1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is much like SSA
15 /// construction, where each DBG_VALUE instruction assigns the *value* that
16 /// a variable has, and every instruction where the variable is in scope uses
17 /// that variable. The resulting map of instruction-to-value is then translated
18 /// into a register (or spill) location for each variable over each instruction.
19 ///
20 /// This pass determines which DBG_VALUE dominates which instructions, or if
21 /// none do, where values must be merged (like PHI nodes). The added
22 /// complication is that because codegen has already finished, a PHI node may
23 /// be needed for a variable location to be correct, but no register or spill
24 /// slot merges the necessary values. In these circumstances, the variable
25 /// location is dropped.
26 ///
27 /// What makes this analysis non-trivial is loops: we cannot tell in advance
28 /// whether a variable location is live throughout a loop, or whether its
29 /// location is clobbered (or redefined by another DBG_VALUE), without
30 /// exploring all the way through.
31 ///
32 /// To make this simpler we perform two kinds of analysis. First, we identify
33 /// every value defined by every instruction (ignoring those that only move
34 /// another value), then compute a map of which values are available for each
35 /// instruction. This is stronger than a reaching-def analysis, as we create
36 /// PHI values where other values merge.
37 ///
38 /// Secondly, for each variable, we effectively re-construct SSA using each
39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
40 /// first analysis from the location they refer to. We can then compute the
41 /// dominance frontiers of where a variable has a value, and create PHI nodes
42 /// where they merge.
43 /// This isn't precisely SSA-construction though, because the function shape
44 /// is pre-defined. If a variable location requires a PHI node, but no
45 /// PHI for the relevant values is present in the function (as computed by the
46 /// first analysis), the location must be dropped.
47 ///
48 /// Once both are complete, we can pass back over all instructions knowing:
49 /// * What _value_ each variable should contain, either defined by an
50 /// instruction or where control flow merges
51 /// * What the location of that value is (if any).
52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
53 /// a value moves location. After this pass runs, all variable locations within
54 /// a block should be specified by DBG_VALUEs within that block, allowing
55 /// DbgEntityHistoryCalculator to focus on individual blocks.
56 ///
57 /// This pass is able to go fast because the size of the first
58 /// reaching-definition analysis is proportional to the working-set size of
59 /// the function, which the compiler tries to keep small. (It's also
60 /// proportional to the number of blocks). Additionally, we repeatedly perform
61 /// the second reaching-definition analysis with only the variables and blocks
62 /// in a single lexical scope, exploiting their locality.
63 ///
64 /// Determining where PHIs happen is trickier with this approach, and it comes
65 /// to a head in the major problem for LiveDebugValues: is a value live-through
66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
67 /// facts about a function, however this analysis needs to generate new value
68 /// numbers at joins.
69 ///
70 /// To do this, consider a lattice of all definition values, from instructions
71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it
72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO
74 /// order) at the bottom.
75 ///
76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
77 /// "rank" always refers to the former).
78 ///
79 /// At any join, for each register, we consider:
80 /// * All incoming values, and
81 /// * The PREVIOUS live-in value at this join.
82 /// If all incoming values agree: that's the live-in value. If they do not, the
83 /// incoming values are ranked according to the partial order, and the NEXT
84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
85 /// the same rank are ignored as conflicting). If there are no candidate values,
86 /// or if the rank of the live-in would be lower than the rank of the current
87 /// blocks PHIs, create a new PHI value.
88 ///
89 /// Intuitively: if it's not immediately obvious what value a join should result
90 /// in, we iteratively descend from instruction-definitions down through PHI
91 /// values, getting closer to the current block each time. If the current block
92 /// is a loop head, this ordering is effectively searching outer levels of
93 /// loops, to find a value that's live-through the current loop.
94 ///
95 /// If there is no value that's live-through this loop, a PHI is created for
96 /// this location instead. We can't use a lower-ranked PHI because by definition
97 /// it doesn't dominate the current block. We can't create a PHI value any
98 /// earlier, because we risk creating a PHI value at a location where values do
99 /// not in fact merge, thus misrepresenting the truth, and not making the true
100 /// live-through value for variable locations.
101 ///
102 /// This algorithm applies to both calculating the availability of values in
103 /// the first analysis, and the location of variables in the second. However
104 /// for the second we add an extra dimension of pain: creating a variable
105 /// location PHI is only valid if, for each incoming edge,
106 /// * There is a value for the variable on the incoming edge, and
107 /// * All the edges have that value in the same register.
108 /// Or put another way: we can only create a variable-location PHI if there is
109 /// a matching machine-location PHI, each input to which is the variables value
110 /// in the predecessor block.
111 ///
112 /// To accommodate this difference, each point on the lattice is split in
113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
114 /// have a location determined are "definite" PHIs, and no further work is
115 /// needed. Otherwise, a location that all non-backedge predecessors agree
116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value
117 /// is truly live-through, it'll appear on the loop backedges on the next
118 /// dataflow iteration, after which the block live-in moves to be a "definite"
119 /// PHI. If it's not truly live-through, the variable value will be downgraded
120 /// further as we explore the lattice, or remains "proposed" and is considered
121 /// invalid once dataflow completes.
122 ///
123 /// ### Terminology
124 ///
125 /// A machine location is a register or spill slot, a value is something that's
126 /// defined by an instruction or PHI node, while a variable value is the value
127 /// assigned to a variable. A variable location is a machine location, that must
128 /// contain the appropriate variable value. A value that is a PHI node is
129 /// occasionally called an mphi.
130 ///
131 /// The first dataflow problem is the "machine value location" problem,
132 /// because we're determining which machine locations contain which values.
133 /// The "locations" are constant: what's unknown is what value they contain.
134 ///
135 /// The second dataflow problem (the one for variables) is the "variable value
136 /// problem", because it's determining what values a variable has, rather than
137 /// what location those values are placed in. Unfortunately, it's not that
138 /// simple, because producing a PHI value always involves picking a location.
139 /// This is an imperfection that we just have to accept, at least for now.
140 ///
141 /// TODO:
142 /// Overlapping fragments
143 /// Entry values
144 /// Add back DEBUG statements for debugging this
145 /// Collect statistics
146 ///
147 //===----------------------------------------------------------------------===//
148
149 #include "llvm/ADT/DenseMap.h"
150 #include "llvm/ADT/PostOrderIterator.h"
151 #include "llvm/ADT/SmallPtrSet.h"
152 #include "llvm/ADT/SmallSet.h"
153 #include "llvm/ADT/SmallVector.h"
154 #include "llvm/ADT/Statistic.h"
155 #include "llvm/ADT/UniqueVector.h"
156 #include "llvm/CodeGen/LexicalScopes.h"
157 #include "llvm/CodeGen/MachineBasicBlock.h"
158 #include "llvm/CodeGen/MachineFrameInfo.h"
159 #include "llvm/CodeGen/MachineFunction.h"
160 #include "llvm/CodeGen/MachineFunctionPass.h"
161 #include "llvm/CodeGen/MachineInstr.h"
162 #include "llvm/CodeGen/MachineInstrBuilder.h"
163 #include "llvm/CodeGen/MachineMemOperand.h"
164 #include "llvm/CodeGen/MachineOperand.h"
165 #include "llvm/CodeGen/PseudoSourceValue.h"
166 #include "llvm/CodeGen/RegisterScavenging.h"
167 #include "llvm/CodeGen/TargetFrameLowering.h"
168 #include "llvm/CodeGen/TargetInstrInfo.h"
169 #include "llvm/CodeGen/TargetLowering.h"
170 #include "llvm/CodeGen/TargetPassConfig.h"
171 #include "llvm/CodeGen/TargetRegisterInfo.h"
172 #include "llvm/CodeGen/TargetSubtargetInfo.h"
173 #include "llvm/Config/llvm-config.h"
174 #include "llvm/IR/DIBuilder.h"
175 #include "llvm/IR/DebugInfoMetadata.h"
176 #include "llvm/IR/DebugLoc.h"
177 #include "llvm/IR/Function.h"
178 #include "llvm/IR/Module.h"
179 #include "llvm/InitializePasses.h"
180 #include "llvm/MC/MCRegisterInfo.h"
181 #include "llvm/Pass.h"
182 #include "llvm/Support/Casting.h"
183 #include "llvm/Support/Compiler.h"
184 #include "llvm/Support/Debug.h"
185 #include "llvm/Support/raw_ostream.h"
186 #include <algorithm>
187 #include <cassert>
188 #include <cstdint>
189 #include <functional>
190 #include <queue>
191 #include <tuple>
192 #include <utility>
193 #include <vector>
194 #include <limits.h>
195 #include <limits>
196
197 #include "LiveDebugValues.h"
198
199 using namespace llvm;
200
201 #define DEBUG_TYPE "livedebugvalues"
202
203 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
204 STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed");
205
206 // Act more like the VarLoc implementation, by propagating some locations too
207 // far and ignoring some transfers.
208 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
209 cl::desc("Act like old LiveDebugValues did"),
210 cl::init(false));
211
212 // Rely on isStoreToStackSlotPostFE and similar to observe all stack spills.
213 static cl::opt<bool>
214 ObserveAllStackops("observe-all-stack-ops", cl::Hidden,
215 cl::desc("Allow non-kill spill and restores"),
216 cl::init(false));
217
218 namespace {
219
220 // The location at which a spilled value resides. It consists of a register and
221 // an offset.
222 struct SpillLoc {
223 unsigned SpillBase;
224 int SpillOffset;
operator ==__anon84c0493f0111::SpillLoc225 bool operator==(const SpillLoc &Other) const {
226 return std::tie(SpillBase, SpillOffset) ==
227 std::tie(Other.SpillBase, Other.SpillOffset);
228 }
operator <__anon84c0493f0111::SpillLoc229 bool operator<(const SpillLoc &Other) const {
230 return std::tie(SpillBase, SpillOffset) <
231 std::tie(Other.SpillBase, Other.SpillOffset);
232 }
233 };
234
235 class LocIdx {
236 unsigned Location;
237
238 // Default constructor is private, initializing to an illegal location number.
239 // Use only for "not an entry" elements in IndexedMaps.
LocIdx()240 LocIdx() : Location(UINT_MAX) { }
241
242 public:
243 #define NUM_LOC_BITS 24
LocIdx(unsigned L)244 LocIdx(unsigned L) : Location(L) {
245 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
246 }
247
MakeIllegalLoc()248 static LocIdx MakeIllegalLoc() {
249 return LocIdx();
250 }
251
isIllegal() const252 bool isIllegal() const {
253 return Location == UINT_MAX;
254 }
255
asU64() const256 uint64_t asU64() const {
257 return Location;
258 }
259
operator ==(unsigned L) const260 bool operator==(unsigned L) const {
261 return Location == L;
262 }
263
operator ==(const LocIdx & L) const264 bool operator==(const LocIdx &L) const {
265 return Location == L.Location;
266 }
267
operator !=(unsigned L) const268 bool operator!=(unsigned L) const {
269 return !(*this == L);
270 }
271
operator !=(const LocIdx & L) const272 bool operator!=(const LocIdx &L) const {
273 return !(*this == L);
274 }
275
operator <(const LocIdx & Other) const276 bool operator<(const LocIdx &Other) const {
277 return Location < Other.Location;
278 }
279 };
280
281 class LocIdxToIndexFunctor {
282 public:
283 using argument_type = LocIdx;
operator ()(const LocIdx & L) const284 unsigned operator()(const LocIdx &L) const {
285 return L.asU64();
286 }
287 };
288
289 /// Unique identifier for a value defined by an instruction, as a value type.
290 /// Casts back and forth to a uint64_t. Probably replacable with something less
291 /// bit-constrained. Each value identifies the instruction and machine location
292 /// where the value is defined, although there may be no corresponding machine
293 /// operand for it (ex: regmasks clobbering values). The instructions are
294 /// one-based, and definitions that are PHIs have instruction number zero.
295 ///
296 /// The obvious limits of a 1M block function or 1M instruction blocks are
297 /// problematic; but by that point we should probably have bailed out of
298 /// trying to analyse the function.
299 class ValueIDNum {
300 uint64_t BlockNo : 20; /// The block where the def happens.
301 uint64_t InstNo : 20; /// The Instruction where the def happens.
302 /// One based, is distance from start of block.
303 uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.
304
305 public:
306 // XXX -- temporarily enabled while the live-in / live-out tables are moved
307 // to something more type-y
ValueIDNum()308 ValueIDNum() : BlockNo(0xFFFFF),
309 InstNo(0xFFFFF),
310 LocNo(0xFFFFFF) { }
311
ValueIDNum(uint64_t Block,uint64_t Inst,uint64_t Loc)312 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
313 : BlockNo(Block), InstNo(Inst), LocNo(Loc) { }
314
ValueIDNum(uint64_t Block,uint64_t Inst,LocIdx Loc)315 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
316 : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { }
317
getBlock() const318 uint64_t getBlock() const { return BlockNo; }
getInst() const319 uint64_t getInst() const { return InstNo; }
getLoc() const320 uint64_t getLoc() const { return LocNo; }
isPHI() const321 bool isPHI() const { return InstNo == 0; }
322
asU64() const323 uint64_t asU64() const {
324 uint64_t TmpBlock = BlockNo;
325 uint64_t TmpInst = InstNo;
326 return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
327 }
328
fromU64(uint64_t v)329 static ValueIDNum fromU64(uint64_t v) {
330 uint64_t L = (v & 0x3FFF);
331 return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
332 }
333
operator <(const ValueIDNum & Other) const334 bool operator<(const ValueIDNum &Other) const {
335 return asU64() < Other.asU64();
336 }
337
operator ==(const ValueIDNum & Other) const338 bool operator==(const ValueIDNum &Other) const {
339 return std::tie(BlockNo, InstNo, LocNo) ==
340 std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
341 }
342
operator !=(const ValueIDNum & Other) const343 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
344
asString(const std::string & mlocname) const345 std::string asString(const std::string &mlocname) const {
346 return Twine("Value{bb: ")
347 .concat(Twine(BlockNo).concat(
348 Twine(", inst: ")
349 .concat((InstNo ? Twine(InstNo) : Twine("live-in"))
350 .concat(Twine(", loc: ").concat(Twine(mlocname)))
351 .concat(Twine("}")))))
352 .str();
353 }
354
355 static ValueIDNum EmptyValue;
356 };
357
358 } // end anonymous namespace
359
360 namespace {
361
362 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
363 /// the the value, and Boolean of whether or not it's indirect.
364 class DbgValueProperties {
365 public:
DbgValueProperties(const DIExpression * DIExpr,bool Indirect)366 DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
367 : DIExpr(DIExpr), Indirect(Indirect) {}
368
369 /// Extract properties from an existing DBG_VALUE instruction.
DbgValueProperties(const MachineInstr & MI)370 DbgValueProperties(const MachineInstr &MI) {
371 assert(MI.isDebugValue());
372 DIExpr = MI.getDebugExpression();
373 Indirect = MI.getOperand(1).isImm();
374 }
375
operator ==(const DbgValueProperties & Other) const376 bool operator==(const DbgValueProperties &Other) const {
377 return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
378 }
379
operator !=(const DbgValueProperties & Other) const380 bool operator!=(const DbgValueProperties &Other) const {
381 return !(*this == Other);
382 }
383
384 const DIExpression *DIExpr;
385 bool Indirect;
386 };
387
388 /// Tracker for what values are in machine locations. Listens to the Things
389 /// being Done by various instructions, and maintains a table of what machine
390 /// locations have what values (as defined by a ValueIDNum).
391 ///
392 /// There are potentially a much larger number of machine locations on the
393 /// target machine than the actual working-set size of the function. On x86 for
394 /// example, we're extremely unlikely to want to track values through control
395 /// or debug registers. To avoid doing so, MLocTracker has several layers of
396 /// indirection going on, with two kinds of ``location'':
397 /// * A LocID uniquely identifies a register or spill location, with a
398 /// predictable value.
399 /// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
400 /// Whenever a location is def'd or used by a MachineInstr, we automagically
401 /// create a new LocIdx for a location, but not otherwise. This ensures we only
402 /// account for locations that are actually used or defined. The cost is another
403 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is
404 /// fairly cheap, and the compiler tries to reduce the working-set at any one
405 /// time in the function anyway.
406 ///
407 /// Register mask operands completely blow this out of the water; I've just
408 /// piled hacks on top of hacks to get around that.
409 class MLocTracker {
410 public:
411 MachineFunction &MF;
412 const TargetInstrInfo &TII;
413 const TargetRegisterInfo &TRI;
414 const TargetLowering &TLI;
415
416 /// IndexedMap type, mapping from LocIdx to ValueIDNum.
417 using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
418
419 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
420 /// packed, entries only exist for locations that are being tracked.
421 LocToValueType LocIdxToIDNum;
422
423 /// "Map" of machine location IDs (i.e., raw register or spill number) to the
424 /// LocIdx key / number for that location. There are always at least as many
425 /// as the number of registers on the target -- if the value in the register
426 /// is not being tracked, then the LocIdx value will be zero. New entries are
427 /// appended if a new spill slot begins being tracked.
428 /// This, and the corresponding reverse map persist for the analysis of the
429 /// whole function, and is necessarying for decoding various vectors of
430 /// values.
431 std::vector<LocIdx> LocIDToLocIdx;
432
433 /// Inverse map of LocIDToLocIdx.
434 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
435
436 /// Unique-ification of spill slots. Used to number them -- their LocID
437 /// number is the index in SpillLocs minus one plus NumRegs.
438 UniqueVector<SpillLoc> SpillLocs;
439
440 // If we discover a new machine location, assign it an mphi with this
441 // block number.
442 unsigned CurBB;
443
444 /// Cached local copy of the number of registers the target has.
445 unsigned NumRegs;
446
447 /// Collection of register mask operands that have been observed. Second part
448 /// of pair indicates the instruction that they happened in. Used to
449 /// reconstruct where defs happened if we start tracking a location later
450 /// on.
451 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
452
453 /// Iterator for locations and the values they contain. Dereferencing
454 /// produces a struct/pair containing the LocIdx key for this location,
455 /// and a reference to the value currently stored. Simplifies the process
456 /// of seeking a particular location.
457 class MLocIterator {
458 LocToValueType &ValueMap;
459 LocIdx Idx;
460
461 public:
462 class value_type {
463 public:
value_type(LocIdx Idx,ValueIDNum & Value)464 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { }
465 const LocIdx Idx; /// Read-only index of this location.
466 ValueIDNum &Value; /// Reference to the stored value at this location.
467 };
468
MLocIterator(LocToValueType & ValueMap,LocIdx Idx)469 MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
470 : ValueMap(ValueMap), Idx(Idx) { }
471
operator ==(const MLocIterator & Other) const472 bool operator==(const MLocIterator &Other) const {
473 assert(&ValueMap == &Other.ValueMap);
474 return Idx == Other.Idx;
475 }
476
operator !=(const MLocIterator & Other) const477 bool operator!=(const MLocIterator &Other) const {
478 return !(*this == Other);
479 }
480
operator ++()481 void operator++() {
482 Idx = LocIdx(Idx.asU64() + 1);
483 }
484
operator *()485 value_type operator*() {
486 return value_type(Idx, ValueMap[LocIdx(Idx)]);
487 }
488 };
489
MLocTracker(MachineFunction & MF,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI,const TargetLowering & TLI)490 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
491 const TargetRegisterInfo &TRI, const TargetLowering &TLI)
492 : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
493 LocIdxToIDNum(ValueIDNum::EmptyValue),
494 LocIdxToLocID(0) {
495 NumRegs = TRI.getNumRegs();
496 reset();
497 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
498 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
499
500 // Always track SP. This avoids the implicit clobbering caused by regmasks
501 // from affectings its values. (LiveDebugValues disbelieves calls and
502 // regmasks that claim to clobber SP).
503 Register SP = TLI.getStackPointerRegisterToSaveRestore();
504 if (SP) {
505 unsigned ID = getLocID(SP, false);
506 (void)lookupOrTrackRegister(ID);
507 }
508 }
509
510 /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
511 /// or spill number, and flag for whether it's a spill or not.
getLocID(Register RegOrSpill,bool isSpill)512 unsigned getLocID(Register RegOrSpill, bool isSpill) {
513 return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id();
514 }
515
516 /// Accessor for reading the value at Idx.
getNumAtPos(LocIdx Idx) const517 ValueIDNum getNumAtPos(LocIdx Idx) const {
518 assert(Idx.asU64() < LocIdxToIDNum.size());
519 return LocIdxToIDNum[Idx];
520 }
521
getNumLocs(void) const522 unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }
523
524 /// Reset all locations to contain a PHI value at the designated block. Used
525 /// sometimes for actual PHI values, othertimes to indicate the block entry
526 /// value (before any more information is known).
setMPhis(unsigned NewCurBB)527 void setMPhis(unsigned NewCurBB) {
528 CurBB = NewCurBB;
529 for (auto Location : locations())
530 Location.Value = {CurBB, 0, Location.Idx};
531 }
532
533 /// Load values for each location from array of ValueIDNums. Take current
534 /// bbnum just in case we read a value from a hitherto untouched register.
loadFromArray(ValueIDNum * Locs,unsigned NewCurBB)535 void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
536 CurBB = NewCurBB;
537 // Iterate over all tracked locations, and load each locations live-in
538 // value into our local index.
539 for (auto Location : locations())
540 Location.Value = Locs[Location.Idx.asU64()];
541 }
542
543 /// Wipe any un-necessary location records after traversing a block.
reset(void)544 void reset(void) {
545 // We could reset all the location values too; however either loadFromArray
546 // or setMPhis should be called before this object is re-used. Just
547 // clear Masks, they're definitely not needed.
548 Masks.clear();
549 }
550
551 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
552 /// the information in this pass uninterpretable.
clear(void)553 void clear(void) {
554 reset();
555 LocIDToLocIdx.clear();
556 LocIdxToLocID.clear();
557 LocIdxToIDNum.clear();
558 //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0
559 SpillLocs = decltype(SpillLocs)();
560
561 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
562 }
563
564 /// Set a locaiton to a certain value.
setMLoc(LocIdx L,ValueIDNum Num)565 void setMLoc(LocIdx L, ValueIDNum Num) {
566 assert(L.asU64() < LocIdxToIDNum.size());
567 LocIdxToIDNum[L] = Num;
568 }
569
570 /// Create a LocIdx for an untracked register ID. Initialize it to either an
571 /// mphi value representing a live-in, or a recent register mask clobber.
trackRegister(unsigned ID)572 LocIdx trackRegister(unsigned ID) {
573 assert(ID != 0);
574 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
575 LocIdxToIDNum.grow(NewIdx);
576 LocIdxToLocID.grow(NewIdx);
577
578 // Default: it's an mphi.
579 ValueIDNum ValNum = {CurBB, 0, NewIdx};
580 // Was this reg ever touched by a regmask?
581 for (const auto &MaskPair : reverse(Masks)) {
582 if (MaskPair.first->clobbersPhysReg(ID)) {
583 // There was an earlier def we skipped.
584 ValNum = {CurBB, MaskPair.second, NewIdx};
585 break;
586 }
587 }
588
589 LocIdxToIDNum[NewIdx] = ValNum;
590 LocIdxToLocID[NewIdx] = ID;
591 return NewIdx;
592 }
593
lookupOrTrackRegister(unsigned ID)594 LocIdx lookupOrTrackRegister(unsigned ID) {
595 LocIdx &Index = LocIDToLocIdx[ID];
596 if (Index.isIllegal())
597 Index = trackRegister(ID);
598 return Index;
599 }
600
601 /// Record a definition of the specified register at the given block / inst.
602 /// This doesn't take a ValueIDNum, because the definition and its location
603 /// are synonymous.
defReg(Register R,unsigned BB,unsigned Inst)604 void defReg(Register R, unsigned BB, unsigned Inst) {
605 unsigned ID = getLocID(R, false);
606 LocIdx Idx = lookupOrTrackRegister(ID);
607 ValueIDNum ValueID = {BB, Inst, Idx};
608 LocIdxToIDNum[Idx] = ValueID;
609 }
610
611 /// Set a register to a value number. To be used if the value number is
612 /// known in advance.
setReg(Register R,ValueIDNum ValueID)613 void setReg(Register R, ValueIDNum ValueID) {
614 unsigned ID = getLocID(R, false);
615 LocIdx Idx = lookupOrTrackRegister(ID);
616 LocIdxToIDNum[Idx] = ValueID;
617 }
618
readReg(Register R)619 ValueIDNum readReg(Register R) {
620 unsigned ID = getLocID(R, false);
621 LocIdx Idx = lookupOrTrackRegister(ID);
622 return LocIdxToIDNum[Idx];
623 }
624
625 /// Reset a register value to zero / empty. Needed to replicate the
626 /// VarLoc implementation where a copy to/from a register effectively
627 /// clears the contents of the source register. (Values can only have one
628 /// machine location in VarLocBasedImpl).
wipeRegister(Register R)629 void wipeRegister(Register R) {
630 unsigned ID = getLocID(R, false);
631 LocIdx Idx = LocIDToLocIdx[ID];
632 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
633 }
634
635 /// Determine the LocIdx of an existing register.
getRegMLoc(Register R)636 LocIdx getRegMLoc(Register R) {
637 unsigned ID = getLocID(R, false);
638 return LocIDToLocIdx[ID];
639 }
640
641 /// Record a RegMask operand being executed. Defs any register we currently
642 /// track, stores a pointer to the mask in case we have to account for it
643 /// later.
writeRegMask(const MachineOperand * MO,unsigned CurBB,unsigned InstID)644 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) {
645 // Ensure SP exists, so that we don't override it later.
646 Register SP = TLI.getStackPointerRegisterToSaveRestore();
647
648 // Def any register we track have that isn't preserved. The regmask
649 // terminates the liveness of a register, meaning its value can't be
650 // relied upon -- we represent this by giving it a new value.
651 for (auto Location : locations()) {
652 unsigned ID = LocIdxToLocID[Location.Idx];
653 // Don't clobber SP, even if the mask says it's clobbered.
654 if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
655 defReg(ID, CurBB, InstID);
656 }
657 Masks.push_back(std::make_pair(MO, InstID));
658 }
659
660 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
getOrTrackSpillLoc(SpillLoc L)661 LocIdx getOrTrackSpillLoc(SpillLoc L) {
662 unsigned SpillID = SpillLocs.idFor(L);
663 if (SpillID == 0) {
664 SpillID = SpillLocs.insert(L);
665 unsigned L = getLocID(SpillID, true);
666 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
667 LocIdxToIDNum.grow(Idx);
668 LocIdxToLocID.grow(Idx);
669 LocIDToLocIdx.push_back(Idx);
670 LocIdxToLocID[Idx] = L;
671 return Idx;
672 } else {
673 unsigned L = getLocID(SpillID, true);
674 LocIdx Idx = LocIDToLocIdx[L];
675 return Idx;
676 }
677 }
678
679 /// Set the value stored in a spill slot.
setSpill(SpillLoc L,ValueIDNum ValueID)680 void setSpill(SpillLoc L, ValueIDNum ValueID) {
681 LocIdx Idx = getOrTrackSpillLoc(L);
682 LocIdxToIDNum[Idx] = ValueID;
683 }
684
685 /// Read whatever value is in a spill slot, or None if it isn't tracked.
readSpill(SpillLoc L)686 Optional<ValueIDNum> readSpill(SpillLoc L) {
687 unsigned SpillID = SpillLocs.idFor(L);
688 if (SpillID == 0)
689 return None;
690
691 unsigned LocID = getLocID(SpillID, true);
692 LocIdx Idx = LocIDToLocIdx[LocID];
693 return LocIdxToIDNum[Idx];
694 }
695
696 /// Determine the LocIdx of a spill slot. Return None if it previously
697 /// hasn't had a value assigned.
getSpillMLoc(SpillLoc L)698 Optional<LocIdx> getSpillMLoc(SpillLoc L) {
699 unsigned SpillID = SpillLocs.idFor(L);
700 if (SpillID == 0)
701 return None;
702 unsigned LocNo = getLocID(SpillID, true);
703 return LocIDToLocIdx[LocNo];
704 }
705
706 /// Return true if Idx is a spill machine location.
isSpill(LocIdx Idx) const707 bool isSpill(LocIdx Idx) const {
708 return LocIdxToLocID[Idx] >= NumRegs;
709 }
710
begin()711 MLocIterator begin() {
712 return MLocIterator(LocIdxToIDNum, 0);
713 }
714
end()715 MLocIterator end() {
716 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
717 }
718
719 /// Return a range over all locations currently tracked.
locations()720 iterator_range<MLocIterator> locations() {
721 return llvm::make_range(begin(), end());
722 }
723
LocIdxToName(LocIdx Idx) const724 std::string LocIdxToName(LocIdx Idx) const {
725 unsigned ID = LocIdxToLocID[Idx];
726 if (ID >= NumRegs)
727 return Twine("slot ").concat(Twine(ID - NumRegs)).str();
728 else
729 return TRI.getRegAsmName(ID).str();
730 }
731
IDAsString(const ValueIDNum & Num) const732 std::string IDAsString(const ValueIDNum &Num) const {
733 std::string DefName = LocIdxToName(Num.getLoc());
734 return Num.asString(DefName);
735 }
736
737 LLVM_DUMP_METHOD
dump()738 void dump() {
739 for (auto Location : locations()) {
740 std::string MLocName = LocIdxToName(Location.Value.getLoc());
741 std::string DefName = Location.Value.asString(MLocName);
742 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
743 }
744 }
745
746 LLVM_DUMP_METHOD
dump_mloc_map()747 void dump_mloc_map() {
748 for (auto Location : locations()) {
749 std::string foo = LocIdxToName(Location.Idx);
750 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
751 }
752 }
753
754 /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the
755 /// information in \pProperties, for variable Var. Don't insert it anywhere,
756 /// just return the builder for it.
emitLoc(Optional<LocIdx> MLoc,const DebugVariable & Var,const DbgValueProperties & Properties)757 MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
758 const DbgValueProperties &Properties) {
759 DebugLoc DL =
760 DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt());
761 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
762
763 const DIExpression *Expr = Properties.DIExpr;
764 if (!MLoc) {
765 // No location -> DBG_VALUE $noreg
766 MIB.addReg(0, RegState::Debug);
767 MIB.addReg(0, RegState::Debug);
768 } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
769 unsigned LocID = LocIdxToLocID[*MLoc];
770 const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
771 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
772 Spill.SpillOffset);
773 unsigned Base = Spill.SpillBase;
774 MIB.addReg(Base, RegState::Debug);
775 MIB.addImm(0);
776 } else {
777 unsigned LocID = LocIdxToLocID[*MLoc];
778 MIB.addReg(LocID, RegState::Debug);
779 if (Properties.Indirect)
780 MIB.addImm(0);
781 else
782 MIB.addReg(0, RegState::Debug);
783 }
784
785 MIB.addMetadata(Var.getVariable());
786 MIB.addMetadata(Expr);
787 return MIB;
788 }
789 };
790
791 /// Class recording the (high level) _value_ of a variable. Identifies either
792 /// the value of the variable as a ValueIDNum, or a constant MachineOperand.
793 /// This class also stores meta-information about how the value is qualified.
794 /// Used to reason about variable values when performing the second
795 /// (DebugVariable specific) dataflow analysis.
796 class DbgValue {
797 public:
798 union {
799 /// If Kind is Def, the value number that this value is based on.
800 ValueIDNum ID;
801 /// If Kind is Const, the MachineOperand defining this value.
802 MachineOperand MO;
803 /// For a NoVal DbgValue, which block it was generated in.
804 unsigned BlockNo;
805 };
806 /// Qualifiers for the ValueIDNum above.
807 DbgValueProperties Properties;
808
809 typedef enum {
810 Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
811 Def, // This value is defined by an inst, or is a PHI value.
812 Const, // A constant value contained in the MachineOperand field.
813 Proposed, // This is a tentative PHI value, which may be confirmed or
814 // invalidated later.
815 NoVal // Empty DbgValue, generated during dataflow. BlockNo stores
816 // which block this was generated in.
817 } KindT;
818 /// Discriminator for whether this is a constant or an in-program value.
819 KindT Kind;
820
DbgValue(const ValueIDNum & Val,const DbgValueProperties & Prop,KindT Kind)821 DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
822 : ID(Val), Properties(Prop), Kind(Kind) {
823 assert(Kind == Def || Kind == Proposed);
824 }
825
DbgValue(unsigned BlockNo,const DbgValueProperties & Prop,KindT Kind)826 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
827 : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
828 assert(Kind == NoVal);
829 }
830
DbgValue(const MachineOperand & MO,const DbgValueProperties & Prop,KindT Kind)831 DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
832 : MO(MO), Properties(Prop), Kind(Kind) {
833 assert(Kind == Const);
834 }
835
DbgValue(const DbgValueProperties & Prop,KindT Kind)836 DbgValue(const DbgValueProperties &Prop, KindT Kind)
837 : Properties(Prop), Kind(Kind) {
838 assert(Kind == Undef &&
839 "Empty DbgValue constructor must pass in Undef kind");
840 }
841
dump(const MLocTracker * MTrack) const842 void dump(const MLocTracker *MTrack) const {
843 if (Kind == Const) {
844 MO.dump();
845 } else if (Kind == NoVal) {
846 dbgs() << "NoVal(" << BlockNo << ")";
847 } else if (Kind == Proposed) {
848 dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
849 } else {
850 assert(Kind == Def);
851 dbgs() << MTrack->IDAsString(ID);
852 }
853 if (Properties.Indirect)
854 dbgs() << " indir";
855 if (Properties.DIExpr)
856 dbgs() << " " << *Properties.DIExpr;
857 }
858
operator ==(const DbgValue & Other) const859 bool operator==(const DbgValue &Other) const {
860 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
861 return false;
862 else if (Kind == Proposed && ID != Other.ID)
863 return false;
864 else if (Kind == Def && ID != Other.ID)
865 return false;
866 else if (Kind == NoVal && BlockNo != Other.BlockNo)
867 return false;
868 else if (Kind == Const)
869 return MO.isIdenticalTo(Other.MO);
870
871 return true;
872 }
873
operator !=(const DbgValue & Other) const874 bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
875 };
876
877 /// Types for recording sets of variable fragments that overlap. For a given
878 /// local variable, we record all other fragments of that variable that could
879 /// overlap it, to reduce search time.
880 using FragmentOfVar =
881 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
882 using OverlapMap =
883 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
884
885 /// Collection of DBG_VALUEs observed when traversing a block. Records each
886 /// variable and the value the DBG_VALUE refers to. Requires the machine value
887 /// location dataflow algorithm to have run already, so that values can be
888 /// identified.
889 class VLocTracker {
890 public:
891 /// Map DebugVariable to the latest Value it's defined to have.
892 /// Needs to be a MapVector because we determine order-in-the-input-MIR from
893 /// the order in this container.
894 /// We only retain the last DbgValue in each block for each variable, to
895 /// determine the blocks live-out variable value. The Vars container forms the
896 /// transfer function for this block, as part of the dataflow analysis. The
897 /// movement of values between locations inside of a block is handled at a
898 /// much later stage, in the TransferTracker class.
899 MapVector<DebugVariable, DbgValue> Vars;
900 DenseMap<DebugVariable, const DILocation *> Scopes;
901 MachineBasicBlock *MBB;
902
903 public:
VLocTracker()904 VLocTracker() {}
905
defVar(const MachineInstr & MI,const DbgValueProperties & Properties,Optional<ValueIDNum> ID)906 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
907 Optional<ValueIDNum> ID) {
908 assert(MI.isDebugValue() || MI.isDebugRef());
909 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
910 MI.getDebugLoc()->getInlinedAt());
911 DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
912 : DbgValue(Properties, DbgValue::Undef);
913
914 // Attempt insertion; overwrite if it's already mapped.
915 auto Result = Vars.insert(std::make_pair(Var, Rec));
916 if (!Result.second)
917 Result.first->second = Rec;
918 Scopes[Var] = MI.getDebugLoc().get();
919 }
920
defVar(const MachineInstr & MI,const MachineOperand & MO)921 void defVar(const MachineInstr &MI, const MachineOperand &MO) {
922 // Only DBG_VALUEs can define constant-valued variables.
923 assert(MI.isDebugValue());
924 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
925 MI.getDebugLoc()->getInlinedAt());
926 DbgValueProperties Properties(MI);
927 DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
928
929 // Attempt insertion; overwrite if it's already mapped.
930 auto Result = Vars.insert(std::make_pair(Var, Rec));
931 if (!Result.second)
932 Result.first->second = Rec;
933 Scopes[Var] = MI.getDebugLoc().get();
934 }
935 };
936
937 /// Tracker for converting machine value locations and variable values into
938 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
939 /// specifying block live-in locations and transfers within blocks.
940 ///
941 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
942 /// and must be initialized with the set of variable values that are live-in to
943 /// the block. The caller then repeatedly calls process(). TransferTracker picks
944 /// out variable locations for the live-in variable values (if there _is_ a
945 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
946 /// stepped through, transfers of values between machine locations are
947 /// identified and if profitable, a DBG_VALUE created.
948 ///
949 /// This is where debug use-before-defs would be resolved: a variable with an
950 /// unavailable value could materialize in the middle of a block, when the
951 /// value becomes available. Or, we could detect clobbers and re-specify the
952 /// variable in a backup location. (XXX these are unimplemented).
953 class TransferTracker {
954 public:
955 const TargetInstrInfo *TII;
956 /// This machine location tracker is assumed to always contain the up-to-date
957 /// value mapping for all machine locations. TransferTracker only reads
958 /// information from it. (XXX make it const?)
959 MLocTracker *MTracker;
960 MachineFunction &MF;
961
962 /// Record of all changes in variable locations at a block position. Awkwardly
963 /// we allow inserting either before or after the point: MBB != nullptr
964 /// indicates it's before, otherwise after.
965 struct Transfer {
966 MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes
967 MachineBasicBlock *MBB; /// non-null if we should insert after.
968 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
969 };
970
971 typedef struct {
972 LocIdx Loc;
973 DbgValueProperties Properties;
974 } LocAndProperties;
975
976 /// Collection of transfers (DBG_VALUEs) to be inserted.
977 SmallVector<Transfer, 32> Transfers;
978
979 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
980 /// between TransferTrackers view of variable locations and MLocTrackers. For
981 /// example, MLocTracker observes all clobbers, but TransferTracker lazily
982 /// does not.
983 std::vector<ValueIDNum> VarLocs;
984
985 /// Map from LocIdxes to which DebugVariables are based that location.
986 /// Mantained while stepping through the block. Not accurate if
987 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
988 std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
989
990 /// Map from DebugVariable to it's current location and qualifying meta
991 /// information. To be used in conjunction with ActiveMLocs to construct
992 /// enough information for the DBG_VALUEs for a particular LocIdx.
993 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
994
995 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
996 SmallVector<MachineInstr *, 4> PendingDbgValues;
997
998 /// Record of a use-before-def: created when a value that's live-in to the
999 /// current block isn't available in any machine location, but it will be
1000 /// defined in this block.
1001 struct UseBeforeDef {
1002 /// Value of this variable, def'd in block.
1003 ValueIDNum ID;
1004 /// Identity of this variable.
1005 DebugVariable Var;
1006 /// Additional variable properties.
1007 DbgValueProperties Properties;
1008 };
1009
1010 /// Map from instruction index (within the block) to the set of UseBeforeDefs
1011 /// that become defined at that instruction.
1012 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
1013
1014 /// The set of variables that are in UseBeforeDefs and can become a location
1015 /// once the relevant value is defined. An element being erased from this
1016 /// collection prevents the use-before-def materializing.
1017 DenseSet<DebugVariable> UseBeforeDefVariables;
1018
1019 const TargetRegisterInfo &TRI;
1020 const BitVector &CalleeSavedRegs;
1021
TransferTracker(const TargetInstrInfo * TII,MLocTracker * MTracker,MachineFunction & MF,const TargetRegisterInfo & TRI,const BitVector & CalleeSavedRegs)1022 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
1023 MachineFunction &MF, const TargetRegisterInfo &TRI,
1024 const BitVector &CalleeSavedRegs)
1025 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
1026 CalleeSavedRegs(CalleeSavedRegs) {}
1027
1028 /// Load object with live-in variable values. \p mlocs contains the live-in
1029 /// values in each machine location, while \p vlocs the live-in variable
1030 /// values. This method picks variable locations for the live-in variables,
1031 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
1032 /// object fields to track variable locations as we step through the block.
1033 /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
loadInlocs(MachineBasicBlock & MBB,ValueIDNum * MLocs,SmallVectorImpl<std::pair<DebugVariable,DbgValue>> & VLocs,unsigned NumLocs)1034 void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
1035 SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
1036 unsigned NumLocs) {
1037 ActiveMLocs.clear();
1038 ActiveVLocs.clear();
1039 VarLocs.clear();
1040 VarLocs.reserve(NumLocs);
1041 UseBeforeDefs.clear();
1042 UseBeforeDefVariables.clear();
1043
1044 auto isCalleeSaved = [&](LocIdx L) {
1045 unsigned Reg = MTracker->LocIdxToLocID[L];
1046 if (Reg >= MTracker->NumRegs)
1047 return false;
1048 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
1049 if (CalleeSavedRegs.test(*RAI))
1050 return true;
1051 return false;
1052 };
1053
1054 // Map of the preferred location for each value.
1055 std::map<ValueIDNum, LocIdx> ValueToLoc;
1056
1057 // Produce a map of value numbers to the current machine locs they live
1058 // in. When emulating VarLocBasedImpl, there should only be one
1059 // location; when not, we get to pick.
1060 for (auto Location : MTracker->locations()) {
1061 LocIdx Idx = Location.Idx;
1062 ValueIDNum &VNum = MLocs[Idx.asU64()];
1063 VarLocs.push_back(VNum);
1064 auto it = ValueToLoc.find(VNum);
1065 // In order of preference, pick:
1066 // * Callee saved registers,
1067 // * Other registers,
1068 // * Spill slots.
1069 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
1070 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
1071 // Insert, or overwrite if insertion failed.
1072 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
1073 if (!PrefLocRes.second)
1074 PrefLocRes.first->second = Idx;
1075 }
1076 }
1077
1078 // Now map variables to their picked LocIdxes.
1079 for (auto Var : VLocs) {
1080 if (Var.second.Kind == DbgValue::Const) {
1081 PendingDbgValues.push_back(
1082 emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
1083 continue;
1084 }
1085
1086 // If the value has no location, we can't make a variable location.
1087 const ValueIDNum &Num = Var.second.ID;
1088 auto ValuesPreferredLoc = ValueToLoc.find(Num);
1089 if (ValuesPreferredLoc == ValueToLoc.end()) {
1090 // If it's a def that occurs in this block, register it as a
1091 // use-before-def to be resolved as we step through the block.
1092 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
1093 addUseBeforeDef(Var.first, Var.second.Properties, Num);
1094 continue;
1095 }
1096
1097 LocIdx M = ValuesPreferredLoc->second;
1098 auto NewValue = LocAndProperties{M, Var.second.Properties};
1099 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
1100 if (!Result.second)
1101 Result.first->second = NewValue;
1102 ActiveMLocs[M].insert(Var.first);
1103 PendingDbgValues.push_back(
1104 MTracker->emitLoc(M, Var.first, Var.second.Properties));
1105 }
1106 flushDbgValues(MBB.begin(), &MBB);
1107 }
1108
1109 /// Record that \p Var has value \p ID, a value that becomes available
1110 /// later in the function.
addUseBeforeDef(const DebugVariable & Var,const DbgValueProperties & Properties,ValueIDNum ID)1111 void addUseBeforeDef(const DebugVariable &Var,
1112 const DbgValueProperties &Properties, ValueIDNum ID) {
1113 UseBeforeDef UBD = {ID, Var, Properties};
1114 UseBeforeDefs[ID.getInst()].push_back(UBD);
1115 UseBeforeDefVariables.insert(Var);
1116 }
1117
1118 /// After the instruction at index \p Inst and position \p pos has been
1119 /// processed, check whether it defines a variable value in a use-before-def.
1120 /// If so, and the variable value hasn't changed since the start of the
1121 /// block, create a DBG_VALUE.
checkInstForNewValues(unsigned Inst,MachineBasicBlock::iterator pos)1122 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
1123 auto MIt = UseBeforeDefs.find(Inst);
1124 if (MIt == UseBeforeDefs.end())
1125 return;
1126
1127 for (auto &Use : MIt->second) {
1128 LocIdx L = Use.ID.getLoc();
1129
1130 // If something goes very wrong, we might end up labelling a COPY
1131 // instruction or similar with an instruction number, where it doesn't
1132 // actually define a new value, instead it moves a value. In case this
1133 // happens, discard.
1134 if (MTracker->LocIdxToIDNum[L] != Use.ID)
1135 continue;
1136
1137 // If a different debug instruction defined the variable value / location
1138 // since the start of the block, don't materialize this use-before-def.
1139 if (!UseBeforeDefVariables.count(Use.Var))
1140 continue;
1141
1142 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
1143 }
1144 flushDbgValues(pos, nullptr);
1145 }
1146
1147 /// Helper to move created DBG_VALUEs into Transfers collection.
flushDbgValues(MachineBasicBlock::iterator Pos,MachineBasicBlock * MBB)1148 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
1149 if (PendingDbgValues.size() > 0) {
1150 Transfers.push_back({Pos, MBB, PendingDbgValues});
1151 PendingDbgValues.clear();
1152 }
1153 }
1154
1155 /// Change a variable value after encountering a DBG_VALUE inside a block.
redefVar(const MachineInstr & MI)1156 void redefVar(const MachineInstr &MI) {
1157 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1158 MI.getDebugLoc()->getInlinedAt());
1159 DbgValueProperties Properties(MI);
1160
1161 const MachineOperand &MO = MI.getOperand(0);
1162
1163 // Ignore non-register locations, we don't transfer those.
1164 if (!MO.isReg() || MO.getReg() == 0) {
1165 auto It = ActiveVLocs.find(Var);
1166 if (It != ActiveVLocs.end()) {
1167 ActiveMLocs[It->second.Loc].erase(Var);
1168 ActiveVLocs.erase(It);
1169 }
1170 // Any use-before-defs no longer apply.
1171 UseBeforeDefVariables.erase(Var);
1172 return;
1173 }
1174
1175 Register Reg = MO.getReg();
1176 LocIdx NewLoc = MTracker->getRegMLoc(Reg);
1177 redefVar(MI, Properties, NewLoc);
1178 }
1179
1180 /// Handle a change in variable location within a block. Terminate the
1181 /// variables current location, and record the value it now refers to, so
1182 /// that we can detect location transfers later on.
redefVar(const MachineInstr & MI,const DbgValueProperties & Properties,Optional<LocIdx> OptNewLoc)1183 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
1184 Optional<LocIdx> OptNewLoc) {
1185 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1186 MI.getDebugLoc()->getInlinedAt());
1187 // Any use-before-defs no longer apply.
1188 UseBeforeDefVariables.erase(Var);
1189
1190 // Erase any previous location,
1191 auto It = ActiveVLocs.find(Var);
1192 if (It != ActiveVLocs.end())
1193 ActiveMLocs[It->second.Loc].erase(Var);
1194
1195 // If there _is_ no new location, all we had to do was erase.
1196 if (!OptNewLoc)
1197 return;
1198 LocIdx NewLoc = *OptNewLoc;
1199
1200 // Check whether our local copy of values-by-location in #VarLocs is out of
1201 // date. Wipe old tracking data for the location if it's been clobbered in
1202 // the meantime.
1203 if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
1204 for (auto &P : ActiveMLocs[NewLoc]) {
1205 ActiveVLocs.erase(P);
1206 }
1207 ActiveMLocs[NewLoc.asU64()].clear();
1208 VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
1209 }
1210
1211 ActiveMLocs[NewLoc].insert(Var);
1212 if (It == ActiveVLocs.end()) {
1213 ActiveVLocs.insert(
1214 std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
1215 } else {
1216 It->second.Loc = NewLoc;
1217 It->second.Properties = Properties;
1218 }
1219 }
1220
1221 /// Explicitly terminate variable locations based on \p mloc. Creates undef
1222 /// DBG_VALUEs for any variables that were located there, and clears
1223 /// #ActiveMLoc / #ActiveVLoc tracking information for that location.
clobberMloc(LocIdx MLoc,MachineBasicBlock::iterator Pos)1224 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) {
1225 assert(MTracker->isSpill(MLoc));
1226 auto ActiveMLocIt = ActiveMLocs.find(MLoc);
1227 if (ActiveMLocIt == ActiveMLocs.end())
1228 return;
1229
1230 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
1231
1232 for (auto &Var : ActiveMLocIt->second) {
1233 auto ActiveVLocIt = ActiveVLocs.find(Var);
1234 // Create an undef. We can't feed in a nullptr DIExpression alas,
1235 // so use the variables last expression. Pass None as the location.
1236 const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
1237 DbgValueProperties Properties(Expr, false);
1238 PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties));
1239 ActiveVLocs.erase(ActiveVLocIt);
1240 }
1241 flushDbgValues(Pos, nullptr);
1242
1243 ActiveMLocIt->second.clear();
1244 }
1245
1246 /// Transfer variables based on \p Src to be based on \p Dst. This handles
1247 /// both register copies as well as spills and restores. Creates DBG_VALUEs
1248 /// describing the movement.
transferMlocs(LocIdx Src,LocIdx Dst,MachineBasicBlock::iterator Pos)1249 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
1250 // Does Src still contain the value num we expect? If not, it's been
1251 // clobbered in the meantime, and our variable locations are stale.
1252 if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
1253 return;
1254
1255 // assert(ActiveMLocs[Dst].size() == 0);
1256 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
1257 ActiveMLocs[Dst] = ActiveMLocs[Src];
1258 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
1259
1260 // For each variable based on Src; create a location at Dst.
1261 for (auto &Var : ActiveMLocs[Src]) {
1262 auto ActiveVLocIt = ActiveVLocs.find(Var);
1263 assert(ActiveVLocIt != ActiveVLocs.end());
1264 ActiveVLocIt->second.Loc = Dst;
1265
1266 assert(Dst != 0);
1267 MachineInstr *MI =
1268 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
1269 PendingDbgValues.push_back(MI);
1270 }
1271 ActiveMLocs[Src].clear();
1272 flushDbgValues(Pos, nullptr);
1273
1274 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
1275 // about the old location.
1276 if (EmulateOldLDV)
1277 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
1278 }
1279
emitMOLoc(const MachineOperand & MO,const DebugVariable & Var,const DbgValueProperties & Properties)1280 MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
1281 const DebugVariable &Var,
1282 const DbgValueProperties &Properties) {
1283 DebugLoc DL =
1284 DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt());
1285 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
1286 MIB.add(MO);
1287 if (Properties.Indirect)
1288 MIB.addImm(0);
1289 else
1290 MIB.addReg(0);
1291 MIB.addMetadata(Var.getVariable());
1292 MIB.addMetadata(Properties.DIExpr);
1293 return MIB;
1294 }
1295 };
1296
1297 class InstrRefBasedLDV : public LDVImpl {
1298 private:
1299 using FragmentInfo = DIExpression::FragmentInfo;
1300 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
1301
1302 // Helper while building OverlapMap, a map of all fragments seen for a given
1303 // DILocalVariable.
1304 using VarToFragments =
1305 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
1306
1307 /// Machine location/value transfer function, a mapping of which locations
1308 /// are assigned which new values.
1309 using MLocTransferMap = std::map<LocIdx, ValueIDNum>;
1310
1311 /// Live in/out structure for the variable values: a per-block map of
1312 /// variables to their values. XXX, better name?
1313 using LiveIdxT =
1314 DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>;
1315
1316 using VarAndLoc = std::pair<DebugVariable, DbgValue>;
1317
1318 /// Type for a live-in value: the predecessor block, and its value.
1319 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
1320
1321 /// Vector (per block) of a collection (inner smallvector) of live-ins.
1322 /// Used as the result type for the variable value dataflow problem.
1323 using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
1324
1325 const TargetRegisterInfo *TRI;
1326 const TargetInstrInfo *TII;
1327 const TargetFrameLowering *TFI;
1328 BitVector CalleeSavedRegs;
1329 LexicalScopes LS;
1330 TargetPassConfig *TPC;
1331
1332 /// Object to track machine locations as we step through a block. Could
1333 /// probably be a field rather than a pointer, as it's always used.
1334 MLocTracker *MTracker;
1335
1336 /// Number of the current block LiveDebugValues is stepping through.
1337 unsigned CurBB;
1338
1339 /// Number of the current instruction LiveDebugValues is evaluating.
1340 unsigned CurInst;
1341
1342 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1343 /// steps through a block. Reads the values at each location from the
1344 /// MLocTracker object.
1345 VLocTracker *VTracker;
1346
1347 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1348 /// between locations during stepping, creates new DBG_VALUEs when values move
1349 /// location.
1350 TransferTracker *TTracker;
1351
1352 /// Blocks which are artificial, i.e. blocks which exclusively contain
1353 /// instructions without DebugLocs, or with line 0 locations.
1354 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
1355
1356 // Mapping of blocks to and from their RPOT order.
1357 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
1358 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
1359 DenseMap<unsigned, unsigned> BBNumToRPO;
1360
1361 /// Pair of MachineInstr, and its 1-based offset into the containing block.
1362 using InstAndNum = std::pair<const MachineInstr *, unsigned>;
1363 /// Map from debug instruction number to the MachineInstr labelled with that
1364 /// number, and its location within the function. Used to transform
1365 /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1366 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
1367
1368 // Map of overlapping variable fragments.
1369 OverlapMap OverlapFragments;
1370 VarToFragments SeenFragments;
1371
1372 /// Tests whether this instruction is a spill to a stack slot.
1373 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
1374
1375 /// Decide if @MI is a spill instruction and return true if it is. We use 2
1376 /// criteria to make this decision:
1377 /// - Is this instruction a store to a spill slot?
1378 /// - Is there a register operand that is both used and killed?
1379 /// TODO: Store optimization can fold spills into other stores (including
1380 /// other spills). We do not handle this yet (more than one memory operand).
1381 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1382 unsigned &Reg);
1383
1384 /// If a given instruction is identified as a spill, return the spill slot
1385 /// and set \p Reg to the spilled register.
1386 Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
1387 MachineFunction *MF, unsigned &Reg);
1388
1389 /// Given a spill instruction, extract the register and offset used to
1390 /// address the spill slot in a target independent way.
1391 SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
1392
1393 /// Observe a single instruction while stepping through a block.
1394 void process(MachineInstr &MI);
1395
1396 /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1397 /// \returns true if MI was recognized and processed.
1398 bool transferDebugValue(const MachineInstr &MI);
1399
1400 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1401 /// \returns true if MI was recognized and processed.
1402 bool transferDebugInstrRef(MachineInstr &MI);
1403
1404 /// Examines whether \p MI is copy instruction, and notifies trackers.
1405 /// \returns true if MI was recognized and processed.
1406 bool transferRegisterCopy(MachineInstr &MI);
1407
1408 /// Examines whether \p MI is stack spill or restore instruction, and
1409 /// notifies trackers. \returns true if MI was recognized and processed.
1410 bool transferSpillOrRestoreInst(MachineInstr &MI);
1411
1412 /// Examines \p MI for any registers that it defines, and notifies trackers.
1413 void transferRegisterDef(MachineInstr &MI);
1414
1415 /// Copy one location to the other, accounting for movement of subregisters
1416 /// too.
1417 void performCopy(Register Src, Register Dst);
1418
1419 void accumulateFragmentMap(MachineInstr &MI);
1420
1421 /// Step through the function, recording register definitions and movements
1422 /// in an MLocTracker. Convert the observations into a per-block transfer
1423 /// function in \p MLocTransfer, suitable for using with the machine value
1424 /// location dataflow problem.
1425 void
1426 produceMLocTransferFunction(MachineFunction &MF,
1427 SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1428 unsigned MaxNumBlocks);
1429
1430 /// Solve the machine value location dataflow problem. Takes as input the
1431 /// transfer functions in \p MLocTransfer. Writes the output live-in and
1432 /// live-out arrays to the (initialized to zero) multidimensional arrays in
1433 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1434 /// number, the inner by LocIdx.
1435 void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
1436 SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1437
1438 /// Perform a control flow join (lattice value meet) of the values in machine
1439 /// locations at \p MBB. Follows the algorithm described in the file-comment,
1440 /// reading live-outs of predecessors from \p OutLocs, the current live ins
1441 /// from \p InLocs, and assigning the newly computed live ins back into
1442 /// \p InLocs. \returns two bools -- the first indicates whether a change
1443 /// was made, the second whether a lattice downgrade occurred. If the latter
1444 /// is true, revisiting this block is necessary.
1445 std::tuple<bool, bool>
1446 mlocJoin(MachineBasicBlock &MBB,
1447 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1448 ValueIDNum **OutLocs, ValueIDNum *InLocs);
1449
1450 /// Solve the variable value dataflow problem, for a single lexical scope.
1451 /// Uses the algorithm from the file comment to resolve control flow joins,
1452 /// although there are extra hacks, see vlocJoin. Reads the
1453 /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
1454 /// mlocDataflow) and reads the variable values transfer function from
1455 /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
1456 /// with the live-ins permanently stored to \p Output once the fixedpoint is
1457 /// reached.
1458 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1459 /// that we should be tracking.
1460 /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
1461 /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
1462 /// through.
1463 void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
1464 const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
1465 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
1466 LiveInsT &Output, ValueIDNum **MOutLocs,
1467 ValueIDNum **MInLocs,
1468 SmallVectorImpl<VLocTracker> &AllTheVLocs);
1469
1470 /// Compute the live-ins to a block, considering control flow merges according
1471 /// to the method in the file comment. Live out and live in variable values
1472 /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
1473 /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
1474 /// are modified.
1475 /// \p InLocsT Output argument, storage for calculated live-ins.
1476 /// \returns two bools -- the first indicates whether a change
1477 /// was made, the second whether a lattice downgrade occurred. If the latter
1478 /// is true, revisiting this block is necessary.
1479 std::tuple<bool, bool>
1480 vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
1481 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
1482 unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
1483 ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
1484 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
1485 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
1486 DenseMap<DebugVariable, DbgValue> &InLocsT);
1487
1488 /// Continue exploration of the variable-value lattice, as explained in the
1489 /// file-level comment. \p OldLiveInLocation contains the current
1490 /// exploration position, from which we need to descend further. \p Values
1491 /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
1492 /// the current block, and \p CandidateLocations a set of locations that
1493 /// should be considered as PHI locations, if we reach the bottom of the
1494 /// lattice. \returns true if we should downgrade; the value is the agreeing
1495 /// value number in a non-backedge predecessor.
1496 bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
1497 const DbgValue &OldLiveInLocation,
1498 const SmallVectorImpl<InValueT> &Values,
1499 unsigned CurBlockRPONum);
1500
1501 /// For the given block and live-outs feeding into it, try to find a
1502 /// machine location where they all join. If a solution for all predecessors
1503 /// can't be found, a location where all non-backedge-predecessors join
1504 /// will be returned instead. While this method finds a join location, this
1505 /// says nothing as to whether it should be used.
1506 /// \returns Pair of value ID if found, and true when the correct value
1507 /// is available on all predecessor edges, or false if it's only available
1508 /// for non-backedge predecessors.
1509 std::tuple<Optional<ValueIDNum>, bool>
1510 pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
1511 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
1512 ValueIDNum **MInLocs,
1513 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);
1514
1515 /// Given the solutions to the two dataflow problems, machine value locations
1516 /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
1517 /// TransferTracker class over the function to produce live-in and transfer
1518 /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
1519 /// order given by AllVarsNumbering -- this could be any stable order, but
1520 /// right now "order of appearence in function, when explored in RPO", so
1521 /// that we can compare explictly against VarLocBasedImpl.
1522 void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
1523 ValueIDNum **MInLocs,
1524 DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
1525
1526 /// Boilerplate computation of some initial sets, artifical blocks and
1527 /// RPOT block ordering.
1528 void initialSetup(MachineFunction &MF);
1529
1530 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
1531
1532 public:
1533 /// Default construct and initialize the pass.
1534 InstrRefBasedLDV();
1535
1536 LLVM_DUMP_METHOD
1537 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1538
isCalleeSaved(LocIdx L)1539 bool isCalleeSaved(LocIdx L) {
1540 unsigned Reg = MTracker->LocIdxToLocID[L];
1541 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1542 if (CalleeSavedRegs.test(*RAI))
1543 return true;
1544 return false;
1545 }
1546 };
1547
1548 } // end anonymous namespace
1549
1550 //===----------------------------------------------------------------------===//
1551 // Implementation
1552 //===----------------------------------------------------------------------===//
1553
1554 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
1555
1556 /// Default construct and initialize the pass.
InstrRefBasedLDV()1557 InstrRefBasedLDV::InstrRefBasedLDV() {}
1558
1559 //===----------------------------------------------------------------------===//
1560 // Debug Range Extension Implementation
1561 //===----------------------------------------------------------------------===//
1562
1563 #ifndef NDEBUG
1564 // Something to restore in the future.
1565 // void InstrRefBasedLDV::printVarLocInMBB(..)
1566 #endif
1567
1568 SpillLoc
extractSpillBaseRegAndOffset(const MachineInstr & MI)1569 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1570 assert(MI.hasOneMemOperand() &&
1571 "Spill instruction does not have exactly one memory operand?");
1572 auto MMOI = MI.memoperands_begin();
1573 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1574 assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1575 "Inconsistent memory operand in spill instruction");
1576 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1577 const MachineBasicBlock *MBB = MI.getParent();
1578 Register Reg;
1579 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1580 assert(!Offset.getScalable() &&
1581 "Frame offsets with a scalable component are not supported");
1582 return {Reg, static_cast<int>(Offset.getFixed())};
1583 }
1584
1585 /// End all previous ranges related to @MI and start a new range from @MI
1586 /// if it is a DBG_VALUE instr.
transferDebugValue(const MachineInstr & MI)1587 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1588 if (!MI.isDebugValue())
1589 return false;
1590
1591 const DILocalVariable *Var = MI.getDebugVariable();
1592 const DIExpression *Expr = MI.getDebugExpression();
1593 const DILocation *DebugLoc = MI.getDebugLoc();
1594 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1595 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1596 "Expected inlined-at fields to agree");
1597
1598 DebugVariable V(Var, Expr, InlinedAt);
1599 DbgValueProperties Properties(MI);
1600
1601 // If there are no instructions in this lexical scope, do no location tracking
1602 // at all, this variable shouldn't get a legitimate location range.
1603 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1604 if (Scope == nullptr)
1605 return true; // handled it; by doing nothing
1606
1607 const MachineOperand &MO = MI.getOperand(0);
1608
1609 // MLocTracker needs to know that this register is read, even if it's only
1610 // read by a debug inst.
1611 if (MO.isReg() && MO.getReg() != 0)
1612 (void)MTracker->readReg(MO.getReg());
1613
1614 // If we're preparing for the second analysis (variables), the machine value
1615 // locations are already solved, and we report this DBG_VALUE and the value
1616 // it refers to to VLocTracker.
1617 if (VTracker) {
1618 if (MO.isReg()) {
1619 // Feed defVar the new variable location, or if this is a
1620 // DBG_VALUE $noreg, feed defVar None.
1621 if (MO.getReg())
1622 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1623 else
1624 VTracker->defVar(MI, Properties, None);
1625 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1626 MI.getOperand(0).isCImm()) {
1627 VTracker->defVar(MI, MI.getOperand(0));
1628 }
1629 }
1630
1631 // If performing final tracking of transfers, report this variable definition
1632 // to the TransferTracker too.
1633 if (TTracker)
1634 TTracker->redefVar(MI);
1635 return true;
1636 }
1637
transferDebugInstrRef(MachineInstr & MI)1638 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI) {
1639 if (!MI.isDebugRef())
1640 return false;
1641
1642 // Only handle this instruction when we are building the variable value
1643 // transfer function.
1644 if (!VTracker)
1645 return false;
1646
1647 unsigned InstNo = MI.getOperand(0).getImm();
1648 unsigned OpNo = MI.getOperand(1).getImm();
1649
1650 const DILocalVariable *Var = MI.getDebugVariable();
1651 const DIExpression *Expr = MI.getDebugExpression();
1652 const DILocation *DebugLoc = MI.getDebugLoc();
1653 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1654 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1655 "Expected inlined-at fields to agree");
1656
1657 DebugVariable V(Var, Expr, InlinedAt);
1658
1659 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1660 if (Scope == nullptr)
1661 return true; // Handled by doing nothing. This variable is never in scope.
1662
1663 const MachineFunction &MF = *MI.getParent()->getParent();
1664
1665 // Various optimizations may have happened to the value during codegen,
1666 // recorded in the value substitution table. Apply any substitutions to
1667 // the instruction / operand number in this DBG_INSTR_REF.
1668 auto Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
1669 while (Sub != MF.DebugValueSubstitutions.end()) {
1670 InstNo = Sub->second.first;
1671 OpNo = Sub->second.second;
1672 Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
1673 }
1674
1675 // Default machine value number is <None> -- if no instruction defines
1676 // the corresponding value, it must have been optimized out.
1677 Optional<ValueIDNum> NewID = None;
1678
1679 // Try to lookup the instruction number, and find the machine value number
1680 // that it defines.
1681 auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1682 if (InstrIt != DebugInstrNumToInstr.end()) {
1683 const MachineInstr &TargetInstr = *InstrIt->second.first;
1684 uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1685
1686 // Pick out the designated operand.
1687 assert(OpNo < TargetInstr.getNumOperands());
1688 const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1689
1690 // Today, this can only be a register.
1691 assert(MO.isReg() && MO.isDef());
1692
1693 unsigned LocID = MTracker->getLocID(MO.getReg(), false);
1694 LocIdx L = MTracker->LocIDToLocIdx[LocID];
1695 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1696 }
1697
1698 // We, we have a value number or None. Tell the variable value tracker about
1699 // it. The rest of this LiveDebugValues implementation acts exactly the same
1700 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1701 // aren't immediately available).
1702 DbgValueProperties Properties(Expr, false);
1703 VTracker->defVar(MI, Properties, NewID);
1704
1705 // If we're on the final pass through the function, decompose this INSTR_REF
1706 // into a plain DBG_VALUE.
1707 if (!TTracker)
1708 return true;
1709
1710 // Pick a location for the machine value number, if such a location exists.
1711 // (This information could be stored in TransferTracker to make it faster).
1712 Optional<LocIdx> FoundLoc = None;
1713 for (auto Location : MTracker->locations()) {
1714 LocIdx CurL = Location.Idx;
1715 ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
1716 if (NewID && ID == NewID) {
1717 // If this is the first location with that value, pick it. Otherwise,
1718 // consider whether it's a "longer term" location.
1719 if (!FoundLoc) {
1720 FoundLoc = CurL;
1721 continue;
1722 }
1723
1724 if (MTracker->isSpill(CurL))
1725 FoundLoc = CurL; // Spills are a longer term location.
1726 else if (!MTracker->isSpill(*FoundLoc) &&
1727 !MTracker->isSpill(CurL) &&
1728 !isCalleeSaved(*FoundLoc) &&
1729 isCalleeSaved(CurL))
1730 FoundLoc = CurL; // Callee saved regs are longer term than normal.
1731 }
1732 }
1733
1734 // Tell transfer tracker that the variable value has changed.
1735 TTracker->redefVar(MI, Properties, FoundLoc);
1736
1737 // If there was a value with no location; but the value is defined in a
1738 // later instruction in this block, this is a block-local use-before-def.
1739 if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1740 NewID->getInst() > CurInst)
1741 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1742
1743 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1744 // This DBG_VALUE is potentially a $noreg / undefined location, if
1745 // FoundLoc is None.
1746 // (XXX -- could morph the DBG_INSTR_REF in the future).
1747 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1748 TTracker->PendingDbgValues.push_back(DbgMI);
1749 TTracker->flushDbgValues(MI.getIterator(), nullptr);
1750
1751 return true;
1752 }
1753
transferRegisterDef(MachineInstr & MI)1754 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1755 // Meta Instructions do not affect the debug liveness of any register they
1756 // define.
1757 if (MI.isImplicitDef()) {
1758 // Except when there's an implicit def, and the location it's defining has
1759 // no value number. The whole point of an implicit def is to announce that
1760 // the register is live, without be specific about it's value. So define
1761 // a value if there isn't one already.
1762 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1763 // Has a legitimate value -> ignore the implicit def.
1764 if (Num.getLoc() != 0)
1765 return;
1766 // Otherwise, def it here.
1767 } else if (MI.isMetaInstruction())
1768 return;
1769
1770 MachineFunction *MF = MI.getMF();
1771 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1772 Register SP = TLI->getStackPointerRegisterToSaveRestore();
1773
1774 // Find the regs killed by MI, and find regmasks of preserved regs.
1775 // Max out the number of statically allocated elements in `DeadRegs`, as this
1776 // prevents fallback to std::set::count() operations.
1777 SmallSet<uint32_t, 32> DeadRegs;
1778 SmallVector<const uint32_t *, 4> RegMasks;
1779 SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1780 for (const MachineOperand &MO : MI.operands()) {
1781 // Determine whether the operand is a register def.
1782 if (MO.isReg() && MO.isDef() && MO.getReg() &&
1783 Register::isPhysicalRegister(MO.getReg()) &&
1784 !(MI.isCall() && MO.getReg() == SP)) {
1785 // Remove ranges of all aliased registers.
1786 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1787 // FIXME: Can we break out of this loop early if no insertion occurs?
1788 DeadRegs.insert(*RAI);
1789 } else if (MO.isRegMask()) {
1790 RegMasks.push_back(MO.getRegMask());
1791 RegMaskPtrs.push_back(&MO);
1792 }
1793 }
1794
1795 // Tell MLocTracker about all definitions, of regmasks and otherwise.
1796 for (uint32_t DeadReg : DeadRegs)
1797 MTracker->defReg(DeadReg, CurBB, CurInst);
1798
1799 for (auto *MO : RegMaskPtrs)
1800 MTracker->writeRegMask(MO, CurBB, CurInst);
1801 }
1802
performCopy(Register SrcRegNum,Register DstRegNum)1803 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1804 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1805
1806 MTracker->setReg(DstRegNum, SrcValue);
1807
1808 // In all circumstances, re-def the super registers. It's definitely a new
1809 // value now. This doesn't uniquely identify the composition of subregs, for
1810 // example, two identical values in subregisters composed in different
1811 // places would not get equal value numbers.
1812 for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
1813 MTracker->defReg(*SRI, CurBB, CurInst);
1814
1815 // If we're emulating VarLocBasedImpl, just define all the subregisters.
1816 // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
1817 // through prior copies.
1818 if (EmulateOldLDV) {
1819 for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
1820 MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
1821 return;
1822 }
1823
1824 // Otherwise, actually copy subregisters from one location to another.
1825 // XXX: in addition, any subregisters of DstRegNum that don't line up with
1826 // the source register should be def'd.
1827 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1828 unsigned SrcSubReg = SRI.getSubReg();
1829 unsigned SubRegIdx = SRI.getSubRegIndex();
1830 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1831 if (!DstSubReg)
1832 continue;
1833
1834 // Do copy. There are two matching subregisters, the source value should
1835 // have been def'd when the super-reg was, the latter might not be tracked
1836 // yet.
1837 // This will force SrcSubReg to be tracked, if it isn't yet.
1838 (void)MTracker->readReg(SrcSubReg);
1839 LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
1840 assert(SrcL.asU64());
1841 (void)MTracker->readReg(DstSubReg);
1842 LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
1843 assert(DstL.asU64());
1844 (void)DstL;
1845 ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
1846
1847 MTracker->setReg(DstSubReg, CpyValue);
1848 }
1849 }
1850
isSpillInstruction(const MachineInstr & MI,MachineFunction * MF)1851 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1852 MachineFunction *MF) {
1853 // TODO: Handle multiple stores folded into one.
1854 if (!MI.hasOneMemOperand())
1855 return false;
1856
1857 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1858 return false; // This is not a spill instruction, since no valid size was
1859 // returned from either function.
1860
1861 return true;
1862 }
1863
isLocationSpill(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)1864 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1865 MachineFunction *MF, unsigned &Reg) {
1866 if (!isSpillInstruction(MI, MF))
1867 return false;
1868
1869 // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an
1870 // actual register number.
1871 if (ObserveAllStackops) {
1872 int FI;
1873 Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1874 return Reg != 0;
1875 }
1876
1877 auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
1878 if (!MO.isReg() || !MO.isUse()) {
1879 Reg = 0;
1880 return false;
1881 }
1882 Reg = MO.getReg();
1883 return MO.isKill();
1884 };
1885
1886 for (const MachineOperand &MO : MI.operands()) {
1887 // In a spill instruction generated by the InlineSpiller the spilled
1888 // register has its kill flag set.
1889 if (isKilledReg(MO, Reg))
1890 return true;
1891 if (Reg != 0) {
1892 // Check whether next instruction kills the spilled register.
1893 // FIXME: Current solution does not cover search for killed register in
1894 // bundles and instructions further down the chain.
1895 auto NextI = std::next(MI.getIterator());
1896 // Skip next instruction that points to basic block end iterator.
1897 if (MI.getParent()->end() == NextI)
1898 continue;
1899 unsigned RegNext;
1900 for (const MachineOperand &MONext : NextI->operands()) {
1901 // Return true if we came across the register from the
1902 // previous spill instruction that is killed in NextI.
1903 if (isKilledReg(MONext, RegNext) && RegNext == Reg)
1904 return true;
1905 }
1906 }
1907 }
1908 // Return false if we didn't find spilled register.
1909 return false;
1910 }
1911
1912 Optional<SpillLoc>
isRestoreInstruction(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)1913 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1914 MachineFunction *MF, unsigned &Reg) {
1915 if (!MI.hasOneMemOperand())
1916 return None;
1917
1918 // FIXME: Handle folded restore instructions with more than one memory
1919 // operand.
1920 if (MI.getRestoreSize(TII)) {
1921 Reg = MI.getOperand(0).getReg();
1922 return extractSpillBaseRegAndOffset(MI);
1923 }
1924 return None;
1925 }
1926
transferSpillOrRestoreInst(MachineInstr & MI)1927 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1928 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location
1929 // limitations under the new model. Therefore, when comparing them, compare
1930 // versions that don't attempt spills or restores at all.
1931 if (EmulateOldLDV)
1932 return false;
1933
1934 MachineFunction *MF = MI.getMF();
1935 unsigned Reg;
1936 Optional<SpillLoc> Loc;
1937
1938 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1939
1940 // First, if there are any DBG_VALUEs pointing at a spill slot that is
1941 // written to, terminate that variable location. The value in memory
1942 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1943 if (isSpillInstruction(MI, MF)) {
1944 Loc = extractSpillBaseRegAndOffset(MI);
1945
1946 if (TTracker) {
1947 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
1948 if (MLoc)
1949 TTracker->clobberMloc(*MLoc, MI.getIterator());
1950 }
1951 }
1952
1953 // Try to recognise spill and restore instructions that may transfer a value.
1954 if (isLocationSpill(MI, MF, Reg)) {
1955 Loc = extractSpillBaseRegAndOffset(MI);
1956 auto ValueID = MTracker->readReg(Reg);
1957
1958 // If the location is empty, produce a phi, signify it's the live-in value.
1959 if (ValueID.getLoc() == 0)
1960 ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
1961
1962 MTracker->setSpill(*Loc, ValueID);
1963 auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
1964 assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
1965 LocIdx SpillLocIdx = *OptSpillLocIdx;
1966
1967 // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
1968 if (TTracker)
1969 TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
1970 MI.getIterator());
1971 } else {
1972 if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1973 return false;
1974
1975 // Is there a value to be restored?
1976 auto OptValueID = MTracker->readSpill(*Loc);
1977 if (OptValueID) {
1978 ValueIDNum ValueID = *OptValueID;
1979 LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
1980 // XXX -- can we recover sub-registers of this value? Until we can, first
1981 // overwrite all defs of the register being restored to.
1982 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1983 MTracker->defReg(*RAI, CurBB, CurInst);
1984
1985 // Now override the reg we're restoring to.
1986 MTracker->setReg(Reg, ValueID);
1987
1988 // Report this restore to the transfer tracker too.
1989 if (TTracker)
1990 TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
1991 MI.getIterator());
1992 } else {
1993 // There isn't anything in the location; not clear if this is a code path
1994 // that still runs. Def this register anyway just in case.
1995 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1996 MTracker->defReg(*RAI, CurBB, CurInst);
1997
1998 // Force the spill slot to be tracked.
1999 LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
2000
2001 // Set the restored value to be a machine phi number, signifying that it's
2002 // whatever the spills live-in value is in this block. Definitely has
2003 // a LocIdx due to the setSpill above.
2004 ValueIDNum ValueID = {CurBB, 0, L};
2005 MTracker->setReg(Reg, ValueID);
2006 MTracker->setSpill(*Loc, ValueID);
2007 }
2008 }
2009 return true;
2010 }
2011
transferRegisterCopy(MachineInstr & MI)2012 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
2013 auto DestSrc = TII->isCopyInstr(MI);
2014 if (!DestSrc)
2015 return false;
2016
2017 const MachineOperand *DestRegOp = DestSrc->Destination;
2018 const MachineOperand *SrcRegOp = DestSrc->Source;
2019
2020 auto isCalleeSavedReg = [&](unsigned Reg) {
2021 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2022 if (CalleeSavedRegs.test(*RAI))
2023 return true;
2024 return false;
2025 };
2026
2027 Register SrcReg = SrcRegOp->getReg();
2028 Register DestReg = DestRegOp->getReg();
2029
2030 // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
2031 if (SrcReg == DestReg)
2032 return true;
2033
2034 // For emulating VarLocBasedImpl:
2035 // We want to recognize instructions where destination register is callee
2036 // saved register. If register that could be clobbered by the call is
2037 // included, there would be a great chance that it is going to be clobbered
2038 // soon. It is more likely that previous register, which is callee saved, is
2039 // going to stay unclobbered longer, even if it is killed.
2040 //
2041 // For InstrRefBasedImpl, we can track multiple locations per value, so
2042 // ignore this condition.
2043 if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
2044 return false;
2045
2046 // InstrRefBasedImpl only followed killing copies.
2047 if (EmulateOldLDV && !SrcRegOp->isKill())
2048 return false;
2049
2050 // Copy MTracker info, including subregs if available.
2051 InstrRefBasedLDV::performCopy(SrcReg, DestReg);
2052
2053 // Only produce a transfer of DBG_VALUE within a block where old LDV
2054 // would have. We might make use of the additional value tracking in some
2055 // other way, later.
2056 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
2057 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
2058 MTracker->getRegMLoc(DestReg), MI.getIterator());
2059
2060 // VarLocBasedImpl would quit tracking the old location after copying.
2061 if (EmulateOldLDV && SrcReg != DestReg)
2062 MTracker->defReg(SrcReg, CurBB, CurInst);
2063
2064 return true;
2065 }
2066
2067 /// Accumulate a mapping between each DILocalVariable fragment and other
2068 /// fragments of that DILocalVariable which overlap. This reduces work during
2069 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
2070 /// known-to-overlap fragments are present".
2071 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
2072 /// fragment usage.
accumulateFragmentMap(MachineInstr & MI)2073 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
2074 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
2075 MI.getDebugLoc()->getInlinedAt());
2076 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
2077
2078 // If this is the first sighting of this variable, then we are guaranteed
2079 // there are currently no overlapping fragments either. Initialize the set
2080 // of seen fragments, record no overlaps for the current one, and return.
2081 auto SeenIt = SeenFragments.find(MIVar.getVariable());
2082 if (SeenIt == SeenFragments.end()) {
2083 SmallSet<FragmentInfo, 4> OneFragment;
2084 OneFragment.insert(ThisFragment);
2085 SeenFragments.insert({MIVar.getVariable(), OneFragment});
2086
2087 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2088 return;
2089 }
2090
2091 // If this particular Variable/Fragment pair already exists in the overlap
2092 // map, it has already been accounted for.
2093 auto IsInOLapMap =
2094 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2095 if (!IsInOLapMap.second)
2096 return;
2097
2098 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
2099 auto &AllSeenFragments = SeenIt->second;
2100
2101 // Otherwise, examine all other seen fragments for this variable, with "this"
2102 // fragment being a previously unseen fragment. Record any pair of
2103 // overlapping fragments.
2104 for (auto &ASeenFragment : AllSeenFragments) {
2105 // Does this previously seen fragment overlap?
2106 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
2107 // Yes: Mark the current fragment as being overlapped.
2108 ThisFragmentsOverlaps.push_back(ASeenFragment);
2109 // Mark the previously seen fragment as being overlapped by the current
2110 // one.
2111 auto ASeenFragmentsOverlaps =
2112 OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
2113 assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
2114 "Previously seen var fragment has no vector of overlaps");
2115 ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2116 }
2117 }
2118
2119 AllSeenFragments.insert(ThisFragment);
2120 }
2121
process(MachineInstr & MI)2122 void InstrRefBasedLDV::process(MachineInstr &MI) {
2123 // Try to interpret an MI as a debug or transfer instruction. Only if it's
2124 // none of these should we interpret it's register defs as new value
2125 // definitions.
2126 if (transferDebugValue(MI))
2127 return;
2128 if (transferDebugInstrRef(MI))
2129 return;
2130 if (transferRegisterCopy(MI))
2131 return;
2132 if (transferSpillOrRestoreInst(MI))
2133 return;
2134 transferRegisterDef(MI);
2135 }
2136
produceMLocTransferFunction(MachineFunction & MF,SmallVectorImpl<MLocTransferMap> & MLocTransfer,unsigned MaxNumBlocks)2137 void InstrRefBasedLDV::produceMLocTransferFunction(
2138 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
2139 unsigned MaxNumBlocks) {
2140 // Because we try to optimize around register mask operands by ignoring regs
2141 // that aren't currently tracked, we set up something ugly for later: RegMask
2142 // operands that are seen earlier than the first use of a register, still need
2143 // to clobber that register in the transfer function. But this information
2144 // isn't actively recorded. Instead, we track each RegMask used in each block,
2145 // and accumulated the clobbered but untracked registers in each block into
2146 // the following bitvector. Later, if new values are tracked, we can add
2147 // appropriate clobbers.
2148 SmallVector<BitVector, 32> BlockMasks;
2149 BlockMasks.resize(MaxNumBlocks);
2150
2151 // Reserve one bit per register for the masks described above.
2152 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2153 for (auto &BV : BlockMasks)
2154 BV.resize(TRI->getNumRegs(), true);
2155
2156 // Step through all instructions and inhale the transfer function.
2157 for (auto &MBB : MF) {
2158 // Object fields that are read by trackers to know where we are in the
2159 // function.
2160 CurBB = MBB.getNumber();
2161 CurInst = 1;
2162
2163 // Set all machine locations to a PHI value. For transfer function
2164 // production only, this signifies the live-in value to the block.
2165 MTracker->reset();
2166 MTracker->setMPhis(CurBB);
2167
2168 // Step through each instruction in this block.
2169 for (auto &MI : MBB) {
2170 process(MI);
2171 // Also accumulate fragment map.
2172 if (MI.isDebugValue())
2173 accumulateFragmentMap(MI);
2174
2175 // Create a map from the instruction number (if present) to the
2176 // MachineInstr and its position.
2177 if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
2178 auto InstrAndPos = std::make_pair(&MI, CurInst);
2179 auto InsertResult =
2180 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
2181
2182 // There should never be duplicate instruction numbers.
2183 assert(InsertResult.second);
2184 (void)InsertResult;
2185 }
2186
2187 ++CurInst;
2188 }
2189
2190 // Produce the transfer function, a map of machine location to new value. If
2191 // any machine location has the live-in phi value from the start of the
2192 // block, it's live-through and doesn't need recording in the transfer
2193 // function.
2194 for (auto Location : MTracker->locations()) {
2195 LocIdx Idx = Location.Idx;
2196 ValueIDNum &P = Location.Value;
2197 if (P.isPHI() && P.getLoc() == Idx.asU64())
2198 continue;
2199
2200 // Insert-or-update.
2201 auto &TransferMap = MLocTransfer[CurBB];
2202 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
2203 if (!Result.second)
2204 Result.first->second = P;
2205 }
2206
2207 // Accumulate any bitmask operands into the clobberred reg mask for this
2208 // block.
2209 for (auto &P : MTracker->Masks) {
2210 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
2211 }
2212 }
2213
2214 // Compute a bitvector of all the registers that are tracked in this block.
2215 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2216 Register SP = TLI->getStackPointerRegisterToSaveRestore();
2217 BitVector UsedRegs(TRI->getNumRegs());
2218 for (auto Location : MTracker->locations()) {
2219 unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
2220 if (ID >= TRI->getNumRegs() || ID == SP)
2221 continue;
2222 UsedRegs.set(ID);
2223 }
2224
2225 // Check that any regmask-clobber of a register that gets tracked, is not
2226 // live-through in the transfer function. It needs to be clobbered at the
2227 // very least.
2228 for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
2229 BitVector &BV = BlockMasks[I];
2230 BV.flip();
2231 BV &= UsedRegs;
2232 // This produces all the bits that we clobber, but also use. Check that
2233 // they're all clobbered or at least set in the designated transfer
2234 // elem.
2235 for (unsigned Bit : BV.set_bits()) {
2236 unsigned ID = MTracker->getLocID(Bit, false);
2237 LocIdx Idx = MTracker->LocIDToLocIdx[ID];
2238 auto &TransferMap = MLocTransfer[I];
2239
2240 // Install a value representing the fact that this location is effectively
2241 // written to in this block. As there's no reserved value, instead use
2242 // a value number that is never generated. Pick the value number for the
2243 // first instruction in the block, def'ing this location, which we know
2244 // this block never used anyway.
2245 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
2246 auto Result =
2247 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
2248 if (!Result.second) {
2249 ValueIDNum &ValueID = Result.first->second;
2250 if (ValueID.getBlock() == I && ValueID.isPHI())
2251 // It was left as live-through. Set it to clobbered.
2252 ValueID = NotGeneratedNum;
2253 }
2254 }
2255 }
2256 }
2257
2258 std::tuple<bool, bool>
mlocJoin(MachineBasicBlock & MBB,SmallPtrSet<const MachineBasicBlock *,16> & Visited,ValueIDNum ** OutLocs,ValueIDNum * InLocs)2259 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
2260 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2261 ValueIDNum **OutLocs, ValueIDNum *InLocs) {
2262 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2263 bool Changed = false;
2264 bool DowngradeOccurred = false;
2265
2266 // Collect predecessors that have been visited. Anything that hasn't been
2267 // visited yet is a backedge on the first iteration, and the meet of it's
2268 // lattice value for all locations will be unaffected.
2269 SmallVector<const MachineBasicBlock *, 8> BlockOrders;
2270 for (auto Pred : MBB.predecessors()) {
2271 if (Visited.count(Pred)) {
2272 BlockOrders.push_back(Pred);
2273 }
2274 }
2275
2276 // Visit predecessors in RPOT order.
2277 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2278 return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2279 };
2280 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);
2281
2282 // Skip entry block.
2283 if (BlockOrders.size() == 0)
2284 return std::tuple<bool, bool>(false, false);
2285
2286 // Step through all machine locations, then look at each predecessor and
2287 // detect disagreements.
2288 unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
2289 for (auto Location : MTracker->locations()) {
2290 LocIdx Idx = Location.Idx;
2291 // Pick out the first predecessors live-out value for this location. It's
2292 // guaranteed to be not a backedge, as we order by RPO.
2293 ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
2294
2295 // Some flags for whether there's a disagreement, and whether it's a
2296 // disagreement with a backedge or not.
2297 bool Disagree = false;
2298 bool NonBackEdgeDisagree = false;
2299
2300 // Loop around everything that wasn't 'base'.
2301 for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2302 auto *MBB = BlockOrders[I];
2303 if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
2304 // Live-out of a predecessor disagrees with the first predecessor.
2305 Disagree = true;
2306
2307 // Test whether it's a disagreemnt in the backedges or not.
2308 if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
2309 NonBackEdgeDisagree = true;
2310 }
2311 }
2312
2313 bool OverRide = false;
2314 if (Disagree && !NonBackEdgeDisagree) {
2315 // Only the backedges disagree. Consider demoting the livein
2316 // lattice value, as per the file level comment. The value we consider
2317 // demoting to is the value that the non-backedge predecessors agree on.
2318 // The order of values is that non-PHIs are \top, a PHI at this block
2319 // \bot, and phis between the two are ordered by their RPO number.
2320 // If there's no agreement, or we've already demoted to this PHI value
2321 // before, replace with a PHI value at this block.
2322
2323 // Calculate order numbers: zero means normal def, nonzero means RPO
2324 // number.
2325 unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
2326 if (!BaseVal.isPHI())
2327 BaseBlockRPONum = 0;
2328
2329 ValueIDNum &InLocID = InLocs[Idx.asU64()];
2330 unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
2331 if (!InLocID.isPHI())
2332 InLocRPONum = 0;
2333
2334 // Should we ignore the disagreeing backedges, and override with the
2335 // value the other predecessors agree on (in "base")?
2336 unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
2337 if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
2338 // Override.
2339 OverRide = true;
2340 DowngradeOccurred = true;
2341 }
2342 }
2343 // else: if we disagree in the non-backedges, then this is definitely
2344 // a control flow merge where different values merge. Make it a PHI.
2345
2346 // Generate a phi...
2347 ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
2348 ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
2349 if (InLocs[Idx.asU64()] != NewVal) {
2350 Changed |= true;
2351 InLocs[Idx.asU64()] = NewVal;
2352 }
2353 }
2354
2355 // TODO: Reimplement NumInserted and NumRemoved.
2356 return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2357 }
2358
mlocDataflow(ValueIDNum ** MInLocs,ValueIDNum ** MOutLocs,SmallVectorImpl<MLocTransferMap> & MLocTransfer)2359 void InstrRefBasedLDV::mlocDataflow(
2360 ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
2361 SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2362 std::priority_queue<unsigned int, std::vector<unsigned int>,
2363 std::greater<unsigned int>>
2364 Worklist, Pending;
2365
2366 // We track what is on the current and pending worklist to avoid inserting
2367 // the same thing twice. We could avoid this with a custom priority queue,
2368 // but this is probably not worth it.
2369 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2370
2371 // Initialize worklist with every block to be visited.
2372 for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2373 Worklist.push(I);
2374 OnWorklist.insert(OrderToBB[I]);
2375 }
2376
2377 MTracker->reset();
2378
2379 // Set inlocs for entry block -- each as a PHI at the entry block. Represents
2380 // the incoming value to the function.
2381 MTracker->setMPhis(0);
2382 for (auto Location : MTracker->locations())
2383 MInLocs[0][Location.Idx.asU64()] = Location.Value;
2384
2385 SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2386 while (!Worklist.empty() || !Pending.empty()) {
2387 // Vector for storing the evaluated block transfer function.
2388 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2389
2390 while (!Worklist.empty()) {
2391 MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2392 CurBB = MBB->getNumber();
2393 Worklist.pop();
2394
2395 // Join the values in all predecessor blocks.
2396 bool InLocsChanged, DowngradeOccurred;
2397 std::tie(InLocsChanged, DowngradeOccurred) =
2398 mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2399 InLocsChanged |= Visited.insert(MBB).second;
2400
2401 // If a downgrade occurred, book us in for re-examination on the next
2402 // iteration.
2403 if (DowngradeOccurred && OnPending.insert(MBB).second)
2404 Pending.push(BBToOrder[MBB]);
2405
2406 // Don't examine transfer function if we've visited this loc at least
2407 // once, and inlocs haven't changed.
2408 if (!InLocsChanged)
2409 continue;
2410
2411 // Load the current set of live-ins into MLocTracker.
2412 MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2413
2414 // Each element of the transfer function can be a new def, or a read of
2415 // a live-in value. Evaluate each element, and store to "ToRemap".
2416 ToRemap.clear();
2417 for (auto &P : MLocTransfer[CurBB]) {
2418 if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2419 // This is a movement of whatever was live in. Read it.
2420 ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
2421 ToRemap.push_back(std::make_pair(P.first, NewID));
2422 } else {
2423 // It's a def. Just set it.
2424 assert(P.second.getBlock() == CurBB);
2425 ToRemap.push_back(std::make_pair(P.first, P.second));
2426 }
2427 }
2428
2429 // Commit the transfer function changes into mloc tracker, which
2430 // transforms the contents of the MLocTracker into the live-outs.
2431 for (auto &P : ToRemap)
2432 MTracker->setMLoc(P.first, P.second);
2433
2434 // Now copy out-locs from mloc tracker into out-loc vector, checking
2435 // whether changes have occurred. These changes can have come from both
2436 // the transfer function, and mlocJoin.
2437 bool OLChanged = false;
2438 for (auto Location : MTracker->locations()) {
2439 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2440 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2441 }
2442
2443 MTracker->reset();
2444
2445 // No need to examine successors again if out-locs didn't change.
2446 if (!OLChanged)
2447 continue;
2448
2449 // All successors should be visited: put any back-edges on the pending
2450 // list for the next dataflow iteration, and any other successors to be
2451 // visited this iteration, if they're not going to be already.
2452 for (auto s : MBB->successors()) {
2453 // Does branching to this successor represent a back-edge?
2454 if (BBToOrder[s] > BBToOrder[MBB]) {
2455 // No: visit it during this dataflow iteration.
2456 if (OnWorklist.insert(s).second)
2457 Worklist.push(BBToOrder[s]);
2458 } else {
2459 // Yes: visit it on the next iteration.
2460 if (OnPending.insert(s).second)
2461 Pending.push(BBToOrder[s]);
2462 }
2463 }
2464 }
2465
2466 Worklist.swap(Pending);
2467 std::swap(OnPending, OnWorklist);
2468 OnPending.clear();
2469 // At this point, pending must be empty, since it was just the empty
2470 // worklist
2471 assert(Pending.empty() && "Pending should be empty");
2472 }
2473
2474 // Once all the live-ins don't change on mlocJoin(), we've reached a
2475 // fixedpoint.
2476 }
2477
vlocDowngradeLattice(const MachineBasicBlock & MBB,const DbgValue & OldLiveInLocation,const SmallVectorImpl<InValueT> & Values,unsigned CurBlockRPONum)2478 bool InstrRefBasedLDV::vlocDowngradeLattice(
2479 const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
2480 const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
2481 // Ranking value preference: see file level comment, the highest rank is
2482 // a plain def, followed by PHI values in reverse post-order. Numerically,
2483 // we assign all defs the rank '0', all PHIs their blocks RPO number plus
2484 // one, and consider the lowest value the highest ranked.
2485 int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
2486 if (!OldLiveInLocation.ID.isPHI())
2487 OldLiveInRank = 0;
2488
2489 // Allow any unresolvable conflict to be over-ridden.
2490 if (OldLiveInLocation.Kind == DbgValue::NoVal) {
2491 // Although if it was an unresolvable conflict from _this_ block, then
2492 // all other seeking of downgrades and PHIs must have failed before hand.
2493 if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
2494 return false;
2495 OldLiveInRank = INT_MIN;
2496 }
2497
2498 auto &InValue = *Values[0].second;
2499
2500 if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
2501 return false;
2502
2503 unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
2504 int ThisRank = ThisRPO + 1;
2505 if (!InValue.ID.isPHI())
2506 ThisRank = 0;
2507
2508 // Too far down the lattice?
2509 if (ThisRPO >= CurBlockRPONum)
2510 return false;
2511
2512 // Higher in the lattice than what we've already explored?
2513 if (ThisRank <= OldLiveInRank)
2514 return false;
2515
2516 return true;
2517 }
2518
pickVPHILoc(MachineBasicBlock & MBB,const DebugVariable & Var,const LiveIdxT & LiveOuts,ValueIDNum ** MOutLocs,ValueIDNum ** MInLocs,const SmallVectorImpl<MachineBasicBlock * > & BlockOrders)2519 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
2520 MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
2521 ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2522 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
2523 // Collect a set of locations from predecessor where its live-out value can
2524 // be found.
2525 SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2526 unsigned NumLocs = MTracker->getNumLocs();
2527 unsigned BackEdgesStart = 0;
2528
2529 for (auto p : BlockOrders) {
2530 // Pick out where backedges start in the list of predecessors. Relies on
2531 // BlockOrders being sorted by RPO.
2532 if (BBToOrder[p] < BBToOrder[&MBB])
2533 ++BackEdgesStart;
2534
2535 // For each predecessor, create a new set of locations.
2536 Locs.resize(Locs.size() + 1);
2537 unsigned ThisBBNum = p->getNumber();
2538 auto LiveOutMap = LiveOuts.find(p);
2539 if (LiveOutMap == LiveOuts.end())
2540 // This predecessor isn't in scope, it must have no live-in/live-out
2541 // locations.
2542 continue;
2543
2544 auto It = LiveOutMap->second->find(Var);
2545 if (It == LiveOutMap->second->end())
2546 // There's no value recorded for this variable in this predecessor,
2547 // leave an empty set of locations.
2548 continue;
2549
2550 const DbgValue &OutVal = It->second;
2551
2552 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2553 // Consts and no-values cannot have locations we can join on.
2554 continue;
2555
2556 assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
2557 ValueIDNum ValToLookFor = OutVal.ID;
2558
2559 // Search the live-outs of the predecessor for the specified value.
2560 for (unsigned int I = 0; I < NumLocs; ++I) {
2561 if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2562 Locs.back().push_back(LocIdx(I));
2563 }
2564 }
2565
2566 // If there were no locations at all, return an empty result.
2567 if (Locs.empty())
2568 return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2569
2570 // Lambda for seeking a common location within a range of location-sets.
2571 using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator;
2572 auto SeekLocation =
2573 [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
2574 // Starting with the first set of locations, take the intersection with
2575 // subsequent sets.
2576 SmallVector<LocIdx, 4> base = Locs[0];
2577 for (auto &S : SearchRange) {
2578 SmallVector<LocIdx, 4> new_base;
2579 std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
2580 std::inserter(new_base, new_base.begin()));
2581 base = new_base;
2582 }
2583 if (base.empty())
2584 return None;
2585
2586 // We now have a set of LocIdxes that contain the right output value in
2587 // each of the predecessors. Pick the lowest; if there's a register loc,
2588 // that'll be it.
2589 return *base.begin();
2590 };
2591
2592 // Search for a common location for all predecessors. If we can't, then fall
2593 // back to only finding a common location between non-backedge predecessors.
2594 bool ValidForAllLocs = true;
2595 auto TheLoc = SeekLocation(Locs);
2596 if (!TheLoc) {
2597 ValidForAllLocs = false;
2598 TheLoc =
2599 SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
2600 }
2601
2602 if (!TheLoc)
2603 return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2604
2605 // Return a PHI-value-number for the found location.
2606 LocIdx L = *TheLoc;
2607 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2608 return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
2609 }
2610
vlocJoin(MachineBasicBlock & MBB,LiveIdxT & VLOCOutLocs,LiveIdxT & VLOCInLocs,SmallPtrSet<const MachineBasicBlock *,16> * VLOCVisited,unsigned BBNum,const SmallSet<DebugVariable,4> & AllVars,ValueIDNum ** MOutLocs,ValueIDNum ** MInLocs,SmallPtrSet<const MachineBasicBlock *,8> & InScopeBlocks,SmallPtrSet<const MachineBasicBlock *,8> & BlocksToExplore,DenseMap<DebugVariable,DbgValue> & InLocsT)2611 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
2612 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
2613 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
2614 const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
2615 ValueIDNum **MInLocs,
2616 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2617 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2618 DenseMap<DebugVariable, DbgValue> &InLocsT) {
2619 bool DowngradeOccurred = false;
2620
2621 // To emulate VarLocBasedImpl, process this block if it's not in scope but
2622 // _does_ assign a variable value. No live-ins for this scope are transferred
2623 // in though, so we can return immediately.
2624 if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
2625 if (VLOCVisited)
2626 return std::tuple<bool, bool>(true, false);
2627 return std::tuple<bool, bool>(false, false);
2628 }
2629
2630 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2631 bool Changed = false;
2632
2633 // Find any live-ins computed in a prior iteration.
2634 auto ILSIt = VLOCInLocs.find(&MBB);
2635 assert(ILSIt != VLOCInLocs.end());
2636 auto &ILS = *ILSIt->second;
2637
2638 // Order predecessors by RPOT order, for exploring them in that order.
2639 SmallVector<MachineBasicBlock *, 8> BlockOrders;
2640 for (auto p : MBB.predecessors())
2641 BlockOrders.push_back(p);
2642
2643 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2644 return BBToOrder[A] < BBToOrder[B];
2645 };
2646
2647 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);
2648
2649 unsigned CurBlockRPONum = BBToOrder[&MBB];
2650
2651 // Force a re-visit to loop heads in the first dataflow iteration.
2652 // FIXME: if we could "propose" Const values this wouldn't be needed,
2653 // because they'd need to be confirmed before being emitted.
2654 if (!BlockOrders.empty() &&
2655 BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
2656 VLOCVisited)
2657 DowngradeOccurred = true;
2658
2659 auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
2660 auto Result = InLocsT.insert(std::make_pair(DV, VR));
2661 (void)Result;
2662 assert(Result.second);
2663 };
2664
2665 auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
2666 DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
2667
2668 ConfirmValue(Var, NoLocPHIVal);
2669 };
2670
2671 // Attempt to join the values for each variable.
2672 for (auto &Var : AllVars) {
2673 // Collect all the DbgValues for this variable.
2674 SmallVector<InValueT, 8> Values;
2675 bool Bail = false;
2676 unsigned BackEdgesStart = 0;
2677 for (auto p : BlockOrders) {
2678 // If the predecessor isn't in scope / to be explored, we'll never be
2679 // able to join any locations.
2680 if (BlocksToExplore.find(p) == BlocksToExplore.end()) {
2681 Bail = true;
2682 break;
2683 }
2684
2685 // Don't attempt to handle unvisited predecessors: they're implicitly
2686 // "unknown"s in the lattice.
2687 if (VLOCVisited && !VLOCVisited->count(p))
2688 continue;
2689
2690 // If the predecessors OutLocs is absent, there's not much we can do.
2691 auto OL = VLOCOutLocs.find(p);
2692 if (OL == VLOCOutLocs.end()) {
2693 Bail = true;
2694 break;
2695 }
2696
2697 // No live-out value for this predecessor also means we can't produce
2698 // a joined value.
2699 auto VIt = OL->second->find(Var);
2700 if (VIt == OL->second->end()) {
2701 Bail = true;
2702 break;
2703 }
2704
2705 // Keep track of where back-edges begin in the Values vector. Relies on
2706 // BlockOrders being sorted by RPO.
2707 unsigned ThisBBRPONum = BBToOrder[p];
2708 if (ThisBBRPONum < CurBlockRPONum)
2709 ++BackEdgesStart;
2710
2711 Values.push_back(std::make_pair(p, &VIt->second));
2712 }
2713
2714 // If there were no values, or one of the predecessors couldn't have a
2715 // value, then give up immediately. It's not safe to produce a live-in
2716 // value.
2717 if (Bail || Values.size() == 0)
2718 continue;
2719
2720 // Enumeration identifying the current state of the predecessors values.
2721 enum {
2722 Unset = 0,
2723 Agreed, // All preds agree on the variable value.
2724 PropDisagree, // All preds agree, but the value kind is Proposed in some.
2725 BEDisagree, // Only back-edges disagree on variable value.
2726 PHINeeded, // Non-back-edge predecessors have conflicing values.
2727 NoSolution // Conflicting Value metadata makes solution impossible.
2728 } OurState = Unset;
2729
2730 // All (non-entry) blocks have at least one non-backedge predecessor.
2731 // Pick the variable value from the first of these, to compare against
2732 // all others.
2733 const DbgValue &FirstVal = *Values[0].second;
2734 const ValueIDNum &FirstID = FirstVal.ID;
2735
2736 // Scan for variable values that can't be resolved: if they have different
2737 // DIExpressions, different indirectness, or are mixed constants /
2738 // non-constants.
2739 for (auto &V : Values) {
2740 if (V.second->Properties != FirstVal.Properties)
2741 OurState = NoSolution;
2742 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2743 OurState = NoSolution;
2744 }
2745
2746 // Flags diagnosing _how_ the values disagree.
2747 bool NonBackEdgeDisagree = false;
2748 bool DisagreeOnPHINess = false;
2749 bool IDDisagree = false;
2750 bool Disagree = false;
2751 if (OurState == Unset) {
2752 for (auto &V : Values) {
2753 if (*V.second == FirstVal)
2754 continue; // No disagreement.
2755
2756 Disagree = true;
2757
2758 // Flag whether the value number actually diagrees.
2759 if (V.second->ID != FirstID)
2760 IDDisagree = true;
2761
2762 // Distinguish whether disagreement happens in backedges or not.
2763 // Relies on Values (and BlockOrders) being sorted by RPO.
2764 unsigned ThisBBRPONum = BBToOrder[V.first];
2765 if (ThisBBRPONum < CurBlockRPONum)
2766 NonBackEdgeDisagree = true;
2767
2768 // Is there a difference in whether the value is definite or only
2769 // proposed?
2770 if (V.second->Kind != FirstVal.Kind &&
2771 (V.second->Kind == DbgValue::Proposed ||
2772 V.second->Kind == DbgValue::Def) &&
2773 (FirstVal.Kind == DbgValue::Proposed ||
2774 FirstVal.Kind == DbgValue::Def))
2775 DisagreeOnPHINess = true;
2776 }
2777
2778 // Collect those flags together and determine an overall state for
2779 // what extend the predecessors agree on a live-in value.
2780 if (!Disagree)
2781 OurState = Agreed;
2782 else if (!IDDisagree && DisagreeOnPHINess)
2783 OurState = PropDisagree;
2784 else if (!NonBackEdgeDisagree)
2785 OurState = BEDisagree;
2786 else
2787 OurState = PHINeeded;
2788 }
2789
2790 // An extra indicator: if we only disagree on whether the value is a
2791 // Def, or proposed, then also flag whether that disagreement happens
2792 // in backedges only.
2793 bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
2794 !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
2795
2796 const auto &Properties = FirstVal.Properties;
2797
2798 auto OldLiveInIt = ILS.find(Var);
2799 const DbgValue *OldLiveInLocation =
2800 (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
2801
2802 bool OverRide = false;
2803 if (OurState == BEDisagree && OldLiveInLocation) {
2804 // Only backedges disagree: we can consider downgrading. If there was a
2805 // previous live-in value, use it to work out whether the current
2806 // incoming value represents a lattice downgrade or not.
2807 OverRide =
2808 vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
2809 }
2810
2811 // Use the current state of predecessor agreement and other flags to work
2812 // out what to do next. Possibilities include:
2813 // * Accept a value all predecessors agree on, or accept one that
2814 // represents a step down the exploration lattice,
2815 // * Use a PHI value number, if one can be found,
2816 // * Propose a PHI value number, and see if it gets confirmed later,
2817 // * Emit a 'NoVal' value, indicating we couldn't resolve anything.
2818 if (OurState == Agreed) {
2819 // Easiest solution: all predecessors agree on the variable value.
2820 ConfirmValue(Var, FirstVal);
2821 } else if (OurState == BEDisagree && OverRide) {
2822 // Only backedges disagree, and the other predecessors have produced
2823 // a new live-in value further down the exploration lattice.
2824 DowngradeOccurred = true;
2825 ConfirmValue(Var, FirstVal);
2826 } else if (OurState == PropDisagree) {
2827 // Predecessors agree on value, but some say it's only a proposed value.
2828 // Propagate it as proposed: unless it was proposed in this block, in
2829 // which case we're able to confirm the value.
2830 if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
2831 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2832 } else if (PropOnlyInBEs) {
2833 // If only backedges disagree, a higher (in RPO) block confirmed this
2834 // location, and we need to propagate it into this loop.
2835 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2836 } else {
2837 // Otherwise; a Def meeting a Proposed is still a Proposed.
2838 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
2839 }
2840 } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
2841 // Predecessors disagree and can't be downgraded: this can only be
2842 // solved with a PHI. Use pickVPHILoc to go look for one.
2843 Optional<ValueIDNum> VPHI;
2844 bool AllEdgesVPHI = false;
2845 std::tie(VPHI, AllEdgesVPHI) =
2846 pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
2847
2848 if (VPHI && AllEdgesVPHI) {
2849 // There's a PHI value that's valid for all predecessors -- we can use
2850 // it. If any of the non-backedge predecessors have proposed values
2851 // though, this PHI is also only proposed, until the predecessors are
2852 // confirmed.
2853 DbgValue::KindT K = DbgValue::Def;
2854 for (unsigned int I = 0; I < BackEdgesStart; ++I)
2855 if (Values[I].second->Kind == DbgValue::Proposed)
2856 K = DbgValue::Proposed;
2857
2858 ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
2859 } else if (VPHI) {
2860 // There's a PHI value, but it's only legal for backedges. Leave this
2861 // as a proposed PHI value: it might come back on the backedges,
2862 // and allow us to confirm it in the future.
2863 DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
2864 ConfirmValue(Var, NoBEValue);
2865 } else {
2866 ConfirmNoVal(Var, Properties);
2867 }
2868 } else {
2869 // Otherwise: we don't know. Emit a "phi but no real loc" phi.
2870 ConfirmNoVal(Var, Properties);
2871 }
2872 }
2873
2874 // Store newly calculated in-locs into VLOCInLocs, if they've changed.
2875 Changed = ILS != InLocsT;
2876 if (Changed)
2877 ILS = InLocsT;
2878
2879 return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2880 }
2881
vlocDataflow(const LexicalScope * Scope,const DILocation * DILoc,const SmallSet<DebugVariable,4> & VarsWeCareAbout,SmallPtrSetImpl<MachineBasicBlock * > & AssignBlocks,LiveInsT & Output,ValueIDNum ** MOutLocs,ValueIDNum ** MInLocs,SmallVectorImpl<VLocTracker> & AllTheVLocs)2882 void InstrRefBasedLDV::vlocDataflow(
2883 const LexicalScope *Scope, const DILocation *DILoc,
2884 const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2885 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2886 ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2887 SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2888 // This method is much like mlocDataflow: but focuses on a single
2889 // LexicalScope at a time. Pick out a set of blocks and variables that are
2890 // to have their value assignments solved, then run our dataflow algorithm
2891 // until a fixedpoint is reached.
2892 std::priority_queue<unsigned int, std::vector<unsigned int>,
2893 std::greater<unsigned int>>
2894 Worklist, Pending;
2895 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2896
2897 // The set of blocks we'll be examining.
2898 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2899
2900 // The order in which to examine them (RPO).
2901 SmallVector<MachineBasicBlock *, 8> BlockOrders;
2902
2903 // RPO ordering function.
2904 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2905 return BBToOrder[A] < BBToOrder[B];
2906 };
2907
2908 LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2909
2910 // A separate container to distinguish "blocks we're exploring" versus
2911 // "blocks that are potentially in scope. See comment at start of vlocJoin.
2912 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
2913
2914 // Old LiveDebugValues tracks variable locations that come out of blocks
2915 // not in scope, where DBG_VALUEs occur. This is something we could
2916 // legitimately ignore, but lets allow it for now.
2917 if (EmulateOldLDV)
2918 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2919
2920 // We also need to propagate variable values through any artificial blocks
2921 // that immediately follow blocks in scope.
2922 DenseSet<const MachineBasicBlock *> ToAdd;
2923
2924 // Helper lambda: For a given block in scope, perform a depth first search
2925 // of all the artificial successors, adding them to the ToAdd collection.
2926 auto AccumulateArtificialBlocks =
2927 [this, &ToAdd, &BlocksToExplore,
2928 &InScopeBlocks](const MachineBasicBlock *MBB) {
2929 // Depth-first-search state: each node is a block and which successor
2930 // we're currently exploring.
2931 SmallVector<std::pair<const MachineBasicBlock *,
2932 MachineBasicBlock::const_succ_iterator>,
2933 8>
2934 DFS;
2935
2936 // Find any artificial successors not already tracked.
2937 for (auto *succ : MBB->successors()) {
2938 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
2939 continue;
2940 if (!ArtificialBlocks.count(succ))
2941 continue;
2942 DFS.push_back(std::make_pair(succ, succ->succ_begin()));
2943 ToAdd.insert(succ);
2944 }
2945
2946 // Search all those blocks, depth first.
2947 while (!DFS.empty()) {
2948 const MachineBasicBlock *CurBB = DFS.back().first;
2949 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2950 // Walk back if we've explored this blocks successors to the end.
2951 if (CurSucc == CurBB->succ_end()) {
2952 DFS.pop_back();
2953 continue;
2954 }
2955
2956 // If the current successor is artificial and unexplored, descend into
2957 // it.
2958 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2959 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
2960 ToAdd.insert(*CurSucc);
2961 continue;
2962 }
2963
2964 ++CurSucc;
2965 }
2966 };
2967
2968 // Search in-scope blocks and those containing a DBG_VALUE from this scope
2969 // for artificial successors.
2970 for (auto *MBB : BlocksToExplore)
2971 AccumulateArtificialBlocks(MBB);
2972 for (auto *MBB : InScopeBlocks)
2973 AccumulateArtificialBlocks(MBB);
2974
2975 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2976 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
2977
2978 // Single block scope: not interesting! No propagation at all. Note that
2979 // this could probably go above ArtificialBlocks without damage, but
2980 // that then produces output differences from original-live-debug-values,
2981 // which propagates from a single block into many artificial ones.
2982 if (BlocksToExplore.size() == 1)
2983 return;
2984
2985 // Picks out relevants blocks RPO order and sort them.
2986 for (auto *MBB : BlocksToExplore)
2987 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2988
2989 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);
2990 unsigned NumBlocks = BlockOrders.size();
2991
2992 // Allocate some vectors for storing the live ins and live outs. Large.
2993 SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
2994 LiveIns.resize(NumBlocks);
2995 LiveOuts.resize(NumBlocks);
2996
2997 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2998 // vlocJoin.
2999 LiveIdxT LiveOutIdx, LiveInIdx;
3000 LiveOutIdx.reserve(NumBlocks);
3001 LiveInIdx.reserve(NumBlocks);
3002 for (unsigned I = 0; I < NumBlocks; ++I) {
3003 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
3004 LiveInIdx[BlockOrders[I]] = &LiveIns[I];
3005 }
3006
3007 for (auto *MBB : BlockOrders) {
3008 Worklist.push(BBToOrder[MBB]);
3009 OnWorklist.insert(MBB);
3010 }
3011
3012 // Iterate over all the blocks we selected, propagating variable values.
3013 bool FirstTrip = true;
3014 SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
3015 while (!Worklist.empty() || !Pending.empty()) {
3016 while (!Worklist.empty()) {
3017 auto *MBB = OrderToBB[Worklist.top()];
3018 CurBB = MBB->getNumber();
3019 Worklist.pop();
3020
3021 DenseMap<DebugVariable, DbgValue> JoinedInLocs;
3022
3023 // Join values from predecessors. Updates LiveInIdx, and writes output
3024 // into JoinedInLocs.
3025 bool InLocsChanged, DowngradeOccurred;
3026 std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
3027 *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
3028 CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
3029 BlocksToExplore, JoinedInLocs);
3030
3031 bool FirstVisit = VLOCVisited.insert(MBB).second;
3032
3033 // Always explore transfer function if inlocs changed, or if we've not
3034 // visited this block before.
3035 InLocsChanged |= FirstVisit;
3036
3037 // If a downgrade occurred, book us in for re-examination on the next
3038 // iteration.
3039 if (DowngradeOccurred && OnPending.insert(MBB).second)
3040 Pending.push(BBToOrder[MBB]);
3041
3042 if (!InLocsChanged)
3043 continue;
3044
3045 // Do transfer function.
3046 auto &VTracker = AllTheVLocs[MBB->getNumber()];
3047 for (auto &Transfer : VTracker.Vars) {
3048 // Is this var we're mangling in this scope?
3049 if (VarsWeCareAbout.count(Transfer.first)) {
3050 // Erase on empty transfer (DBG_VALUE $noreg).
3051 if (Transfer.second.Kind == DbgValue::Undef) {
3052 JoinedInLocs.erase(Transfer.first);
3053 } else {
3054 // Insert new variable value; or overwrite.
3055 auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
3056 auto Result = JoinedInLocs.insert(NewValuePair);
3057 if (!Result.second)
3058 Result.first->second = Transfer.second;
3059 }
3060 }
3061 }
3062
3063 // Did the live-out locations change?
3064 bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
3065
3066 // If they haven't changed, there's no need to explore further.
3067 if (!OLChanged)
3068 continue;
3069
3070 // Commit to the live-out record.
3071 *LiveOutIdx[MBB] = JoinedInLocs;
3072
3073 // We should visit all successors. Ensure we'll visit any non-backedge
3074 // successors during this dataflow iteration; book backedge successors
3075 // to be visited next time around.
3076 for (auto s : MBB->successors()) {
3077 // Ignore out of scope / not-to-be-explored successors.
3078 if (LiveInIdx.find(s) == LiveInIdx.end())
3079 continue;
3080
3081 if (BBToOrder[s] > BBToOrder[MBB]) {
3082 if (OnWorklist.insert(s).second)
3083 Worklist.push(BBToOrder[s]);
3084 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
3085 Pending.push(BBToOrder[s]);
3086 }
3087 }
3088 }
3089 Worklist.swap(Pending);
3090 std::swap(OnWorklist, OnPending);
3091 OnPending.clear();
3092 assert(Pending.empty());
3093 FirstTrip = false;
3094 }
3095
3096 // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
3097 // as being variable-PHIs, because those did not have their machine-PHI
3098 // value confirmed. Such variable values are places that could have been
3099 // PHIs, but are not.
3100 for (auto *MBB : BlockOrders) {
3101 auto &VarMap = *LiveInIdx[MBB];
3102 for (auto &P : VarMap) {
3103 if (P.second.Kind == DbgValue::Proposed ||
3104 P.second.Kind == DbgValue::NoVal)
3105 continue;
3106 Output[MBB->getNumber()].push_back(P);
3107 }
3108 }
3109
3110 BlockOrders.clear();
3111 BlocksToExplore.clear();
3112 }
3113
3114 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump_mloc_transfer(const MLocTransferMap & mloc_transfer) const3115 void InstrRefBasedLDV::dump_mloc_transfer(
3116 const MLocTransferMap &mloc_transfer) const {
3117 for (auto &P : mloc_transfer) {
3118 std::string foo = MTracker->LocIdxToName(P.first);
3119 std::string bar = MTracker->IDAsString(P.second);
3120 dbgs() << "Loc " << foo << " --> " << bar << "\n";
3121 }
3122 }
3123 #endif
3124
emitLocations(MachineFunction & MF,LiveInsT SavedLiveIns,ValueIDNum ** MInLocs,DenseMap<DebugVariable,unsigned> & AllVarsNumbering)3125 void InstrRefBasedLDV::emitLocations(
3126 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs,
3127 DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
3128 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs);
3129 unsigned NumLocs = MTracker->getNumLocs();
3130
3131 // For each block, load in the machine value locations and variable value
3132 // live-ins, then step through each instruction in the block. New DBG_VALUEs
3133 // to be inserted will be created along the way.
3134 for (MachineBasicBlock &MBB : MF) {
3135 unsigned bbnum = MBB.getNumber();
3136 MTracker->reset();
3137 MTracker->loadFromArray(MInLocs[bbnum], bbnum);
3138 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
3139 NumLocs);
3140
3141 CurBB = bbnum;
3142 CurInst = 1;
3143 for (auto &MI : MBB) {
3144 process(MI);
3145 TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3146 ++CurInst;
3147 }
3148 }
3149
3150 // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
3151 // in DWARF in different orders. Use the order that they appear when walking
3152 // through each block / each instruction, stored in AllVarsNumbering.
3153 auto OrderDbgValues = [&](const MachineInstr *A,
3154 const MachineInstr *B) -> bool {
3155 DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
3156 A->getDebugLoc()->getInlinedAt());
3157 DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
3158 B->getDebugLoc()->getInlinedAt());
3159 return AllVarsNumbering.find(VarA)->second <
3160 AllVarsNumbering.find(VarB)->second;
3161 };
3162
3163 // Go through all the transfers recorded in the TransferTracker -- this is
3164 // both the live-ins to a block, and any movements of values that happen
3165 // in the middle.
3166 for (auto &P : TTracker->Transfers) {
3167 // Sort them according to appearance order.
3168 llvm::sort(P.Insts.begin(), P.Insts.end(), OrderDbgValues);
3169 // Insert either before or after the designated point...
3170 if (P.MBB) {
3171 MachineBasicBlock &MBB = *P.MBB;
3172 for (auto *MI : P.Insts) {
3173 MBB.insert(P.Pos, MI);
3174 }
3175 } else {
3176 MachineBasicBlock &MBB = *P.Pos->getParent();
3177 for (auto *MI : P.Insts) {
3178 MBB.insertAfter(P.Pos, MI);
3179 }
3180 }
3181 }
3182 }
3183
initialSetup(MachineFunction & MF)3184 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
3185 // Build some useful data structures.
3186 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
3187 if (const DebugLoc &DL = MI.getDebugLoc())
3188 return DL.getLine() != 0;
3189 return false;
3190 };
3191 // Collect a set of all the artificial blocks.
3192 for (auto &MBB : MF)
3193 if (none_of(MBB.instrs(), hasNonArtificialLocation))
3194 ArtificialBlocks.insert(&MBB);
3195
3196 // Compute mappings of block <=> RPO order.
3197 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
3198 unsigned int RPONumber = 0;
3199 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
3200 OrderToBB[RPONumber] = *RI;
3201 BBToOrder[*RI] = RPONumber;
3202 BBNumToRPO[(*RI)->getNumber()] = RPONumber;
3203 ++RPONumber;
3204 }
3205 }
3206
3207 /// Calculate the liveness information for the given machine function and
3208 /// extend ranges across basic blocks.
ExtendRanges(MachineFunction & MF,TargetPassConfig * TPC)3209 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3210 TargetPassConfig *TPC) {
3211 // No subprogram means this function contains no debuginfo.
3212 if (!MF.getFunction().getSubprogram())
3213 return false;
3214
3215 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3216 this->TPC = TPC;
3217
3218 TRI = MF.getSubtarget().getRegisterInfo();
3219 TII = MF.getSubtarget().getInstrInfo();
3220 TFI = MF.getSubtarget().getFrameLowering();
3221 TFI->getCalleeSaves(MF, CalleeSavedRegs);
3222 LS.initialize(MF);
3223
3224 MTracker =
3225 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3226 VTracker = nullptr;
3227 TTracker = nullptr;
3228
3229 SmallVector<MLocTransferMap, 32> MLocTransfer;
3230 SmallVector<VLocTracker, 8> vlocs;
3231 LiveInsT SavedLiveIns;
3232
3233 int MaxNumBlocks = -1;
3234 for (auto &MBB : MF)
3235 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3236 assert(MaxNumBlocks >= 0);
3237 ++MaxNumBlocks;
3238
3239 MLocTransfer.resize(MaxNumBlocks);
3240 vlocs.resize(MaxNumBlocks);
3241 SavedLiveIns.resize(MaxNumBlocks);
3242
3243 initialSetup(MF);
3244
3245 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3246
3247 // Allocate and initialize two array-of-arrays for the live-in and live-out
3248 // machine values. The outer dimension is the block number; while the inner
3249 // dimension is a LocIdx from MLocTracker.
3250 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
3251 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
3252 unsigned NumLocs = MTracker->getNumLocs();
3253 for (int i = 0; i < MaxNumBlocks; ++i) {
3254 MOutLocs[i] = new ValueIDNum[NumLocs];
3255 MInLocs[i] = new ValueIDNum[NumLocs];
3256 }
3257
3258 // Solve the machine value dataflow problem using the MLocTransfer function,
3259 // storing the computed live-ins / live-outs into the array-of-arrays. We use
3260 // both live-ins and live-outs for decision making in the variable value
3261 // dataflow problem.
3262 mlocDataflow(MInLocs, MOutLocs, MLocTransfer);
3263
3264 // Walk back through each block / instruction, collecting DBG_VALUE
3265 // instructions and recording what machine value their operands refer to.
3266 for (auto &OrderPair : OrderToBB) {
3267 MachineBasicBlock &MBB = *OrderPair.second;
3268 CurBB = MBB.getNumber();
3269 VTracker = &vlocs[CurBB];
3270 VTracker->MBB = &MBB;
3271 MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3272 CurInst = 1;
3273 for (auto &MI : MBB) {
3274 process(MI);
3275 ++CurInst;
3276 }
3277 MTracker->reset();
3278 }
3279
3280 // Number all variables in the order that they appear, to be used as a stable
3281 // insertion order later.
3282 DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3283
3284 // Map from one LexicalScope to all the variables in that scope.
3285 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
3286
3287 // Map from One lexical scope to all blocks in that scope.
3288 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
3289 ScopeToBlocks;
3290
3291 // Store a DILocation that describes a scope.
3292 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
3293
3294 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3295 // the order is unimportant, it just has to be stable.
3296 for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3297 auto *MBB = OrderToBB[I];
3298 auto *VTracker = &vlocs[MBB->getNumber()];
3299 // Collect each variable with a DBG_VALUE in this block.
3300 for (auto &idx : VTracker->Vars) {
3301 const auto &Var = idx.first;
3302 const DILocation *ScopeLoc = VTracker->Scopes[Var];
3303 assert(ScopeLoc != nullptr);
3304 auto *Scope = LS.findLexicalScope(ScopeLoc);
3305
3306 // No insts in scope -> shouldn't have been recorded.
3307 assert(Scope != nullptr);
3308
3309 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3310 ScopeToVars[Scope].insert(Var);
3311 ScopeToBlocks[Scope].insert(VTracker->MBB);
3312 ScopeToDILocation[Scope] = ScopeLoc;
3313 }
3314 }
3315
3316 // OK. Iterate over scopes: there might be something to be said for
3317 // ordering them by size/locality, but that's for the future. For each scope,
3318 // solve the variable value problem, producing a map of variables to values
3319 // in SavedLiveIns.
3320 for (auto &P : ScopeToVars) {
3321 vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
3322 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
3323 vlocs);
3324 }
3325
3326 // Using the computed value locations and variable values for each block,
3327 // create the DBG_VALUE instructions representing the extended variable
3328 // locations.
3329 emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering);
3330
3331 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
3332 delete[] MOutLocs[Idx];
3333 delete[] MInLocs[Idx];
3334 }
3335 delete[] MOutLocs;
3336 delete[] MInLocs;
3337
3338 // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
3339 bool Changed = TTracker->Transfers.size() != 0;
3340
3341 delete MTracker;
3342 delete TTracker;
3343 MTracker = nullptr;
3344 VTracker = nullptr;
3345 TTracker = nullptr;
3346
3347 ArtificialBlocks.clear();
3348 OrderToBB.clear();
3349 BBToOrder.clear();
3350 BBNumToRPO.clear();
3351 DebugInstrNumToInstr.clear();
3352
3353 return Changed;
3354 }
3355
makeInstrRefBasedLiveDebugValues()3356 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3357 return new InstrRefBasedLDV();
3358 }
3359