1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. A natural loop 11 // has exactly one entry-point, which is called the header. Note that natural 12 // loops may actually be several loops that share the same header node. 13 // 14 // This analysis calculates the nesting structure of loops in a function. For 15 // each natural loop identified, this analysis identifies natural loops 16 // contained entirely within the loop and the basic blocks the make up the loop. 17 // 18 // It can calculate on the fly various bits of information, for example: 19 // 20 // * whether there is a preheader for the loop 21 // * the number of back edges to the header 22 // * whether or not a particular block branches out of the loop 23 // * the successor blocks of the loop 24 // * the loop depth 25 // * etc... 26 // 27 // Note that this analysis specifically identifies *Loops* not cycles or SCCs 28 // in the CFG. There can be strongly connected components in the CFG which 29 // this analysis will not recognize and that will not be represented by a Loop 30 // instance. In particular, a Loop might be inside such a non-loop SCC, or a 31 // non-loop SCC might contain a sub-SCC which is a Loop. 32 // 33 // For an overview of terminology used in this API (and thus all of our loop 34 // analyses or transforms), see docs/LoopTerminology.rst. 35 // 36 //===----------------------------------------------------------------------===// 37 38 #ifndef LLVM_ANALYSIS_LOOPINFO_H 39 #define LLVM_ANALYSIS_LOOPINFO_H 40 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/DenseSet.h" 43 #include "llvm/ADT/GraphTraits.h" 44 #include "llvm/ADT/SmallPtrSet.h" 45 #include "llvm/ADT/SmallVector.h" 46 #include "llvm/IR/CFG.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Allocator.h" 52 #include <algorithm> 53 #include <utility> 54 55 namespace llvm { 56 57 class DominatorTree; 58 class LoopInfo; 59 class Loop; 60 class InductionDescriptor; 61 class MDNode; 62 class MemorySSAUpdater; 63 class ScalarEvolution; 64 class raw_ostream; 65 template <class N, bool IsPostDom> class DominatorTreeBase; 66 template <class N, class M> class LoopInfoBase; 67 template <class N, class M> class LoopBase; 68 69 //===----------------------------------------------------------------------===// 70 /// Instances of this class are used to represent loops that are detected in the 71 /// flow graph. 72 /// 73 template <class BlockT, class LoopT> class LoopBase { 74 LoopT *ParentLoop; 75 // Loops contained entirely within this one. 76 std::vector<LoopT *> SubLoops; 77 78 // The list of blocks in this loop. First entry is the header node. 79 std::vector<BlockT *> Blocks; 80 81 SmallPtrSet<const BlockT *, 8> DenseBlockSet; 82 83 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 84 /// Indicator that this loop is no longer a valid loop. 85 bool IsInvalid = false; 86 #endif 87 88 LoopBase(const LoopBase<BlockT, LoopT> &) = delete; 89 const LoopBase<BlockT, LoopT> & 90 operator=(const LoopBase<BlockT, LoopT> &) = delete; 91 92 public: 93 /// Return the nesting level of this loop. An outer-most loop has depth 1, 94 /// for consistency with loop depth values used for basic blocks, where depth 95 /// 0 is used for blocks not inside any loops. getLoopDepth()96 unsigned getLoopDepth() const { 97 assert(!isInvalid() && "Loop not in a valid state!"); 98 unsigned D = 1; 99 for (const LoopT *CurLoop = ParentLoop; CurLoop; 100 CurLoop = CurLoop->ParentLoop) 101 ++D; 102 return D; 103 } getHeader()104 BlockT *getHeader() const { return getBlocks().front(); } 105 /// Return the parent loop if it exists or nullptr for top 106 /// level loops. 107 108 /// A loop is either top-level in a function (that is, it is not 109 /// contained in any other loop) or it is entirely enclosed in 110 /// some other loop. 111 /// If a loop is top-level, it has no parent, otherwise its 112 /// parent is the innermost loop in which it is enclosed. getParentLoop()113 LoopT *getParentLoop() const { return ParentLoop; } 114 115 /// This is a raw interface for bypassing addChildLoop. setParentLoop(LoopT * L)116 void setParentLoop(LoopT *L) { 117 assert(!isInvalid() && "Loop not in a valid state!"); 118 ParentLoop = L; 119 } 120 121 /// Return true if the specified loop is contained within in this loop. contains(const LoopT * L)122 bool contains(const LoopT *L) const { 123 assert(!isInvalid() && "Loop not in a valid state!"); 124 if (L == this) 125 return true; 126 if (!L) 127 return false; 128 return contains(L->getParentLoop()); 129 } 130 131 /// Return true if the specified basic block is in this loop. contains(const BlockT * BB)132 bool contains(const BlockT *BB) const { 133 assert(!isInvalid() && "Loop not in a valid state!"); 134 return DenseBlockSet.count(BB); 135 } 136 137 /// Return true if the specified instruction is in this loop. contains(const InstT * Inst)138 template <class InstT> bool contains(const InstT *Inst) const { 139 return contains(Inst->getParent()); 140 } 141 142 /// Return the loops contained entirely within this loop. getSubLoops()143 const std::vector<LoopT *> &getSubLoops() const { 144 assert(!isInvalid() && "Loop not in a valid state!"); 145 return SubLoops; 146 } getSubLoopsVector()147 std::vector<LoopT *> &getSubLoopsVector() { 148 assert(!isInvalid() && "Loop not in a valid state!"); 149 return SubLoops; 150 } 151 typedef typename std::vector<LoopT *>::const_iterator iterator; 152 typedef 153 typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; begin()154 iterator begin() const { return getSubLoops().begin(); } end()155 iterator end() const { return getSubLoops().end(); } rbegin()156 reverse_iterator rbegin() const { return getSubLoops().rbegin(); } rend()157 reverse_iterator rend() const { return getSubLoops().rend(); } 158 159 // LoopInfo does not detect irreducible control flow, just natural 160 // loops. That is, it is possible that there is cyclic control 161 // flow within the "innermost loop" or around the "outermost 162 // loop". 163 164 /// Return true if the loop does not contain any (natural) loops. isInnermost()165 bool isInnermost() const { return getSubLoops().empty(); } 166 /// Return true if the loop does not have a parent (natural) loop 167 // (i.e. it is outermost, which is the same as top-level). isOutermost()168 bool isOutermost() const { return getParentLoop() == nullptr; } 169 170 /// Get a list of the basic blocks which make up this loop. getBlocks()171 ArrayRef<BlockT *> getBlocks() const { 172 assert(!isInvalid() && "Loop not in a valid state!"); 173 return Blocks; 174 } 175 typedef typename ArrayRef<BlockT *>::const_iterator block_iterator; block_begin()176 block_iterator block_begin() const { return getBlocks().begin(); } block_end()177 block_iterator block_end() const { return getBlocks().end(); } blocks()178 inline iterator_range<block_iterator> blocks() const { 179 assert(!isInvalid() && "Loop not in a valid state!"); 180 return make_range(block_begin(), block_end()); 181 } 182 183 /// Get the number of blocks in this loop in constant time. 184 /// Invalidate the loop, indicating that it is no longer a loop. getNumBlocks()185 unsigned getNumBlocks() const { 186 assert(!isInvalid() && "Loop not in a valid state!"); 187 return Blocks.size(); 188 } 189 190 /// Return a direct, mutable handle to the blocks vector so that we can 191 /// mutate it efficiently with techniques like `std::remove`. getBlocksVector()192 std::vector<BlockT *> &getBlocksVector() { 193 assert(!isInvalid() && "Loop not in a valid state!"); 194 return Blocks; 195 } 196 /// Return a direct, mutable handle to the blocks set so that we can 197 /// mutate it efficiently. getBlocksSet()198 SmallPtrSetImpl<const BlockT *> &getBlocksSet() { 199 assert(!isInvalid() && "Loop not in a valid state!"); 200 return DenseBlockSet; 201 } 202 203 /// Return a direct, immutable handle to the blocks set. getBlocksSet()204 const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const { 205 assert(!isInvalid() && "Loop not in a valid state!"); 206 return DenseBlockSet; 207 } 208 209 /// Return true if this loop is no longer valid. The only valid use of this 210 /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to 211 /// true by the destructor. In other words, if this accessor returns true, 212 /// the caller has already triggered UB by calling this accessor; and so it 213 /// can only be called in a context where a return value of true indicates a 214 /// programmer error. isInvalid()215 bool isInvalid() const { 216 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 217 return IsInvalid; 218 #else 219 return false; 220 #endif 221 } 222 223 /// True if terminator in the block can branch to another block that is 224 /// outside of the current loop. \p BB must be inside the loop. isLoopExiting(const BlockT * BB)225 bool isLoopExiting(const BlockT *BB) const { 226 assert(!isInvalid() && "Loop not in a valid state!"); 227 assert(contains(BB) && "Exiting block must be part of the loop"); 228 for (const auto *Succ : children<const BlockT *>(BB)) { 229 if (!contains(Succ)) 230 return true; 231 } 232 return false; 233 } 234 235 /// Returns true if \p BB is a loop-latch. 236 /// A latch block is a block that contains a branch back to the header. 237 /// This function is useful when there are multiple latches in a loop 238 /// because \fn getLoopLatch will return nullptr in that case. isLoopLatch(const BlockT * BB)239 bool isLoopLatch(const BlockT *BB) const { 240 assert(!isInvalid() && "Loop not in a valid state!"); 241 assert(contains(BB) && "block does not belong to the loop"); 242 243 BlockT *Header = getHeader(); 244 auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header); 245 auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header); 246 return std::find(PredBegin, PredEnd, BB) != PredEnd; 247 } 248 249 /// Calculate the number of back edges to the loop header. getNumBackEdges()250 unsigned getNumBackEdges() const { 251 assert(!isInvalid() && "Loop not in a valid state!"); 252 unsigned NumBackEdges = 0; 253 BlockT *H = getHeader(); 254 255 for (const auto Pred : children<Inverse<BlockT *>>(H)) 256 if (contains(Pred)) 257 ++NumBackEdges; 258 259 return NumBackEdges; 260 } 261 262 //===--------------------------------------------------------------------===// 263 // APIs for simple analysis of the loop. 264 // 265 // Note that all of these methods can fail on general loops (ie, there may not 266 // be a preheader, etc). For best success, the loop simplification and 267 // induction variable canonicalization pass should be used to normalize loops 268 // for easy analysis. These methods assume canonical loops. 269 270 /// Return all blocks inside the loop that have successors outside of the 271 /// loop. These are the blocks _inside of the current loop_ which branch out. 272 /// The returned list is always unique. 273 void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const; 274 275 /// If getExitingBlocks would return exactly one block, return that block. 276 /// Otherwise return null. 277 BlockT *getExitingBlock() const; 278 279 /// Return all of the successor blocks of this loop. These are the blocks 280 /// _outside of the current loop_ which are branched to. 281 void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 282 283 /// If getExitBlocks would return exactly one block, return that block. 284 /// Otherwise return null. 285 BlockT *getExitBlock() const; 286 287 /// Return true if no exit block for the loop has a predecessor that is 288 /// outside the loop. 289 bool hasDedicatedExits() const; 290 291 /// Return all unique successor blocks of this loop. 292 /// These are the blocks _outside of the current loop_ which are branched to. 293 void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 294 295 /// Return all unique successor blocks of this loop except successors from 296 /// Latch block are not considered. If the exit comes from Latch has also 297 /// non Latch predecessor in a loop it will be added to ExitBlocks. 298 /// These are the blocks _outside of the current loop_ which are branched to. 299 void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 300 301 /// If getUniqueExitBlocks would return exactly one block, return that block. 302 /// Otherwise return null. 303 BlockT *getUniqueExitBlock() const; 304 305 /// Return true if this loop does not have any exit blocks. 306 bool hasNoExitBlocks() const; 307 308 /// Edge type. 309 typedef std::pair<BlockT *, BlockT *> Edge; 310 311 /// Return all pairs of (_inside_block_,_outside_block_). 312 void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const; 313 314 /// If there is a preheader for this loop, return it. A loop has a preheader 315 /// if there is only one edge to the header of the loop from outside of the 316 /// loop. If this is the case, the block branching to the header of the loop 317 /// is the preheader node. 318 /// 319 /// This method returns null if there is no preheader for the loop. 320 BlockT *getLoopPreheader() const; 321 322 /// If the given loop's header has exactly one unique predecessor outside the 323 /// loop, return it. Otherwise return null. 324 /// This is less strict that the loop "preheader" concept, which requires 325 /// the predecessor to have exactly one successor. 326 BlockT *getLoopPredecessor() const; 327 328 /// If there is a single latch block for this loop, return it. 329 /// A latch block is a block that contains a branch back to the header. 330 BlockT *getLoopLatch() const; 331 332 /// Return all loop latch blocks of this loop. A latch block is a block that 333 /// contains a branch back to the header. getLoopLatches(SmallVectorImpl<BlockT * > & LoopLatches)334 void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const { 335 assert(!isInvalid() && "Loop not in a valid state!"); 336 BlockT *H = getHeader(); 337 for (const auto Pred : children<Inverse<BlockT *>>(H)) 338 if (contains(Pred)) 339 LoopLatches.push_back(Pred); 340 } 341 342 /// Return all inner loops in the loop nest rooted by the loop in preorder, 343 /// with siblings in forward program order. 344 template <class Type> getInnerLoopsInPreorder(const LoopT & L,SmallVectorImpl<Type> & PreOrderLoops)345 static void getInnerLoopsInPreorder(const LoopT &L, 346 SmallVectorImpl<Type> &PreOrderLoops) { 347 SmallVector<LoopT *, 4> PreOrderWorklist; 348 PreOrderWorklist.append(L.rbegin(), L.rend()); 349 350 while (!PreOrderWorklist.empty()) { 351 LoopT *L = PreOrderWorklist.pop_back_val(); 352 // Sub-loops are stored in forward program order, but will process the 353 // worklist backwards so append them in reverse order. 354 PreOrderWorklist.append(L->rbegin(), L->rend()); 355 PreOrderLoops.push_back(L); 356 } 357 } 358 359 /// Return all loops in the loop nest rooted by the loop in preorder, with 360 /// siblings in forward program order. getLoopsInPreorder()361 SmallVector<const LoopT *, 4> getLoopsInPreorder() const { 362 SmallVector<const LoopT *, 4> PreOrderLoops; 363 const LoopT *CurLoop = static_cast<const LoopT *>(this); 364 PreOrderLoops.push_back(CurLoop); 365 getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); 366 return PreOrderLoops; 367 } getLoopsInPreorder()368 SmallVector<LoopT *, 4> getLoopsInPreorder() { 369 SmallVector<LoopT *, 4> PreOrderLoops; 370 LoopT *CurLoop = static_cast<LoopT *>(this); 371 PreOrderLoops.push_back(CurLoop); 372 getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); 373 return PreOrderLoops; 374 } 375 376 //===--------------------------------------------------------------------===// 377 // APIs for updating loop information after changing the CFG 378 // 379 380 /// This method is used by other analyses to update loop information. 381 /// NewBB is set to be a new member of the current loop. 382 /// Because of this, it is added as a member of all parent loops, and is added 383 /// to the specified LoopInfo object as being in the current basic block. It 384 /// is not valid to replace the loop header with this method. 385 void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI); 386 387 /// This is used when splitting loops up. It replaces the OldChild entry in 388 /// our children list with NewChild, and updates the parent pointer of 389 /// OldChild to be null and the NewChild to be this loop. 390 /// This updates the loop depth of the new child. 391 void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); 392 393 /// Add the specified loop to be a child of this loop. 394 /// This updates the loop depth of the new child. addChildLoop(LoopT * NewChild)395 void addChildLoop(LoopT *NewChild) { 396 assert(!isInvalid() && "Loop not in a valid state!"); 397 assert(!NewChild->ParentLoop && "NewChild already has a parent!"); 398 NewChild->ParentLoop = static_cast<LoopT *>(this); 399 SubLoops.push_back(NewChild); 400 } 401 402 /// This removes the specified child from being a subloop of this loop. The 403 /// loop is not deleted, as it will presumably be inserted into another loop. removeChildLoop(iterator I)404 LoopT *removeChildLoop(iterator I) { 405 assert(!isInvalid() && "Loop not in a valid state!"); 406 assert(I != SubLoops.end() && "Cannot remove end iterator!"); 407 LoopT *Child = *I; 408 assert(Child->ParentLoop == this && "Child is not a child of this loop!"); 409 SubLoops.erase(SubLoops.begin() + (I - begin())); 410 Child->ParentLoop = nullptr; 411 return Child; 412 } 413 414 /// This removes the specified child from being a subloop of this loop. The 415 /// loop is not deleted, as it will presumably be inserted into another loop. removeChildLoop(LoopT * Child)416 LoopT *removeChildLoop(LoopT *Child) { 417 return removeChildLoop(llvm::find(*this, Child)); 418 } 419 420 /// This adds a basic block directly to the basic block list. 421 /// This should only be used by transformations that create new loops. Other 422 /// transformations should use addBasicBlockToLoop. addBlockEntry(BlockT * BB)423 void addBlockEntry(BlockT *BB) { 424 assert(!isInvalid() && "Loop not in a valid state!"); 425 Blocks.push_back(BB); 426 DenseBlockSet.insert(BB); 427 } 428 429 /// interface to reverse Blocks[from, end of loop] in this loop reverseBlock(unsigned from)430 void reverseBlock(unsigned from) { 431 assert(!isInvalid() && "Loop not in a valid state!"); 432 std::reverse(Blocks.begin() + from, Blocks.end()); 433 } 434 435 /// interface to do reserve() for Blocks reserveBlocks(unsigned size)436 void reserveBlocks(unsigned size) { 437 assert(!isInvalid() && "Loop not in a valid state!"); 438 Blocks.reserve(size); 439 } 440 441 /// This method is used to move BB (which must be part of this loop) to be the 442 /// loop header of the loop (the block that dominates all others). moveToHeader(BlockT * BB)443 void moveToHeader(BlockT *BB) { 444 assert(!isInvalid() && "Loop not in a valid state!"); 445 if (Blocks[0] == BB) 446 return; 447 for (unsigned i = 0;; ++i) { 448 assert(i != Blocks.size() && "Loop does not contain BB!"); 449 if (Blocks[i] == BB) { 450 Blocks[i] = Blocks[0]; 451 Blocks[0] = BB; 452 return; 453 } 454 } 455 } 456 457 /// This removes the specified basic block from the current loop, updating the 458 /// Blocks as appropriate. This does not update the mapping in the LoopInfo 459 /// class. removeBlockFromLoop(BlockT * BB)460 void removeBlockFromLoop(BlockT *BB) { 461 assert(!isInvalid() && "Loop not in a valid state!"); 462 auto I = find(Blocks, BB); 463 assert(I != Blocks.end() && "N is not in this list!"); 464 Blocks.erase(I); 465 466 DenseBlockSet.erase(BB); 467 } 468 469 /// Verify loop structure 470 void verifyLoop() const; 471 472 /// Verify loop structure of this loop and all nested loops. 473 void verifyLoopNest(DenseSet<const LoopT *> *Loops) const; 474 475 /// Returns true if the loop is annotated parallel. 476 /// 477 /// Derived classes can override this method using static template 478 /// polymorphism. isAnnotatedParallel()479 bool isAnnotatedParallel() const { return false; } 480 481 /// Print loop with all the BBs inside it. 482 void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const; 483 484 protected: 485 friend class LoopInfoBase<BlockT, LoopT>; 486 487 /// This creates an empty loop. LoopBase()488 LoopBase() : ParentLoop(nullptr) {} 489 LoopBase(BlockT * BB)490 explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { 491 Blocks.push_back(BB); 492 DenseBlockSet.insert(BB); 493 } 494 495 // Since loop passes like SCEV are allowed to key analysis results off of 496 // `Loop` pointers, we cannot re-use pointers within a loop pass manager. 497 // This means loop passes should not be `delete` ing `Loop` objects directly 498 // (and risk a later `Loop` allocation re-using the address of a previous one) 499 // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop` 500 // pointer till the end of the lifetime of the `LoopInfo` object. 501 // 502 // To make it easier to follow this rule, we mark the destructor as 503 // non-public. ~LoopBase()504 ~LoopBase() { 505 for (auto *SubLoop : SubLoops) 506 SubLoop->~LoopT(); 507 508 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 509 IsInvalid = true; 510 #endif 511 SubLoops.clear(); 512 Blocks.clear(); 513 DenseBlockSet.clear(); 514 ParentLoop = nullptr; 515 } 516 }; 517 518 template <class BlockT, class LoopT> 519 raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { 520 Loop.print(OS); 521 return OS; 522 } 523 524 // Implementation in LoopInfoImpl.h 525 extern template class LoopBase<BasicBlock, Loop>; 526 527 /// Represents a single loop in the control flow graph. Note that not all SCCs 528 /// in the CFG are necessarily loops. 529 class Loop : public LoopBase<BasicBlock, Loop> { 530 public: 531 /// A range representing the start and end location of a loop. 532 class LocRange { 533 DebugLoc Start; 534 DebugLoc End; 535 536 public: LocRange()537 LocRange() {} LocRange(DebugLoc Start)538 LocRange(DebugLoc Start) : Start(Start), End(Start) {} LocRange(DebugLoc Start,DebugLoc End)539 LocRange(DebugLoc Start, DebugLoc End) 540 : Start(std::move(Start)), End(std::move(End)) {} 541 getStart()542 const DebugLoc &getStart() const { return Start; } getEnd()543 const DebugLoc &getEnd() const { return End; } 544 545 /// Check for null. 546 /// 547 explicit operator bool() const { return Start && End; } 548 }; 549 550 /// Return true if the specified value is loop invariant. 551 bool isLoopInvariant(const Value *V) const; 552 553 /// Return true if all the operands of the specified instruction are loop 554 /// invariant. 555 bool hasLoopInvariantOperands(const Instruction *I) const; 556 557 /// If the given value is an instruction inside of the loop and it can be 558 /// hoisted, do so to make it trivially loop-invariant. 559 /// Return true if the value after any hoisting is loop invariant. This 560 /// function can be used as a slightly more aggressive replacement for 561 /// isLoopInvariant. 562 /// 563 /// If InsertPt is specified, it is the point to hoist instructions to. 564 /// If null, the terminator of the loop preheader is used. 565 bool makeLoopInvariant(Value *V, bool &Changed, 566 Instruction *InsertPt = nullptr, 567 MemorySSAUpdater *MSSAU = nullptr) const; 568 569 /// If the given instruction is inside of the loop and it can be hoisted, do 570 /// so to make it trivially loop-invariant. 571 /// Return true if the instruction after any hoisting is loop invariant. This 572 /// function can be used as a slightly more aggressive replacement for 573 /// isLoopInvariant. 574 /// 575 /// If InsertPt is specified, it is the point to hoist instructions to. 576 /// If null, the terminator of the loop preheader is used. 577 /// 578 bool makeLoopInvariant(Instruction *I, bool &Changed, 579 Instruction *InsertPt = nullptr, 580 MemorySSAUpdater *MSSAU = nullptr) const; 581 582 /// Check to see if the loop has a canonical induction variable: an integer 583 /// recurrence that starts at 0 and increments by one each time through the 584 /// loop. If so, return the phi node that corresponds to it. 585 /// 586 /// The IndVarSimplify pass transforms loops to have a canonical induction 587 /// variable. 588 /// 589 PHINode *getCanonicalInductionVariable() const; 590 591 /// Obtain the unique incoming and back edge. Return false if they are 592 /// non-unique or the loop is dead; otherwise, return true. 593 bool getIncomingAndBackEdge(BasicBlock *&Incoming, 594 BasicBlock *&Backedge) const; 595 596 /// Below are some utilities to get the loop guard, loop bounds and induction 597 /// variable, and to check if a given phinode is an auxiliary induction 598 /// variable, if the loop is guarded, and if the loop is canonical. 599 /// 600 /// Here is an example: 601 /// \code 602 /// for (int i = lb; i < ub; i+=step) 603 /// <loop body> 604 /// --- pseudo LLVMIR --- 605 /// beforeloop: 606 /// guardcmp = (lb < ub) 607 /// if (guardcmp) goto preheader; else goto afterloop 608 /// preheader: 609 /// loop: 610 /// i_1 = phi[{lb, preheader}, {i_2, latch}] 611 /// <loop body> 612 /// i_2 = i_1 + step 613 /// latch: 614 /// cmp = (i_2 < ub) 615 /// if (cmp) goto loop 616 /// exit: 617 /// afterloop: 618 /// \endcode 619 /// 620 /// - getBounds 621 /// - getInitialIVValue --> lb 622 /// - getStepInst --> i_2 = i_1 + step 623 /// - getStepValue --> step 624 /// - getFinalIVValue --> ub 625 /// - getCanonicalPredicate --> '<' 626 /// - getDirection --> Increasing 627 /// 628 /// - getInductionVariable --> i_1 629 /// - isAuxiliaryInductionVariable(x) --> true if x == i_1 630 /// - getLoopGuardBranch() 631 /// --> `if (guardcmp) goto preheader; else goto afterloop` 632 /// - isGuarded() --> true 633 /// - isCanonical --> false 634 struct LoopBounds { 635 /// Return the LoopBounds object if 636 /// - the given \p IndVar is an induction variable 637 /// - the initial value of the induction variable can be found 638 /// - the step instruction of the induction variable can be found 639 /// - the final value of the induction variable can be found 640 /// 641 /// Else None. 642 static Optional<Loop::LoopBounds> getBounds(const Loop &L, PHINode &IndVar, 643 ScalarEvolution &SE); 644 645 /// Get the initial value of the loop induction variable. getInitialIVValueLoopBounds646 Value &getInitialIVValue() const { return InitialIVValue; } 647 648 /// Get the instruction that updates the loop induction variable. getStepInstLoopBounds649 Instruction &getStepInst() const { return StepInst; } 650 651 /// Get the step that the loop induction variable gets updated by in each 652 /// loop iteration. Return nullptr if not found. getStepValueLoopBounds653 Value *getStepValue() const { return StepValue; } 654 655 /// Get the final value of the loop induction variable. getFinalIVValueLoopBounds656 Value &getFinalIVValue() const { return FinalIVValue; } 657 658 /// Return the canonical predicate for the latch compare instruction, if 659 /// able to be calcuated. Else BAD_ICMP_PREDICATE. 660 /// 661 /// A predicate is considered as canonical if requirements below are all 662 /// satisfied: 663 /// 1. The first successor of the latch branch is the loop header 664 /// If not, inverse the predicate. 665 /// 2. One of the operands of the latch comparison is StepInst 666 /// If not, and 667 /// - if the current calcuated predicate is not ne or eq, flip the 668 /// predicate. 669 /// - else if the loop is increasing, return slt 670 /// (notice that it is safe to change from ne or eq to sign compare) 671 /// - else if the loop is decreasing, return sgt 672 /// (notice that it is safe to change from ne or eq to sign compare) 673 /// 674 /// Here is an example when both (1) and (2) are not satisfied: 675 /// \code 676 /// loop.header: 677 /// %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header] 678 /// %inc = add %iv, %step 679 /// %cmp = slt %iv, %finaliv 680 /// br %cmp, %loop.exit, %loop.header 681 /// loop.exit: 682 /// \endcode 683 /// - The second successor of the latch branch is the loop header instead 684 /// of the first successor (slt -> sge) 685 /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv) 686 /// instead of the StepInst (%inc) (sge -> sgt) 687 /// 688 /// The predicate would be sgt if both (1) and (2) are satisfied. 689 /// getCanonicalPredicate() returns sgt for this example. 690 /// Note: The IR is not changed. 691 ICmpInst::Predicate getCanonicalPredicate() const; 692 693 /// An enum for the direction of the loop 694 /// - for (int i = 0; i < ub; ++i) --> Increasing 695 /// - for (int i = ub; i > 0; --i) --> Descresing 696 /// - for (int i = x; i != y; i+=z) --> Unknown 697 enum class Direction { Increasing, Decreasing, Unknown }; 698 699 /// Get the direction of the loop. 700 Direction getDirection() const; 701 702 private: LoopBoundsLoopBounds703 LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F, 704 ScalarEvolution &SE) 705 : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV), 706 FinalIVValue(F), SE(SE) {} 707 708 const Loop &L; 709 710 // The initial value of the loop induction variable 711 Value &InitialIVValue; 712 713 // The instruction that updates the loop induction variable 714 Instruction &StepInst; 715 716 // The value that the loop induction variable gets updated by in each loop 717 // iteration 718 Value *StepValue; 719 720 // The final value of the loop induction variable 721 Value &FinalIVValue; 722 723 ScalarEvolution &SE; 724 }; 725 726 /// Return the struct LoopBounds collected if all struct members are found, 727 /// else None. 728 Optional<LoopBounds> getBounds(ScalarEvolution &SE) const; 729 730 /// Return the loop induction variable if found, else return nullptr. 731 /// An instruction is considered as the loop induction variable if 732 /// - it is an induction variable of the loop; and 733 /// - it is used to determine the condition of the branch in the loop latch 734 /// 735 /// Note: the induction variable doesn't need to be canonical, i.e. starts at 736 /// zero and increments by one each time through the loop (but it can be). 737 PHINode *getInductionVariable(ScalarEvolution &SE) const; 738 739 /// Get the loop induction descriptor for the loop induction variable. Return 740 /// true if the loop induction variable is found. 741 bool getInductionDescriptor(ScalarEvolution &SE, 742 InductionDescriptor &IndDesc) const; 743 744 /// Return true if the given PHINode \p AuxIndVar is 745 /// - in the loop header 746 /// - not used outside of the loop 747 /// - incremented by a loop invariant step for each loop iteration 748 /// - step instruction opcode should be add or sub 749 /// Note: auxiliary induction variable is not required to be used in the 750 /// conditional branch in the loop latch. (but it can be) 751 bool isAuxiliaryInductionVariable(PHINode &AuxIndVar, 752 ScalarEvolution &SE) const; 753 754 /// Return the loop guard branch, if it exists. 755 /// 756 /// This currently only works on simplified loop, as it requires a preheader 757 /// and a latch to identify the guard. It will work on loops of the form: 758 /// \code 759 /// GuardBB: 760 /// br cond1, Preheader, ExitSucc <== GuardBranch 761 /// Preheader: 762 /// br Header 763 /// Header: 764 /// ... 765 /// br Latch 766 /// Latch: 767 /// br cond2, Header, ExitBlock 768 /// ExitBlock: 769 /// br ExitSucc 770 /// ExitSucc: 771 /// \endcode 772 BranchInst *getLoopGuardBranch() const; 773 774 /// Return true iff the loop is 775 /// - in simplify rotated form, and 776 /// - guarded by a loop guard branch. isGuarded()777 bool isGuarded() const { return (getLoopGuardBranch() != nullptr); } 778 779 /// Return true if the loop is in rotated form. 780 /// 781 /// This does not check if the loop was rotated by loop rotation, instead it 782 /// only checks if the loop is in rotated form (has a valid latch that exists 783 /// the loop). isRotatedForm()784 bool isRotatedForm() const { 785 assert(!isInvalid() && "Loop not in a valid state!"); 786 BasicBlock *Latch = getLoopLatch(); 787 return Latch && isLoopExiting(Latch); 788 } 789 790 /// Return true if the loop induction variable starts at zero and increments 791 /// by one each time through the loop. 792 bool isCanonical(ScalarEvolution &SE) const; 793 794 /// Return true if the Loop is in LCSSA form. 795 bool isLCSSAForm(const DominatorTree &DT) const; 796 797 /// Return true if this Loop and all inner subloops are in LCSSA form. 798 bool isRecursivelyLCSSAForm(const DominatorTree &DT, 799 const LoopInfo &LI) const; 800 801 /// Return true if the Loop is in the form that the LoopSimplify form 802 /// transforms loops to, which is sometimes called normal form. 803 bool isLoopSimplifyForm() const; 804 805 /// Return true if the loop body is safe to clone in practice. 806 bool isSafeToClone() const; 807 808 /// Returns true if the loop is annotated parallel. 809 /// 810 /// A parallel loop can be assumed to not contain any dependencies between 811 /// iterations by the compiler. That is, any loop-carried dependency checking 812 /// can be skipped completely when parallelizing the loop on the target 813 /// machine. Thus, if the parallel loop information originates from the 814 /// programmer, e.g. via the OpenMP parallel for pragma, it is the 815 /// programmer's responsibility to ensure there are no loop-carried 816 /// dependencies. The final execution order of the instructions across 817 /// iterations is not guaranteed, thus, the end result might or might not 818 /// implement actual concurrent execution of instructions across multiple 819 /// iterations. 820 bool isAnnotatedParallel() const; 821 822 /// Return the llvm.loop loop id metadata node for this loop if it is present. 823 /// 824 /// If this loop contains the same llvm.loop metadata on each branch to the 825 /// header then the node is returned. If any latch instruction does not 826 /// contain llvm.loop or if multiple latches contain different nodes then 827 /// 0 is returned. 828 MDNode *getLoopID() const; 829 /// Set the llvm.loop loop id metadata for this loop. 830 /// 831 /// The LoopID metadata node will be added to each terminator instruction in 832 /// the loop that branches to the loop header. 833 /// 834 /// The LoopID metadata node should have one or more operands and the first 835 /// operand should be the node itself. 836 void setLoopID(MDNode *LoopID) const; 837 838 /// Add llvm.loop.unroll.disable to this loop's loop id metadata. 839 /// 840 /// Remove existing unroll metadata and add unroll disable metadata to 841 /// indicate the loop has already been unrolled. This prevents a loop 842 /// from being unrolled more than is directed by a pragma if the loop 843 /// unrolling pass is run more than once (which it generally is). 844 void setLoopAlreadyUnrolled(); 845 846 /// Add llvm.loop.mustprogress to this loop's loop id metadata. 847 void setLoopMustProgress(); 848 849 void dump() const; 850 void dumpVerbose() const; 851 852 /// Return the debug location of the start of this loop. 853 /// This looks for a BB terminating instruction with a known debug 854 /// location by looking at the preheader and header blocks. If it 855 /// cannot find a terminating instruction with location information, 856 /// it returns an unknown location. 857 DebugLoc getStartLoc() const; 858 859 /// Return the source code span of the loop. 860 LocRange getLocRange() const; 861 getName()862 StringRef getName() const { 863 if (BasicBlock *Header = getHeader()) 864 if (Header->hasName()) 865 return Header->getName(); 866 return "<unnamed loop>"; 867 } 868 869 private: 870 Loop() = default; 871 872 friend class LoopInfoBase<BasicBlock, Loop>; 873 friend class LoopBase<BasicBlock, Loop>; Loop(BasicBlock * BB)874 explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} 875 ~Loop() = default; 876 }; 877 878 //===----------------------------------------------------------------------===// 879 /// This class builds and contains all of the top-level loop 880 /// structures in the specified function. 881 /// 882 883 template <class BlockT, class LoopT> class LoopInfoBase { 884 // BBMap - Mapping of basic blocks to the inner most loop they occur in 885 DenseMap<const BlockT *, LoopT *> BBMap; 886 std::vector<LoopT *> TopLevelLoops; 887 BumpPtrAllocator LoopAllocator; 888 889 friend class LoopBase<BlockT, LoopT>; 890 friend class LoopInfo; 891 892 void operator=(const LoopInfoBase &) = delete; 893 LoopInfoBase(const LoopInfoBase &) = delete; 894 895 public: LoopInfoBase()896 LoopInfoBase() {} ~LoopInfoBase()897 ~LoopInfoBase() { releaseMemory(); } 898 LoopInfoBase(LoopInfoBase && Arg)899 LoopInfoBase(LoopInfoBase &&Arg) 900 : BBMap(std::move(Arg.BBMap)), 901 TopLevelLoops(std::move(Arg.TopLevelLoops)), 902 LoopAllocator(std::move(Arg.LoopAllocator)) { 903 // We have to clear the arguments top level loops as we've taken ownership. 904 Arg.TopLevelLoops.clear(); 905 } 906 LoopInfoBase &operator=(LoopInfoBase &&RHS) { 907 BBMap = std::move(RHS.BBMap); 908 909 for (auto *L : TopLevelLoops) 910 L->~LoopT(); 911 912 TopLevelLoops = std::move(RHS.TopLevelLoops); 913 LoopAllocator = std::move(RHS.LoopAllocator); 914 RHS.TopLevelLoops.clear(); 915 return *this; 916 } 917 releaseMemory()918 void releaseMemory() { 919 BBMap.clear(); 920 921 for (auto *L : TopLevelLoops) 922 L->~LoopT(); 923 TopLevelLoops.clear(); 924 LoopAllocator.Reset(); 925 } 926 AllocateLoop(ArgsTy &&...Args)927 template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) { 928 LoopT *Storage = LoopAllocator.Allocate<LoopT>(); 929 return new (Storage) LoopT(std::forward<ArgsTy>(Args)...); 930 } 931 932 /// iterator/begin/end - The interface to the top-level loops in the current 933 /// function. 934 /// 935 typedef typename std::vector<LoopT *>::const_iterator iterator; 936 typedef 937 typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; begin()938 iterator begin() const { return TopLevelLoops.begin(); } end()939 iterator end() const { return TopLevelLoops.end(); } rbegin()940 reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } rend()941 reverse_iterator rend() const { return TopLevelLoops.rend(); } empty()942 bool empty() const { return TopLevelLoops.empty(); } 943 944 /// Return all of the loops in the function in preorder across the loop 945 /// nests, with siblings in forward program order. 946 /// 947 /// Note that because loops form a forest of trees, preorder is equivalent to 948 /// reverse postorder. 949 SmallVector<LoopT *, 4> getLoopsInPreorder(); 950 951 /// Return all of the loops in the function in preorder across the loop 952 /// nests, with siblings in *reverse* program order. 953 /// 954 /// Note that because loops form a forest of trees, preorder is equivalent to 955 /// reverse postorder. 956 /// 957 /// Also note that this is *not* a reverse preorder. Only the siblings are in 958 /// reverse program order. 959 SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder(); 960 961 /// Return the inner most loop that BB lives in. If a basic block is in no 962 /// loop (for example the entry node), null is returned. getLoopFor(const BlockT * BB)963 LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); } 964 965 /// Same as getLoopFor. 966 const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); } 967 968 /// Return the loop nesting level of the specified block. A depth of 0 means 969 /// the block is not inside any loop. getLoopDepth(const BlockT * BB)970 unsigned getLoopDepth(const BlockT *BB) const { 971 const LoopT *L = getLoopFor(BB); 972 return L ? L->getLoopDepth() : 0; 973 } 974 975 // True if the block is a loop header node isLoopHeader(const BlockT * BB)976 bool isLoopHeader(const BlockT *BB) const { 977 const LoopT *L = getLoopFor(BB); 978 return L && L->getHeader() == BB; 979 } 980 981 /// Return the top-level loops. getTopLevelLoops()982 const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; } 983 984 /// Return the top-level loops. getTopLevelLoopsVector()985 std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; } 986 987 /// This removes the specified top-level loop from this loop info object. 988 /// The loop is not deleted, as it will presumably be inserted into 989 /// another loop. removeLoop(iterator I)990 LoopT *removeLoop(iterator I) { 991 assert(I != end() && "Cannot remove end iterator!"); 992 LoopT *L = *I; 993 assert(L->isOutermost() && "Not a top-level loop!"); 994 TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin())); 995 return L; 996 } 997 998 /// Change the top-level loop that contains BB to the specified loop. 999 /// This should be used by transformations that restructure the loop hierarchy 1000 /// tree. changeLoopFor(BlockT * BB,LoopT * L)1001 void changeLoopFor(BlockT *BB, LoopT *L) { 1002 if (!L) { 1003 BBMap.erase(BB); 1004 return; 1005 } 1006 BBMap[BB] = L; 1007 } 1008 1009 /// Replace the specified loop in the top-level loops list with the indicated 1010 /// loop. changeTopLevelLoop(LoopT * OldLoop,LoopT * NewLoop)1011 void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) { 1012 auto I = find(TopLevelLoops, OldLoop); 1013 assert(I != TopLevelLoops.end() && "Old loop not at top level!"); 1014 *I = NewLoop; 1015 assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && 1016 "Loops already embedded into a subloop!"); 1017 } 1018 1019 /// This adds the specified loop to the collection of top-level loops. addTopLevelLoop(LoopT * New)1020 void addTopLevelLoop(LoopT *New) { 1021 assert(New->isOutermost() && "Loop already in subloop!"); 1022 TopLevelLoops.push_back(New); 1023 } 1024 1025 /// This method completely removes BB from all data structures, 1026 /// including all of the Loop objects it is nested in and our mapping from 1027 /// BasicBlocks to loops. removeBlock(BlockT * BB)1028 void removeBlock(BlockT *BB) { 1029 auto I = BBMap.find(BB); 1030 if (I != BBMap.end()) { 1031 for (LoopT *L = I->second; L; L = L->getParentLoop()) 1032 L->removeBlockFromLoop(BB); 1033 1034 BBMap.erase(I); 1035 } 1036 } 1037 1038 // Internals 1039 isNotAlreadyContainedIn(const LoopT * SubLoop,const LoopT * ParentLoop)1040 static bool isNotAlreadyContainedIn(const LoopT *SubLoop, 1041 const LoopT *ParentLoop) { 1042 if (!SubLoop) 1043 return true; 1044 if (SubLoop == ParentLoop) 1045 return false; 1046 return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); 1047 } 1048 1049 /// Create the loop forest using a stable algorithm. 1050 void analyze(const DominatorTreeBase<BlockT, false> &DomTree); 1051 1052 // Debugging 1053 void print(raw_ostream &OS) const; 1054 1055 void verify(const DominatorTreeBase<BlockT, false> &DomTree) const; 1056 1057 /// Destroy a loop that has been removed from the `LoopInfo` nest. 1058 /// 1059 /// This runs the destructor of the loop object making it invalid to 1060 /// reference afterward. The memory is retained so that the *pointer* to the 1061 /// loop remains valid. 1062 /// 1063 /// The caller is responsible for removing this loop from the loop nest and 1064 /// otherwise disconnecting it from the broader `LoopInfo` data structures. 1065 /// Callers that don't naturally handle this themselves should probably call 1066 /// `erase' instead. destroy(LoopT * L)1067 void destroy(LoopT *L) { 1068 L->~LoopT(); 1069 1070 // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons 1071 // \c L, but the pointer remains valid for non-dereferencing uses. 1072 LoopAllocator.Deallocate(L); 1073 } 1074 }; 1075 1076 // Implementation in LoopInfoImpl.h 1077 extern template class LoopInfoBase<BasicBlock, Loop>; 1078 1079 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> { 1080 typedef LoopInfoBase<BasicBlock, Loop> BaseT; 1081 1082 friend class LoopBase<BasicBlock, Loop>; 1083 1084 void operator=(const LoopInfo &) = delete; 1085 LoopInfo(const LoopInfo &) = delete; 1086 1087 public: LoopInfo()1088 LoopInfo() {} 1089 explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree); 1090 LoopInfo(LoopInfo && Arg)1091 LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {} 1092 LoopInfo &operator=(LoopInfo &&RHS) { 1093 BaseT::operator=(std::move(static_cast<BaseT &>(RHS))); 1094 return *this; 1095 } 1096 1097 /// Handle invalidation explicitly. 1098 bool invalidate(Function &F, const PreservedAnalyses &PA, 1099 FunctionAnalysisManager::Invalidator &); 1100 1101 // Most of the public interface is provided via LoopInfoBase. 1102 1103 /// Update LoopInfo after removing the last backedge from a loop. This updates 1104 /// the loop forest and parent loops for each block so that \c L is no longer 1105 /// referenced, but does not actually delete \c L immediately. The pointer 1106 /// will remain valid until this LoopInfo's memory is released. 1107 void erase(Loop *L); 1108 1109 /// Returns true if replacing From with To everywhere is guaranteed to 1110 /// preserve LCSSA form. replacementPreservesLCSSAForm(Instruction * From,Value * To)1111 bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { 1112 // Preserving LCSSA form is only problematic if the replacing value is an 1113 // instruction. 1114 Instruction *I = dyn_cast<Instruction>(To); 1115 if (!I) 1116 return true; 1117 // If both instructions are defined in the same basic block then replacement 1118 // cannot break LCSSA form. 1119 if (I->getParent() == From->getParent()) 1120 return true; 1121 // If the instruction is not defined in a loop then it can safely replace 1122 // anything. 1123 Loop *ToLoop = getLoopFor(I->getParent()); 1124 if (!ToLoop) 1125 return true; 1126 // If the replacing instruction is defined in the same loop as the original 1127 // instruction, or in a loop that contains it as an inner loop, then using 1128 // it as a replacement will not break LCSSA form. 1129 return ToLoop->contains(getLoopFor(From->getParent())); 1130 } 1131 1132 /// Checks if moving a specific instruction can break LCSSA in any loop. 1133 /// 1134 /// Return true if moving \p Inst to before \p NewLoc will break LCSSA, 1135 /// assuming that the function containing \p Inst and \p NewLoc is currently 1136 /// in LCSSA form. movementPreservesLCSSAForm(Instruction * Inst,Instruction * NewLoc)1137 bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) { 1138 assert(Inst->getFunction() == NewLoc->getFunction() && 1139 "Can't reason about IPO!"); 1140 1141 auto *OldBB = Inst->getParent(); 1142 auto *NewBB = NewLoc->getParent(); 1143 1144 // Movement within the same loop does not break LCSSA (the equality check is 1145 // to avoid doing a hashtable lookup in case of intra-block movement). 1146 if (OldBB == NewBB) 1147 return true; 1148 1149 auto *OldLoop = getLoopFor(OldBB); 1150 auto *NewLoop = getLoopFor(NewBB); 1151 1152 if (OldLoop == NewLoop) 1153 return true; 1154 1155 // Check if Outer contains Inner; with the null loop counting as the 1156 // "outermost" loop. 1157 auto Contains = [](const Loop *Outer, const Loop *Inner) { 1158 return !Outer || Outer->contains(Inner); 1159 }; 1160 1161 // To check that the movement of Inst to before NewLoc does not break LCSSA, 1162 // we need to check two sets of uses for possible LCSSA violations at 1163 // NewLoc: the users of NewInst, and the operands of NewInst. 1164 1165 // If we know we're hoisting Inst out of an inner loop to an outer loop, 1166 // then the uses *of* Inst don't need to be checked. 1167 1168 if (!Contains(NewLoop, OldLoop)) { 1169 for (Use &U : Inst->uses()) { 1170 auto *UI = cast<Instruction>(U.getUser()); 1171 auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U) 1172 : UI->getParent(); 1173 if (UBB != NewBB && getLoopFor(UBB) != NewLoop) 1174 return false; 1175 } 1176 } 1177 1178 // If we know we're sinking Inst from an outer loop into an inner loop, then 1179 // the *operands* of Inst don't need to be checked. 1180 1181 if (!Contains(OldLoop, NewLoop)) { 1182 // See below on why we can't handle phi nodes here. 1183 if (isa<PHINode>(Inst)) 1184 return false; 1185 1186 for (Use &U : Inst->operands()) { 1187 auto *DefI = dyn_cast<Instruction>(U.get()); 1188 if (!DefI) 1189 return false; 1190 1191 // This would need adjustment if we allow Inst to be a phi node -- the 1192 // new use block won't simply be NewBB. 1193 1194 auto *DefBlock = DefI->getParent(); 1195 if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop) 1196 return false; 1197 } 1198 } 1199 1200 return true; 1201 } 1202 }; 1203 1204 // Allow clients to walk the list of nested loops... 1205 template <> struct GraphTraits<const Loop *> { 1206 typedef const Loop *NodeRef; 1207 typedef LoopInfo::iterator ChildIteratorType; 1208 1209 static NodeRef getEntryNode(const Loop *L) { return L; } 1210 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } 1211 static ChildIteratorType child_end(NodeRef N) { return N->end(); } 1212 }; 1213 1214 template <> struct GraphTraits<Loop *> { 1215 typedef Loop *NodeRef; 1216 typedef LoopInfo::iterator ChildIteratorType; 1217 1218 static NodeRef getEntryNode(Loop *L) { return L; } 1219 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } 1220 static ChildIteratorType child_end(NodeRef N) { return N->end(); } 1221 }; 1222 1223 /// Analysis pass that exposes the \c LoopInfo for a function. 1224 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> { 1225 friend AnalysisInfoMixin<LoopAnalysis>; 1226 static AnalysisKey Key; 1227 1228 public: 1229 typedef LoopInfo Result; 1230 1231 LoopInfo run(Function &F, FunctionAnalysisManager &AM); 1232 }; 1233 1234 /// Printer pass for the \c LoopAnalysis results. 1235 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> { 1236 raw_ostream &OS; 1237 1238 public: 1239 explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} 1240 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 1241 }; 1242 1243 /// Verifier pass for the \c LoopAnalysis results. 1244 struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> { 1245 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 1246 }; 1247 1248 /// The legacy pass manager's analysis pass to compute loop information. 1249 class LoopInfoWrapperPass : public FunctionPass { 1250 LoopInfo LI; 1251 1252 public: 1253 static char ID; // Pass identification, replacement for typeid 1254 1255 LoopInfoWrapperPass(); 1256 1257 LoopInfo &getLoopInfo() { return LI; } 1258 const LoopInfo &getLoopInfo() const { return LI; } 1259 1260 /// Calculate the natural loop information for a given function. 1261 bool runOnFunction(Function &F) override; 1262 1263 void verifyAnalysis() const override; 1264 1265 void releaseMemory() override { LI.releaseMemory(); } 1266 1267 void print(raw_ostream &O, const Module *M = nullptr) const override; 1268 1269 void getAnalysisUsage(AnalysisUsage &AU) const override; 1270 }; 1271 1272 /// Function to print a loop's contents as LLVM's text IR assembly. 1273 void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = ""); 1274 1275 /// Find and return the loop attribute node for the attribute @p Name in 1276 /// @p LoopID. Return nullptr if there is no such attribute. 1277 MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name); 1278 1279 /// Find string metadata for a loop. 1280 /// 1281 /// Returns the MDNode where the first operand is the metadata's name. The 1282 /// following operands are the metadata's values. If no metadata with @p Name is 1283 /// found, return nullptr. 1284 MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name); 1285 1286 /// Return whether an MDNode might represent an access group. 1287 /// 1288 /// Access group metadata nodes have to be distinct and empty. Being 1289 /// always-empty ensures that it never needs to be changed (which -- because 1290 /// MDNodes are designed immutable -- would require creating a new MDNode). Note 1291 /// that this is not a sufficient condition: not every distinct and empty NDNode 1292 /// is representing an access group. 1293 bool isValidAsAccessGroup(MDNode *AccGroup); 1294 1295 /// Create a new LoopID after the loop has been transformed. 1296 /// 1297 /// This can be used when no follow-up loop attributes are defined 1298 /// (llvm::makeFollowupLoopID returning None) to stop transformations to be 1299 /// applied again. 1300 /// 1301 /// @param Context The LLVMContext in which to create the new LoopID. 1302 /// @param OrigLoopID The original LoopID; can be nullptr if the original 1303 /// loop has no LoopID. 1304 /// @param RemovePrefixes Remove all loop attributes that have these prefixes. 1305 /// Use to remove metadata of the transformation that has 1306 /// been applied. 1307 /// @param AddAttrs Add these loop attributes to the new LoopID. 1308 /// 1309 /// @return A new LoopID that can be applied using Loop::setLoopID(). 1310 llvm::MDNode * 1311 makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, 1312 llvm::ArrayRef<llvm::StringRef> RemovePrefixes, 1313 llvm::ArrayRef<llvm::MDNode *> AddAttrs); 1314 1315 } // End llvm namespace 1316 1317 #endif 1318