1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <math.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <tuple>
15
16 #include "third_party/googletest/src/include/gtest/gtest.h"
17
18 #include "./vp9_rtcd.h"
19 #include "./vpx_config.h"
20 #include "./vpx_dsp_rtcd.h"
21 #include "test/acm_random.h"
22 #include "test/bench.h"
23 #include "test/buffer.h"
24 #include "test/clear_system_state.h"
25 #include "test/register_state_check.h"
26 #include "test/util.h"
27 #include "vp9/common/vp9_entropy.h"
28 #include "vp9/common/vp9_scan.h"
29 #include "vpx/vpx_codec.h"
30 #include "vpx/vpx_integer.h"
31 #include "vpx_ports/msvc.h"
32 #include "vpx_ports/vpx_timer.h"
33
34 using libvpx_test::ACMRandom;
35 using libvpx_test::Buffer;
36
37 namespace {
38 const int number_of_iterations = 100;
39
40 typedef void (*QuantizeFunc)(const tran_low_t *coeff, intptr_t count,
41 int skip_block, const int16_t *zbin,
42 const int16_t *round, const int16_t *quant,
43 const int16_t *quant_shift, tran_low_t *qcoeff,
44 tran_low_t *dqcoeff, const int16_t *dequant,
45 uint16_t *eob, const int16_t *scan,
46 const int16_t *iscan);
47 typedef std::tuple<QuantizeFunc, QuantizeFunc, vpx_bit_depth_t,
48 int /*max_size*/, bool /*is_fp*/>
49 QuantizeParam;
50
51 // Wrapper for FP version which does not use zbin or quant_shift.
52 typedef void (*QuantizeFPFunc)(const tran_low_t *coeff, intptr_t count,
53 int skip_block, const int16_t *round,
54 const int16_t *quant, tran_low_t *qcoeff,
55 tran_low_t *dqcoeff, const int16_t *dequant,
56 uint16_t *eob, const int16_t *scan,
57 const int16_t *iscan);
58
59 template <QuantizeFPFunc fn>
QuantFPWrapper(const tran_low_t * coeff,intptr_t count,int skip_block,const int16_t * zbin,const int16_t * round,const int16_t * quant,const int16_t * quant_shift,tran_low_t * qcoeff,tran_low_t * dqcoeff,const int16_t * dequant,uint16_t * eob,const int16_t * scan,const int16_t * iscan)60 void QuantFPWrapper(const tran_low_t *coeff, intptr_t count, int skip_block,
61 const int16_t *zbin, const int16_t *round,
62 const int16_t *quant, const int16_t *quant_shift,
63 tran_low_t *qcoeff, tran_low_t *dqcoeff,
64 const int16_t *dequant, uint16_t *eob, const int16_t *scan,
65 const int16_t *iscan) {
66 (void)zbin;
67 (void)quant_shift;
68
69 fn(coeff, count, skip_block, round, quant, qcoeff, dqcoeff, dequant, eob,
70 scan, iscan);
71 }
72
73 class VP9QuantizeBase : public AbstractBench {
74 public:
VP9QuantizeBase(vpx_bit_depth_t bit_depth,int max_size,bool is_fp)75 VP9QuantizeBase(vpx_bit_depth_t bit_depth, int max_size, bool is_fp)
76 : bit_depth_(bit_depth), max_size_(max_size), is_fp_(is_fp),
77 coeff_(Buffer<tran_low_t>(max_size_, max_size_, 0, 16)),
78 qcoeff_(Buffer<tran_low_t>(max_size_, max_size_, 0, 32)),
79 dqcoeff_(Buffer<tran_low_t>(max_size_, max_size_, 0, 32)) {
80 // TODO(jianj): SSSE3 and AVX2 tests fail on extreme values.
81 #if HAVE_NEON
82 max_value_ = (1 << (7 + bit_depth_)) - 1;
83 #else
84 max_value_ = (1 << bit_depth_) - 1;
85 #endif
86 zbin_ptr_ =
87 reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*zbin_ptr_)));
88 round_fp_ptr_ = reinterpret_cast<int16_t *>(
89 vpx_memalign(16, 8 * sizeof(*round_fp_ptr_)));
90 quant_fp_ptr_ = reinterpret_cast<int16_t *>(
91 vpx_memalign(16, 8 * sizeof(*quant_fp_ptr_)));
92 round_ptr_ =
93 reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*round_ptr_)));
94 quant_ptr_ =
95 reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*quant_ptr_)));
96 quant_shift_ptr_ = reinterpret_cast<int16_t *>(
97 vpx_memalign(16, 8 * sizeof(*quant_shift_ptr_)));
98 dequant_ptr_ = reinterpret_cast<int16_t *>(
99 vpx_memalign(16, 8 * sizeof(*dequant_ptr_)));
100
101 r_ptr_ = (is_fp_) ? round_fp_ptr_ : round_ptr_;
102 q_ptr_ = (is_fp_) ? quant_fp_ptr_ : quant_ptr_;
103 }
104
~VP9QuantizeBase()105 ~VP9QuantizeBase() {
106 vpx_free(zbin_ptr_);
107 vpx_free(round_fp_ptr_);
108 vpx_free(quant_fp_ptr_);
109 vpx_free(round_ptr_);
110 vpx_free(quant_ptr_);
111 vpx_free(quant_shift_ptr_);
112 vpx_free(dequant_ptr_);
113 zbin_ptr_ = NULL;
114 round_fp_ptr_ = NULL;
115 quant_fp_ptr_ = NULL;
116 round_ptr_ = NULL;
117 quant_ptr_ = NULL;
118 quant_shift_ptr_ = NULL;
119 dequant_ptr_ = NULL;
120 libvpx_test::ClearSystemState();
121 }
122
123 protected:
124 int16_t *zbin_ptr_;
125 int16_t *round_fp_ptr_;
126 int16_t *quant_fp_ptr_;
127 int16_t *round_ptr_;
128 int16_t *quant_ptr_;
129 int16_t *quant_shift_ptr_;
130 int16_t *dequant_ptr_;
131 const vpx_bit_depth_t bit_depth_;
132 int max_value_;
133 const int max_size_;
134 const bool is_fp_;
135 Buffer<tran_low_t> coeff_;
136 Buffer<tran_low_t> qcoeff_;
137 Buffer<tran_low_t> dqcoeff_;
138 int16_t *r_ptr_;
139 int16_t *q_ptr_;
140 int count_;
141 int skip_block_;
142 const scan_order *scan_;
143 uint16_t eob_;
144 };
145
146 class VP9QuantizeTest : public VP9QuantizeBase,
147 public ::testing::TestWithParam<QuantizeParam> {
148 public:
VP9QuantizeTest()149 VP9QuantizeTest()
150 : VP9QuantizeBase(GET_PARAM(2), GET_PARAM(3), GET_PARAM(4)),
151 quantize_op_(GET_PARAM(0)), ref_quantize_op_(GET_PARAM(1)) {}
152
153 protected:
154 virtual void Run();
155 const QuantizeFunc quantize_op_;
156 const QuantizeFunc ref_quantize_op_;
157 };
158
Run()159 void VP9QuantizeTest::Run() {
160 quantize_op_(coeff_.TopLeftPixel(), count_, skip_block_, zbin_ptr_, r_ptr_,
161 q_ptr_, quant_shift_ptr_, qcoeff_.TopLeftPixel(),
162 dqcoeff_.TopLeftPixel(), dequant_ptr_, &eob_, scan_->scan,
163 scan_->iscan);
164 }
165
166 // This quantizer compares the AC coefficients to the quantization step size to
167 // determine if further multiplication operations are needed.
168 // Based on vp9_quantize_fp_sse2().
quant_fp_nz(const tran_low_t * coeff_ptr,intptr_t n_coeffs,int skip_block,const int16_t * round_ptr,const int16_t * quant_ptr,tran_low_t * qcoeff_ptr,tran_low_t * dqcoeff_ptr,const int16_t * dequant_ptr,uint16_t * eob_ptr,const int16_t * scan,const int16_t * iscan,int is_32x32)169 inline void quant_fp_nz(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
170 int skip_block, const int16_t *round_ptr,
171 const int16_t *quant_ptr, tran_low_t *qcoeff_ptr,
172 tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
173 uint16_t *eob_ptr, const int16_t *scan,
174 const int16_t *iscan, int is_32x32) {
175 int i, eob = -1;
176 const int thr = dequant_ptr[1] >> (1 + is_32x32);
177 (void)iscan;
178 (void)skip_block;
179 assert(!skip_block);
180
181 // Quantization pass: All coefficients with index >= zero_flag are
182 // skippable. Note: zero_flag can be zero.
183 for (i = 0; i < n_coeffs; i += 16) {
184 int y;
185 int nzflag_cnt = 0;
186 int abs_coeff[16];
187 int coeff_sign[16];
188
189 // count nzflag for each row (16 tran_low_t)
190 for (y = 0; y < 16; ++y) {
191 const int rc = i + y;
192 const int coeff = coeff_ptr[rc];
193 coeff_sign[y] = (coeff >> 31);
194 abs_coeff[y] = (coeff ^ coeff_sign[y]) - coeff_sign[y];
195 // The first 16 are skipped in the sse2 code. Do the same here to match.
196 if (i >= 16 && (abs_coeff[y] <= thr)) {
197 nzflag_cnt++;
198 }
199 }
200
201 for (y = 0; y < 16; ++y) {
202 const int rc = i + y;
203 // If all of the AC coeffs in a row has magnitude less than the
204 // quantization step_size/2, quantize to zero.
205 if (nzflag_cnt < 16) {
206 int tmp;
207 int _round;
208
209 if (is_32x32) {
210 _round = ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1);
211 } else {
212 _round = round_ptr[rc != 0];
213 }
214 tmp = clamp(abs_coeff[y] + _round, INT16_MIN, INT16_MAX);
215 tmp = (tmp * quant_ptr[rc != 0]) >> (16 - is_32x32);
216 qcoeff_ptr[rc] = (tmp ^ coeff_sign[y]) - coeff_sign[y];
217 dqcoeff_ptr[rc] =
218 static_cast<tran_low_t>(qcoeff_ptr[rc] * dequant_ptr[rc != 0]);
219
220 if (is_32x32) {
221 dqcoeff_ptr[rc] = static_cast<tran_low_t>(qcoeff_ptr[rc] *
222 dequant_ptr[rc != 0] / 2);
223 } else {
224 dqcoeff_ptr[rc] =
225 static_cast<tran_low_t>(qcoeff_ptr[rc] * dequant_ptr[rc != 0]);
226 }
227 } else {
228 qcoeff_ptr[rc] = 0;
229 dqcoeff_ptr[rc] = 0;
230 }
231 }
232 }
233
234 // Scan for eob.
235 for (i = 0; i < n_coeffs; i++) {
236 // Use the scan order to find the correct eob.
237 const int rc = scan[i];
238 if (qcoeff_ptr[rc]) {
239 eob = i;
240 }
241 }
242 *eob_ptr = eob + 1;
243 }
244
quantize_fp_nz_c(const tran_low_t * coeff_ptr,intptr_t n_coeffs,int skip_block,const int16_t * round_ptr,const int16_t * quant_ptr,tran_low_t * qcoeff_ptr,tran_low_t * dqcoeff_ptr,const int16_t * dequant_ptr,uint16_t * eob_ptr,const int16_t * scan,const int16_t * iscan)245 void quantize_fp_nz_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
246 int skip_block, const int16_t *round_ptr,
247 const int16_t *quant_ptr, tran_low_t *qcoeff_ptr,
248 tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
249 uint16_t *eob_ptr, const int16_t *scan,
250 const int16_t *iscan) {
251 quant_fp_nz(coeff_ptr, n_coeffs, skip_block, round_ptr, quant_ptr, qcoeff_ptr,
252 dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan, 0);
253 }
254
quantize_fp_32x32_nz_c(const tran_low_t * coeff_ptr,intptr_t n_coeffs,int skip_block,const int16_t * round_ptr,const int16_t * quant_ptr,tran_low_t * qcoeff_ptr,tran_low_t * dqcoeff_ptr,const int16_t * dequant_ptr,uint16_t * eob_ptr,const int16_t * scan,const int16_t * iscan)255 void quantize_fp_32x32_nz_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
256 int skip_block, const int16_t *round_ptr,
257 const int16_t *quant_ptr, tran_low_t *qcoeff_ptr,
258 tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
259 uint16_t *eob_ptr, const int16_t *scan,
260 const int16_t *iscan) {
261 quant_fp_nz(coeff_ptr, n_coeffs, skip_block, round_ptr, quant_ptr, qcoeff_ptr,
262 dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan, 1);
263 }
264
GenerateHelperArrays(ACMRandom * rnd,int16_t * zbin,int16_t * round,int16_t * quant,int16_t * quant_shift,int16_t * dequant,int16_t * round_fp,int16_t * quant_fp)265 void GenerateHelperArrays(ACMRandom *rnd, int16_t *zbin, int16_t *round,
266 int16_t *quant, int16_t *quant_shift,
267 int16_t *dequant, int16_t *round_fp,
268 int16_t *quant_fp) {
269 // Max when q == 0. Otherwise, it is 48 for Y and 42 for U/V.
270 const int max_qrounding_factor_fp = 64;
271
272 for (int j = 0; j < 2; j++) {
273 // The range is 4 to 1828 in the VP9 tables.
274 const int qlookup = rnd->RandRange(1825) + 4;
275 round_fp[j] = (max_qrounding_factor_fp * qlookup) >> 7;
276 quant_fp[j] = (1 << 16) / qlookup;
277
278 // Values determined by deconstructing vp9_init_quantizer().
279 // zbin may be up to 1143 for 8 and 10 bit Y values, or 1200 for 12 bit Y
280 // values or U/V values of any bit depth. This is because y_delta is not
281 // factored into the vp9_ac_quant() call.
282 zbin[j] = rnd->RandRange(1200);
283
284 // round may be up to 685 for Y values or 914 for U/V.
285 round[j] = rnd->RandRange(914);
286 // quant ranges from 1 to -32703
287 quant[j] = static_cast<int>(rnd->RandRange(32704)) - 32703;
288 // quant_shift goes up to 1 << 16.
289 quant_shift[j] = rnd->RandRange(16384);
290 // dequant maxes out at 1828 for all cases.
291 dequant[j] = rnd->RandRange(1828);
292 }
293 for (int j = 2; j < 8; j++) {
294 zbin[j] = zbin[1];
295 round_fp[j] = round_fp[1];
296 quant_fp[j] = quant_fp[1];
297 round[j] = round[1];
298 quant[j] = quant[1];
299 quant_shift[j] = quant_shift[1];
300 dequant[j] = dequant[1];
301 }
302 }
303
TEST_P(VP9QuantizeTest,OperationCheck)304 TEST_P(VP9QuantizeTest, OperationCheck) {
305 ACMRandom rnd(ACMRandom::DeterministicSeed());
306 ASSERT_TRUE(coeff_.Init());
307 ASSERT_TRUE(qcoeff_.Init());
308 ASSERT_TRUE(dqcoeff_.Init());
309 Buffer<tran_low_t> ref_qcoeff =
310 Buffer<tran_low_t>(max_size_, max_size_, 0, 32);
311 ASSERT_TRUE(ref_qcoeff.Init());
312 Buffer<tran_low_t> ref_dqcoeff =
313 Buffer<tran_low_t>(max_size_, max_size_, 0, 32);
314 ASSERT_TRUE(ref_dqcoeff.Init());
315 uint16_t ref_eob = 0;
316 eob_ = 0;
317
318 for (int i = 0; i < number_of_iterations; ++i) {
319 // Test skip block for the first three iterations to catch all the different
320 // sizes.
321 const int skip_block = 0;
322 TX_SIZE sz;
323 if (max_size_ == 16) {
324 sz = static_cast<TX_SIZE>(i % 3); // TX_4X4, TX_8X8 TX_16X16
325 } else {
326 sz = TX_32X32;
327 }
328 const TX_TYPE tx_type = static_cast<TX_TYPE>((i >> 2) % 3);
329 scan_ = &vp9_scan_orders[sz][tx_type];
330 count_ = (4 << sz) * (4 << sz);
331 coeff_.Set(&rnd, -max_value_, max_value_);
332 GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_,
333 quant_shift_ptr_, dequant_ptr_, round_fp_ptr_,
334 quant_fp_ptr_);
335 ref_quantize_op_(coeff_.TopLeftPixel(), count_, skip_block, zbin_ptr_,
336 r_ptr_, q_ptr_, quant_shift_ptr_,
337 ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
338 dequant_ptr_, &ref_eob, scan_->scan, scan_->iscan);
339
340 ASM_REGISTER_STATE_CHECK(quantize_op_(
341 coeff_.TopLeftPixel(), count_, skip_block, zbin_ptr_, r_ptr_, q_ptr_,
342 quant_shift_ptr_, qcoeff_.TopLeftPixel(), dqcoeff_.TopLeftPixel(),
343 dequant_ptr_, &eob_, scan_->scan, scan_->iscan));
344
345 EXPECT_TRUE(qcoeff_.CheckValues(ref_qcoeff));
346 EXPECT_TRUE(dqcoeff_.CheckValues(ref_dqcoeff));
347
348 EXPECT_EQ(eob_, ref_eob);
349
350 if (HasFailure()) {
351 printf("Failure on iteration %d.\n", i);
352 qcoeff_.PrintDifference(ref_qcoeff);
353 dqcoeff_.PrintDifference(ref_dqcoeff);
354 return;
355 }
356 }
357 }
358
TEST_P(VP9QuantizeTest,EOBCheck)359 TEST_P(VP9QuantizeTest, EOBCheck) {
360 ACMRandom rnd(ACMRandom::DeterministicSeed());
361 ASSERT_TRUE(coeff_.Init());
362 ASSERT_TRUE(qcoeff_.Init());
363 ASSERT_TRUE(dqcoeff_.Init());
364 Buffer<tran_low_t> ref_qcoeff =
365 Buffer<tran_low_t>(max_size_, max_size_, 0, 32);
366 ASSERT_TRUE(ref_qcoeff.Init());
367 Buffer<tran_low_t> ref_dqcoeff =
368 Buffer<tran_low_t>(max_size_, max_size_, 0, 32);
369 ASSERT_TRUE(ref_dqcoeff.Init());
370 uint16_t ref_eob = 0;
371 eob_ = 0;
372 const uint32_t max_index = max_size_ * max_size_ - 1;
373
374 for (int i = 0; i < number_of_iterations; ++i) {
375 skip_block_ = 0;
376 TX_SIZE sz;
377 if (max_size_ == 16) {
378 sz = static_cast<TX_SIZE>(i % 3); // TX_4X4, TX_8X8 TX_16X16
379 } else {
380 sz = TX_32X32;
381 }
382 const TX_TYPE tx_type = static_cast<TX_TYPE>((i >> 2) % 3);
383 scan_ = &vp9_scan_orders[sz][tx_type];
384 count_ = (4 << sz) * (4 << sz);
385 // Two random entries
386 coeff_.Set(0);
387 coeff_.TopLeftPixel()[rnd.RandRange(count_) & max_index] =
388 static_cast<int>(rnd.RandRange(max_value_ * 2)) - max_value_;
389 coeff_.TopLeftPixel()[rnd.RandRange(count_) & max_index] =
390 static_cast<int>(rnd.RandRange(max_value_ * 2)) - max_value_;
391 GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_,
392 quant_shift_ptr_, dequant_ptr_, round_fp_ptr_,
393 quant_fp_ptr_);
394 ref_quantize_op_(coeff_.TopLeftPixel(), count_, skip_block_, zbin_ptr_,
395 r_ptr_, q_ptr_, quant_shift_ptr_,
396 ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
397 dequant_ptr_, &ref_eob, scan_->scan, scan_->iscan);
398
399 ASM_REGISTER_STATE_CHECK(quantize_op_(
400 coeff_.TopLeftPixel(), count_, skip_block_, zbin_ptr_, r_ptr_, q_ptr_,
401 quant_shift_ptr_, qcoeff_.TopLeftPixel(), dqcoeff_.TopLeftPixel(),
402 dequant_ptr_, &eob_, scan_->scan, scan_->iscan));
403
404 EXPECT_TRUE(qcoeff_.CheckValues(ref_qcoeff));
405 EXPECT_TRUE(dqcoeff_.CheckValues(ref_dqcoeff));
406
407 EXPECT_EQ(eob_, ref_eob);
408
409 if (HasFailure()) {
410 printf("Failure on iteration %d.\n", i);
411 qcoeff_.PrintDifference(ref_qcoeff);
412 dqcoeff_.PrintDifference(ref_dqcoeff);
413 return;
414 }
415 }
416 }
417
TEST_P(VP9QuantizeTest,DISABLED_Speed)418 TEST_P(VP9QuantizeTest, DISABLED_Speed) {
419 ACMRandom rnd(ACMRandom::DeterministicSeed());
420 ASSERT_TRUE(coeff_.Init());
421 ASSERT_TRUE(qcoeff_.Init());
422 ASSERT_TRUE(dqcoeff_.Init());
423 TX_SIZE starting_sz, ending_sz;
424
425 if (max_size_ == 16) {
426 starting_sz = TX_4X4;
427 ending_sz = TX_16X16;
428 } else {
429 starting_sz = TX_32X32;
430 ending_sz = TX_32X32;
431 }
432
433 for (TX_SIZE sz = starting_sz; sz <= ending_sz; ++sz) {
434 // zbin > coeff, zbin < coeff.
435 for (int i = 0; i < 2; ++i) {
436 skip_block_ = 0;
437 // TX_TYPE defines the scan order. That is not relevant to the speed test.
438 // Pick the first one.
439 const TX_TYPE tx_type = DCT_DCT;
440 count_ = (4 << sz) * (4 << sz);
441 scan_ = &vp9_scan_orders[sz][tx_type];
442
443 GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_,
444 quant_shift_ptr_, dequant_ptr_, round_fp_ptr_,
445 quant_fp_ptr_);
446
447 if (i == 0) {
448 // When |coeff values| are less than zbin the results are 0.
449 int threshold = 100;
450 if (max_size_ == 32) {
451 // For 32x32, the threshold is halved. Double it to keep the values
452 // from clearing it.
453 threshold = 200;
454 }
455 for (int j = 0; j < 8; ++j) zbin_ptr_[j] = threshold;
456 coeff_.Set(&rnd, -99, 99);
457 } else if (i == 1) {
458 for (int j = 0; j < 8; ++j) zbin_ptr_[j] = 50;
459 coeff_.Set(&rnd, -500, 500);
460 }
461
462 RunNTimes(10000000 / count_);
463 const char *type =
464 (i == 0) ? "Bypass calculations " : "Full calculations ";
465 char block_size[16];
466 snprintf(block_size, sizeof(block_size), "%dx%d", 4 << sz, 4 << sz);
467 char title[100];
468 snprintf(title, sizeof(title), "%25s %8s ", type, block_size);
469 PrintMedian(title);
470 }
471 }
472 }
473
474 using std::make_tuple;
475
476 #if HAVE_SSE2
477 #if CONFIG_VP9_HIGHBITDEPTH
478 INSTANTIATE_TEST_CASE_P(
479 SSE2, VP9QuantizeTest,
480 ::testing::Values(
481 make_tuple(&vpx_quantize_b_sse2, &vpx_quantize_b_c, VPX_BITS_8, 16,
482 false),
483 make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c,
484 VPX_BITS_8, 16, false),
485 make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c,
486 VPX_BITS_10, 16, false),
487 make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c,
488 VPX_BITS_12, 16, false),
489 make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
490 &vpx_highbd_quantize_b_32x32_c, VPX_BITS_8, 32, false),
491 make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
492 &vpx_highbd_quantize_b_32x32_c, VPX_BITS_10, 32, false),
493 make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
494 &vpx_highbd_quantize_b_32x32_c, VPX_BITS_12, 32, false)));
495
496 #else
497 INSTANTIATE_TEST_CASE_P(
498 SSE2, VP9QuantizeTest,
499 ::testing::Values(make_tuple(&vpx_quantize_b_sse2, &vpx_quantize_b_c,
500 VPX_BITS_8, 16, false),
501 make_tuple(&QuantFPWrapper<vp9_quantize_fp_sse2>,
502 &QuantFPWrapper<quantize_fp_nz_c>, VPX_BITS_8,
503 16, true)));
504 #endif // CONFIG_VP9_HIGHBITDEPTH
505 #endif // HAVE_SSE2
506
507 #if HAVE_SSSE3
508 #if VPX_ARCH_X86_64
509 INSTANTIATE_TEST_CASE_P(
510 SSSE3, VP9QuantizeTest,
511 ::testing::Values(make_tuple(&vpx_quantize_b_ssse3, &vpx_quantize_b_c,
512 VPX_BITS_8, 16, false),
513 make_tuple(&vpx_quantize_b_32x32_ssse3,
514 &vpx_quantize_b_32x32_c, VPX_BITS_8, 32,
515 false),
516 make_tuple(&QuantFPWrapper<vp9_quantize_fp_ssse3>,
517 &QuantFPWrapper<quantize_fp_nz_c>, VPX_BITS_8,
518 16, true),
519 make_tuple(&QuantFPWrapper<vp9_quantize_fp_32x32_ssse3>,
520 &QuantFPWrapper<quantize_fp_32x32_nz_c>,
521 VPX_BITS_8, 32, true)));
522 #else
523 INSTANTIATE_TEST_CASE_P(
524 SSSE3, VP9QuantizeTest,
525 ::testing::Values(make_tuple(&vpx_quantize_b_ssse3, &vpx_quantize_b_c,
526 VPX_BITS_8, 16, false),
527 make_tuple(&vpx_quantize_b_32x32_ssse3,
528 &vpx_quantize_b_32x32_c, VPX_BITS_8, 32,
529 false)));
530
531 #endif // VPX_ARCH_X86_64
532 #endif // HAVE_SSSE3
533
534 #if HAVE_AVX
535 INSTANTIATE_TEST_CASE_P(AVX, VP9QuantizeTest,
536 ::testing::Values(make_tuple(&vpx_quantize_b_avx,
537 &vpx_quantize_b_c,
538 VPX_BITS_8, 16, false),
539 make_tuple(&vpx_quantize_b_32x32_avx,
540 &vpx_quantize_b_32x32_c,
541 VPX_BITS_8, 32, false)));
542 #endif // HAVE_AVX
543
544 #if VPX_ARCH_X86_64 && HAVE_AVX2
545 INSTANTIATE_TEST_CASE_P(
546 AVX2, VP9QuantizeTest,
547 ::testing::Values(make_tuple(&QuantFPWrapper<vp9_quantize_fp_avx2>,
548 &QuantFPWrapper<quantize_fp_nz_c>, VPX_BITS_8,
549 16, true)));
550 #endif // HAVE_AVX2
551
552 #if HAVE_NEON
553 INSTANTIATE_TEST_CASE_P(
554 NEON, VP9QuantizeTest,
555 ::testing::Values(make_tuple(&vpx_quantize_b_neon, &vpx_quantize_b_c,
556 VPX_BITS_8, 16, false),
557 make_tuple(&vpx_quantize_b_32x32_neon,
558 &vpx_quantize_b_32x32_c, VPX_BITS_8, 32,
559 false),
560 make_tuple(&QuantFPWrapper<vp9_quantize_fp_neon>,
561 &QuantFPWrapper<vp9_quantize_fp_c>, VPX_BITS_8,
562 16, true),
563 make_tuple(&QuantFPWrapper<vp9_quantize_fp_32x32_neon>,
564 &QuantFPWrapper<vp9_quantize_fp_32x32_c>,
565 VPX_BITS_8, 32, true)));
566 #endif // HAVE_NEON
567
568 #if HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH
569 INSTANTIATE_TEST_CASE_P(
570 VSX, VP9QuantizeTest,
571 ::testing::Values(make_tuple(&vpx_quantize_b_vsx, &vpx_quantize_b_c,
572 VPX_BITS_8, 16, false),
573 make_tuple(&vpx_quantize_b_32x32_vsx,
574 &vpx_quantize_b_32x32_c, VPX_BITS_8, 32,
575 false),
576 make_tuple(&QuantFPWrapper<vp9_quantize_fp_vsx>,
577 &QuantFPWrapper<vp9_quantize_fp_c>, VPX_BITS_8,
578 16, true),
579 make_tuple(&QuantFPWrapper<vp9_quantize_fp_32x32_vsx>,
580 &QuantFPWrapper<vp9_quantize_fp_32x32_c>,
581 VPX_BITS_8, 32, true)));
582 #endif // HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH
583
584 // Only useful to compare "Speed" test results.
585 INSTANTIATE_TEST_CASE_P(
586 DISABLED_C, VP9QuantizeTest,
587 ::testing::Values(
588 make_tuple(&vpx_quantize_b_c, &vpx_quantize_b_c, VPX_BITS_8, 16, false),
589 make_tuple(&vpx_quantize_b_32x32_c, &vpx_quantize_b_32x32_c, VPX_BITS_8,
590 32, false),
591 make_tuple(&QuantFPWrapper<vp9_quantize_fp_c>,
592 &QuantFPWrapper<vp9_quantize_fp_c>, VPX_BITS_8, 16, true),
593 make_tuple(&QuantFPWrapper<quantize_fp_nz_c>,
594 &QuantFPWrapper<quantize_fp_nz_c>, VPX_BITS_8, 16, true),
595 make_tuple(&QuantFPWrapper<quantize_fp_32x32_nz_c>,
596 &QuantFPWrapper<quantize_fp_32x32_nz_c>, VPX_BITS_8, 32,
597 true),
598 make_tuple(&QuantFPWrapper<vp9_quantize_fp_32x32_c>,
599 &QuantFPWrapper<vp9_quantize_fp_32x32_c>, VPX_BITS_8, 32,
600 true)));
601 } // namespace
602