1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Redeclarable.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/IdentifierTable.h"
40 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/LangOptions.h"
42 #include "clang/Basic/Linkage.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/PartialDiagnostic.h"
45 #include "clang/Basic/SanitizerBlacklist.h"
46 #include "clang/Basic/Sanitizers.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetCXXABI.h"
51 #include "clang/Basic/TargetInfo.h"
52 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73
74 using namespace clang;
75
getPrimaryMergedDecl(Decl * D)76 Decl *clang::getPrimaryMergedDecl(Decl *D) {
77 return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79
print(raw_ostream & OS) const80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81 SourceLocation Loc = this->Loc;
82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83 if (Loc.isValid()) {
84 Loc.print(OS, Context.getSourceManager());
85 OS << ": ";
86 }
87 OS << Message;
88
89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90 OS << " '";
91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92 OS << "'";
93 }
94
95 OS << '\n';
96 }
97
98 // Defined here so that it can be inlined into its direct callers.
isOutOfLine() const99 bool Decl::isOutOfLine() const {
100 return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102
TranslationUnitDecl(ASTContext & ctx)103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104 : Decl(TranslationUnit, nullptr, SourceLocation()),
105 DeclContext(TranslationUnit), Ctx(ctx) {}
106
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored. Only the innermost
116 // visibility attribute applies. If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments. But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility. For example,
148 // the visibility of a specialization of either of these templates:
149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 // template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'. That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160 return computation.IgnoreExplicitVisibility;
161 }
162
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind Kind)166 withExplicitVisibilityAlready(LVComputationKind Kind) {
167 Kind.IgnoreExplicitVisibility = true;
168 return Kind;
169 }
170
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172 LVComputationKind kind) {
173 assert(!kind.IgnoreExplicitVisibility &&
174 "asking for explicit visibility when we shouldn't be");
175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176 }
177
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)180 static bool usesTypeVisibility(const NamedDecl *D) {
181 return isa<TypeDecl>(D) ||
182 isa<ClassTemplateDecl>(D) ||
183 isa<ObjCInterfaceDecl>(D);
184 }
185
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
isExplicitMemberSpecialization(const T * D)190 isExplicitMemberSpecialization(const T *D) {
191 if (const MemberSpecializationInfo *member =
192 D->getMemberSpecializationInfo()) {
193 return member->isExplicitSpecialization();
194 }
195 return false;
196 }
197
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202 return D->isMemberSpecialization();
203 }
204
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
getVisibilityFromAttr(const T * attr)208 static Visibility getVisibilityFromAttr(const T *attr) {
209 switch (attr->getVisibility()) {
210 case T::Default:
211 return DefaultVisibility;
212 case T::Hidden:
213 return HiddenVisibility;
214 case T::Protected:
215 return ProtectedVisibility;
216 }
217 llvm_unreachable("bad visibility kind");
218 }
219
220 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222 NamedDecl::ExplicitVisibilityKind kind) {
223 // If we're ultimately computing the visibility of a type, look for
224 // a 'type_visibility' attribute before looking for 'visibility'.
225 if (kind == NamedDecl::VisibilityForType) {
226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227 return getVisibilityFromAttr(A);
228 }
229 }
230
231 // If this declaration has an explicit visibility attribute, use it.
232 if (const auto *A = D->getAttr<VisibilityAttr>()) {
233 return getVisibilityFromAttr(A);
234 }
235
236 return None;
237 }
238
getLVForType(const Type & T,LVComputationKind computation)239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240 LVComputationKind computation) {
241 if (computation.IgnoreAllVisibility)
242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243 return getTypeLinkageAndVisibility(&T);
244 }
245
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list. For visibility purposes, template
248 /// parameters are part of the signature of a template.
getLVForTemplateParameterList(const TemplateParameterList * Params,LVComputationKind computation)249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250 const TemplateParameterList *Params, LVComputationKind computation) {
251 LinkageInfo LV;
252 for (const NamedDecl *P : *Params) {
253 // Template type parameters are the most common and never
254 // contribute to visibility, pack or not.
255 if (isa<TemplateTypeParmDecl>(P))
256 continue;
257
258 // Non-type template parameters can be restricted by the value type, e.g.
259 // template <enum X> class A { ... };
260 // We have to be careful here, though, because we can be dealing with
261 // dependent types.
262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263 // Handle the non-pack case first.
264 if (!NTTP->isExpandedParameterPack()) {
265 if (!NTTP->getType()->isDependentType()) {
266 LV.merge(getLVForType(*NTTP->getType(), computation));
267 }
268 continue;
269 }
270
271 // Look at all the types in an expanded pack.
272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273 QualType type = NTTP->getExpansionType(i);
274 if (!type->isDependentType())
275 LV.merge(getTypeLinkageAndVisibility(type));
276 }
277 continue;
278 }
279
280 // Template template parameters can be restricted by their
281 // template parameters, recursively.
282 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283
284 // Handle the non-pack case first.
285 if (!TTP->isExpandedParameterPack()) {
286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287 computation));
288 continue;
289 }
290
291 // Look at all expansions in an expanded pack.
292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293 i != n; ++i) {
294 LV.merge(getLVForTemplateParameterList(
295 TTP->getExpansionTemplateParameters(i), computation));
296 }
297 }
298
299 return LV;
300 }
301
getOutermostFuncOrBlockContext(const Decl * D)302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303 const Decl *Ret = nullptr;
304 const DeclContext *DC = D->getDeclContext();
305 while (DC->getDeclKind() != Decl::TranslationUnit) {
306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307 Ret = cast<Decl>(DC);
308 DC = DC->getParent();
309 }
310 return Ret;
311 }
312
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
318 LinkageInfo
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,LVComputationKind computation)319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320 LVComputationKind computation) {
321 LinkageInfo LV;
322
323 for (const TemplateArgument &Arg : Args) {
324 switch (Arg.getKind()) {
325 case TemplateArgument::Null:
326 case TemplateArgument::Integral:
327 case TemplateArgument::Expression:
328 continue;
329
330 case TemplateArgument::Type:
331 LV.merge(getLVForType(*Arg.getAsType(), computation));
332 continue;
333
334 case TemplateArgument::Declaration: {
335 const NamedDecl *ND = Arg.getAsDecl();
336 assert(!usesTypeVisibility(ND));
337 LV.merge(getLVForDecl(ND, computation));
338 continue;
339 }
340
341 case TemplateArgument::NullPtr:
342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343 continue;
344
345 case TemplateArgument::Template:
346 case TemplateArgument::TemplateExpansion:
347 if (TemplateDecl *Template =
348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349 LV.merge(getLVForDecl(Template, computation));
350 continue;
351
352 case TemplateArgument::Pack:
353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354 continue;
355 }
356 llvm_unreachable("bad template argument kind");
357 }
358
359 return LV;
360 }
361
362 LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364 LVComputationKind computation) {
365 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369 const FunctionTemplateSpecializationInfo *specInfo) {
370 // Include visibility from the template parameters and arguments
371 // only if this is not an explicit instantiation or specialization
372 // with direct explicit visibility. (Implicit instantiations won't
373 // have a direct attribute.)
374 if (!specInfo->isExplicitInstantiationOrSpecialization())
375 return true;
376
377 return !fn->hasAttr<VisibilityAttr>();
378 }
379
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)387 void LinkageComputer::mergeTemplateLV(
388 LinkageInfo &LV, const FunctionDecl *fn,
389 const FunctionTemplateSpecializationInfo *specInfo,
390 LVComputationKind computation) {
391 bool considerVisibility =
392 shouldConsiderTemplateVisibility(fn, specInfo);
393
394 // Merge information from the template parameters.
395 FunctionTemplateDecl *temp = specInfo->getTemplate();
396 LinkageInfo tempLV =
397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399
400 // Merge information from the template arguments.
401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)408 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409 LVComputationKind computation) {
410 if (computation.IgnoreAllVisibility)
411 return false;
412
413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414 D->hasAttr<VisibilityAttr>();
415 }
416
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)419 static bool shouldConsiderTemplateVisibility(
420 const ClassTemplateSpecializationDecl *spec,
421 LVComputationKind computation) {
422 // Include visibility from the template parameters and arguments
423 // only if this is not an explicit instantiation or specialization
424 // with direct explicit visibility (and note that implicit
425 // instantiations won't have a direct attribute).
426 //
427 // Furthermore, we want to ignore template parameters and arguments
428 // for an explicit specialization when computing the visibility of a
429 // member thereof with explicit visibility.
430 //
431 // This is a bit complex; let's unpack it.
432 //
433 // An explicit class specialization is an independent, top-level
434 // declaration. As such, if it or any of its members has an
435 // explicit visibility attribute, that must directly express the
436 // user's intent, and we should honor it. The same logic applies to
437 // an explicit instantiation of a member of such a thing.
438
439 // Fast path: if this is not an explicit instantiation or
440 // specialization, we always want to consider template-related
441 // visibility restrictions.
442 if (!spec->isExplicitInstantiationOrSpecialization())
443 return true;
444
445 // This is the 'member thereof' check.
446 if (spec->isExplicitSpecialization() &&
447 hasExplicitVisibilityAlready(computation))
448 return false;
449
450 return !hasDirectVisibilityAttribute(spec, computation);
451 }
452
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)455 void LinkageComputer::mergeTemplateLV(
456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457 LVComputationKind computation) {
458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459
460 // Merge information from the template parameters, but ignore
461 // visibility if we're only considering template arguments.
462
463 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464 LinkageInfo tempLV =
465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466 LV.mergeMaybeWithVisibility(tempLV,
467 considerVisibility && !hasExplicitVisibilityAlready(computation));
468
469 // Merge information from the template arguments. We ignore
470 // template-argument visibility if we've got an explicit
471 // instantiation with a visibility attribute.
472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474 if (considerVisibility)
475 LV.mergeVisibility(argsLV);
476 LV.mergeExternalVisibility(argsLV);
477 }
478
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
shouldConsiderTemplateVisibility(const VarTemplateSpecializationDecl * spec,LVComputationKind computation)483 static bool shouldConsiderTemplateVisibility(
484 const VarTemplateSpecializationDecl *spec,
485 LVComputationKind computation) {
486 // Include visibility from the template parameters and arguments
487 // only if this is not an explicit instantiation or specialization
488 // with direct explicit visibility (and note that implicit
489 // instantiations won't have a direct attribute).
490 if (!spec->isExplicitInstantiationOrSpecialization())
491 return true;
492
493 // An explicit variable specialization is an independent, top-level
494 // declaration. As such, if it has an explicit visibility attribute,
495 // that must directly express the user's intent, and we should honor
496 // it.
497 if (spec->isExplicitSpecialization() &&
498 hasExplicitVisibilityAlready(computation))
499 return false;
500
501 return !hasDirectVisibilityAttribute(spec, computation);
502 }
503
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
mergeTemplateLV(LinkageInfo & LV,const VarTemplateSpecializationDecl * spec,LVComputationKind computation)507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508 const VarTemplateSpecializationDecl *spec,
509 LVComputationKind computation) {
510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511
512 // Merge information from the template parameters, but ignore
513 // visibility if we're only considering template arguments.
514
515 VarTemplateDecl *temp = spec->getSpecializedTemplate();
516 LinkageInfo tempLV =
517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518 LV.mergeMaybeWithVisibility(tempLV,
519 considerVisibility && !hasExplicitVisibilityAlready(computation));
520
521 // Merge information from the template arguments. We ignore
522 // template-argument visibility if we've got an explicit
523 // instantiation with a visibility attribute.
524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526 if (considerVisibility)
527 LV.mergeVisibility(argsLV);
528 LV.mergeExternalVisibility(argsLV);
529 }
530
useInlineVisibilityHidden(const NamedDecl * D)531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533 const LangOptions &Opts = D->getASTContext().getLangOpts();
534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535 return false;
536
537 const auto *FD = dyn_cast<FunctionDecl>(D);
538 if (!FD)
539 return false;
540
541 TemplateSpecializationKind TSK = TSK_Undeclared;
542 if (FunctionTemplateSpecializationInfo *spec
543 = FD->getTemplateSpecializationInfo()) {
544 TSK = spec->getTemplateSpecializationKind();
545 } else if (MemberSpecializationInfo *MSI =
546 FD->getMemberSpecializationInfo()) {
547 TSK = MSI->getTemplateSpecializationKind();
548 }
549
550 const FunctionDecl *Def = nullptr;
551 // InlineVisibilityHidden only applies to definitions, and
552 // isInlined() only gives meaningful answers on definitions
553 // anyway.
554 return TSK != TSK_ExplicitInstantiationDeclaration &&
555 TSK != TSK_ExplicitInstantiationDefinition &&
556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558
isFirstInExternCContext(T * D)559 template <typename T> static bool isFirstInExternCContext(T *D) {
560 const T *First = D->getFirstDecl();
561 return First->isInExternCContext();
562 }
563
isSingleLineLanguageLinkage(const Decl & D)564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566 if (!SD->hasBraces())
567 return true;
568 return false;
569 }
570
571 /// Determine whether D is declared in the purview of a named module.
isInModulePurview(const NamedDecl * D)572 static bool isInModulePurview(const NamedDecl *D) {
573 if (auto *M = D->getOwningModule())
574 return M->isModulePurview();
575 return false;
576 }
577
isExportedFromModuleInterfaceUnit(const NamedDecl * D)578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579 // FIXME: Handle isModulePrivate.
580 switch (D->getModuleOwnershipKind()) {
581 case Decl::ModuleOwnershipKind::Unowned:
582 case Decl::ModuleOwnershipKind::ModulePrivate:
583 return false;
584 case Decl::ModuleOwnershipKind::Visible:
585 case Decl::ModuleOwnershipKind::VisibleWhenImported:
586 return isInModulePurview(D);
587 }
588 llvm_unreachable("unexpected module ownership kind");
589 }
590
getInternalLinkageFor(const NamedDecl * D)591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592 // Internal linkage declarations within a module interface unit are modeled
593 // as "module-internal linkage", which means that they have internal linkage
594 // formally but can be indirectly accessed from outside the module via inline
595 // functions and templates defined within the module.
596 if (isInModulePurview(D))
597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598
599 return LinkageInfo::internal();
600 }
601
getExternalLinkageFor(const NamedDecl * D)602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603 // C++ Modules TS [basic.link]/6.8:
604 // - A name declared at namespace scope that does not have internal linkage
605 // by the previous rules and that is introduced by a non-exported
606 // declaration has module linkage.
607 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608 cast<NamedDecl>(D->getCanonicalDecl())))
609 return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610
611 return LinkageInfo::external();
612 }
613
getStorageClass(const Decl * D)614 static StorageClass getStorageClass(const Decl *D) {
615 if (auto *TD = dyn_cast<TemplateDecl>(D))
616 D = TD->getTemplatedDecl();
617 if (D) {
618 if (auto *VD = dyn_cast<VarDecl>(D))
619 return VD->getStorageClass();
620 if (auto *FD = dyn_cast<FunctionDecl>(D))
621 return FD->getStorageClass();
622 }
623 return SC_None;
624 }
625
626 LinkageInfo
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628 LVComputationKind computation,
629 bool IgnoreVarTypeLinkage) {
630 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
631 "Not a name having namespace scope");
632 ASTContext &Context = D->getASTContext();
633
634 // C++ [basic.link]p3:
635 // A name having namespace scope (3.3.6) has internal linkage if it
636 // is the name of
637
638 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639 // - a variable, variable template, function, or function template
640 // that is explicitly declared static; or
641 // (This bullet corresponds to C99 6.2.2p3.)
642 return getInternalLinkageFor(D);
643 }
644
645 if (const auto *Var = dyn_cast<VarDecl>(D)) {
646 // - a non-template variable of non-volatile const-qualified type, unless
647 // - it is explicitly declared extern, or
648 // - it is inline or exported, or
649 // - it was previously declared and the prior declaration did not have
650 // internal linkage
651 // (There is no equivalent in C99.)
652 if (Context.getLangOpts().CPlusPlus &&
653 Var->getType().isConstQualified() &&
654 !Var->getType().isVolatileQualified() &&
655 !Var->isInline() &&
656 !isExportedFromModuleInterfaceUnit(Var) &&
657 !isa<VarTemplateSpecializationDecl>(Var) &&
658 !Var->getDescribedVarTemplate()) {
659 const VarDecl *PrevVar = Var->getPreviousDecl();
660 if (PrevVar)
661 return getLVForDecl(PrevVar, computation);
662
663 if (Var->getStorageClass() != SC_Extern &&
664 Var->getStorageClass() != SC_PrivateExtern &&
665 !isSingleLineLanguageLinkage(*Var))
666 return getInternalLinkageFor(Var);
667 }
668
669 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670 PrevVar = PrevVar->getPreviousDecl()) {
671 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672 Var->getStorageClass() == SC_None)
673 return getDeclLinkageAndVisibility(PrevVar);
674 // Explicitly declared static.
675 if (PrevVar->getStorageClass() == SC_Static)
676 return getInternalLinkageFor(Var);
677 }
678 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679 // - a data member of an anonymous union.
680 const VarDecl *VD = IFD->getVarDecl();
681 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
682 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683 }
684 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
685
686 // FIXME: This gives internal linkage to names that should have no linkage
687 // (those not covered by [basic.link]p6).
688 if (D->isInAnonymousNamespace()) {
689 const auto *Var = dyn_cast<VarDecl>(D);
690 const auto *Func = dyn_cast<FunctionDecl>(D);
691 // FIXME: The check for extern "C" here is not justified by the standard
692 // wording, but we retain it from the pre-DR1113 model to avoid breaking
693 // code.
694 //
695 // C++11 [basic.link]p4:
696 // An unnamed namespace or a namespace declared directly or indirectly
697 // within an unnamed namespace has internal linkage.
698 if ((!Var || !isFirstInExternCContext(Var)) &&
699 (!Func || !isFirstInExternCContext(Func)))
700 return getInternalLinkageFor(D);
701 }
702
703 // Set up the defaults.
704
705 // C99 6.2.2p5:
706 // If the declaration of an identifier for an object has file
707 // scope and no storage-class specifier, its linkage is
708 // external.
709 LinkageInfo LV = getExternalLinkageFor(D);
710
711 if (!hasExplicitVisibilityAlready(computation)) {
712 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713 LV.mergeVisibility(*Vis, true);
714 } else {
715 // If we're declared in a namespace with a visibility attribute,
716 // use that namespace's visibility, and it still counts as explicit.
717 for (const DeclContext *DC = D->getDeclContext();
718 !isa<TranslationUnitDecl>(DC);
719 DC = DC->getParent()) {
720 const auto *ND = dyn_cast<NamespaceDecl>(DC);
721 if (!ND) continue;
722 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723 LV.mergeVisibility(*Vis, true);
724 break;
725 }
726 }
727 }
728
729 // Add in global settings if the above didn't give us direct visibility.
730 if (!LV.isVisibilityExplicit()) {
731 // Use global type/value visibility as appropriate.
732 Visibility globalVisibility =
733 computation.isValueVisibility()
734 ? Context.getLangOpts().getValueVisibilityMode()
735 : Context.getLangOpts().getTypeVisibilityMode();
736 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737
738 // If we're paying attention to global visibility, apply
739 // -finline-visibility-hidden if this is an inline method.
740 if (useInlineVisibilityHidden(D))
741 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742 }
743 }
744
745 // C++ [basic.link]p4:
746
747 // A name having namespace scope that has not been given internal linkage
748 // above and that is the name of
749 // [...bullets...]
750 // has its linkage determined as follows:
751 // - if the enclosing namespace has internal linkage, the name has
752 // internal linkage; [handled above]
753 // - otherwise, if the declaration of the name is attached to a named
754 // module and is not exported, the name has module linkage;
755 // - otherwise, the name has external linkage.
756 // LV is currently set up to handle the last two bullets.
757 //
758 // The bullets are:
759
760 // - a variable; or
761 if (const auto *Var = dyn_cast<VarDecl>(D)) {
762 // GCC applies the following optimization to variables and static
763 // data members, but not to functions:
764 //
765 // Modify the variable's LV by the LV of its type unless this is
766 // C or extern "C". This follows from [basic.link]p9:
767 // A type without linkage shall not be used as the type of a
768 // variable or function with external linkage unless
769 // - the entity has C language linkage, or
770 // - the entity is declared within an unnamed namespace, or
771 // - the entity is not used or is defined in the same
772 // translation unit.
773 // and [basic.link]p10:
774 // ...the types specified by all declarations referring to a
775 // given variable or function shall be identical...
776 // C does not have an equivalent rule.
777 //
778 // Ignore this if we've got an explicit attribute; the user
779 // probably knows what they're doing.
780 //
781 // Note that we don't want to make the variable non-external
782 // because of this, but unique-external linkage suits us.
783 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784 !IgnoreVarTypeLinkage) {
785 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786 if (!isExternallyVisible(TypeLV.getLinkage()))
787 return LinkageInfo::uniqueExternal();
788 if (!LV.isVisibilityExplicit())
789 LV.mergeVisibility(TypeLV);
790 }
791
792 if (Var->getStorageClass() == SC_PrivateExtern)
793 LV.mergeVisibility(HiddenVisibility, true);
794
795 // Note that Sema::MergeVarDecl already takes care of implementing
796 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797 // to do it here.
798
799 // As per function and class template specializations (below),
800 // consider LV for the template and template arguments. We're at file
801 // scope, so we do not need to worry about nested specializations.
802 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803 mergeTemplateLV(LV, spec, computation);
804 }
805
806 // - a function; or
807 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808 // In theory, we can modify the function's LV by the LV of its
809 // type unless it has C linkage (see comment above about variables
810 // for justification). In practice, GCC doesn't do this, so it's
811 // just too painful to make work.
812
813 if (Function->getStorageClass() == SC_PrivateExtern)
814 LV.mergeVisibility(HiddenVisibility, true);
815
816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817 // merging storage classes and visibility attributes, so we don't have to
818 // look at previous decls in here.
819
820 // In C++, then if the type of the function uses a type with
821 // unique-external linkage, it's not legally usable from outside
822 // this translation unit. However, we should use the C linkage
823 // rules instead for extern "C" declarations.
824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825 // Only look at the type-as-written. Otherwise, deducing the return type
826 // of a function could change its linkage.
827 QualType TypeAsWritten = Function->getType();
828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829 TypeAsWritten = TSI->getType();
830 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831 return LinkageInfo::uniqueExternal();
832 }
833
834 // Consider LV from the template and the template arguments.
835 // We're at file scope, so we do not need to worry about nested
836 // specializations.
837 if (FunctionTemplateSpecializationInfo *specInfo
838 = Function->getTemplateSpecializationInfo()) {
839 mergeTemplateLV(LV, Function, specInfo, computation);
840 }
841
842 // - a named class (Clause 9), or an unnamed class defined in a
843 // typedef declaration in which the class has the typedef name
844 // for linkage purposes (7.1.3); or
845 // - a named enumeration (7.2), or an unnamed enumeration
846 // defined in a typedef declaration in which the enumeration
847 // has the typedef name for linkage purposes (7.1.3); or
848 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849 // Unnamed tags have no linkage.
850 if (!Tag->hasNameForLinkage())
851 return LinkageInfo::none();
852
853 // If this is a class template specialization, consider the
854 // linkage of the template and template arguments. We're at file
855 // scope, so we do not need to worry about nested specializations.
856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857 mergeTemplateLV(LV, spec, computation);
858 }
859
860 // FIXME: This is not part of the C++ standard any more.
861 // - an enumerator belonging to an enumeration with external linkage; or
862 } else if (isa<EnumConstantDecl>(D)) {
863 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864 computation);
865 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866 return LinkageInfo::none();
867 LV.merge(EnumLV);
868
869 // - a template
870 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872 LinkageInfo tempLV =
873 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875
876 // An unnamed namespace or a namespace declared directly or indirectly
877 // within an unnamed namespace has internal linkage. All other namespaces
878 // have external linkage.
879 //
880 // We handled names in anonymous namespaces above.
881 } else if (isa<NamespaceDecl>(D)) {
882 return LV;
883
884 // By extension, we assign external linkage to Objective-C
885 // interfaces.
886 } else if (isa<ObjCInterfaceDecl>(D)) {
887 // fallout
888
889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890 // A typedef declaration has linkage if it gives a type a name for
891 // linkage purposes.
892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893 return LinkageInfo::none();
894
895 } else if (isa<MSGuidDecl>(D)) {
896 // A GUID behaves like an inline variable with external linkage. Fall
897 // through.
898
899 // Everything not covered here has no linkage.
900 } else {
901 return LinkageInfo::none();
902 }
903
904 // If we ended up with non-externally-visible linkage, visibility should
905 // always be default.
906 if (!isExternallyVisible(LV.getLinkage()))
907 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908
909 // Mark the symbols as hidden when compiling for the device.
910 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
911 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
912
913 return LV;
914 }
915
916 LinkageInfo
getLVForClassMember(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)917 LinkageComputer::getLVForClassMember(const NamedDecl *D,
918 LVComputationKind computation,
919 bool IgnoreVarTypeLinkage) {
920 // Only certain class members have linkage. Note that fields don't
921 // really have linkage, but it's convenient to say they do for the
922 // purposes of calculating linkage of pointer-to-data-member
923 // template arguments.
924 //
925 // Templates also don't officially have linkage, but since we ignore
926 // the C++ standard and look at template arguments when determining
927 // linkage and visibility of a template specialization, we might hit
928 // a template template argument that way. If we do, we need to
929 // consider its linkage.
930 if (!(isa<CXXMethodDecl>(D) ||
931 isa<VarDecl>(D) ||
932 isa<FieldDecl>(D) ||
933 isa<IndirectFieldDecl>(D) ||
934 isa<TagDecl>(D) ||
935 isa<TemplateDecl>(D)))
936 return LinkageInfo::none();
937
938 LinkageInfo LV;
939
940 // If we have an explicit visibility attribute, merge that in.
941 if (!hasExplicitVisibilityAlready(computation)) {
942 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
943 LV.mergeVisibility(*Vis, true);
944 // If we're paying attention to global visibility, apply
945 // -finline-visibility-hidden if this is an inline method.
946 //
947 // Note that we do this before merging information about
948 // the class visibility.
949 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
950 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
951 }
952
953 // If this class member has an explicit visibility attribute, the only
954 // thing that can change its visibility is the template arguments, so
955 // only look for them when processing the class.
956 LVComputationKind classComputation = computation;
957 if (LV.isVisibilityExplicit())
958 classComputation = withExplicitVisibilityAlready(computation);
959
960 LinkageInfo classLV =
961 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
962 // The member has the same linkage as the class. If that's not externally
963 // visible, we don't need to compute anything about the linkage.
964 // FIXME: If we're only computing linkage, can we bail out here?
965 if (!isExternallyVisible(classLV.getLinkage()))
966 return classLV;
967
968
969 // Otherwise, don't merge in classLV yet, because in certain cases
970 // we need to completely ignore the visibility from it.
971
972 // Specifically, if this decl exists and has an explicit attribute.
973 const NamedDecl *explicitSpecSuppressor = nullptr;
974
975 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
976 // Only look at the type-as-written. Otherwise, deducing the return type
977 // of a function could change its linkage.
978 QualType TypeAsWritten = MD->getType();
979 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
980 TypeAsWritten = TSI->getType();
981 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
982 return LinkageInfo::uniqueExternal();
983
984 // If this is a method template specialization, use the linkage for
985 // the template parameters and arguments.
986 if (FunctionTemplateSpecializationInfo *spec
987 = MD->getTemplateSpecializationInfo()) {
988 mergeTemplateLV(LV, MD, spec, computation);
989 if (spec->isExplicitSpecialization()) {
990 explicitSpecSuppressor = MD;
991 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
992 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
993 }
994 } else if (isExplicitMemberSpecialization(MD)) {
995 explicitSpecSuppressor = MD;
996 }
997
998 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
999 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1000 mergeTemplateLV(LV, spec, computation);
1001 if (spec->isExplicitSpecialization()) {
1002 explicitSpecSuppressor = spec;
1003 } else {
1004 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1005 if (isExplicitMemberSpecialization(temp)) {
1006 explicitSpecSuppressor = temp->getTemplatedDecl();
1007 }
1008 }
1009 } else if (isExplicitMemberSpecialization(RD)) {
1010 explicitSpecSuppressor = RD;
1011 }
1012
1013 // Static data members.
1014 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1015 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1016 mergeTemplateLV(LV, spec, computation);
1017
1018 // Modify the variable's linkage by its type, but ignore the
1019 // type's visibility unless it's a definition.
1020 if (!IgnoreVarTypeLinkage) {
1021 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1022 // FIXME: If the type's linkage is not externally visible, we can
1023 // give this static data member UniqueExternalLinkage.
1024 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1025 LV.mergeVisibility(typeLV);
1026 LV.mergeExternalVisibility(typeLV);
1027 }
1028
1029 if (isExplicitMemberSpecialization(VD)) {
1030 explicitSpecSuppressor = VD;
1031 }
1032
1033 // Template members.
1034 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1035 bool considerVisibility =
1036 (!LV.isVisibilityExplicit() &&
1037 !classLV.isVisibilityExplicit() &&
1038 !hasExplicitVisibilityAlready(computation));
1039 LinkageInfo tempLV =
1040 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1041 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1042
1043 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1044 if (isExplicitMemberSpecialization(redeclTemp)) {
1045 explicitSpecSuppressor = temp->getTemplatedDecl();
1046 }
1047 }
1048 }
1049
1050 // We should never be looking for an attribute directly on a template.
1051 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1052
1053 // If this member is an explicit member specialization, and it has
1054 // an explicit attribute, ignore visibility from the parent.
1055 bool considerClassVisibility = true;
1056 if (explicitSpecSuppressor &&
1057 // optimization: hasDVA() is true only with explicit visibility.
1058 LV.isVisibilityExplicit() &&
1059 classLV.getVisibility() != DefaultVisibility &&
1060 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1061 considerClassVisibility = false;
1062 }
1063
1064 // Finally, merge in information from the class.
1065 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1066 return LV;
1067 }
1068
anchor()1069 void NamedDecl::anchor() {}
1070
isLinkageValid() const1071 bool NamedDecl::isLinkageValid() const {
1072 if (!hasCachedLinkage())
1073 return true;
1074
1075 Linkage L = LinkageComputer{}
1076 .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1077 .getLinkage();
1078 return L == getCachedLinkage();
1079 }
1080
getObjCFStringFormattingFamily() const1081 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1082 StringRef name = getName();
1083 if (name.empty()) return SFF_None;
1084
1085 if (name.front() == 'C')
1086 if (name == "CFStringCreateWithFormat" ||
1087 name == "CFStringCreateWithFormatAndArguments" ||
1088 name == "CFStringAppendFormat" ||
1089 name == "CFStringAppendFormatAndArguments")
1090 return SFF_CFString;
1091 return SFF_None;
1092 }
1093
getLinkageInternal() const1094 Linkage NamedDecl::getLinkageInternal() const {
1095 // We don't care about visibility here, so ask for the cheapest
1096 // possible visibility analysis.
1097 return LinkageComputer{}
1098 .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1099 .getLinkage();
1100 }
1101
getLinkageAndVisibility() const1102 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1103 return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1104 }
1105
1106 static Optional<Visibility>
getExplicitVisibilityAux(const NamedDecl * ND,NamedDecl::ExplicitVisibilityKind kind,bool IsMostRecent)1107 getExplicitVisibilityAux(const NamedDecl *ND,
1108 NamedDecl::ExplicitVisibilityKind kind,
1109 bool IsMostRecent) {
1110 assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1111
1112 // Check the declaration itself first.
1113 if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1114 return V;
1115
1116 // If this is a member class of a specialization of a class template
1117 // and the corresponding decl has explicit visibility, use that.
1118 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1119 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1120 if (InstantiatedFrom)
1121 return getVisibilityOf(InstantiatedFrom, kind);
1122 }
1123
1124 // If there wasn't explicit visibility there, and this is a
1125 // specialization of a class template, check for visibility
1126 // on the pattern.
1127 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1128 // Walk all the template decl till this point to see if there are
1129 // explicit visibility attributes.
1130 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1131 while (TD != nullptr) {
1132 auto Vis = getVisibilityOf(TD, kind);
1133 if (Vis != None)
1134 return Vis;
1135 TD = TD->getPreviousDecl();
1136 }
1137 return None;
1138 }
1139
1140 // Use the most recent declaration.
1141 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1142 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1143 if (MostRecent != ND)
1144 return getExplicitVisibilityAux(MostRecent, kind, true);
1145 }
1146
1147 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1148 if (Var->isStaticDataMember()) {
1149 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1150 if (InstantiatedFrom)
1151 return getVisibilityOf(InstantiatedFrom, kind);
1152 }
1153
1154 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1155 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1156 kind);
1157
1158 return None;
1159 }
1160 // Also handle function template specializations.
1161 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1162 // If the function is a specialization of a template with an
1163 // explicit visibility attribute, use that.
1164 if (FunctionTemplateSpecializationInfo *templateInfo
1165 = fn->getTemplateSpecializationInfo())
1166 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1167 kind);
1168
1169 // If the function is a member of a specialization of a class template
1170 // and the corresponding decl has explicit visibility, use that.
1171 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1172 if (InstantiatedFrom)
1173 return getVisibilityOf(InstantiatedFrom, kind);
1174
1175 return None;
1176 }
1177
1178 // The visibility of a template is stored in the templated decl.
1179 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1180 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1181
1182 return None;
1183 }
1184
1185 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const1186 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1187 return getExplicitVisibilityAux(this, kind, false);
1188 }
1189
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)1190 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1191 Decl *ContextDecl,
1192 LVComputationKind computation) {
1193 // This lambda has its linkage/visibility determined by its owner.
1194 const NamedDecl *Owner;
1195 if (!ContextDecl)
1196 Owner = dyn_cast<NamedDecl>(DC);
1197 else if (isa<ParmVarDecl>(ContextDecl))
1198 Owner =
1199 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1200 else
1201 Owner = cast<NamedDecl>(ContextDecl);
1202
1203 if (!Owner)
1204 return LinkageInfo::none();
1205
1206 // If the owner has a deduced type, we need to skip querying the linkage and
1207 // visibility of that type, because it might involve this closure type. The
1208 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1209 // than NoLinkage when we don't strictly need to, which is benign.
1210 auto *VD = dyn_cast<VarDecl>(Owner);
1211 LinkageInfo OwnerLV =
1212 VD && VD->getType()->getContainedDeducedType()
1213 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1214 : getLVForDecl(Owner, computation);
1215
1216 // A lambda never formally has linkage. But if the owner is externally
1217 // visible, then the lambda is too. We apply the same rules to blocks.
1218 if (!isExternallyVisible(OwnerLV.getLinkage()))
1219 return LinkageInfo::none();
1220 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1221 OwnerLV.isVisibilityExplicit());
1222 }
1223
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1224 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1225 LVComputationKind computation) {
1226 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1227 if (Function->isInAnonymousNamespace() &&
1228 !isFirstInExternCContext(Function))
1229 return getInternalLinkageFor(Function);
1230
1231 // This is a "void f();" which got merged with a file static.
1232 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1233 return getInternalLinkageFor(Function);
1234
1235 LinkageInfo LV;
1236 if (!hasExplicitVisibilityAlready(computation)) {
1237 if (Optional<Visibility> Vis =
1238 getExplicitVisibility(Function, computation))
1239 LV.mergeVisibility(*Vis, true);
1240 }
1241
1242 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1243 // merging storage classes and visibility attributes, so we don't have to
1244 // look at previous decls in here.
1245
1246 return LV;
1247 }
1248
1249 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1250 if (Var->hasExternalStorage()) {
1251 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1252 return getInternalLinkageFor(Var);
1253
1254 LinkageInfo LV;
1255 if (Var->getStorageClass() == SC_PrivateExtern)
1256 LV.mergeVisibility(HiddenVisibility, true);
1257 else if (!hasExplicitVisibilityAlready(computation)) {
1258 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1259 LV.mergeVisibility(*Vis, true);
1260 }
1261
1262 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1263 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1264 if (PrevLV.getLinkage())
1265 LV.setLinkage(PrevLV.getLinkage());
1266 LV.mergeVisibility(PrevLV);
1267 }
1268
1269 return LV;
1270 }
1271
1272 if (!Var->isStaticLocal())
1273 return LinkageInfo::none();
1274 }
1275
1276 ASTContext &Context = D->getASTContext();
1277 if (!Context.getLangOpts().CPlusPlus)
1278 return LinkageInfo::none();
1279
1280 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1281 if (!OuterD || OuterD->isInvalidDecl())
1282 return LinkageInfo::none();
1283
1284 LinkageInfo LV;
1285 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1286 if (!BD->getBlockManglingNumber())
1287 return LinkageInfo::none();
1288
1289 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1290 BD->getBlockManglingContextDecl(), computation);
1291 } else {
1292 const auto *FD = cast<FunctionDecl>(OuterD);
1293 if (!FD->isInlined() &&
1294 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1295 return LinkageInfo::none();
1296
1297 // If a function is hidden by -fvisibility-inlines-hidden option and
1298 // is not explicitly attributed as a hidden function,
1299 // we should not make static local variables in the function hidden.
1300 LV = getLVForDecl(FD, computation);
1301 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1302 !LV.isVisibilityExplicit() &&
1303 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1304 assert(cast<VarDecl>(D)->isStaticLocal());
1305 // If this was an implicitly hidden inline method, check again for
1306 // explicit visibility on the parent class, and use that for static locals
1307 // if present.
1308 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1309 LV = getLVForDecl(MD->getParent(), computation);
1310 if (!LV.isVisibilityExplicit()) {
1311 Visibility globalVisibility =
1312 computation.isValueVisibility()
1313 ? Context.getLangOpts().getValueVisibilityMode()
1314 : Context.getLangOpts().getTypeVisibilityMode();
1315 return LinkageInfo(VisibleNoLinkage, globalVisibility,
1316 /*visibilityExplicit=*/false);
1317 }
1318 }
1319 }
1320 if (!isExternallyVisible(LV.getLinkage()))
1321 return LinkageInfo::none();
1322 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1323 LV.isVisibilityExplicit());
1324 }
1325
computeLVForDecl(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)1326 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1327 LVComputationKind computation,
1328 bool IgnoreVarTypeLinkage) {
1329 // Internal_linkage attribute overrides other considerations.
1330 if (D->hasAttr<InternalLinkageAttr>())
1331 return getInternalLinkageFor(D);
1332
1333 // Objective-C: treat all Objective-C declarations as having external
1334 // linkage.
1335 switch (D->getKind()) {
1336 default:
1337 break;
1338
1339 // Per C++ [basic.link]p2, only the names of objects, references,
1340 // functions, types, templates, namespaces, and values ever have linkage.
1341 //
1342 // Note that the name of a typedef, namespace alias, using declaration,
1343 // and so on are not the name of the corresponding type, namespace, or
1344 // declaration, so they do *not* have linkage.
1345 case Decl::ImplicitParam:
1346 case Decl::Label:
1347 case Decl::NamespaceAlias:
1348 case Decl::ParmVar:
1349 case Decl::Using:
1350 case Decl::UsingShadow:
1351 case Decl::UsingDirective:
1352 return LinkageInfo::none();
1353
1354 case Decl::EnumConstant:
1355 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1356 if (D->getASTContext().getLangOpts().CPlusPlus)
1357 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1358 return LinkageInfo::visible_none();
1359
1360 case Decl::Typedef:
1361 case Decl::TypeAlias:
1362 // A typedef declaration has linkage if it gives a type a name for
1363 // linkage purposes.
1364 if (!cast<TypedefNameDecl>(D)
1365 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1366 return LinkageInfo::none();
1367 break;
1368
1369 case Decl::TemplateTemplateParm: // count these as external
1370 case Decl::NonTypeTemplateParm:
1371 case Decl::ObjCAtDefsField:
1372 case Decl::ObjCCategory:
1373 case Decl::ObjCCategoryImpl:
1374 case Decl::ObjCCompatibleAlias:
1375 case Decl::ObjCImplementation:
1376 case Decl::ObjCMethod:
1377 case Decl::ObjCProperty:
1378 case Decl::ObjCPropertyImpl:
1379 case Decl::ObjCProtocol:
1380 return getExternalLinkageFor(D);
1381
1382 case Decl::CXXRecord: {
1383 const auto *Record = cast<CXXRecordDecl>(D);
1384 if (Record->isLambda()) {
1385 if (Record->hasKnownLambdaInternalLinkage() ||
1386 !Record->getLambdaManglingNumber()) {
1387 // This lambda has no mangling number, so it's internal.
1388 return getInternalLinkageFor(D);
1389 }
1390
1391 return getLVForClosure(
1392 Record->getDeclContext()->getRedeclContext(),
1393 Record->getLambdaContextDecl(), computation);
1394 }
1395
1396 break;
1397 }
1398
1399 case Decl::TemplateParamObject: {
1400 // The template parameter object can be referenced from anywhere its type
1401 // and value can be referenced.
1402 auto *TPO = cast<TemplateParamObjectDecl>(D);
1403 LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1404 LV.merge(getLVForValue(TPO->getValue(), computation));
1405 return LV;
1406 }
1407 }
1408
1409 // Handle linkage for namespace-scope names.
1410 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1411 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1412
1413 // C++ [basic.link]p5:
1414 // In addition, a member function, static data member, a named
1415 // class or enumeration of class scope, or an unnamed class or
1416 // enumeration defined in a class-scope typedef declaration such
1417 // that the class or enumeration has the typedef name for linkage
1418 // purposes (7.1.3), has external linkage if the name of the class
1419 // has external linkage.
1420 if (D->getDeclContext()->isRecord())
1421 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1422
1423 // C++ [basic.link]p6:
1424 // The name of a function declared in block scope and the name of
1425 // an object declared by a block scope extern declaration have
1426 // linkage. If there is a visible declaration of an entity with
1427 // linkage having the same name and type, ignoring entities
1428 // declared outside the innermost enclosing namespace scope, the
1429 // block scope declaration declares that same entity and receives
1430 // the linkage of the previous declaration. If there is more than
1431 // one such matching entity, the program is ill-formed. Otherwise,
1432 // if no matching entity is found, the block scope entity receives
1433 // external linkage.
1434 if (D->getDeclContext()->isFunctionOrMethod())
1435 return getLVForLocalDecl(D, computation);
1436
1437 // C++ [basic.link]p6:
1438 // Names not covered by these rules have no linkage.
1439 return LinkageInfo::none();
1440 }
1441
1442 /// getLVForDecl - Get the linkage and visibility for the given declaration.
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1443 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1444 LVComputationKind computation) {
1445 // Internal_linkage attribute overrides other considerations.
1446 if (D->hasAttr<InternalLinkageAttr>())
1447 return getInternalLinkageFor(D);
1448
1449 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1450 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1451
1452 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1453 return *LI;
1454
1455 LinkageInfo LV = computeLVForDecl(D, computation);
1456 if (D->hasCachedLinkage())
1457 assert(D->getCachedLinkage() == LV.getLinkage());
1458
1459 D->setCachedLinkage(LV.getLinkage());
1460 cache(D, computation, LV);
1461
1462 #ifndef NDEBUG
1463 // In C (because of gnu inline) and in c++ with microsoft extensions an
1464 // static can follow an extern, so we can have two decls with different
1465 // linkages.
1466 const LangOptions &Opts = D->getASTContext().getLangOpts();
1467 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1468 return LV;
1469
1470 // We have just computed the linkage for this decl. By induction we know
1471 // that all other computed linkages match, check that the one we just
1472 // computed also does.
1473 NamedDecl *Old = nullptr;
1474 for (auto I : D->redecls()) {
1475 auto *T = cast<NamedDecl>(I);
1476 if (T == D)
1477 continue;
1478 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1479 Old = T;
1480 break;
1481 }
1482 }
1483 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1484 #endif
1485
1486 return LV;
1487 }
1488
getDeclLinkageAndVisibility(const NamedDecl * D)1489 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1490 return getLVForDecl(D,
1491 LVComputationKind(usesTypeVisibility(D)
1492 ? NamedDecl::VisibilityForType
1493 : NamedDecl::VisibilityForValue));
1494 }
1495
getOwningModuleForLinkage(bool IgnoreLinkage) const1496 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1497 Module *M = getOwningModule();
1498 if (!M)
1499 return nullptr;
1500
1501 switch (M->Kind) {
1502 case Module::ModuleMapModule:
1503 // Module map modules have no special linkage semantics.
1504 return nullptr;
1505
1506 case Module::ModuleInterfaceUnit:
1507 return M;
1508
1509 case Module::GlobalModuleFragment: {
1510 // External linkage declarations in the global module have no owning module
1511 // for linkage purposes. But internal linkage declarations in the global
1512 // module fragment of a particular module are owned by that module for
1513 // linkage purposes.
1514 if (IgnoreLinkage)
1515 return nullptr;
1516 bool InternalLinkage;
1517 if (auto *ND = dyn_cast<NamedDecl>(this))
1518 InternalLinkage = !ND->hasExternalFormalLinkage();
1519 else {
1520 auto *NSD = dyn_cast<NamespaceDecl>(this);
1521 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1522 isInAnonymousNamespace();
1523 }
1524 return InternalLinkage ? M->Parent : nullptr;
1525 }
1526
1527 case Module::PrivateModuleFragment:
1528 // The private module fragment is part of its containing module for linkage
1529 // purposes.
1530 return M->Parent;
1531 }
1532
1533 llvm_unreachable("unknown module kind");
1534 }
1535
printName(raw_ostream & os) const1536 void NamedDecl::printName(raw_ostream &os) const {
1537 os << Name;
1538 }
1539
getQualifiedNameAsString() const1540 std::string NamedDecl::getQualifiedNameAsString() const {
1541 std::string QualName;
1542 llvm::raw_string_ostream OS(QualName);
1543 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1544 return OS.str();
1545 }
1546
printQualifiedName(raw_ostream & OS) const1547 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1548 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1549 }
1550
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1551 void NamedDecl::printQualifiedName(raw_ostream &OS,
1552 const PrintingPolicy &P) const {
1553 if (getDeclContext()->isFunctionOrMethod()) {
1554 // We do not print '(anonymous)' for function parameters without name.
1555 printName(OS);
1556 return;
1557 }
1558 printNestedNameSpecifier(OS, P);
1559 if (getDeclName())
1560 OS << *this;
1561 else {
1562 // Give the printName override a chance to pick a different name before we
1563 // fall back to "(anonymous)".
1564 SmallString<64> NameBuffer;
1565 llvm::raw_svector_ostream NameOS(NameBuffer);
1566 printName(NameOS);
1567 if (NameBuffer.empty())
1568 OS << "(anonymous)";
1569 else
1570 OS << NameBuffer;
1571 }
1572 }
1573
printNestedNameSpecifier(raw_ostream & OS) const1574 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1575 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1576 }
1577
printNestedNameSpecifier(raw_ostream & OS,const PrintingPolicy & P) const1578 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1579 const PrintingPolicy &P) const {
1580 const DeclContext *Ctx = getDeclContext();
1581
1582 // For ObjC methods and properties, look through categories and use the
1583 // interface as context.
1584 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1585 if (auto *ID = MD->getClassInterface())
1586 Ctx = ID;
1587 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1588 if (auto *MD = PD->getGetterMethodDecl())
1589 if (auto *ID = MD->getClassInterface())
1590 Ctx = ID;
1591 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1592 if (auto *CI = ID->getContainingInterface())
1593 Ctx = CI;
1594 }
1595
1596 if (Ctx->isFunctionOrMethod())
1597 return;
1598
1599 using ContextsTy = SmallVector<const DeclContext *, 8>;
1600 ContextsTy Contexts;
1601
1602 // Collect named contexts.
1603 DeclarationName NameInScope = getDeclName();
1604 for (; Ctx; Ctx = Ctx->getParent()) {
1605 // Suppress anonymous namespace if requested.
1606 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1607 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1608 continue;
1609
1610 // Suppress inline namespace if it doesn't make the result ambiguous.
1611 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1612 Ctx->lookup(NameInScope).size() ==
1613 Ctx->getParent()->lookup(NameInScope).size())
1614 continue;
1615
1616 // Skip non-named contexts such as linkage specifications and ExportDecls.
1617 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1618 if (!ND)
1619 continue;
1620
1621 Contexts.push_back(Ctx);
1622 NameInScope = ND->getDeclName();
1623 }
1624
1625 for (unsigned I = Contexts.size(); I != 0; --I) {
1626 const DeclContext *DC = Contexts[I - 1];
1627 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1628 OS << Spec->getName();
1629 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1630 printTemplateArgumentList(
1631 OS, TemplateArgs.asArray(), P,
1632 Spec->getSpecializedTemplate()->getTemplateParameters());
1633 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1634 if (ND->isAnonymousNamespace()) {
1635 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1636 : "(anonymous namespace)");
1637 }
1638 else
1639 OS << *ND;
1640 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1641 if (!RD->getIdentifier())
1642 OS << "(anonymous " << RD->getKindName() << ')';
1643 else
1644 OS << *RD;
1645 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1646 const FunctionProtoType *FT = nullptr;
1647 if (FD->hasWrittenPrototype())
1648 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1649
1650 OS << *FD << '(';
1651 if (FT) {
1652 unsigned NumParams = FD->getNumParams();
1653 for (unsigned i = 0; i < NumParams; ++i) {
1654 if (i)
1655 OS << ", ";
1656 OS << FD->getParamDecl(i)->getType().stream(P);
1657 }
1658
1659 if (FT->isVariadic()) {
1660 if (NumParams > 0)
1661 OS << ", ";
1662 OS << "...";
1663 }
1664 }
1665 OS << ')';
1666 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1667 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1668 // enumerator is declared in the scope that immediately contains
1669 // the enum-specifier. Each scoped enumerator is declared in the
1670 // scope of the enumeration.
1671 // For the case of unscoped enumerator, do not include in the qualified
1672 // name any information about its enum enclosing scope, as its visibility
1673 // is global.
1674 if (ED->isScoped())
1675 OS << *ED;
1676 else
1677 continue;
1678 } else {
1679 OS << *cast<NamedDecl>(DC);
1680 }
1681 OS << "::";
1682 }
1683 }
1684
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1685 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1686 const PrintingPolicy &Policy,
1687 bool Qualified) const {
1688 if (Qualified)
1689 printQualifiedName(OS, Policy);
1690 else
1691 printName(OS);
1692 }
1693
isRedeclarableImpl(Redeclarable<T> *)1694 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1695 return true;
1696 }
isRedeclarableImpl(...)1697 static bool isRedeclarableImpl(...) { return false; }
isRedeclarable(Decl::Kind K)1698 static bool isRedeclarable(Decl::Kind K) {
1699 switch (K) {
1700 #define DECL(Type, Base) \
1701 case Decl::Type: \
1702 return isRedeclarableImpl((Type##Decl *)nullptr);
1703 #define ABSTRACT_DECL(DECL)
1704 #include "clang/AST/DeclNodes.inc"
1705 }
1706 llvm_unreachable("unknown decl kind");
1707 }
1708
declarationReplaces(NamedDecl * OldD,bool IsKnownNewer) const1709 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1710 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1711
1712 // Never replace one imported declaration with another; we need both results
1713 // when re-exporting.
1714 if (OldD->isFromASTFile() && isFromASTFile())
1715 return false;
1716
1717 // A kind mismatch implies that the declaration is not replaced.
1718 if (OldD->getKind() != getKind())
1719 return false;
1720
1721 // For method declarations, we never replace. (Why?)
1722 if (isa<ObjCMethodDecl>(this))
1723 return false;
1724
1725 // For parameters, pick the newer one. This is either an error or (in
1726 // Objective-C) permitted as an extension.
1727 if (isa<ParmVarDecl>(this))
1728 return true;
1729
1730 // Inline namespaces can give us two declarations with the same
1731 // name and kind in the same scope but different contexts; we should
1732 // keep both declarations in this case.
1733 if (!this->getDeclContext()->getRedeclContext()->Equals(
1734 OldD->getDeclContext()->getRedeclContext()))
1735 return false;
1736
1737 // Using declarations can be replaced if they import the same name from the
1738 // same context.
1739 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1740 ASTContext &Context = getASTContext();
1741 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1742 Context.getCanonicalNestedNameSpecifier(
1743 cast<UsingDecl>(OldD)->getQualifier());
1744 }
1745 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1746 ASTContext &Context = getASTContext();
1747 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1748 Context.getCanonicalNestedNameSpecifier(
1749 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1750 }
1751
1752 if (isRedeclarable(getKind())) {
1753 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1754 return false;
1755
1756 if (IsKnownNewer)
1757 return true;
1758
1759 // Check whether this is actually newer than OldD. We want to keep the
1760 // newer declaration. This loop will usually only iterate once, because
1761 // OldD is usually the previous declaration.
1762 for (auto D : redecls()) {
1763 if (D == OldD)
1764 break;
1765
1766 // If we reach the canonical declaration, then OldD is not actually older
1767 // than this one.
1768 //
1769 // FIXME: In this case, we should not add this decl to the lookup table.
1770 if (D->isCanonicalDecl())
1771 return false;
1772 }
1773
1774 // It's a newer declaration of the same kind of declaration in the same
1775 // scope: we want this decl instead of the existing one.
1776 return true;
1777 }
1778
1779 // In all other cases, we need to keep both declarations in case they have
1780 // different visibility. Any attempt to use the name will result in an
1781 // ambiguity if more than one is visible.
1782 return false;
1783 }
1784
hasLinkage() const1785 bool NamedDecl::hasLinkage() const {
1786 return getFormalLinkage() != NoLinkage;
1787 }
1788
getUnderlyingDeclImpl()1789 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1790 NamedDecl *ND = this;
1791 while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1792 ND = UD->getTargetDecl();
1793
1794 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1795 return AD->getClassInterface();
1796
1797 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1798 return AD->getNamespace();
1799
1800 return ND;
1801 }
1802
isCXXInstanceMember() const1803 bool NamedDecl::isCXXInstanceMember() const {
1804 if (!isCXXClassMember())
1805 return false;
1806
1807 const NamedDecl *D = this;
1808 if (isa<UsingShadowDecl>(D))
1809 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1810
1811 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1812 return true;
1813 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1814 return MD->isInstance();
1815 return false;
1816 }
1817
1818 //===----------------------------------------------------------------------===//
1819 // DeclaratorDecl Implementation
1820 //===----------------------------------------------------------------------===//
1821
1822 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1823 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1824 if (decl->getNumTemplateParameterLists() > 0)
1825 return decl->getTemplateParameterList(0)->getTemplateLoc();
1826 else
1827 return decl->getInnerLocStart();
1828 }
1829
getTypeSpecStartLoc() const1830 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1831 TypeSourceInfo *TSI = getTypeSourceInfo();
1832 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1833 return SourceLocation();
1834 }
1835
getTypeSpecEndLoc() const1836 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1837 TypeSourceInfo *TSI = getTypeSourceInfo();
1838 if (TSI) return TSI->getTypeLoc().getEndLoc();
1839 return SourceLocation();
1840 }
1841
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1842 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1843 if (QualifierLoc) {
1844 // Make sure the extended decl info is allocated.
1845 if (!hasExtInfo()) {
1846 // Save (non-extended) type source info pointer.
1847 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1848 // Allocate external info struct.
1849 DeclInfo = new (getASTContext()) ExtInfo;
1850 // Restore savedTInfo into (extended) decl info.
1851 getExtInfo()->TInfo = savedTInfo;
1852 }
1853 // Set qualifier info.
1854 getExtInfo()->QualifierLoc = QualifierLoc;
1855 } else if (hasExtInfo()) {
1856 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1857 getExtInfo()->QualifierLoc = QualifierLoc;
1858 }
1859 }
1860
setTrailingRequiresClause(Expr * TrailingRequiresClause)1861 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1862 assert(TrailingRequiresClause);
1863 // Make sure the extended decl info is allocated.
1864 if (!hasExtInfo()) {
1865 // Save (non-extended) type source info pointer.
1866 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1867 // Allocate external info struct.
1868 DeclInfo = new (getASTContext()) ExtInfo;
1869 // Restore savedTInfo into (extended) decl info.
1870 getExtInfo()->TInfo = savedTInfo;
1871 }
1872 // Set requires clause info.
1873 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1874 }
1875
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)1876 void DeclaratorDecl::setTemplateParameterListsInfo(
1877 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1878 assert(!TPLists.empty());
1879 // Make sure the extended decl info is allocated.
1880 if (!hasExtInfo()) {
1881 // Save (non-extended) type source info pointer.
1882 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1883 // Allocate external info struct.
1884 DeclInfo = new (getASTContext()) ExtInfo;
1885 // Restore savedTInfo into (extended) decl info.
1886 getExtInfo()->TInfo = savedTInfo;
1887 }
1888 // Set the template parameter lists info.
1889 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1890 }
1891
getOuterLocStart() const1892 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1893 return getTemplateOrInnerLocStart(this);
1894 }
1895
1896 // Helper function: returns true if QT is or contains a type
1897 // having a postfix component.
typeIsPostfix(QualType QT)1898 static bool typeIsPostfix(QualType QT) {
1899 while (true) {
1900 const Type* T = QT.getTypePtr();
1901 switch (T->getTypeClass()) {
1902 default:
1903 return false;
1904 case Type::Pointer:
1905 QT = cast<PointerType>(T)->getPointeeType();
1906 break;
1907 case Type::BlockPointer:
1908 QT = cast<BlockPointerType>(T)->getPointeeType();
1909 break;
1910 case Type::MemberPointer:
1911 QT = cast<MemberPointerType>(T)->getPointeeType();
1912 break;
1913 case Type::LValueReference:
1914 case Type::RValueReference:
1915 QT = cast<ReferenceType>(T)->getPointeeType();
1916 break;
1917 case Type::PackExpansion:
1918 QT = cast<PackExpansionType>(T)->getPattern();
1919 break;
1920 case Type::Paren:
1921 case Type::ConstantArray:
1922 case Type::DependentSizedArray:
1923 case Type::IncompleteArray:
1924 case Type::VariableArray:
1925 case Type::FunctionProto:
1926 case Type::FunctionNoProto:
1927 return true;
1928 }
1929 }
1930 }
1931
getSourceRange() const1932 SourceRange DeclaratorDecl::getSourceRange() const {
1933 SourceLocation RangeEnd = getLocation();
1934 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1935 // If the declaration has no name or the type extends past the name take the
1936 // end location of the type.
1937 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1938 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1939 }
1940 return SourceRange(getOuterLocStart(), RangeEnd);
1941 }
1942
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)1943 void QualifierInfo::setTemplateParameterListsInfo(
1944 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1945 // Free previous template parameters (if any).
1946 if (NumTemplParamLists > 0) {
1947 Context.Deallocate(TemplParamLists);
1948 TemplParamLists = nullptr;
1949 NumTemplParamLists = 0;
1950 }
1951 // Set info on matched template parameter lists (if any).
1952 if (!TPLists.empty()) {
1953 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1954 NumTemplParamLists = TPLists.size();
1955 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1956 }
1957 }
1958
1959 //===----------------------------------------------------------------------===//
1960 // VarDecl Implementation
1961 //===----------------------------------------------------------------------===//
1962
getStorageClassSpecifierString(StorageClass SC)1963 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1964 switch (SC) {
1965 case SC_None: break;
1966 case SC_Auto: return "auto";
1967 case SC_Extern: return "extern";
1968 case SC_PrivateExtern: return "__private_extern__";
1969 case SC_Register: return "register";
1970 case SC_Static: return "static";
1971 }
1972
1973 llvm_unreachable("Invalid storage class");
1974 }
1975
VarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)1976 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1977 SourceLocation StartLoc, SourceLocation IdLoc,
1978 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1979 StorageClass SC)
1980 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1981 redeclarable_base(C) {
1982 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1983 "VarDeclBitfields too large!");
1984 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1985 "ParmVarDeclBitfields too large!");
1986 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1987 "NonParmVarDeclBitfields too large!");
1988 AllBits = 0;
1989 VarDeclBits.SClass = SC;
1990 // Everything else is implicitly initialized to false.
1991 }
1992
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)1993 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1994 SourceLocation StartL, SourceLocation IdL,
1995 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1996 StorageClass S) {
1997 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1998 }
1999
CreateDeserialized(ASTContext & C,unsigned ID)2000 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2001 return new (C, ID)
2002 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2003 QualType(), nullptr, SC_None);
2004 }
2005
setStorageClass(StorageClass SC)2006 void VarDecl::setStorageClass(StorageClass SC) {
2007 assert(isLegalForVariable(SC));
2008 VarDeclBits.SClass = SC;
2009 }
2010
getTLSKind() const2011 VarDecl::TLSKind VarDecl::getTLSKind() const {
2012 switch (VarDeclBits.TSCSpec) {
2013 case TSCS_unspecified:
2014 if (!hasAttr<ThreadAttr>() &&
2015 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2016 getASTContext().getTargetInfo().isTLSSupported() &&
2017 hasAttr<OMPThreadPrivateDeclAttr>()))
2018 return TLS_None;
2019 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2020 LangOptions::MSVC2015)) ||
2021 hasAttr<OMPThreadPrivateDeclAttr>())
2022 ? TLS_Dynamic
2023 : TLS_Static;
2024 case TSCS___thread: // Fall through.
2025 case TSCS__Thread_local:
2026 return TLS_Static;
2027 case TSCS_thread_local:
2028 return TLS_Dynamic;
2029 }
2030 llvm_unreachable("Unknown thread storage class specifier!");
2031 }
2032
getSourceRange() const2033 SourceRange VarDecl::getSourceRange() const {
2034 if (const Expr *Init = getInit()) {
2035 SourceLocation InitEnd = Init->getEndLoc();
2036 // If Init is implicit, ignore its source range and fallback on
2037 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2038 if (InitEnd.isValid() && InitEnd != getLocation())
2039 return SourceRange(getOuterLocStart(), InitEnd);
2040 }
2041 return DeclaratorDecl::getSourceRange();
2042 }
2043
2044 template<typename T>
getDeclLanguageLinkage(const T & D)2045 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2046 // C++ [dcl.link]p1: All function types, function names with external linkage,
2047 // and variable names with external linkage have a language linkage.
2048 if (!D.hasExternalFormalLinkage())
2049 return NoLanguageLinkage;
2050
2051 // Language linkage is a C++ concept, but saying that everything else in C has
2052 // C language linkage fits the implementation nicely.
2053 ASTContext &Context = D.getASTContext();
2054 if (!Context.getLangOpts().CPlusPlus)
2055 return CLanguageLinkage;
2056
2057 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2058 // language linkage of the names of class members and the function type of
2059 // class member functions.
2060 const DeclContext *DC = D.getDeclContext();
2061 if (DC->isRecord())
2062 return CXXLanguageLinkage;
2063
2064 // If the first decl is in an extern "C" context, any other redeclaration
2065 // will have C language linkage. If the first one is not in an extern "C"
2066 // context, we would have reported an error for any other decl being in one.
2067 if (isFirstInExternCContext(&D))
2068 return CLanguageLinkage;
2069 return CXXLanguageLinkage;
2070 }
2071
2072 template<typename T>
isDeclExternC(const T & D)2073 static bool isDeclExternC(const T &D) {
2074 // Since the context is ignored for class members, they can only have C++
2075 // language linkage or no language linkage.
2076 const DeclContext *DC = D.getDeclContext();
2077 if (DC->isRecord()) {
2078 assert(D.getASTContext().getLangOpts().CPlusPlus);
2079 return false;
2080 }
2081
2082 return D.getLanguageLinkage() == CLanguageLinkage;
2083 }
2084
getLanguageLinkage() const2085 LanguageLinkage VarDecl::getLanguageLinkage() const {
2086 return getDeclLanguageLinkage(*this);
2087 }
2088
isExternC() const2089 bool VarDecl::isExternC() const {
2090 return isDeclExternC(*this);
2091 }
2092
isInExternCContext() const2093 bool VarDecl::isInExternCContext() const {
2094 return getLexicalDeclContext()->isExternCContext();
2095 }
2096
isInExternCXXContext() const2097 bool VarDecl::isInExternCXXContext() const {
2098 return getLexicalDeclContext()->isExternCXXContext();
2099 }
2100
getCanonicalDecl()2101 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2102
2103 VarDecl::DefinitionKind
isThisDeclarationADefinition(ASTContext & C) const2104 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2105 if (isThisDeclarationADemotedDefinition())
2106 return DeclarationOnly;
2107
2108 // C++ [basic.def]p2:
2109 // A declaration is a definition unless [...] it contains the 'extern'
2110 // specifier or a linkage-specification and neither an initializer [...],
2111 // it declares a non-inline static data member in a class declaration [...],
2112 // it declares a static data member outside a class definition and the variable
2113 // was defined within the class with the constexpr specifier [...],
2114 // C++1y [temp.expl.spec]p15:
2115 // An explicit specialization of a static data member or an explicit
2116 // specialization of a static data member template is a definition if the
2117 // declaration includes an initializer; otherwise, it is a declaration.
2118 //
2119 // FIXME: How do you declare (but not define) a partial specialization of
2120 // a static data member template outside the containing class?
2121 if (isStaticDataMember()) {
2122 if (isOutOfLine() &&
2123 !(getCanonicalDecl()->isInline() &&
2124 getCanonicalDecl()->isConstexpr()) &&
2125 (hasInit() ||
2126 // If the first declaration is out-of-line, this may be an
2127 // instantiation of an out-of-line partial specialization of a variable
2128 // template for which we have not yet instantiated the initializer.
2129 (getFirstDecl()->isOutOfLine()
2130 ? getTemplateSpecializationKind() == TSK_Undeclared
2131 : getTemplateSpecializationKind() !=
2132 TSK_ExplicitSpecialization) ||
2133 isa<VarTemplatePartialSpecializationDecl>(this)))
2134 return Definition;
2135 else if (!isOutOfLine() && isInline())
2136 return Definition;
2137 else
2138 return DeclarationOnly;
2139 }
2140 // C99 6.7p5:
2141 // A definition of an identifier is a declaration for that identifier that
2142 // [...] causes storage to be reserved for that object.
2143 // Note: that applies for all non-file-scope objects.
2144 // C99 6.9.2p1:
2145 // If the declaration of an identifier for an object has file scope and an
2146 // initializer, the declaration is an external definition for the identifier
2147 if (hasInit())
2148 return Definition;
2149
2150 if (hasDefiningAttr())
2151 return Definition;
2152
2153 if (const auto *SAA = getAttr<SelectAnyAttr>())
2154 if (!SAA->isInherited())
2155 return Definition;
2156
2157 // A variable template specialization (other than a static data member
2158 // template or an explicit specialization) is a declaration until we
2159 // instantiate its initializer.
2160 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2161 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2162 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2163 !VTSD->IsCompleteDefinition)
2164 return DeclarationOnly;
2165 }
2166
2167 if (hasExternalStorage())
2168 return DeclarationOnly;
2169
2170 // [dcl.link] p7:
2171 // A declaration directly contained in a linkage-specification is treated
2172 // as if it contains the extern specifier for the purpose of determining
2173 // the linkage of the declared name and whether it is a definition.
2174 if (isSingleLineLanguageLinkage(*this))
2175 return DeclarationOnly;
2176
2177 // C99 6.9.2p2:
2178 // A declaration of an object that has file scope without an initializer,
2179 // and without a storage class specifier or the scs 'static', constitutes
2180 // a tentative definition.
2181 // No such thing in C++.
2182 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2183 return TentativeDefinition;
2184
2185 // What's left is (in C, block-scope) declarations without initializers or
2186 // external storage. These are definitions.
2187 return Definition;
2188 }
2189
getActingDefinition()2190 VarDecl *VarDecl::getActingDefinition() {
2191 DefinitionKind Kind = isThisDeclarationADefinition();
2192 if (Kind != TentativeDefinition)
2193 return nullptr;
2194
2195 VarDecl *LastTentative = nullptr;
2196 VarDecl *First = getFirstDecl();
2197 for (auto I : First->redecls()) {
2198 Kind = I->isThisDeclarationADefinition();
2199 if (Kind == Definition)
2200 return nullptr;
2201 else if (Kind == TentativeDefinition)
2202 LastTentative = I;
2203 }
2204 return LastTentative;
2205 }
2206
getDefinition(ASTContext & C)2207 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2208 VarDecl *First = getFirstDecl();
2209 for (auto I : First->redecls()) {
2210 if (I->isThisDeclarationADefinition(C) == Definition)
2211 return I;
2212 }
2213 return nullptr;
2214 }
2215
hasDefinition(ASTContext & C) const2216 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2217 DefinitionKind Kind = DeclarationOnly;
2218
2219 const VarDecl *First = getFirstDecl();
2220 for (auto I : First->redecls()) {
2221 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2222 if (Kind == Definition)
2223 break;
2224 }
2225
2226 return Kind;
2227 }
2228
getAnyInitializer(const VarDecl * & D) const2229 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2230 for (auto I : redecls()) {
2231 if (auto Expr = I->getInit()) {
2232 D = I;
2233 return Expr;
2234 }
2235 }
2236 return nullptr;
2237 }
2238
hasInit() const2239 bool VarDecl::hasInit() const {
2240 if (auto *P = dyn_cast<ParmVarDecl>(this))
2241 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2242 return false;
2243
2244 return !Init.isNull();
2245 }
2246
getInit()2247 Expr *VarDecl::getInit() {
2248 if (!hasInit())
2249 return nullptr;
2250
2251 if (auto *S = Init.dyn_cast<Stmt *>())
2252 return cast<Expr>(S);
2253
2254 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2255 }
2256
getInitAddress()2257 Stmt **VarDecl::getInitAddress() {
2258 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2259 return &ES->Value;
2260
2261 return Init.getAddrOfPtr1();
2262 }
2263
getInitializingDeclaration()2264 VarDecl *VarDecl::getInitializingDeclaration() {
2265 VarDecl *Def = nullptr;
2266 for (auto I : redecls()) {
2267 if (I->hasInit())
2268 return I;
2269
2270 if (I->isThisDeclarationADefinition()) {
2271 if (isStaticDataMember())
2272 return I;
2273 else
2274 Def = I;
2275 }
2276 }
2277 return Def;
2278 }
2279
isOutOfLine() const2280 bool VarDecl::isOutOfLine() const {
2281 if (Decl::isOutOfLine())
2282 return true;
2283
2284 if (!isStaticDataMember())
2285 return false;
2286
2287 // If this static data member was instantiated from a static data member of
2288 // a class template, check whether that static data member was defined
2289 // out-of-line.
2290 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2291 return VD->isOutOfLine();
2292
2293 return false;
2294 }
2295
setInit(Expr * I)2296 void VarDecl::setInit(Expr *I) {
2297 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2298 Eval->~EvaluatedStmt();
2299 getASTContext().Deallocate(Eval);
2300 }
2301
2302 Init = I;
2303 }
2304
mightBeUsableInConstantExpressions(const ASTContext & C) const2305 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2306 const LangOptions &Lang = C.getLangOpts();
2307
2308 // OpenCL permits const integral variables to be used in constant
2309 // expressions, like in C++98.
2310 if (!Lang.CPlusPlus && !Lang.OpenCL)
2311 return false;
2312
2313 // Function parameters are never usable in constant expressions.
2314 if (isa<ParmVarDecl>(this))
2315 return false;
2316
2317 // The values of weak variables are never usable in constant expressions.
2318 if (isWeak())
2319 return false;
2320
2321 // In C++11, any variable of reference type can be used in a constant
2322 // expression if it is initialized by a constant expression.
2323 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2324 return true;
2325
2326 // Only const objects can be used in constant expressions in C++. C++98 does
2327 // not require the variable to be non-volatile, but we consider this to be a
2328 // defect.
2329 if (!getType().isConstant(C) || getType().isVolatileQualified())
2330 return false;
2331
2332 // In C++, const, non-volatile variables of integral or enumeration types
2333 // can be used in constant expressions.
2334 if (getType()->isIntegralOrEnumerationType())
2335 return true;
2336
2337 // Additionally, in C++11, non-volatile constexpr variables can be used in
2338 // constant expressions.
2339 return Lang.CPlusPlus11 && isConstexpr();
2340 }
2341
isUsableInConstantExpressions(const ASTContext & Context) const2342 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2343 // C++2a [expr.const]p3:
2344 // A variable is usable in constant expressions after its initializing
2345 // declaration is encountered...
2346 const VarDecl *DefVD = nullptr;
2347 const Expr *Init = getAnyInitializer(DefVD);
2348 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2349 return false;
2350 // ... if it is a constexpr variable, or it is of reference type or of
2351 // const-qualified integral or enumeration type, ...
2352 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2353 return false;
2354 // ... and its initializer is a constant initializer.
2355 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2356 return false;
2357 // C++98 [expr.const]p1:
2358 // An integral constant-expression can involve only [...] const variables
2359 // or static data members of integral or enumeration types initialized with
2360 // [integer] constant expressions (dcl.init)
2361 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2362 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2363 return false;
2364 return true;
2365 }
2366
2367 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2368 /// form, which contains extra information on the evaluated value of the
2369 /// initializer.
ensureEvaluatedStmt() const2370 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2371 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2372 if (!Eval) {
2373 // Note: EvaluatedStmt contains an APValue, which usually holds
2374 // resources not allocated from the ASTContext. We need to do some
2375 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2376 // where we can detect whether there's anything to clean up or not.
2377 Eval = new (getASTContext()) EvaluatedStmt;
2378 Eval->Value = Init.get<Stmt *>();
2379 Init = Eval;
2380 }
2381 return Eval;
2382 }
2383
getEvaluatedStmt() const2384 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2385 return Init.dyn_cast<EvaluatedStmt *>();
2386 }
2387
evaluateValue() const2388 APValue *VarDecl::evaluateValue() const {
2389 SmallVector<PartialDiagnosticAt, 8> Notes;
2390 return evaluateValueImpl(Notes, hasConstantInitialization());
2391 }
2392
evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> & Notes,bool IsConstantInitialization) const2393 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2394 bool IsConstantInitialization) const {
2395 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2396
2397 const auto *Init = cast<Expr>(Eval->Value);
2398 assert(!Init->isValueDependent());
2399
2400 // We only produce notes indicating why an initializer is non-constant the
2401 // first time it is evaluated. FIXME: The notes won't always be emitted the
2402 // first time we try evaluation, so might not be produced at all.
2403 if (Eval->WasEvaluated)
2404 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2405
2406 if (Eval->IsEvaluating) {
2407 // FIXME: Produce a diagnostic for self-initialization.
2408 return nullptr;
2409 }
2410
2411 Eval->IsEvaluating = true;
2412
2413 ASTContext &Ctx = getASTContext();
2414 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2415 IsConstantInitialization);
2416
2417 // In C++11, this isn't a constant initializer if we produced notes. In that
2418 // case, we can't keep the result, because it may only be correct under the
2419 // assumption that the initializer is a constant context.
2420 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 &&
2421 !Notes.empty())
2422 Result = false;
2423
2424 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2425 // or that it's empty (so that there's nothing to clean up) if evaluation
2426 // failed.
2427 if (!Result)
2428 Eval->Evaluated = APValue();
2429 else if (Eval->Evaluated.needsCleanup())
2430 Ctx.addDestruction(&Eval->Evaluated);
2431
2432 Eval->IsEvaluating = false;
2433 Eval->WasEvaluated = true;
2434
2435 return Result ? &Eval->Evaluated : nullptr;
2436 }
2437
getEvaluatedValue() const2438 APValue *VarDecl::getEvaluatedValue() const {
2439 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2440 if (Eval->WasEvaluated)
2441 return &Eval->Evaluated;
2442
2443 return nullptr;
2444 }
2445
hasICEInitializer(const ASTContext & Context) const2446 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2447 const Expr *Init = getInit();
2448 assert(Init && "no initializer");
2449
2450 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2451 if (!Eval->CheckedForICEInit) {
2452 Eval->CheckedForICEInit = true;
2453 Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2454 }
2455 return Eval->HasICEInit;
2456 }
2457
hasConstantInitialization() const2458 bool VarDecl::hasConstantInitialization() const {
2459 // In C, all globals (and only globals) have constant initialization.
2460 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2461 return true;
2462
2463 // In C++, it depends on whether the evaluation at the point of definition
2464 // was evaluatable as a constant initializer.
2465 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2466 return Eval->HasConstantInitialization;
2467
2468 return false;
2469 }
2470
checkForConstantInitialization(SmallVectorImpl<PartialDiagnosticAt> & Notes) const2471 bool VarDecl::checkForConstantInitialization(
2472 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2473 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2474 // If we ask for the value before we know whether we have a constant
2475 // initializer, we can compute the wrong value (for example, due to
2476 // std::is_constant_evaluated()).
2477 assert(!Eval->WasEvaluated &&
2478 "already evaluated var value before checking for constant init");
2479 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
2480
2481 assert(!cast<Expr>(Eval->Value)->isValueDependent());
2482
2483 // Evaluate the initializer to check whether it's a constant expression.
2484 Eval->HasConstantInitialization =
2485 evaluateValueImpl(Notes, true) && Notes.empty();
2486
2487 // If evaluation as a constant initializer failed, allow re-evaluation as a
2488 // non-constant initializer if we later find we want the value.
2489 if (!Eval->HasConstantInitialization)
2490 Eval->WasEvaluated = false;
2491
2492 return Eval->HasConstantInitialization;
2493 }
2494
isParameterPack() const2495 bool VarDecl::isParameterPack() const {
2496 return isa<PackExpansionType>(getType());
2497 }
2498
2499 template<typename DeclT>
getDefinitionOrSelf(DeclT * D)2500 static DeclT *getDefinitionOrSelf(DeclT *D) {
2501 assert(D);
2502 if (auto *Def = D->getDefinition())
2503 return Def;
2504 return D;
2505 }
2506
isEscapingByref() const2507 bool VarDecl::isEscapingByref() const {
2508 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2509 }
2510
isNonEscapingByref() const2511 bool VarDecl::isNonEscapingByref() const {
2512 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2513 }
2514
getTemplateInstantiationPattern() const2515 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2516 const VarDecl *VD = this;
2517
2518 // If this is an instantiated member, walk back to the template from which
2519 // it was instantiated.
2520 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2521 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2522 VD = VD->getInstantiatedFromStaticDataMember();
2523 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2524 VD = NewVD;
2525 }
2526 }
2527
2528 // If it's an instantiated variable template specialization, find the
2529 // template or partial specialization from which it was instantiated.
2530 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2531 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2532 auto From = VDTemplSpec->getInstantiatedFrom();
2533 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2534 while (!VTD->isMemberSpecialization()) {
2535 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2536 if (!NewVTD)
2537 break;
2538 VTD = NewVTD;
2539 }
2540 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2541 }
2542 if (auto *VTPSD =
2543 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2544 while (!VTPSD->isMemberSpecialization()) {
2545 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2546 if (!NewVTPSD)
2547 break;
2548 VTPSD = NewVTPSD;
2549 }
2550 return getDefinitionOrSelf<VarDecl>(VTPSD);
2551 }
2552 }
2553 }
2554
2555 // If this is the pattern of a variable template, find where it was
2556 // instantiated from. FIXME: Is this necessary?
2557 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2558 while (!VarTemplate->isMemberSpecialization()) {
2559 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2560 if (!NewVT)
2561 break;
2562 VarTemplate = NewVT;
2563 }
2564
2565 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2566 }
2567
2568 if (VD == this)
2569 return nullptr;
2570 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2571 }
2572
getInstantiatedFromStaticDataMember() const2573 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2574 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2575 return cast<VarDecl>(MSI->getInstantiatedFrom());
2576
2577 return nullptr;
2578 }
2579
getTemplateSpecializationKind() const2580 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2581 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2582 return Spec->getSpecializationKind();
2583
2584 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2585 return MSI->getTemplateSpecializationKind();
2586
2587 return TSK_Undeclared;
2588 }
2589
2590 TemplateSpecializationKind
getTemplateSpecializationKindForInstantiation() const2591 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2592 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2593 return MSI->getTemplateSpecializationKind();
2594
2595 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2596 return Spec->getSpecializationKind();
2597
2598 return TSK_Undeclared;
2599 }
2600
getPointOfInstantiation() const2601 SourceLocation VarDecl::getPointOfInstantiation() const {
2602 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2603 return Spec->getPointOfInstantiation();
2604
2605 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2606 return MSI->getPointOfInstantiation();
2607
2608 return SourceLocation();
2609 }
2610
getDescribedVarTemplate() const2611 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2612 return getASTContext().getTemplateOrSpecializationInfo(this)
2613 .dyn_cast<VarTemplateDecl *>();
2614 }
2615
setDescribedVarTemplate(VarTemplateDecl * Template)2616 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2617 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2618 }
2619
isKnownToBeDefined() const2620 bool VarDecl::isKnownToBeDefined() const {
2621 const auto &LangOpts = getASTContext().getLangOpts();
2622 // In CUDA mode without relocatable device code, variables of form 'extern
2623 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2624 // memory pool. These are never undefined variables, even if they appear
2625 // inside of an anon namespace or static function.
2626 //
2627 // With CUDA relocatable device code enabled, these variables don't get
2628 // special handling; they're treated like regular extern variables.
2629 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2630 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2631 isa<IncompleteArrayType>(getType()))
2632 return true;
2633
2634 return hasDefinition();
2635 }
2636
isNoDestroy(const ASTContext & Ctx) const2637 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2638 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2639 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2640 !hasAttr<AlwaysDestroyAttr>()));
2641 }
2642
2643 QualType::DestructionKind
needsDestruction(const ASTContext & Ctx) const2644 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2645 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2646 if (Eval->HasConstantDestruction)
2647 return QualType::DK_none;
2648
2649 if (isNoDestroy(Ctx))
2650 return QualType::DK_none;
2651
2652 return getType().isDestructedType();
2653 }
2654
getMemberSpecializationInfo() const2655 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2656 if (isStaticDataMember())
2657 // FIXME: Remove ?
2658 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2659 return getASTContext().getTemplateOrSpecializationInfo(this)
2660 .dyn_cast<MemberSpecializationInfo *>();
2661 return nullptr;
2662 }
2663
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2664 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2665 SourceLocation PointOfInstantiation) {
2666 assert((isa<VarTemplateSpecializationDecl>(this) ||
2667 getMemberSpecializationInfo()) &&
2668 "not a variable or static data member template specialization");
2669
2670 if (VarTemplateSpecializationDecl *Spec =
2671 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2672 Spec->setSpecializationKind(TSK);
2673 if (TSK != TSK_ExplicitSpecialization &&
2674 PointOfInstantiation.isValid() &&
2675 Spec->getPointOfInstantiation().isInvalid()) {
2676 Spec->setPointOfInstantiation(PointOfInstantiation);
2677 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2678 L->InstantiationRequested(this);
2679 }
2680 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2681 MSI->setTemplateSpecializationKind(TSK);
2682 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2683 MSI->getPointOfInstantiation().isInvalid()) {
2684 MSI->setPointOfInstantiation(PointOfInstantiation);
2685 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2686 L->InstantiationRequested(this);
2687 }
2688 }
2689 }
2690
2691 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2692 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2693 TemplateSpecializationKind TSK) {
2694 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2695 "Previous template or instantiation?");
2696 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2697 }
2698
2699 //===----------------------------------------------------------------------===//
2700 // ParmVarDecl Implementation
2701 //===----------------------------------------------------------------------===//
2702
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2703 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2704 SourceLocation StartLoc,
2705 SourceLocation IdLoc, IdentifierInfo *Id,
2706 QualType T, TypeSourceInfo *TInfo,
2707 StorageClass S, Expr *DefArg) {
2708 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2709 S, DefArg);
2710 }
2711
getOriginalType() const2712 QualType ParmVarDecl::getOriginalType() const {
2713 TypeSourceInfo *TSI = getTypeSourceInfo();
2714 QualType T = TSI ? TSI->getType() : getType();
2715 if (const auto *DT = dyn_cast<DecayedType>(T))
2716 return DT->getOriginalType();
2717 return T;
2718 }
2719
CreateDeserialized(ASTContext & C,unsigned ID)2720 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2721 return new (C, ID)
2722 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2723 nullptr, QualType(), nullptr, SC_None, nullptr);
2724 }
2725
getSourceRange() const2726 SourceRange ParmVarDecl::getSourceRange() const {
2727 if (!hasInheritedDefaultArg()) {
2728 SourceRange ArgRange = getDefaultArgRange();
2729 if (ArgRange.isValid())
2730 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2731 }
2732
2733 // DeclaratorDecl considers the range of postfix types as overlapping with the
2734 // declaration name, but this is not the case with parameters in ObjC methods.
2735 if (isa<ObjCMethodDecl>(getDeclContext()))
2736 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2737
2738 return DeclaratorDecl::getSourceRange();
2739 }
2740
getDefaultArg()2741 Expr *ParmVarDecl::getDefaultArg() {
2742 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2743 assert(!hasUninstantiatedDefaultArg() &&
2744 "Default argument is not yet instantiated!");
2745
2746 Expr *Arg = getInit();
2747 if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2748 return E->getSubExpr();
2749
2750 return Arg;
2751 }
2752
setDefaultArg(Expr * defarg)2753 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2754 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2755 Init = defarg;
2756 }
2757
getDefaultArgRange() const2758 SourceRange ParmVarDecl::getDefaultArgRange() const {
2759 switch (ParmVarDeclBits.DefaultArgKind) {
2760 case DAK_None:
2761 case DAK_Unparsed:
2762 // Nothing we can do here.
2763 return SourceRange();
2764
2765 case DAK_Uninstantiated:
2766 return getUninstantiatedDefaultArg()->getSourceRange();
2767
2768 case DAK_Normal:
2769 if (const Expr *E = getInit())
2770 return E->getSourceRange();
2771
2772 // Missing an actual expression, may be invalid.
2773 return SourceRange();
2774 }
2775 llvm_unreachable("Invalid default argument kind.");
2776 }
2777
setUninstantiatedDefaultArg(Expr * arg)2778 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2779 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2780 Init = arg;
2781 }
2782
getUninstantiatedDefaultArg()2783 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2784 assert(hasUninstantiatedDefaultArg() &&
2785 "Wrong kind of initialization expression!");
2786 return cast_or_null<Expr>(Init.get<Stmt *>());
2787 }
2788
hasDefaultArg() const2789 bool ParmVarDecl::hasDefaultArg() const {
2790 // FIXME: We should just return false for DAK_None here once callers are
2791 // prepared for the case that we encountered an invalid default argument and
2792 // were unable to even build an invalid expression.
2793 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2794 !Init.isNull();
2795 }
2796
setParameterIndexLarge(unsigned parameterIndex)2797 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2798 getASTContext().setParameterIndex(this, parameterIndex);
2799 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2800 }
2801
getParameterIndexLarge() const2802 unsigned ParmVarDecl::getParameterIndexLarge() const {
2803 return getASTContext().getParameterIndex(this);
2804 }
2805
2806 //===----------------------------------------------------------------------===//
2807 // FunctionDecl Implementation
2808 //===----------------------------------------------------------------------===//
2809
FunctionDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass S,bool isInlineSpecified,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)2810 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2811 SourceLocation StartLoc,
2812 const DeclarationNameInfo &NameInfo, QualType T,
2813 TypeSourceInfo *TInfo, StorageClass S,
2814 bool isInlineSpecified,
2815 ConstexprSpecKind ConstexprKind,
2816 Expr *TrailingRequiresClause)
2817 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2818 StartLoc),
2819 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2820 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2821 assert(T.isNull() || T->isFunctionType());
2822 FunctionDeclBits.SClass = S;
2823 FunctionDeclBits.IsInline = isInlineSpecified;
2824 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2825 FunctionDeclBits.IsVirtualAsWritten = false;
2826 FunctionDeclBits.IsPure = false;
2827 FunctionDeclBits.HasInheritedPrototype = false;
2828 FunctionDeclBits.HasWrittenPrototype = true;
2829 FunctionDeclBits.IsDeleted = false;
2830 FunctionDeclBits.IsTrivial = false;
2831 FunctionDeclBits.IsTrivialForCall = false;
2832 FunctionDeclBits.IsDefaulted = false;
2833 FunctionDeclBits.IsExplicitlyDefaulted = false;
2834 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2835 FunctionDeclBits.HasImplicitReturnZero = false;
2836 FunctionDeclBits.IsLateTemplateParsed = false;
2837 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2838 FunctionDeclBits.InstantiationIsPending = false;
2839 FunctionDeclBits.UsesSEHTry = false;
2840 FunctionDeclBits.UsesFPIntrin = false;
2841 FunctionDeclBits.HasSkippedBody = false;
2842 FunctionDeclBits.WillHaveBody = false;
2843 FunctionDeclBits.IsMultiVersion = false;
2844 FunctionDeclBits.IsCopyDeductionCandidate = false;
2845 FunctionDeclBits.HasODRHash = false;
2846 if (TrailingRequiresClause)
2847 setTrailingRequiresClause(TrailingRequiresClause);
2848 }
2849
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const2850 void FunctionDecl::getNameForDiagnostic(
2851 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2852 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2853 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2854 if (TemplateArgs)
2855 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2856 }
2857
isVariadic() const2858 bool FunctionDecl::isVariadic() const {
2859 if (const auto *FT = getType()->getAs<FunctionProtoType>())
2860 return FT->isVariadic();
2861 return false;
2862 }
2863
2864 FunctionDecl::DefaultedFunctionInfo *
Create(ASTContext & Context,ArrayRef<DeclAccessPair> Lookups)2865 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2866 ArrayRef<DeclAccessPair> Lookups) {
2867 DefaultedFunctionInfo *Info = new (Context.Allocate(
2868 totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2869 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2870 DefaultedFunctionInfo;
2871 Info->NumLookups = Lookups.size();
2872 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2873 Info->getTrailingObjects<DeclAccessPair>());
2874 return Info;
2875 }
2876
setDefaultedFunctionInfo(DefaultedFunctionInfo * Info)2877 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2878 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2879 assert(!Body && "can't replace function body with defaulted function info");
2880
2881 FunctionDeclBits.HasDefaultedFunctionInfo = true;
2882 DefaultedInfo = Info;
2883 }
2884
2885 FunctionDecl::DefaultedFunctionInfo *
getDefaultedFunctionInfo() const2886 FunctionDecl::getDefaultedFunctionInfo() const {
2887 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2888 }
2889
hasBody(const FunctionDecl * & Definition) const2890 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2891 for (auto I : redecls()) {
2892 if (I->doesThisDeclarationHaveABody()) {
2893 Definition = I;
2894 return true;
2895 }
2896 }
2897
2898 return false;
2899 }
2900
hasTrivialBody() const2901 bool FunctionDecl::hasTrivialBody() const {
2902 Stmt *S = getBody();
2903 if (!S) {
2904 // Since we don't have a body for this function, we don't know if it's
2905 // trivial or not.
2906 return false;
2907 }
2908
2909 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2910 return true;
2911 return false;
2912 }
2913
isThisDeclarationInstantiatedFromAFriendDefinition() const2914 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
2915 if (!getFriendObjectKind())
2916 return false;
2917
2918 // Check for a friend function instantiated from a friend function
2919 // definition in a templated class.
2920 if (const FunctionDecl *InstantiatedFrom =
2921 getInstantiatedFromMemberFunction())
2922 return InstantiatedFrom->getFriendObjectKind() &&
2923 InstantiatedFrom->isThisDeclarationADefinition();
2924
2925 // Check for a friend function template instantiated from a friend
2926 // function template definition in a templated class.
2927 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
2928 if (const FunctionTemplateDecl *InstantiatedFrom =
2929 Template->getInstantiatedFromMemberTemplate())
2930 return InstantiatedFrom->getFriendObjectKind() &&
2931 InstantiatedFrom->isThisDeclarationADefinition();
2932 }
2933
2934 return false;
2935 }
2936
isDefined(const FunctionDecl * & Definition,bool CheckForPendingFriendDefinition) const2937 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
2938 bool CheckForPendingFriendDefinition) const {
2939 for (const FunctionDecl *FD : redecls()) {
2940 if (FD->isThisDeclarationADefinition()) {
2941 Definition = FD;
2942 return true;
2943 }
2944
2945 // If this is a friend function defined in a class template, it does not
2946 // have a body until it is used, nevertheless it is a definition, see
2947 // [temp.inst]p2:
2948 //
2949 // ... for the purpose of determining whether an instantiated redeclaration
2950 // is valid according to [basic.def.odr] and [class.mem], a declaration that
2951 // corresponds to a definition in the template is considered to be a
2952 // definition.
2953 //
2954 // The following code must produce redefinition error:
2955 //
2956 // template<typename T> struct C20 { friend void func_20() {} };
2957 // C20<int> c20i;
2958 // void func_20() {}
2959 //
2960 if (CheckForPendingFriendDefinition &&
2961 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
2962 Definition = FD;
2963 return true;
2964 }
2965 }
2966
2967 return false;
2968 }
2969
getBody(const FunctionDecl * & Definition) const2970 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2971 if (!hasBody(Definition))
2972 return nullptr;
2973
2974 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
2975 "definition should not have a body");
2976 if (Definition->Body)
2977 return Definition->Body.get(getASTContext().getExternalSource());
2978
2979 return nullptr;
2980 }
2981
setBody(Stmt * B)2982 void FunctionDecl::setBody(Stmt *B) {
2983 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2984 Body = LazyDeclStmtPtr(B);
2985 if (B)
2986 EndRangeLoc = B->getEndLoc();
2987 }
2988
setPure(bool P)2989 void FunctionDecl::setPure(bool P) {
2990 FunctionDeclBits.IsPure = P;
2991 if (P)
2992 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2993 Parent->markedVirtualFunctionPure();
2994 }
2995
2996 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])2997 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2998 IdentifierInfo *II = ND->getIdentifier();
2999 return II && II->isStr(Str);
3000 }
3001
isMain() const3002 bool FunctionDecl::isMain() const {
3003 const TranslationUnitDecl *tunit =
3004 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3005 return tunit &&
3006 !tunit->getASTContext().getLangOpts().Freestanding &&
3007 isNamed(this, "main");
3008 }
3009
isMSVCRTEntryPoint() const3010 bool FunctionDecl::isMSVCRTEntryPoint() const {
3011 const TranslationUnitDecl *TUnit =
3012 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3013 if (!TUnit)
3014 return false;
3015
3016 // Even though we aren't really targeting MSVCRT if we are freestanding,
3017 // semantic analysis for these functions remains the same.
3018
3019 // MSVCRT entry points only exist on MSVCRT targets.
3020 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3021 return false;
3022
3023 // Nameless functions like constructors cannot be entry points.
3024 if (!getIdentifier())
3025 return false;
3026
3027 return llvm::StringSwitch<bool>(getName())
3028 .Cases("main", // an ANSI console app
3029 "wmain", // a Unicode console App
3030 "WinMain", // an ANSI GUI app
3031 "wWinMain", // a Unicode GUI app
3032 "DllMain", // a DLL
3033 true)
3034 .Default(false);
3035 }
3036
isReservedGlobalPlacementOperator() const3037 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3038 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
3039 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
3040 getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3041 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
3042 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
3043
3044 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3045 return false;
3046
3047 const auto *proto = getType()->castAs<FunctionProtoType>();
3048 if (proto->getNumParams() != 2 || proto->isVariadic())
3049 return false;
3050
3051 ASTContext &Context =
3052 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3053 ->getASTContext();
3054
3055 // The result type and first argument type are constant across all
3056 // these operators. The second argument must be exactly void*.
3057 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3058 }
3059
isReplaceableGlobalAllocationFunction(Optional<unsigned> * AlignmentParam,bool * IsNothrow) const3060 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3061 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3062 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3063 return false;
3064 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3065 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3066 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3067 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3068 return false;
3069
3070 if (isa<CXXRecordDecl>(getDeclContext()))
3071 return false;
3072
3073 // This can only fail for an invalid 'operator new' declaration.
3074 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3075 return false;
3076
3077 const auto *FPT = getType()->castAs<FunctionProtoType>();
3078 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3079 return false;
3080
3081 // If this is a single-parameter function, it must be a replaceable global
3082 // allocation or deallocation function.
3083 if (FPT->getNumParams() == 1)
3084 return true;
3085
3086 unsigned Params = 1;
3087 QualType Ty = FPT->getParamType(Params);
3088 ASTContext &Ctx = getASTContext();
3089
3090 auto Consume = [&] {
3091 ++Params;
3092 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3093 };
3094
3095 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3096 bool IsSizedDelete = false;
3097 if (Ctx.getLangOpts().SizedDeallocation &&
3098 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3099 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3100 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3101 IsSizedDelete = true;
3102 Consume();
3103 }
3104
3105 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3106 // new/delete.
3107 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3108 Consume();
3109 if (AlignmentParam)
3110 *AlignmentParam = Params;
3111 }
3112
3113 // Finally, if this is not a sized delete, the final parameter can
3114 // be a 'const std::nothrow_t&'.
3115 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3116 Ty = Ty->getPointeeType();
3117 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3118 return false;
3119 if (Ty->isNothrowT()) {
3120 if (IsNothrow)
3121 *IsNothrow = true;
3122 Consume();
3123 }
3124 }
3125
3126 return Params == FPT->getNumParams();
3127 }
3128
isInlineBuiltinDeclaration() const3129 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3130 if (!getBuiltinID())
3131 return false;
3132
3133 const FunctionDecl *Definition;
3134 return hasBody(Definition) && Definition->isInlineSpecified();
3135 }
3136
isDestroyingOperatorDelete() const3137 bool FunctionDecl::isDestroyingOperatorDelete() const {
3138 // C++ P0722:
3139 // Within a class C, a single object deallocation function with signature
3140 // (T, std::destroying_delete_t, <more params>)
3141 // is a destroying operator delete.
3142 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3143 getNumParams() < 2)
3144 return false;
3145
3146 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3147 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3148 RD->getIdentifier()->isStr("destroying_delete_t");
3149 }
3150
getLanguageLinkage() const3151 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3152 return getDeclLanguageLinkage(*this);
3153 }
3154
isExternC() const3155 bool FunctionDecl::isExternC() const {
3156 return isDeclExternC(*this);
3157 }
3158
isInExternCContext() const3159 bool FunctionDecl::isInExternCContext() const {
3160 if (hasAttr<OpenCLKernelAttr>())
3161 return true;
3162 return getLexicalDeclContext()->isExternCContext();
3163 }
3164
isInExternCXXContext() const3165 bool FunctionDecl::isInExternCXXContext() const {
3166 return getLexicalDeclContext()->isExternCXXContext();
3167 }
3168
isGlobal() const3169 bool FunctionDecl::isGlobal() const {
3170 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3171 return Method->isStatic();
3172
3173 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3174 return false;
3175
3176 for (const DeclContext *DC = getDeclContext();
3177 DC->isNamespace();
3178 DC = DC->getParent()) {
3179 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3180 if (!Namespace->getDeclName())
3181 return false;
3182 break;
3183 }
3184 }
3185
3186 return true;
3187 }
3188
isNoReturn() const3189 bool FunctionDecl::isNoReturn() const {
3190 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3191 hasAttr<C11NoReturnAttr>())
3192 return true;
3193
3194 if (auto *FnTy = getType()->getAs<FunctionType>())
3195 return FnTy->getNoReturnAttr();
3196
3197 return false;
3198 }
3199
3200
getMultiVersionKind() const3201 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3202 if (hasAttr<TargetAttr>())
3203 return MultiVersionKind::Target;
3204 if (hasAttr<CPUDispatchAttr>())
3205 return MultiVersionKind::CPUDispatch;
3206 if (hasAttr<CPUSpecificAttr>())
3207 return MultiVersionKind::CPUSpecific;
3208 return MultiVersionKind::None;
3209 }
3210
isCPUDispatchMultiVersion() const3211 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3212 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3213 }
3214
isCPUSpecificMultiVersion() const3215 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3216 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3217 }
3218
isTargetMultiVersion() const3219 bool FunctionDecl::isTargetMultiVersion() const {
3220 return isMultiVersion() && hasAttr<TargetAttr>();
3221 }
3222
3223 void
setPreviousDeclaration(FunctionDecl * PrevDecl)3224 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3225 redeclarable_base::setPreviousDecl(PrevDecl);
3226
3227 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3228 FunctionTemplateDecl *PrevFunTmpl
3229 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3230 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3231 FunTmpl->setPreviousDecl(PrevFunTmpl);
3232 }
3233
3234 if (PrevDecl && PrevDecl->isInlined())
3235 setImplicitlyInline(true);
3236 }
3237
getCanonicalDecl()3238 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3239
3240 /// Returns a value indicating whether this function corresponds to a builtin
3241 /// function.
3242 ///
3243 /// The function corresponds to a built-in function if it is declared at
3244 /// translation scope or within an extern "C" block and its name matches with
3245 /// the name of a builtin. The returned value will be 0 for functions that do
3246 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3247 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3248 /// value.
3249 ///
3250 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3251 /// functions as their wrapped builtins. This shouldn't be done in general, but
3252 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
getBuiltinID(bool ConsiderWrapperFunctions) const3253 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3254 unsigned BuiltinID = 0;
3255
3256 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3257 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3258 } else if (const auto *A = getAttr<BuiltinAttr>()) {
3259 BuiltinID = A->getID();
3260 }
3261
3262 if (!BuiltinID)
3263 return 0;
3264
3265 // If the function is marked "overloadable", it has a different mangled name
3266 // and is not the C library function.
3267 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3268 !hasAttr<ArmBuiltinAliasAttr>())
3269 return 0;
3270
3271 ASTContext &Context = getASTContext();
3272 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3273 return BuiltinID;
3274
3275 // This function has the name of a known C library
3276 // function. Determine whether it actually refers to the C library
3277 // function or whether it just has the same name.
3278
3279 // If this is a static function, it's not a builtin.
3280 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3281 return 0;
3282
3283 // OpenCL v1.2 s6.9.f - The library functions defined in
3284 // the C99 standard headers are not available.
3285 if (Context.getLangOpts().OpenCL &&
3286 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3287 return 0;
3288
3289 // CUDA does not have device-side standard library. printf and malloc are the
3290 // only special cases that are supported by device-side runtime.
3291 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3292 !hasAttr<CUDAHostAttr>() &&
3293 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3294 return 0;
3295
3296 // As AMDGCN implementation of OpenMP does not have a device-side standard
3297 // library, none of the predefined library functions except printf and malloc
3298 // should be treated as a builtin i.e. 0 should be returned for them.
3299 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3300 Context.getLangOpts().OpenMPIsDevice &&
3301 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3302 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3303 return 0;
3304
3305 return BuiltinID;
3306 }
3307
3308 /// getNumParams - Return the number of parameters this function must have
3309 /// based on its FunctionType. This is the length of the ParamInfo array
3310 /// after it has been created.
getNumParams() const3311 unsigned FunctionDecl::getNumParams() const {
3312 const auto *FPT = getType()->getAs<FunctionProtoType>();
3313 return FPT ? FPT->getNumParams() : 0;
3314 }
3315
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)3316 void FunctionDecl::setParams(ASTContext &C,
3317 ArrayRef<ParmVarDecl *> NewParamInfo) {
3318 assert(!ParamInfo && "Already has param info!");
3319 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3320
3321 // Zero params -> null pointer.
3322 if (!NewParamInfo.empty()) {
3323 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3324 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3325 }
3326 }
3327
3328 /// getMinRequiredArguments - Returns the minimum number of arguments
3329 /// needed to call this function. This may be fewer than the number of
3330 /// function parameters, if some of the parameters have default
3331 /// arguments (in C++) or are parameter packs (C++11).
getMinRequiredArguments() const3332 unsigned FunctionDecl::getMinRequiredArguments() const {
3333 if (!getASTContext().getLangOpts().CPlusPlus)
3334 return getNumParams();
3335
3336 // Note that it is possible for a parameter with no default argument to
3337 // follow a parameter with a default argument.
3338 unsigned NumRequiredArgs = 0;
3339 unsigned MinParamsSoFar = 0;
3340 for (auto *Param : parameters()) {
3341 if (!Param->isParameterPack()) {
3342 ++MinParamsSoFar;
3343 if (!Param->hasDefaultArg())
3344 NumRequiredArgs = MinParamsSoFar;
3345 }
3346 }
3347 return NumRequiredArgs;
3348 }
3349
hasOneParamOrDefaultArgs() const3350 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3351 return getNumParams() == 1 ||
3352 (getNumParams() > 1 &&
3353 std::all_of(param_begin() + 1, param_end(),
3354 [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3355 }
3356
3357 /// The combination of the extern and inline keywords under MSVC forces
3358 /// the function to be required.
3359 ///
3360 /// Note: This function assumes that we will only get called when isInlined()
3361 /// would return true for this FunctionDecl.
isMSExternInline() const3362 bool FunctionDecl::isMSExternInline() const {
3363 assert(isInlined() && "expected to get called on an inlined function!");
3364
3365 const ASTContext &Context = getASTContext();
3366 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3367 !hasAttr<DLLExportAttr>())
3368 return false;
3369
3370 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3371 FD = FD->getPreviousDecl())
3372 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3373 return true;
3374
3375 return false;
3376 }
3377
redeclForcesDefMSVC(const FunctionDecl * Redecl)3378 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3379 if (Redecl->getStorageClass() != SC_Extern)
3380 return false;
3381
3382 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3383 FD = FD->getPreviousDecl())
3384 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3385 return false;
3386
3387 return true;
3388 }
3389
RedeclForcesDefC99(const FunctionDecl * Redecl)3390 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3391 // Only consider file-scope declarations in this test.
3392 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3393 return false;
3394
3395 // Only consider explicit declarations; the presence of a builtin for a
3396 // libcall shouldn't affect whether a definition is externally visible.
3397 if (Redecl->isImplicit())
3398 return false;
3399
3400 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3401 return true; // Not an inline definition
3402
3403 return false;
3404 }
3405
3406 /// For a function declaration in C or C++, determine whether this
3407 /// declaration causes the definition to be externally visible.
3408 ///
3409 /// For instance, this determines if adding the current declaration to the set
3410 /// of redeclarations of the given functions causes
3411 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const3412 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3413 assert(!doesThisDeclarationHaveABody() &&
3414 "Must have a declaration without a body.");
3415
3416 ASTContext &Context = getASTContext();
3417
3418 if (Context.getLangOpts().MSVCCompat) {
3419 const FunctionDecl *Definition;
3420 if (hasBody(Definition) && Definition->isInlined() &&
3421 redeclForcesDefMSVC(this))
3422 return true;
3423 }
3424
3425 if (Context.getLangOpts().CPlusPlus)
3426 return false;
3427
3428 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3429 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3430 // an externally visible definition.
3431 //
3432 // FIXME: What happens if gnu_inline gets added on after the first
3433 // declaration?
3434 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3435 return false;
3436
3437 const FunctionDecl *Prev = this;
3438 bool FoundBody = false;
3439 while ((Prev = Prev->getPreviousDecl())) {
3440 FoundBody |= Prev->doesThisDeclarationHaveABody();
3441
3442 if (Prev->doesThisDeclarationHaveABody()) {
3443 // If it's not the case that both 'inline' and 'extern' are
3444 // specified on the definition, then it is always externally visible.
3445 if (!Prev->isInlineSpecified() ||
3446 Prev->getStorageClass() != SC_Extern)
3447 return false;
3448 } else if (Prev->isInlineSpecified() &&
3449 Prev->getStorageClass() != SC_Extern) {
3450 return false;
3451 }
3452 }
3453 return FoundBody;
3454 }
3455
3456 // C99 6.7.4p6:
3457 // [...] If all of the file scope declarations for a function in a
3458 // translation unit include the inline function specifier without extern,
3459 // then the definition in that translation unit is an inline definition.
3460 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3461 return false;
3462 const FunctionDecl *Prev = this;
3463 bool FoundBody = false;
3464 while ((Prev = Prev->getPreviousDecl())) {
3465 FoundBody |= Prev->doesThisDeclarationHaveABody();
3466 if (RedeclForcesDefC99(Prev))
3467 return false;
3468 }
3469 return FoundBody;
3470 }
3471
getFunctionTypeLoc() const3472 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3473 const TypeSourceInfo *TSI = getTypeSourceInfo();
3474 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3475 : FunctionTypeLoc();
3476 }
3477
getReturnTypeSourceRange() const3478 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3479 FunctionTypeLoc FTL = getFunctionTypeLoc();
3480 if (!FTL)
3481 return SourceRange();
3482
3483 // Skip self-referential return types.
3484 const SourceManager &SM = getASTContext().getSourceManager();
3485 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3486 SourceLocation Boundary = getNameInfo().getBeginLoc();
3487 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3488 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3489 return SourceRange();
3490
3491 return RTRange;
3492 }
3493
getParametersSourceRange() const3494 SourceRange FunctionDecl::getParametersSourceRange() const {
3495 unsigned NP = getNumParams();
3496 SourceLocation EllipsisLoc = getEllipsisLoc();
3497
3498 if (NP == 0 && EllipsisLoc.isInvalid())
3499 return SourceRange();
3500
3501 SourceLocation Begin =
3502 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3503 SourceLocation End = EllipsisLoc.isValid()
3504 ? EllipsisLoc
3505 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3506
3507 return SourceRange(Begin, End);
3508 }
3509
getExceptionSpecSourceRange() const3510 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3511 FunctionTypeLoc FTL = getFunctionTypeLoc();
3512 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3513 }
3514
3515 /// For an inline function definition in C, or for a gnu_inline function
3516 /// in C++, determine whether the definition will be externally visible.
3517 ///
3518 /// Inline function definitions are always available for inlining optimizations.
3519 /// However, depending on the language dialect, declaration specifiers, and
3520 /// attributes, the definition of an inline function may or may not be
3521 /// "externally" visible to other translation units in the program.
3522 ///
3523 /// In C99, inline definitions are not externally visible by default. However,
3524 /// if even one of the global-scope declarations is marked "extern inline", the
3525 /// inline definition becomes externally visible (C99 6.7.4p6).
3526 ///
3527 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3528 /// definition, we use the GNU semantics for inline, which are nearly the
3529 /// opposite of C99 semantics. In particular, "inline" by itself will create
3530 /// an externally visible symbol, but "extern inline" will not create an
3531 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const3532 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3533 assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3534 hasAttr<AliasAttr>()) &&
3535 "Must be a function definition");
3536 assert(isInlined() && "Function must be inline");
3537 ASTContext &Context = getASTContext();
3538
3539 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3540 // Note: If you change the logic here, please change
3541 // doesDeclarationForceExternallyVisibleDefinition as well.
3542 //
3543 // If it's not the case that both 'inline' and 'extern' are
3544 // specified on the definition, then this inline definition is
3545 // externally visible.
3546 if (Context.getLangOpts().CPlusPlus)
3547 return false;
3548 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3549 return true;
3550
3551 // If any declaration is 'inline' but not 'extern', then this definition
3552 // is externally visible.
3553 for (auto Redecl : redecls()) {
3554 if (Redecl->isInlineSpecified() &&
3555 Redecl->getStorageClass() != SC_Extern)
3556 return true;
3557 }
3558
3559 return false;
3560 }
3561
3562 // The rest of this function is C-only.
3563 assert(!Context.getLangOpts().CPlusPlus &&
3564 "should not use C inline rules in C++");
3565
3566 // C99 6.7.4p6:
3567 // [...] If all of the file scope declarations for a function in a
3568 // translation unit include the inline function specifier without extern,
3569 // then the definition in that translation unit is an inline definition.
3570 for (auto Redecl : redecls()) {
3571 if (RedeclForcesDefC99(Redecl))
3572 return true;
3573 }
3574
3575 // C99 6.7.4p6:
3576 // An inline definition does not provide an external definition for the
3577 // function, and does not forbid an external definition in another
3578 // translation unit.
3579 return false;
3580 }
3581
3582 /// getOverloadedOperator - Which C++ overloaded operator this
3583 /// function represents, if any.
getOverloadedOperator() const3584 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3585 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3586 return getDeclName().getCXXOverloadedOperator();
3587 else
3588 return OO_None;
3589 }
3590
3591 /// getLiteralIdentifier - The literal suffix identifier this function
3592 /// represents, if any.
getLiteralIdentifier() const3593 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3594 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3595 return getDeclName().getCXXLiteralIdentifier();
3596 else
3597 return nullptr;
3598 }
3599
getTemplatedKind() const3600 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3601 if (TemplateOrSpecialization.isNull())
3602 return TK_NonTemplate;
3603 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3604 return TK_FunctionTemplate;
3605 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3606 return TK_MemberSpecialization;
3607 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3608 return TK_FunctionTemplateSpecialization;
3609 if (TemplateOrSpecialization.is
3610 <DependentFunctionTemplateSpecializationInfo*>())
3611 return TK_DependentFunctionTemplateSpecialization;
3612
3613 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3614 }
3615
getInstantiatedFromMemberFunction() const3616 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3617 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3618 return cast<FunctionDecl>(Info->getInstantiatedFrom());
3619
3620 return nullptr;
3621 }
3622
getMemberSpecializationInfo() const3623 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3624 if (auto *MSI =
3625 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3626 return MSI;
3627 if (auto *FTSI = TemplateOrSpecialization
3628 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3629 return FTSI->getMemberSpecializationInfo();
3630 return nullptr;
3631 }
3632
3633 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)3634 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3635 FunctionDecl *FD,
3636 TemplateSpecializationKind TSK) {
3637 assert(TemplateOrSpecialization.isNull() &&
3638 "Member function is already a specialization");
3639 MemberSpecializationInfo *Info
3640 = new (C) MemberSpecializationInfo(FD, TSK);
3641 TemplateOrSpecialization = Info;
3642 }
3643
getDescribedFunctionTemplate() const3644 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3645 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3646 }
3647
setDescribedFunctionTemplate(FunctionTemplateDecl * Template)3648 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3649 assert(TemplateOrSpecialization.isNull() &&
3650 "Member function is already a specialization");
3651 TemplateOrSpecialization = Template;
3652 }
3653
isImplicitlyInstantiable() const3654 bool FunctionDecl::isImplicitlyInstantiable() const {
3655 // If the function is invalid, it can't be implicitly instantiated.
3656 if (isInvalidDecl())
3657 return false;
3658
3659 switch (getTemplateSpecializationKindForInstantiation()) {
3660 case TSK_Undeclared:
3661 case TSK_ExplicitInstantiationDefinition:
3662 case TSK_ExplicitSpecialization:
3663 return false;
3664
3665 case TSK_ImplicitInstantiation:
3666 return true;
3667
3668 case TSK_ExplicitInstantiationDeclaration:
3669 // Handled below.
3670 break;
3671 }
3672
3673 // Find the actual template from which we will instantiate.
3674 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3675 bool HasPattern = false;
3676 if (PatternDecl)
3677 HasPattern = PatternDecl->hasBody(PatternDecl);
3678
3679 // C++0x [temp.explicit]p9:
3680 // Except for inline functions, other explicit instantiation declarations
3681 // have the effect of suppressing the implicit instantiation of the entity
3682 // to which they refer.
3683 if (!HasPattern || !PatternDecl)
3684 return true;
3685
3686 return PatternDecl->isInlined();
3687 }
3688
isTemplateInstantiation() const3689 bool FunctionDecl::isTemplateInstantiation() const {
3690 // FIXME: Remove this, it's not clear what it means. (Which template
3691 // specialization kind?)
3692 return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3693 }
3694
3695 FunctionDecl *
getTemplateInstantiationPattern(bool ForDefinition) const3696 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3697 // If this is a generic lambda call operator specialization, its
3698 // instantiation pattern is always its primary template's pattern
3699 // even if its primary template was instantiated from another
3700 // member template (which happens with nested generic lambdas).
3701 // Since a lambda's call operator's body is transformed eagerly,
3702 // we don't have to go hunting for a prototype definition template
3703 // (i.e. instantiated-from-member-template) to use as an instantiation
3704 // pattern.
3705
3706 if (isGenericLambdaCallOperatorSpecialization(
3707 dyn_cast<CXXMethodDecl>(this))) {
3708 assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3709 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3710 }
3711
3712 // Check for a declaration of this function that was instantiated from a
3713 // friend definition.
3714 const FunctionDecl *FD = nullptr;
3715 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3716 FD = this;
3717
3718 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3719 if (ForDefinition &&
3720 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3721 return nullptr;
3722 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3723 }
3724
3725 if (ForDefinition &&
3726 !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3727 return nullptr;
3728
3729 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3730 // If we hit a point where the user provided a specialization of this
3731 // template, we're done looking.
3732 while (!ForDefinition || !Primary->isMemberSpecialization()) {
3733 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3734 if (!NewPrimary)
3735 break;
3736 Primary = NewPrimary;
3737 }
3738
3739 return getDefinitionOrSelf(Primary->getTemplatedDecl());
3740 }
3741
3742 return nullptr;
3743 }
3744
getPrimaryTemplate() const3745 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3746 if (FunctionTemplateSpecializationInfo *Info
3747 = TemplateOrSpecialization
3748 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3749 return Info->getTemplate();
3750 }
3751 return nullptr;
3752 }
3753
3754 FunctionTemplateSpecializationInfo *
getTemplateSpecializationInfo() const3755 FunctionDecl::getTemplateSpecializationInfo() const {
3756 return TemplateOrSpecialization
3757 .dyn_cast<FunctionTemplateSpecializationInfo *>();
3758 }
3759
3760 const TemplateArgumentList *
getTemplateSpecializationArgs() const3761 FunctionDecl::getTemplateSpecializationArgs() const {
3762 if (FunctionTemplateSpecializationInfo *Info
3763 = TemplateOrSpecialization
3764 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3765 return Info->TemplateArguments;
3766 }
3767 return nullptr;
3768 }
3769
3770 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const3771 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3772 if (FunctionTemplateSpecializationInfo *Info
3773 = TemplateOrSpecialization
3774 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3775 return Info->TemplateArgumentsAsWritten;
3776 }
3777 return nullptr;
3778 }
3779
3780 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)3781 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3782 FunctionTemplateDecl *Template,
3783 const TemplateArgumentList *TemplateArgs,
3784 void *InsertPos,
3785 TemplateSpecializationKind TSK,
3786 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3787 SourceLocation PointOfInstantiation) {
3788 assert((TemplateOrSpecialization.isNull() ||
3789 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3790 "Member function is already a specialization");
3791 assert(TSK != TSK_Undeclared &&
3792 "Must specify the type of function template specialization");
3793 assert((TemplateOrSpecialization.isNull() ||
3794 TSK == TSK_ExplicitSpecialization) &&
3795 "Member specialization must be an explicit specialization");
3796 FunctionTemplateSpecializationInfo *Info =
3797 FunctionTemplateSpecializationInfo::Create(
3798 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3799 PointOfInstantiation,
3800 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3801 TemplateOrSpecialization = Info;
3802 Template->addSpecialization(Info, InsertPos);
3803 }
3804
3805 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)3806 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3807 const UnresolvedSetImpl &Templates,
3808 const TemplateArgumentListInfo &TemplateArgs) {
3809 assert(TemplateOrSpecialization.isNull());
3810 DependentFunctionTemplateSpecializationInfo *Info =
3811 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3812 TemplateArgs);
3813 TemplateOrSpecialization = Info;
3814 }
3815
3816 DependentFunctionTemplateSpecializationInfo *
getDependentSpecializationInfo() const3817 FunctionDecl::getDependentSpecializationInfo() const {
3818 return TemplateOrSpecialization
3819 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3820 }
3821
3822 DependentFunctionTemplateSpecializationInfo *
Create(ASTContext & Context,const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3823 DependentFunctionTemplateSpecializationInfo::Create(
3824 ASTContext &Context, const UnresolvedSetImpl &Ts,
3825 const TemplateArgumentListInfo &TArgs) {
3826 void *Buffer = Context.Allocate(
3827 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3828 TArgs.size(), Ts.size()));
3829 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3830 }
3831
3832 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3833 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3834 const TemplateArgumentListInfo &TArgs)
3835 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3836 NumTemplates = Ts.size();
3837 NumArgs = TArgs.size();
3838
3839 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3840 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3841 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3842
3843 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3844 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3845 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3846 }
3847
getTemplateSpecializationKind() const3848 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3849 // For a function template specialization, query the specialization
3850 // information object.
3851 if (FunctionTemplateSpecializationInfo *FTSInfo =
3852 TemplateOrSpecialization
3853 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3854 return FTSInfo->getTemplateSpecializationKind();
3855
3856 if (MemberSpecializationInfo *MSInfo =
3857 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3858 return MSInfo->getTemplateSpecializationKind();
3859
3860 return TSK_Undeclared;
3861 }
3862
3863 TemplateSpecializationKind
getTemplateSpecializationKindForInstantiation() const3864 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3865 // This is the same as getTemplateSpecializationKind(), except that for a
3866 // function that is both a function template specialization and a member
3867 // specialization, we prefer the member specialization information. Eg:
3868 //
3869 // template<typename T> struct A {
3870 // template<typename U> void f() {}
3871 // template<> void f<int>() {}
3872 // };
3873 //
3874 // For A<int>::f<int>():
3875 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3876 // * getTemplateSpecializationKindForInstantiation() will return
3877 // TSK_ImplicitInstantiation
3878 //
3879 // This reflects the facts that A<int>::f<int> is an explicit specialization
3880 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3881 // from A::f<int> if a definition is needed.
3882 if (FunctionTemplateSpecializationInfo *FTSInfo =
3883 TemplateOrSpecialization
3884 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3885 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3886 return MSInfo->getTemplateSpecializationKind();
3887 return FTSInfo->getTemplateSpecializationKind();
3888 }
3889
3890 if (MemberSpecializationInfo *MSInfo =
3891 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3892 return MSInfo->getTemplateSpecializationKind();
3893
3894 return TSK_Undeclared;
3895 }
3896
3897 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3898 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3899 SourceLocation PointOfInstantiation) {
3900 if (FunctionTemplateSpecializationInfo *FTSInfo
3901 = TemplateOrSpecialization.dyn_cast<
3902 FunctionTemplateSpecializationInfo*>()) {
3903 FTSInfo->setTemplateSpecializationKind(TSK);
3904 if (TSK != TSK_ExplicitSpecialization &&
3905 PointOfInstantiation.isValid() &&
3906 FTSInfo->getPointOfInstantiation().isInvalid()) {
3907 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3908 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3909 L->InstantiationRequested(this);
3910 }
3911 } else if (MemberSpecializationInfo *MSInfo
3912 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3913 MSInfo->setTemplateSpecializationKind(TSK);
3914 if (TSK != TSK_ExplicitSpecialization &&
3915 PointOfInstantiation.isValid() &&
3916 MSInfo->getPointOfInstantiation().isInvalid()) {
3917 MSInfo->setPointOfInstantiation(PointOfInstantiation);
3918 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3919 L->InstantiationRequested(this);
3920 }
3921 } else
3922 llvm_unreachable("Function cannot have a template specialization kind");
3923 }
3924
getPointOfInstantiation() const3925 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3926 if (FunctionTemplateSpecializationInfo *FTSInfo
3927 = TemplateOrSpecialization.dyn_cast<
3928 FunctionTemplateSpecializationInfo*>())
3929 return FTSInfo->getPointOfInstantiation();
3930 else if (MemberSpecializationInfo *MSInfo
3931 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3932 return MSInfo->getPointOfInstantiation();
3933
3934 return SourceLocation();
3935 }
3936
isOutOfLine() const3937 bool FunctionDecl::isOutOfLine() const {
3938 if (Decl::isOutOfLine())
3939 return true;
3940
3941 // If this function was instantiated from a member function of a
3942 // class template, check whether that member function was defined out-of-line.
3943 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3944 const FunctionDecl *Definition;
3945 if (FD->hasBody(Definition))
3946 return Definition->isOutOfLine();
3947 }
3948
3949 // If this function was instantiated from a function template,
3950 // check whether that function template was defined out-of-line.
3951 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3952 const FunctionDecl *Definition;
3953 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3954 return Definition->isOutOfLine();
3955 }
3956
3957 return false;
3958 }
3959
getSourceRange() const3960 SourceRange FunctionDecl::getSourceRange() const {
3961 return SourceRange(getOuterLocStart(), EndRangeLoc);
3962 }
3963
getMemoryFunctionKind() const3964 unsigned FunctionDecl::getMemoryFunctionKind() const {
3965 IdentifierInfo *FnInfo = getIdentifier();
3966
3967 if (!FnInfo)
3968 return 0;
3969
3970 // Builtin handling.
3971 switch (getBuiltinID()) {
3972 case Builtin::BI__builtin_memset:
3973 case Builtin::BI__builtin___memset_chk:
3974 case Builtin::BImemset:
3975 return Builtin::BImemset;
3976
3977 case Builtin::BI__builtin_memcpy:
3978 case Builtin::BI__builtin___memcpy_chk:
3979 case Builtin::BImemcpy:
3980 return Builtin::BImemcpy;
3981
3982 case Builtin::BI__builtin_mempcpy:
3983 case Builtin::BI__builtin___mempcpy_chk:
3984 case Builtin::BImempcpy:
3985 return Builtin::BImempcpy;
3986
3987 case Builtin::BI__builtin_memmove:
3988 case Builtin::BI__builtin___memmove_chk:
3989 case Builtin::BImemmove:
3990 return Builtin::BImemmove;
3991
3992 case Builtin::BIstrlcpy:
3993 case Builtin::BI__builtin___strlcpy_chk:
3994 return Builtin::BIstrlcpy;
3995
3996 case Builtin::BIstrlcat:
3997 case Builtin::BI__builtin___strlcat_chk:
3998 return Builtin::BIstrlcat;
3999
4000 case Builtin::BI__builtin_memcmp:
4001 case Builtin::BImemcmp:
4002 return Builtin::BImemcmp;
4003
4004 case Builtin::BI__builtin_bcmp:
4005 case Builtin::BIbcmp:
4006 return Builtin::BIbcmp;
4007
4008 case Builtin::BI__builtin_strncpy:
4009 case Builtin::BI__builtin___strncpy_chk:
4010 case Builtin::BIstrncpy:
4011 return Builtin::BIstrncpy;
4012
4013 case Builtin::BI__builtin_strncmp:
4014 case Builtin::BIstrncmp:
4015 return Builtin::BIstrncmp;
4016
4017 case Builtin::BI__builtin_strncasecmp:
4018 case Builtin::BIstrncasecmp:
4019 return Builtin::BIstrncasecmp;
4020
4021 case Builtin::BI__builtin_strncat:
4022 case Builtin::BI__builtin___strncat_chk:
4023 case Builtin::BIstrncat:
4024 return Builtin::BIstrncat;
4025
4026 case Builtin::BI__builtin_strndup:
4027 case Builtin::BIstrndup:
4028 return Builtin::BIstrndup;
4029
4030 case Builtin::BI__builtin_strlen:
4031 case Builtin::BIstrlen:
4032 return Builtin::BIstrlen;
4033
4034 case Builtin::BI__builtin_bzero:
4035 case Builtin::BIbzero:
4036 return Builtin::BIbzero;
4037
4038 case Builtin::BIfree:
4039 return Builtin::BIfree;
4040
4041 default:
4042 if (isExternC()) {
4043 if (FnInfo->isStr("memset"))
4044 return Builtin::BImemset;
4045 else if (FnInfo->isStr("memcpy"))
4046 return Builtin::BImemcpy;
4047 else if (FnInfo->isStr("mempcpy"))
4048 return Builtin::BImempcpy;
4049 else if (FnInfo->isStr("memmove"))
4050 return Builtin::BImemmove;
4051 else if (FnInfo->isStr("memcmp"))
4052 return Builtin::BImemcmp;
4053 else if (FnInfo->isStr("bcmp"))
4054 return Builtin::BIbcmp;
4055 else if (FnInfo->isStr("strncpy"))
4056 return Builtin::BIstrncpy;
4057 else if (FnInfo->isStr("strncmp"))
4058 return Builtin::BIstrncmp;
4059 else if (FnInfo->isStr("strncasecmp"))
4060 return Builtin::BIstrncasecmp;
4061 else if (FnInfo->isStr("strncat"))
4062 return Builtin::BIstrncat;
4063 else if (FnInfo->isStr("strndup"))
4064 return Builtin::BIstrndup;
4065 else if (FnInfo->isStr("strlen"))
4066 return Builtin::BIstrlen;
4067 else if (FnInfo->isStr("bzero"))
4068 return Builtin::BIbzero;
4069 } else if (isInStdNamespace()) {
4070 if (FnInfo->isStr("free"))
4071 return Builtin::BIfree;
4072 }
4073 break;
4074 }
4075 return 0;
4076 }
4077
getODRHash() const4078 unsigned FunctionDecl::getODRHash() const {
4079 assert(hasODRHash());
4080 return ODRHash;
4081 }
4082
getODRHash()4083 unsigned FunctionDecl::getODRHash() {
4084 if (hasODRHash())
4085 return ODRHash;
4086
4087 if (auto *FT = getInstantiatedFromMemberFunction()) {
4088 setHasODRHash(true);
4089 ODRHash = FT->getODRHash();
4090 return ODRHash;
4091 }
4092
4093 class ODRHash Hash;
4094 Hash.AddFunctionDecl(this);
4095 setHasODRHash(true);
4096 ODRHash = Hash.CalculateHash();
4097 return ODRHash;
4098 }
4099
4100 //===----------------------------------------------------------------------===//
4101 // FieldDecl Implementation
4102 //===----------------------------------------------------------------------===//
4103
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)4104 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4105 SourceLocation StartLoc, SourceLocation IdLoc,
4106 IdentifierInfo *Id, QualType T,
4107 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4108 InClassInitStyle InitStyle) {
4109 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4110 BW, Mutable, InitStyle);
4111 }
4112
CreateDeserialized(ASTContext & C,unsigned ID)4113 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4114 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4115 SourceLocation(), nullptr, QualType(), nullptr,
4116 nullptr, false, ICIS_NoInit);
4117 }
4118
isAnonymousStructOrUnion() const4119 bool FieldDecl::isAnonymousStructOrUnion() const {
4120 if (!isImplicit() || getDeclName())
4121 return false;
4122
4123 if (const auto *Record = getType()->getAs<RecordType>())
4124 return Record->getDecl()->isAnonymousStructOrUnion();
4125
4126 return false;
4127 }
4128
getBitWidthValue(const ASTContext & Ctx) const4129 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4130 assert(isBitField() && "not a bitfield");
4131 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4132 }
4133
isZeroLengthBitField(const ASTContext & Ctx) const4134 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4135 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4136 getBitWidthValue(Ctx) == 0;
4137 }
4138
isZeroSize(const ASTContext & Ctx) const4139 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4140 if (isZeroLengthBitField(Ctx))
4141 return true;
4142
4143 // C++2a [intro.object]p7:
4144 // An object has nonzero size if it
4145 // -- is not a potentially-overlapping subobject, or
4146 if (!hasAttr<NoUniqueAddressAttr>())
4147 return false;
4148
4149 // -- is not of class type, or
4150 const auto *RT = getType()->getAs<RecordType>();
4151 if (!RT)
4152 return false;
4153 const RecordDecl *RD = RT->getDecl()->getDefinition();
4154 if (!RD) {
4155 assert(isInvalidDecl() && "valid field has incomplete type");
4156 return false;
4157 }
4158
4159 // -- [has] virtual member functions or virtual base classes, or
4160 // -- has subobjects of nonzero size or bit-fields of nonzero length
4161 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4162 if (!CXXRD->isEmpty())
4163 return false;
4164
4165 // Otherwise, [...] the circumstances under which the object has zero size
4166 // are implementation-defined.
4167 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4168 // ABI will do.
4169 return true;
4170 }
4171
getFieldIndex() const4172 unsigned FieldDecl::getFieldIndex() const {
4173 const FieldDecl *Canonical = getCanonicalDecl();
4174 if (Canonical != this)
4175 return Canonical->getFieldIndex();
4176
4177 if (CachedFieldIndex) return CachedFieldIndex - 1;
4178
4179 unsigned Index = 0;
4180 const RecordDecl *RD = getParent()->getDefinition();
4181 assert(RD && "requested index for field of struct with no definition");
4182
4183 for (auto *Field : RD->fields()) {
4184 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4185 ++Index;
4186 }
4187
4188 assert(CachedFieldIndex && "failed to find field in parent");
4189 return CachedFieldIndex - 1;
4190 }
4191
getSourceRange() const4192 SourceRange FieldDecl::getSourceRange() const {
4193 const Expr *FinalExpr = getInClassInitializer();
4194 if (!FinalExpr)
4195 FinalExpr = getBitWidth();
4196 if (FinalExpr)
4197 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4198 return DeclaratorDecl::getSourceRange();
4199 }
4200
setCapturedVLAType(const VariableArrayType * VLAType)4201 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4202 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4203 "capturing type in non-lambda or captured record.");
4204 assert(InitStorage.getInt() == ISK_NoInit &&
4205 InitStorage.getPointer() == nullptr &&
4206 "bit width, initializer or captured type already set");
4207 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4208 ISK_CapturedVLAType);
4209 }
4210
4211 //===----------------------------------------------------------------------===//
4212 // TagDecl Implementation
4213 //===----------------------------------------------------------------------===//
4214
TagDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,TagDecl * PrevDecl,SourceLocation StartL)4215 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4216 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4217 SourceLocation StartL)
4218 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4219 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4220 assert((DK != Enum || TK == TTK_Enum) &&
4221 "EnumDecl not matched with TTK_Enum");
4222 setPreviousDecl(PrevDecl);
4223 setTagKind(TK);
4224 setCompleteDefinition(false);
4225 setBeingDefined(false);
4226 setEmbeddedInDeclarator(false);
4227 setFreeStanding(false);
4228 setCompleteDefinitionRequired(false);
4229 }
4230
getOuterLocStart() const4231 SourceLocation TagDecl::getOuterLocStart() const {
4232 return getTemplateOrInnerLocStart(this);
4233 }
4234
getSourceRange() const4235 SourceRange TagDecl::getSourceRange() const {
4236 SourceLocation RBraceLoc = BraceRange.getEnd();
4237 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4238 return SourceRange(getOuterLocStart(), E);
4239 }
4240
getCanonicalDecl()4241 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4242
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)4243 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4244 TypedefNameDeclOrQualifier = TDD;
4245 if (const Type *T = getTypeForDecl()) {
4246 (void)T;
4247 assert(T->isLinkageValid());
4248 }
4249 assert(isLinkageValid());
4250 }
4251
startDefinition()4252 void TagDecl::startDefinition() {
4253 setBeingDefined(true);
4254
4255 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4256 struct CXXRecordDecl::DefinitionData *Data =
4257 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4258 for (auto I : redecls())
4259 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4260 }
4261 }
4262
completeDefinition()4263 void TagDecl::completeDefinition() {
4264 assert((!isa<CXXRecordDecl>(this) ||
4265 cast<CXXRecordDecl>(this)->hasDefinition()) &&
4266 "definition completed but not started");
4267
4268 setCompleteDefinition(true);
4269 setBeingDefined(false);
4270
4271 if (ASTMutationListener *L = getASTMutationListener())
4272 L->CompletedTagDefinition(this);
4273 }
4274
getDefinition() const4275 TagDecl *TagDecl::getDefinition() const {
4276 if (isCompleteDefinition())
4277 return const_cast<TagDecl *>(this);
4278
4279 // If it's possible for us to have an out-of-date definition, check now.
4280 if (mayHaveOutOfDateDef()) {
4281 if (IdentifierInfo *II = getIdentifier()) {
4282 if (II->isOutOfDate()) {
4283 updateOutOfDate(*II);
4284 }
4285 }
4286 }
4287
4288 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4289 return CXXRD->getDefinition();
4290
4291 for (auto R : redecls())
4292 if (R->isCompleteDefinition())
4293 return R;
4294
4295 return nullptr;
4296 }
4297
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)4298 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4299 if (QualifierLoc) {
4300 // Make sure the extended qualifier info is allocated.
4301 if (!hasExtInfo())
4302 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4303 // Set qualifier info.
4304 getExtInfo()->QualifierLoc = QualifierLoc;
4305 } else {
4306 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4307 if (hasExtInfo()) {
4308 if (getExtInfo()->NumTemplParamLists == 0) {
4309 getASTContext().Deallocate(getExtInfo());
4310 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4311 }
4312 else
4313 getExtInfo()->QualifierLoc = QualifierLoc;
4314 }
4315 }
4316 }
4317
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)4318 void TagDecl::setTemplateParameterListsInfo(
4319 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4320 assert(!TPLists.empty());
4321 // Make sure the extended decl info is allocated.
4322 if (!hasExtInfo())
4323 // Allocate external info struct.
4324 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4325 // Set the template parameter lists info.
4326 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4327 }
4328
4329 //===----------------------------------------------------------------------===//
4330 // EnumDecl Implementation
4331 //===----------------------------------------------------------------------===//
4332
EnumDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool Scoped,bool ScopedUsingClassTag,bool Fixed)4333 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4334 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4335 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4336 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4337 assert(Scoped || !ScopedUsingClassTag);
4338 IntegerType = nullptr;
4339 setNumPositiveBits(0);
4340 setNumNegativeBits(0);
4341 setScoped(Scoped);
4342 setScopedUsingClassTag(ScopedUsingClassTag);
4343 setFixed(Fixed);
4344 setHasODRHash(false);
4345 ODRHash = 0;
4346 }
4347
anchor()4348 void EnumDecl::anchor() {}
4349
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)4350 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4351 SourceLocation StartLoc, SourceLocation IdLoc,
4352 IdentifierInfo *Id,
4353 EnumDecl *PrevDecl, bool IsScoped,
4354 bool IsScopedUsingClassTag, bool IsFixed) {
4355 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4356 IsScoped, IsScopedUsingClassTag, IsFixed);
4357 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4358 C.getTypeDeclType(Enum, PrevDecl);
4359 return Enum;
4360 }
4361
CreateDeserialized(ASTContext & C,unsigned ID)4362 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4363 EnumDecl *Enum =
4364 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4365 nullptr, nullptr, false, false, false);
4366 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4367 return Enum;
4368 }
4369
getIntegerTypeRange() const4370 SourceRange EnumDecl::getIntegerTypeRange() const {
4371 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4372 return TI->getTypeLoc().getSourceRange();
4373 return SourceRange();
4374 }
4375
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)4376 void EnumDecl::completeDefinition(QualType NewType,
4377 QualType NewPromotionType,
4378 unsigned NumPositiveBits,
4379 unsigned NumNegativeBits) {
4380 assert(!isCompleteDefinition() && "Cannot redefine enums!");
4381 if (!IntegerType)
4382 IntegerType = NewType.getTypePtr();
4383 PromotionType = NewPromotionType;
4384 setNumPositiveBits(NumPositiveBits);
4385 setNumNegativeBits(NumNegativeBits);
4386 TagDecl::completeDefinition();
4387 }
4388
isClosed() const4389 bool EnumDecl::isClosed() const {
4390 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4391 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4392 return true;
4393 }
4394
isClosedFlag() const4395 bool EnumDecl::isClosedFlag() const {
4396 return isClosed() && hasAttr<FlagEnumAttr>();
4397 }
4398
isClosedNonFlag() const4399 bool EnumDecl::isClosedNonFlag() const {
4400 return isClosed() && !hasAttr<FlagEnumAttr>();
4401 }
4402
getTemplateSpecializationKind() const4403 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4404 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4405 return MSI->getTemplateSpecializationKind();
4406
4407 return TSK_Undeclared;
4408 }
4409
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)4410 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4411 SourceLocation PointOfInstantiation) {
4412 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4413 assert(MSI && "Not an instantiated member enumeration?");
4414 MSI->setTemplateSpecializationKind(TSK);
4415 if (TSK != TSK_ExplicitSpecialization &&
4416 PointOfInstantiation.isValid() &&
4417 MSI->getPointOfInstantiation().isInvalid())
4418 MSI->setPointOfInstantiation(PointOfInstantiation);
4419 }
4420
getTemplateInstantiationPattern() const4421 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4422 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4423 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4424 EnumDecl *ED = getInstantiatedFromMemberEnum();
4425 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4426 ED = NewED;
4427 return getDefinitionOrSelf(ED);
4428 }
4429 }
4430
4431 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4432 "couldn't find pattern for enum instantiation");
4433 return nullptr;
4434 }
4435
getInstantiatedFromMemberEnum() const4436 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4437 if (SpecializationInfo)
4438 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4439
4440 return nullptr;
4441 }
4442
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)4443 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4444 TemplateSpecializationKind TSK) {
4445 assert(!SpecializationInfo && "Member enum is already a specialization");
4446 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4447 }
4448
getODRHash()4449 unsigned EnumDecl::getODRHash() {
4450 if (hasODRHash())
4451 return ODRHash;
4452
4453 class ODRHash Hash;
4454 Hash.AddEnumDecl(this);
4455 setHasODRHash(true);
4456 ODRHash = Hash.CalculateHash();
4457 return ODRHash;
4458 }
4459
4460 //===----------------------------------------------------------------------===//
4461 // RecordDecl Implementation
4462 //===----------------------------------------------------------------------===//
4463
RecordDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)4464 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4465 DeclContext *DC, SourceLocation StartLoc,
4466 SourceLocation IdLoc, IdentifierInfo *Id,
4467 RecordDecl *PrevDecl)
4468 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4469 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4470 setHasFlexibleArrayMember(false);
4471 setAnonymousStructOrUnion(false);
4472 setHasObjectMember(false);
4473 setHasVolatileMember(false);
4474 setHasLoadedFieldsFromExternalStorage(false);
4475 setNonTrivialToPrimitiveDefaultInitialize(false);
4476 setNonTrivialToPrimitiveCopy(false);
4477 setNonTrivialToPrimitiveDestroy(false);
4478 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4479 setHasNonTrivialToPrimitiveDestructCUnion(false);
4480 setHasNonTrivialToPrimitiveCopyCUnion(false);
4481 setParamDestroyedInCallee(false);
4482 setArgPassingRestrictions(APK_CanPassInRegs);
4483 }
4484
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)4485 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4486 SourceLocation StartLoc, SourceLocation IdLoc,
4487 IdentifierInfo *Id, RecordDecl* PrevDecl) {
4488 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4489 StartLoc, IdLoc, Id, PrevDecl);
4490 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4491
4492 C.getTypeDeclType(R, PrevDecl);
4493 return R;
4494 }
4495
CreateDeserialized(const ASTContext & C,unsigned ID)4496 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4497 RecordDecl *R =
4498 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4499 SourceLocation(), nullptr, nullptr);
4500 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4501 return R;
4502 }
4503
isInjectedClassName() const4504 bool RecordDecl::isInjectedClassName() const {
4505 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4506 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4507 }
4508
isLambda() const4509 bool RecordDecl::isLambda() const {
4510 if (auto RD = dyn_cast<CXXRecordDecl>(this))
4511 return RD->isLambda();
4512 return false;
4513 }
4514
isCapturedRecord() const4515 bool RecordDecl::isCapturedRecord() const {
4516 return hasAttr<CapturedRecordAttr>();
4517 }
4518
setCapturedRecord()4519 void RecordDecl::setCapturedRecord() {
4520 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4521 }
4522
isOrContainsUnion() const4523 bool RecordDecl::isOrContainsUnion() const {
4524 if (isUnion())
4525 return true;
4526
4527 if (const RecordDecl *Def = getDefinition()) {
4528 for (const FieldDecl *FD : Def->fields()) {
4529 const RecordType *RT = FD->getType()->getAs<RecordType>();
4530 if (RT && RT->getDecl()->isOrContainsUnion())
4531 return true;
4532 }
4533 }
4534
4535 return false;
4536 }
4537
field_begin() const4538 RecordDecl::field_iterator RecordDecl::field_begin() const {
4539 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4540 LoadFieldsFromExternalStorage();
4541
4542 return field_iterator(decl_iterator(FirstDecl));
4543 }
4544
4545 /// completeDefinition - Notes that the definition of this type is now
4546 /// complete.
completeDefinition()4547 void RecordDecl::completeDefinition() {
4548 assert(!isCompleteDefinition() && "Cannot redefine record!");
4549 TagDecl::completeDefinition();
4550 }
4551
4552 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4553 /// This which can be turned on with an attribute, pragma, or the
4554 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const4555 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4556 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4557 }
4558
LoadFieldsFromExternalStorage() const4559 void RecordDecl::LoadFieldsFromExternalStorage() const {
4560 ExternalASTSource *Source = getASTContext().getExternalSource();
4561 assert(hasExternalLexicalStorage() && Source && "No external storage?");
4562
4563 // Notify that we have a RecordDecl doing some initialization.
4564 ExternalASTSource::Deserializing TheFields(Source);
4565
4566 SmallVector<Decl*, 64> Decls;
4567 setHasLoadedFieldsFromExternalStorage(true);
4568 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4569 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4570 }, Decls);
4571
4572 #ifndef NDEBUG
4573 // Check that all decls we got were FieldDecls.
4574 for (unsigned i=0, e=Decls.size(); i != e; ++i)
4575 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4576 #endif
4577
4578 if (Decls.empty())
4579 return;
4580
4581 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4582 /*FieldsAlreadyLoaded=*/false);
4583 }
4584
mayInsertExtraPadding(bool EmitRemark) const4585 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4586 ASTContext &Context = getASTContext();
4587 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4588 (SanitizerKind::Address | SanitizerKind::KernelAddress);
4589 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4590 return false;
4591 const auto &Blacklist = Context.getSanitizerBlacklist();
4592 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4593 // We may be able to relax some of these requirements.
4594 int ReasonToReject = -1;
4595 if (!CXXRD || CXXRD->isExternCContext())
4596 ReasonToReject = 0; // is not C++.
4597 else if (CXXRD->hasAttr<PackedAttr>())
4598 ReasonToReject = 1; // is packed.
4599 else if (CXXRD->isUnion())
4600 ReasonToReject = 2; // is a union.
4601 else if (CXXRD->isTriviallyCopyable())
4602 ReasonToReject = 3; // is trivially copyable.
4603 else if (CXXRD->hasTrivialDestructor())
4604 ReasonToReject = 4; // has trivial destructor.
4605 else if (CXXRD->isStandardLayout())
4606 ReasonToReject = 5; // is standard layout.
4607 else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4608 "field-padding"))
4609 ReasonToReject = 6; // is in an excluded file.
4610 else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4611 getQualifiedNameAsString(),
4612 "field-padding"))
4613 ReasonToReject = 7; // The type is excluded.
4614
4615 if (EmitRemark) {
4616 if (ReasonToReject >= 0)
4617 Context.getDiagnostics().Report(
4618 getLocation(),
4619 diag::remark_sanitize_address_insert_extra_padding_rejected)
4620 << getQualifiedNameAsString() << ReasonToReject;
4621 else
4622 Context.getDiagnostics().Report(
4623 getLocation(),
4624 diag::remark_sanitize_address_insert_extra_padding_accepted)
4625 << getQualifiedNameAsString();
4626 }
4627 return ReasonToReject < 0;
4628 }
4629
findFirstNamedDataMember() const4630 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4631 for (const auto *I : fields()) {
4632 if (I->getIdentifier())
4633 return I;
4634
4635 if (const auto *RT = I->getType()->getAs<RecordType>())
4636 if (const FieldDecl *NamedDataMember =
4637 RT->getDecl()->findFirstNamedDataMember())
4638 return NamedDataMember;
4639 }
4640
4641 // We didn't find a named data member.
4642 return nullptr;
4643 }
4644
4645 //===----------------------------------------------------------------------===//
4646 // BlockDecl Implementation
4647 //===----------------------------------------------------------------------===//
4648
BlockDecl(DeclContext * DC,SourceLocation CaretLoc)4649 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4650 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4651 setIsVariadic(false);
4652 setCapturesCXXThis(false);
4653 setBlockMissingReturnType(true);
4654 setIsConversionFromLambda(false);
4655 setDoesNotEscape(false);
4656 setCanAvoidCopyToHeap(false);
4657 }
4658
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)4659 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4660 assert(!ParamInfo && "Already has param info!");
4661
4662 // Zero params -> null pointer.
4663 if (!NewParamInfo.empty()) {
4664 NumParams = NewParamInfo.size();
4665 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4666 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4667 }
4668 }
4669
setCaptures(ASTContext & Context,ArrayRef<Capture> Captures,bool CapturesCXXThis)4670 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4671 bool CapturesCXXThis) {
4672 this->setCapturesCXXThis(CapturesCXXThis);
4673 this->NumCaptures = Captures.size();
4674
4675 if (Captures.empty()) {
4676 this->Captures = nullptr;
4677 return;
4678 }
4679
4680 this->Captures = Captures.copy(Context).data();
4681 }
4682
capturesVariable(const VarDecl * variable) const4683 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4684 for (const auto &I : captures())
4685 // Only auto vars can be captured, so no redeclaration worries.
4686 if (I.getVariable() == variable)
4687 return true;
4688
4689 return false;
4690 }
4691
getSourceRange() const4692 SourceRange BlockDecl::getSourceRange() const {
4693 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4694 }
4695
4696 //===----------------------------------------------------------------------===//
4697 // Other Decl Allocation/Deallocation Method Implementations
4698 //===----------------------------------------------------------------------===//
4699
anchor()4700 void TranslationUnitDecl::anchor() {}
4701
Create(ASTContext & C)4702 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4703 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4704 }
4705
anchor()4706 void PragmaCommentDecl::anchor() {}
4707
Create(const ASTContext & C,TranslationUnitDecl * DC,SourceLocation CommentLoc,PragmaMSCommentKind CommentKind,StringRef Arg)4708 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4709 TranslationUnitDecl *DC,
4710 SourceLocation CommentLoc,
4711 PragmaMSCommentKind CommentKind,
4712 StringRef Arg) {
4713 PragmaCommentDecl *PCD =
4714 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4715 PragmaCommentDecl(DC, CommentLoc, CommentKind);
4716 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4717 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4718 return PCD;
4719 }
4720
CreateDeserialized(ASTContext & C,unsigned ID,unsigned ArgSize)4721 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4722 unsigned ID,
4723 unsigned ArgSize) {
4724 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4725 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4726 }
4727
anchor()4728 void PragmaDetectMismatchDecl::anchor() {}
4729
4730 PragmaDetectMismatchDecl *
Create(const ASTContext & C,TranslationUnitDecl * DC,SourceLocation Loc,StringRef Name,StringRef Value)4731 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4732 SourceLocation Loc, StringRef Name,
4733 StringRef Value) {
4734 size_t ValueStart = Name.size() + 1;
4735 PragmaDetectMismatchDecl *PDMD =
4736 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4737 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4738 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4739 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4740 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4741 Value.size());
4742 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4743 return PDMD;
4744 }
4745
4746 PragmaDetectMismatchDecl *
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NameValueSize)4747 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4748 unsigned NameValueSize) {
4749 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4750 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4751 }
4752
anchor()4753 void ExternCContextDecl::anchor() {}
4754
Create(const ASTContext & C,TranslationUnitDecl * DC)4755 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4756 TranslationUnitDecl *DC) {
4757 return new (C, DC) ExternCContextDecl(DC);
4758 }
4759
anchor()4760 void LabelDecl::anchor() {}
4761
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)4762 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4763 SourceLocation IdentL, IdentifierInfo *II) {
4764 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4765 }
4766
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)4767 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4768 SourceLocation IdentL, IdentifierInfo *II,
4769 SourceLocation GnuLabelL) {
4770 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4771 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4772 }
4773
CreateDeserialized(ASTContext & C,unsigned ID)4774 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4775 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4776 SourceLocation());
4777 }
4778
setMSAsmLabel(StringRef Name)4779 void LabelDecl::setMSAsmLabel(StringRef Name) {
4780 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4781 memcpy(Buffer, Name.data(), Name.size());
4782 Buffer[Name.size()] = '\0';
4783 MSAsmName = Buffer;
4784 }
4785
anchor()4786 void ValueDecl::anchor() {}
4787
isWeak() const4788 bool ValueDecl::isWeak() const {
4789 auto *MostRecent = getMostRecentDecl();
4790 return MostRecent->hasAttr<WeakAttr>() ||
4791 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4792 }
4793
anchor()4794 void ImplicitParamDecl::anchor() {}
4795
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type,ImplicitParamKind ParamKind)4796 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4797 SourceLocation IdLoc,
4798 IdentifierInfo *Id, QualType Type,
4799 ImplicitParamKind ParamKind) {
4800 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4801 }
4802
Create(ASTContext & C,QualType Type,ImplicitParamKind ParamKind)4803 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4804 ImplicitParamKind ParamKind) {
4805 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4806 }
4807
CreateDeserialized(ASTContext & C,unsigned ID)4808 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4809 unsigned ID) {
4810 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4811 }
4812
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInlineSpecified,bool hasWrittenPrototype,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)4813 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4814 SourceLocation StartLoc,
4815 const DeclarationNameInfo &NameInfo,
4816 QualType T, TypeSourceInfo *TInfo,
4817 StorageClass SC, bool isInlineSpecified,
4818 bool hasWrittenPrototype,
4819 ConstexprSpecKind ConstexprKind,
4820 Expr *TrailingRequiresClause) {
4821 FunctionDecl *New =
4822 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4823 SC, isInlineSpecified, ConstexprKind,
4824 TrailingRequiresClause);
4825 New->setHasWrittenPrototype(hasWrittenPrototype);
4826 return New;
4827 }
4828
CreateDeserialized(ASTContext & C,unsigned ID)4829 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4830 return new (C, ID) FunctionDecl(
4831 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4832 nullptr, SC_None, false, ConstexprSpecKind::Unspecified, nullptr);
4833 }
4834
Create(ASTContext & C,DeclContext * DC,SourceLocation L)4835 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4836 return new (C, DC) BlockDecl(DC, L);
4837 }
4838
CreateDeserialized(ASTContext & C,unsigned ID)4839 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4840 return new (C, ID) BlockDecl(nullptr, SourceLocation());
4841 }
4842
CapturedDecl(DeclContext * DC,unsigned NumParams)4843 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4844 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4845 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4846
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)4847 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4848 unsigned NumParams) {
4849 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4850 CapturedDecl(DC, NumParams);
4851 }
4852
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumParams)4853 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4854 unsigned NumParams) {
4855 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4856 CapturedDecl(nullptr, NumParams);
4857 }
4858
getBody() const4859 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
setBody(Stmt * B)4860 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4861
isNothrow() const4862 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
setNothrow(bool Nothrow)4863 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4864
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)4865 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4866 SourceLocation L,
4867 IdentifierInfo *Id, QualType T,
4868 Expr *E, const llvm::APSInt &V) {
4869 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4870 }
4871
4872 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)4873 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4874 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4875 QualType(), nullptr, llvm::APSInt());
4876 }
4877
anchor()4878 void IndirectFieldDecl::anchor() {}
4879
IndirectFieldDecl(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,MutableArrayRef<NamedDecl * > CH)4880 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4881 SourceLocation L, DeclarationName N,
4882 QualType T,
4883 MutableArrayRef<NamedDecl *> CH)
4884 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4885 ChainingSize(CH.size()) {
4886 // In C++, indirect field declarations conflict with tag declarations in the
4887 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4888 if (C.getLangOpts().CPlusPlus)
4889 IdentifierNamespace |= IDNS_Tag;
4890 }
4891
4892 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,llvm::MutableArrayRef<NamedDecl * > CH)4893 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4894 IdentifierInfo *Id, QualType T,
4895 llvm::MutableArrayRef<NamedDecl *> CH) {
4896 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4897 }
4898
CreateDeserialized(ASTContext & C,unsigned ID)4899 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4900 unsigned ID) {
4901 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4902 DeclarationName(), QualType(), None);
4903 }
4904
getSourceRange() const4905 SourceRange EnumConstantDecl::getSourceRange() const {
4906 SourceLocation End = getLocation();
4907 if (Init)
4908 End = Init->getEndLoc();
4909 return SourceRange(getLocation(), End);
4910 }
4911
anchor()4912 void TypeDecl::anchor() {}
4913
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)4914 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4915 SourceLocation StartLoc, SourceLocation IdLoc,
4916 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4917 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4918 }
4919
anchor()4920 void TypedefNameDecl::anchor() {}
4921
getAnonDeclWithTypedefName(bool AnyRedecl) const4922 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4923 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4924 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4925 auto *ThisTypedef = this;
4926 if (AnyRedecl && OwningTypedef) {
4927 OwningTypedef = OwningTypedef->getCanonicalDecl();
4928 ThisTypedef = ThisTypedef->getCanonicalDecl();
4929 }
4930 if (OwningTypedef == ThisTypedef)
4931 return TT->getDecl();
4932 }
4933
4934 return nullptr;
4935 }
4936
isTransparentTagSlow() const4937 bool TypedefNameDecl::isTransparentTagSlow() const {
4938 auto determineIsTransparent = [&]() {
4939 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4940 if (auto *TD = TT->getDecl()) {
4941 if (TD->getName() != getName())
4942 return false;
4943 SourceLocation TTLoc = getLocation();
4944 SourceLocation TDLoc = TD->getLocation();
4945 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4946 return false;
4947 SourceManager &SM = getASTContext().getSourceManager();
4948 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4949 }
4950 }
4951 return false;
4952 };
4953
4954 bool isTransparent = determineIsTransparent();
4955 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4956 return isTransparent;
4957 }
4958
CreateDeserialized(ASTContext & C,unsigned ID)4959 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4960 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4961 nullptr, nullptr);
4962 }
4963
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)4964 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4965 SourceLocation StartLoc,
4966 SourceLocation IdLoc, IdentifierInfo *Id,
4967 TypeSourceInfo *TInfo) {
4968 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4969 }
4970
CreateDeserialized(ASTContext & C,unsigned ID)4971 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4972 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4973 SourceLocation(), nullptr, nullptr);
4974 }
4975
getSourceRange() const4976 SourceRange TypedefDecl::getSourceRange() const {
4977 SourceLocation RangeEnd = getLocation();
4978 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4979 if (typeIsPostfix(TInfo->getType()))
4980 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4981 }
4982 return SourceRange(getBeginLoc(), RangeEnd);
4983 }
4984
getSourceRange() const4985 SourceRange TypeAliasDecl::getSourceRange() const {
4986 SourceLocation RangeEnd = getBeginLoc();
4987 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4988 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4989 return SourceRange(getBeginLoc(), RangeEnd);
4990 }
4991
anchor()4992 void FileScopeAsmDecl::anchor() {}
4993
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)4994 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4995 StringLiteral *Str,
4996 SourceLocation AsmLoc,
4997 SourceLocation RParenLoc) {
4998 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4999 }
5000
CreateDeserialized(ASTContext & C,unsigned ID)5001 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5002 unsigned ID) {
5003 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5004 SourceLocation());
5005 }
5006
anchor()5007 void EmptyDecl::anchor() {}
5008
Create(ASTContext & C,DeclContext * DC,SourceLocation L)5009 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5010 return new (C, DC) EmptyDecl(DC, L);
5011 }
5012
CreateDeserialized(ASTContext & C,unsigned ID)5013 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5014 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5015 }
5016
5017 //===----------------------------------------------------------------------===//
5018 // ImportDecl Implementation
5019 //===----------------------------------------------------------------------===//
5020
5021 /// Retrieve the number of module identifiers needed to name the given
5022 /// module.
getNumModuleIdentifiers(Module * Mod)5023 static unsigned getNumModuleIdentifiers(Module *Mod) {
5024 unsigned Result = 1;
5025 while (Mod->Parent) {
5026 Mod = Mod->Parent;
5027 ++Result;
5028 }
5029 return Result;
5030 }
5031
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)5032 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5033 Module *Imported,
5034 ArrayRef<SourceLocation> IdentifierLocs)
5035 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5036 NextLocalImportAndComplete(nullptr, true) {
5037 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5038 auto *StoredLocs = getTrailingObjects<SourceLocation>();
5039 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5040 StoredLocs);
5041 }
5042
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)5043 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5044 Module *Imported, SourceLocation EndLoc)
5045 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5046 NextLocalImportAndComplete(nullptr, false) {
5047 *getTrailingObjects<SourceLocation>() = EndLoc;
5048 }
5049
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)5050 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5051 SourceLocation StartLoc, Module *Imported,
5052 ArrayRef<SourceLocation> IdentifierLocs) {
5053 return new (C, DC,
5054 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5055 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5056 }
5057
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)5058 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5059 SourceLocation StartLoc,
5060 Module *Imported,
5061 SourceLocation EndLoc) {
5062 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5063 ImportDecl(DC, StartLoc, Imported, EndLoc);
5064 Import->setImplicit();
5065 return Import;
5066 }
5067
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)5068 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5069 unsigned NumLocations) {
5070 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5071 ImportDecl(EmptyShell());
5072 }
5073
getIdentifierLocs() const5074 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5075 if (!isImportComplete())
5076 return None;
5077
5078 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5079 return llvm::makeArrayRef(StoredLocs,
5080 getNumModuleIdentifiers(getImportedModule()));
5081 }
5082
getSourceRange() const5083 SourceRange ImportDecl::getSourceRange() const {
5084 if (!isImportComplete())
5085 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5086
5087 return SourceRange(getLocation(), getIdentifierLocs().back());
5088 }
5089
5090 //===----------------------------------------------------------------------===//
5091 // ExportDecl Implementation
5092 //===----------------------------------------------------------------------===//
5093
anchor()5094 void ExportDecl::anchor() {}
5095
Create(ASTContext & C,DeclContext * DC,SourceLocation ExportLoc)5096 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5097 SourceLocation ExportLoc) {
5098 return new (C, DC) ExportDecl(DC, ExportLoc);
5099 }
5100
CreateDeserialized(ASTContext & C,unsigned ID)5101 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5102 return new (C, ID) ExportDecl(nullptr, SourceLocation());
5103 }
5104