (auto *User : Ptr->users()) {
593 auto *UserI = dyn_cast<Instruction>(User);
594 if (!UserI || !R.contains(UserI))
595 continue;
596 if (!UserI->mayWriteToMemory())
597 continue;
598
599 auto &BB = *UserI->getParent();
600 if (DT.dominates(&BB, LInst->getParent()))
601 return false;
602
603 bool DominatesAllPredecessors = true;
604 if (R.isTopLevelRegion()) {
605 for (BasicBlock &I : *R.getEntry()->getParent())
606 if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I))
607 DominatesAllPredecessors = false;
608 } else {
609 for (auto Pred : predecessors(R.getExit()))
610 if (R.contains(Pred) && !DT.dominates(&BB, Pred))
611 DominatesAllPredecessors = false;
612 }
613
614 if (!DominatesAllPredecessors)
615 continue;
616
617 return false;
618 }
619
620 return true;
621 }
622
isIgnoredIntrinsic(const Value * V)623 bool polly::isIgnoredIntrinsic(const Value *V) {
624 if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
625 switch (IT->getIntrinsicID()) {
626 // Lifetime markers are supported/ignored.
627 case llvm::Intrinsic::lifetime_start:
628 case llvm::Intrinsic::lifetime_end:
629 // Invariant markers are supported/ignored.
630 case llvm::Intrinsic::invariant_start:
631 case llvm::Intrinsic::invariant_end:
632 // Some misc annotations are supported/ignored.
633 case llvm::Intrinsic::var_annotation:
634 case llvm::Intrinsic::ptr_annotation:
635 case llvm::Intrinsic::annotation:
636 case llvm::Intrinsic::donothing:
637 case llvm::Intrinsic::assume:
638 // Some debug info intrinsics are supported/ignored.
639 case llvm::Intrinsic::dbg_value:
640 case llvm::Intrinsic::dbg_declare:
641 return true;
642 default:
643 break;
644 }
645 }
646 return false;
647 }
648
canSynthesize(const Value * V,const Scop & S,ScalarEvolution * SE,Loop * Scope)649 bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE,
650 Loop *Scope) {
651 if (!V || !SE->isSCEVable(V->getType()))
652 return false;
653
654 const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads();
655 if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope))
656 if (!isa<SCEVCouldNotCompute>(Scev))
657 if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS))
658 return true;
659
660 return false;
661 }
662
getUseBlock(const llvm::Use & U)663 llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) {
664 Instruction *UI = dyn_cast<Instruction>(U.getUser());
665 if (!UI)
666 return nullptr;
667
668 if (PHINode *PHI = dyn_cast<PHINode>(UI))
669 return PHI->getIncomingBlock(U);
670
671 return UI->getParent();
672 }
673
getFirstNonBoxedLoopFor(llvm::Loop * L,llvm::LoopInfo & LI,const BoxedLoopsSetTy & BoxedLoops)674 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI,
675 const BoxedLoopsSetTy &BoxedLoops) {
676 while (BoxedLoops.count(L))
677 L = L->getParentLoop();
678 return L;
679 }
680
getFirstNonBoxedLoopFor(llvm::BasicBlock * BB,llvm::LoopInfo & LI,const BoxedLoopsSetTy & BoxedLoops)681 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB,
682 llvm::LoopInfo &LI,
683 const BoxedLoopsSetTy &BoxedLoops) {
684 Loop *L = LI.getLoopFor(BB);
685 return getFirstNonBoxedLoopFor(L, LI, BoxedLoops);
686 }
687
isDebugCall(Instruction * Inst)688 bool polly::isDebugCall(Instruction *Inst) {
689 auto *CI = dyn_cast<CallInst>(Inst);
690 if (!CI)
691 return false;
692
693 Function *CF = CI->getCalledFunction();
694 if (!CF)
695 return false;
696
697 return std::find(DebugFunctions.begin(), DebugFunctions.end(),
698 CF->getName()) != DebugFunctions.end();
699 }
700
hasDebugCall(BasicBlock * BB)701 static bool hasDebugCall(BasicBlock *BB) {
702 for (Instruction &Inst : *BB) {
703 if (isDebugCall(&Inst))
704 return true;
705 }
706 return false;
707 }
708
hasDebugCall(ScopStmt * Stmt)709 bool polly::hasDebugCall(ScopStmt *Stmt) {
710 // Quick skip if no debug functions have been defined.
711 if (DebugFunctions.empty())
712 return false;
713
714 if (!Stmt)
715 return false;
716
717 for (Instruction *Inst : Stmt->getInstructions())
718 if (isDebugCall(Inst))
719 return true;
720
721 if (Stmt->isRegionStmt()) {
722 for (BasicBlock *RBB : Stmt->getRegion()->blocks())
723 if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB))
724 return true;
725 }
726
727 return false;
728 }
729