• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012-2014 Ecole Normale Superieure
3  * Copyright 2014      INRIA Rocquencourt
4  *
5  * Use of this software is governed by the MIT license
6  *
7  * Written by Sven Verdoolaege,
8  * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9  * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10  * B.P. 105 - 78153 Le Chesnay, France
11  */
12 
13 #include <limits.h>
14 #include <isl/id.h>
15 #include <isl/val.h>
16 #include <isl/space.h>
17 #include <isl/aff.h>
18 #include <isl/constraint.h>
19 #include <isl/set.h>
20 #include <isl/ilp.h>
21 #include <isl/union_set.h>
22 #include <isl/union_map.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl_sort.h>
26 #include <isl_tarjan.h>
27 #include <isl_ast_private.h>
28 #include <isl_ast_build_expr.h>
29 #include <isl_ast_build_private.h>
30 #include <isl_ast_graft_private.h>
31 
32 /* Try and reduce the number of disjuncts in the representation of "set",
33  * without dropping explicit representations of local variables.
34  */
isl_set_coalesce_preserve(__isl_take isl_set * set)35 static __isl_give isl_set *isl_set_coalesce_preserve(__isl_take isl_set *set)
36 {
37 	isl_ctx *ctx;
38 	int save_preserve;
39 
40 	if (!set)
41 		return NULL;
42 
43 	ctx = isl_set_get_ctx(set);
44 	save_preserve = isl_options_get_coalesce_preserve_locals(ctx);
45 	isl_options_set_coalesce_preserve_locals(ctx, 1);
46 	set = isl_set_coalesce(set);
47 	isl_options_set_coalesce_preserve_locals(ctx, save_preserve);
48 	return set;
49 }
50 
51 /* Data used in generate_domain.
52  *
53  * "build" is the input build.
54  * "list" collects the results.
55  */
56 struct isl_generate_domain_data {
57 	isl_ast_build *build;
58 
59 	isl_ast_graft_list *list;
60 };
61 
62 static __isl_give isl_ast_graft_list *generate_next_level(
63 	__isl_take isl_union_map *executed,
64 	__isl_take isl_ast_build *build);
65 static __isl_give isl_ast_graft_list *generate_code(
66 	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
67 	int internal);
68 
69 /* Generate an AST for a single domain based on
70  * the (non single valued) inverse schedule "executed".
71  *
72  * We extend the schedule with the iteration domain
73  * and continue generating through a call to generate_code.
74  *
75  * In particular, if executed has the form
76  *
77  *	S -> D
78  *
79  * then we continue generating code on
80  *
81  *	[S -> D] -> D
82  *
83  * The extended inverse schedule is clearly single valued
84  * ensuring that the nested generate_code will not reach this function,
85  * but will instead create calls to all elements of D that need
86  * to be executed from the current schedule domain.
87  */
generate_non_single_valued(__isl_take isl_map * executed,struct isl_generate_domain_data * data)88 static isl_stat generate_non_single_valued(__isl_take isl_map *executed,
89 	struct isl_generate_domain_data *data)
90 {
91 	isl_map *identity;
92 	isl_ast_build *build;
93 	isl_ast_graft_list *list;
94 
95 	build = isl_ast_build_copy(data->build);
96 
97 	identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
98 	executed = isl_map_domain_product(executed, identity);
99 	build = isl_ast_build_set_single_valued(build, 1);
100 
101 	list = generate_code(isl_union_map_from_map(executed), build, 1);
102 
103 	data->list = isl_ast_graft_list_concat(data->list, list);
104 
105 	return isl_stat_ok;
106 }
107 
108 /* Call the at_each_domain callback, if requested by the user,
109  * after recording the current inverse schedule in the build.
110  */
at_each_domain(__isl_take isl_ast_graft * graft,__isl_keep isl_map * executed,__isl_keep isl_ast_build * build)111 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
112 	__isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
113 {
114 	if (!graft || !build)
115 		return isl_ast_graft_free(graft);
116 	if (!build->at_each_domain)
117 		return graft;
118 
119 	build = isl_ast_build_copy(build);
120 	build = isl_ast_build_set_executed(build,
121 			isl_union_map_from_map(isl_map_copy(executed)));
122 	if (!build)
123 		return isl_ast_graft_free(graft);
124 
125 	graft->node = build->at_each_domain(graft->node,
126 					build, build->at_each_domain_user);
127 	isl_ast_build_free(build);
128 
129 	if (!graft->node)
130 		graft = isl_ast_graft_free(graft);
131 
132 	return graft;
133 }
134 
135 /* Generate a call expression for the single executed
136  * domain element "map" and put a guard around it based its (simplified)
137  * domain.  "executed" is the original inverse schedule from which "map"
138  * has been derived.  In particular, "map" is either identical to "executed"
139  * or it is the result of gisting "executed" with respect to the build domain.
140  * "executed" is only used if there is an at_each_domain callback.
141  *
142  * At this stage, any pending constraints in the build can no longer
143  * be simplified with respect to any enforced constraints since
144  * the call node does not have any enforced constraints.
145  * Since all pending constraints not covered by any enforced constraints
146  * will be added as a guard to the graft in create_node_scaled,
147  * even in the eliminated case, the pending constraints
148  * can be considered to have been generated by outer constructs.
149  *
150  * If the user has set an at_each_domain callback, it is called
151  * on the constructed call expression node.
152  */
add_domain(__isl_take isl_map * executed,__isl_take isl_map * map,struct isl_generate_domain_data * data)153 static isl_stat add_domain(__isl_take isl_map *executed,
154 	__isl_take isl_map *map, struct isl_generate_domain_data *data)
155 {
156 	isl_ast_build *build;
157 	isl_ast_graft *graft;
158 	isl_ast_graft_list *list;
159 	isl_set *guard, *pending;
160 
161 	build = isl_ast_build_copy(data->build);
162 	pending = isl_ast_build_get_pending(build);
163 	build = isl_ast_build_replace_pending_by_guard(build, pending);
164 
165 	guard = isl_map_domain(isl_map_copy(map));
166 	guard = isl_set_compute_divs(guard);
167 	guard = isl_set_coalesce_preserve(guard);
168 	guard = isl_set_gist(guard, isl_ast_build_get_generated(build));
169 	guard = isl_ast_build_specialize(build, guard);
170 
171 	graft = isl_ast_graft_alloc_domain(map, build);
172 	graft = at_each_domain(graft, executed, build);
173 	isl_ast_build_free(build);
174 	isl_map_free(executed);
175 	graft = isl_ast_graft_add_guard(graft, guard, data->build);
176 
177 	list = isl_ast_graft_list_from_ast_graft(graft);
178 	data->list = isl_ast_graft_list_concat(data->list, list);
179 
180 	return isl_stat_ok;
181 }
182 
183 /* Generate an AST for a single domain based on
184  * the inverse schedule "executed" and add it to data->list.
185  *
186  * If there is more than one domain element associated to the current
187  * schedule "time", then we need to continue the generation process
188  * in generate_non_single_valued.
189  * Note that the inverse schedule being single-valued may depend
190  * on constraints that are only available in the original context
191  * domain specified by the user.  We therefore first introduce
192  * some of the constraints of data->build->domain.  In particular,
193  * we intersect with a single-disjunct approximation of this set.
194  * We perform this approximation to avoid further splitting up
195  * the executed relation, possibly introducing a disjunctive guard
196  * on the statement.
197  *
198  * On the other hand, we only perform the test after having taken the gist
199  * of the domain as the resulting map is the one from which the call
200  * expression is constructed.  Using this map to construct the call
201  * expression usually yields simpler results in cases where the original
202  * map is not obviously single-valued.
203  * If the original map is obviously single-valued, then the gist
204  * operation is skipped.
205  *
206  * Because we perform the single-valuedness test on the gisted map,
207  * we may in rare cases fail to recognize that the inverse schedule
208  * is single-valued.  This becomes problematic if this happens
209  * from the recursive call through generate_non_single_valued
210  * as we would then end up in an infinite recursion.
211  * We therefore check if we are inside a call to generate_non_single_valued
212  * and revert to the ungisted map if the gisted map turns out not to be
213  * single-valued.
214  *
215  * Otherwise, call add_domain to generate a call expression (with guard) and
216  * to call the at_each_domain callback, if any.
217  */
generate_domain(__isl_take isl_map * executed,void * user)218 static isl_stat generate_domain(__isl_take isl_map *executed, void *user)
219 {
220 	struct isl_generate_domain_data *data = user;
221 	isl_set *domain;
222 	isl_map *map = NULL;
223 	int empty, sv;
224 
225 	domain = isl_ast_build_get_domain(data->build);
226 	domain = isl_set_from_basic_set(isl_set_simple_hull(domain));
227 	executed = isl_map_intersect_domain(executed, domain);
228 	empty = isl_map_is_empty(executed);
229 	if (empty < 0)
230 		goto error;
231 	if (empty) {
232 		isl_map_free(executed);
233 		return isl_stat_ok;
234 	}
235 
236 	sv = isl_map_plain_is_single_valued(executed);
237 	if (sv < 0)
238 		goto error;
239 	if (sv)
240 		return add_domain(executed, isl_map_copy(executed), data);
241 
242 	executed = isl_map_coalesce(executed);
243 	map = isl_map_copy(executed);
244 	map = isl_ast_build_compute_gist_map_domain(data->build, map);
245 	sv = isl_map_is_single_valued(map);
246 	if (sv < 0)
247 		goto error;
248 	if (!sv) {
249 		isl_map_free(map);
250 		if (data->build->single_valued)
251 			map = isl_map_copy(executed);
252 		else
253 			return generate_non_single_valued(executed, data);
254 	}
255 
256 	return add_domain(executed, map, data);
257 error:
258 	isl_map_free(map);
259 	isl_map_free(executed);
260 	return isl_stat_error;
261 }
262 
263 /* Call build->create_leaf to a create "leaf" node in the AST,
264  * encapsulate the result in an isl_ast_graft and return the result
265  * as a 1-element list.
266  *
267  * Note that the node returned by the user may be an entire tree.
268  *
269  * Since the node itself cannot enforce any constraints, we turn
270  * all pending constraints into guards and add them to the resulting
271  * graft to ensure that they will be generated.
272  *
273  * Before we pass control to the user, we first clear some information
274  * from the build that is (presumbably) only meaningful
275  * for the current code generation.
276  * This includes the create_leaf callback itself, so we make a copy
277  * of the build first.
278  */
call_create_leaf(__isl_take isl_union_map * executed,__isl_take isl_ast_build * build)279 static __isl_give isl_ast_graft_list *call_create_leaf(
280 	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
281 {
282 	isl_set *guard;
283 	isl_ast_node *node;
284 	isl_ast_graft *graft;
285 	isl_ast_build *user_build;
286 
287 	guard = isl_ast_build_get_pending(build);
288 	user_build = isl_ast_build_copy(build);
289 	user_build = isl_ast_build_replace_pending_by_guard(user_build,
290 							isl_set_copy(guard));
291 	user_build = isl_ast_build_set_executed(user_build, executed);
292 	user_build = isl_ast_build_clear_local_info(user_build);
293 	if (!user_build)
294 		node = NULL;
295 	else
296 		node = build->create_leaf(user_build, build->create_leaf_user);
297 	graft = isl_ast_graft_alloc(node, build);
298 	graft = isl_ast_graft_add_guard(graft, guard, build);
299 	isl_ast_build_free(build);
300 	return isl_ast_graft_list_from_ast_graft(graft);
301 }
302 
303 static __isl_give isl_ast_graft_list *build_ast_from_child(
304 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
305 	__isl_take isl_union_map *executed);
306 
307 /* Generate an AST after having handled the complete schedule
308  * of this call to the code generator or the complete band
309  * if we are generating an AST from a schedule tree.
310  *
311  * If we are inside a band node, then move on to the child of the band.
312  *
313  * If the user has specified a create_leaf callback, control
314  * is passed to the user in call_create_leaf.
315  *
316  * Otherwise, we generate one or more calls for each individual
317  * domain in generate_domain.
318  */
generate_inner_level(__isl_take isl_union_map * executed,__isl_take isl_ast_build * build)319 static __isl_give isl_ast_graft_list *generate_inner_level(
320 	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
321 {
322 	isl_ctx *ctx;
323 	struct isl_generate_domain_data data = { build };
324 
325 	if (!build || !executed)
326 		goto error;
327 
328 	if (isl_ast_build_has_schedule_node(build)) {
329 		isl_schedule_node *node;
330 		node = isl_ast_build_get_schedule_node(build);
331 		build = isl_ast_build_reset_schedule_node(build);
332 		return build_ast_from_child(build, node, executed);
333 	}
334 
335 	if (build->create_leaf)
336 		return call_create_leaf(executed, build);
337 
338 	ctx = isl_union_map_get_ctx(executed);
339 	data.list = isl_ast_graft_list_alloc(ctx, 0);
340 	if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
341 		data.list = isl_ast_graft_list_free(data.list);
342 
343 	if (0)
344 error:		data.list = NULL;
345 	isl_ast_build_free(build);
346 	isl_union_map_free(executed);
347 	return data.list;
348 }
349 
350 /* Call the before_each_for callback, if requested by the user.
351  */
before_each_for(__isl_take isl_ast_node * node,__isl_keep isl_ast_build * build)352 static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
353 	__isl_keep isl_ast_build *build)
354 {
355 	isl_id *id;
356 
357 	if (!node || !build)
358 		return isl_ast_node_free(node);
359 	if (!build->before_each_for)
360 		return node;
361 	id = build->before_each_for(build, build->before_each_for_user);
362 	node = isl_ast_node_set_annotation(node, id);
363 	return node;
364 }
365 
366 /* Call the after_each_for callback, if requested by the user.
367  */
after_each_for(__isl_take isl_ast_graft * graft,__isl_keep isl_ast_build * build)368 static __isl_give isl_ast_graft *after_each_for(__isl_take isl_ast_graft *graft,
369 	__isl_keep isl_ast_build *build)
370 {
371 	if (!graft || !build)
372 		return isl_ast_graft_free(graft);
373 	if (!build->after_each_for)
374 		return graft;
375 	graft->node = build->after_each_for(graft->node, build,
376 						build->after_each_for_user);
377 	if (!graft->node)
378 		return isl_ast_graft_free(graft);
379 	return graft;
380 }
381 
382 /* Plug in all the know values of the current and outer dimensions
383  * in the domain of "executed".  In principle, we only need to plug
384  * in the known value of the current dimension since the values of
385  * outer dimensions have been plugged in already.
386  * However, it turns out to be easier to just plug in all known values.
387  */
plug_in_values(__isl_take isl_union_map * executed,__isl_keep isl_ast_build * build)388 static __isl_give isl_union_map *plug_in_values(
389 	__isl_take isl_union_map *executed, __isl_keep isl_ast_build *build)
390 {
391 	return isl_ast_build_substitute_values_union_map_domain(build,
392 								    executed);
393 }
394 
395 /* Check if the constraint "c" is a lower bound on dimension "pos",
396  * an upper bound, or independent of dimension "pos".
397  */
constraint_type(isl_constraint * c,int pos)398 static int constraint_type(isl_constraint *c, int pos)
399 {
400 	if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
401 		return 1;
402 	if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
403 		return 2;
404 	return 0;
405 }
406 
407 /* Compare the types of the constraints "a" and "b",
408  * resulting in constraints that are independent of "depth"
409  * to be sorted before the lower bounds on "depth", which in
410  * turn are sorted before the upper bounds on "depth".
411  */
cmp_constraint(__isl_keep isl_constraint * a,__isl_keep isl_constraint * b,void * user)412 static int cmp_constraint(__isl_keep isl_constraint *a,
413 	__isl_keep isl_constraint *b, void *user)
414 {
415 	int *depth = user;
416 	int t1 = constraint_type(a, *depth);
417 	int t2 = constraint_type(b, *depth);
418 
419 	return t1 - t2;
420 }
421 
422 /* Extract a lower bound on dimension "pos" from constraint "c".
423  *
424  * If the constraint is of the form
425  *
426  *	a x + f(...) >= 0
427  *
428  * then we essentially return
429  *
430  *	l = ceil(-f(...)/a)
431  *
432  * However, if the current dimension is strided, then we need to make
433  * sure that the lower bound we construct is of the form
434  *
435  *	f + s a
436  *
437  * with f the offset and s the stride.
438  * We therefore compute
439  *
440  *	f + s * ceil((l - f)/s)
441  */
lower_bound(__isl_keep isl_constraint * c,int pos,__isl_keep isl_ast_build * build)442 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
443 	int pos, __isl_keep isl_ast_build *build)
444 {
445 	isl_aff *aff;
446 
447 	aff = isl_constraint_get_bound(c, isl_dim_set, pos);
448 	aff = isl_aff_ceil(aff);
449 
450 	if (isl_ast_build_has_stride(build, pos)) {
451 		isl_aff *offset;
452 		isl_val *stride;
453 
454 		offset = isl_ast_build_get_offset(build, pos);
455 		stride = isl_ast_build_get_stride(build, pos);
456 
457 		aff = isl_aff_sub(aff, isl_aff_copy(offset));
458 		aff = isl_aff_scale_down_val(aff, isl_val_copy(stride));
459 		aff = isl_aff_ceil(aff);
460 		aff = isl_aff_scale_val(aff, stride);
461 		aff = isl_aff_add(aff, offset);
462 	}
463 
464 	aff = isl_ast_build_compute_gist_aff(build, aff);
465 
466 	return aff;
467 }
468 
469 /* Return the exact lower bound (or upper bound if "upper" is set)
470  * of "domain" as a piecewise affine expression.
471  *
472  * If we are computing a lower bound (of a strided dimension), then
473  * we need to make sure it is of the form
474  *
475  *	f + s a
476  *
477  * where f is the offset and s is the stride.
478  * We therefore need to include the stride constraint before computing
479  * the minimum.
480  */
exact_bound(__isl_keep isl_set * domain,__isl_keep isl_ast_build * build,int upper)481 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
482 	__isl_keep isl_ast_build *build, int upper)
483 {
484 	isl_set *stride;
485 	isl_map *it_map;
486 	isl_pw_aff *pa;
487 	isl_pw_multi_aff *pma;
488 
489 	domain = isl_set_copy(domain);
490 	if (!upper) {
491 		stride = isl_ast_build_get_stride_constraint(build);
492 		domain = isl_set_intersect(domain, stride);
493 	}
494 	it_map = isl_ast_build_map_to_iterator(build, domain);
495 	if (upper)
496 		pma = isl_map_lexmax_pw_multi_aff(it_map);
497 	else
498 		pma = isl_map_lexmin_pw_multi_aff(it_map);
499 	pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
500 	isl_pw_multi_aff_free(pma);
501 	pa = isl_ast_build_compute_gist_pw_aff(build, pa);
502 	pa = isl_pw_aff_coalesce(pa);
503 
504 	return pa;
505 }
506 
507 /* Callback for sorting the isl_pw_aff_list passed to reduce_list and
508  * remove_redundant_lower_bounds.
509  */
reduce_list_cmp(__isl_keep isl_pw_aff * a,__isl_keep isl_pw_aff * b,void * user)510 static int reduce_list_cmp(__isl_keep isl_pw_aff *a, __isl_keep isl_pw_aff *b,
511 	void *user)
512 {
513 	return isl_pw_aff_plain_cmp(a, b);
514 }
515 
516 /* Given a list of lower bounds "list", remove those that are redundant
517  * with respect to the other bounds in "list" and the domain of "build".
518  *
519  * We first sort the bounds in the same way as they would be sorted
520  * by set_for_node_expressions so that we can try and remove the last
521  * bounds first.
522  *
523  * For a lower bound to be effective, there needs to be at least
524  * one domain element for which it is larger than all other lower bounds.
525  * For each lower bound we therefore intersect the domain with
526  * the conditions that it is larger than all other bounds and
527  * check whether the result is empty.  If so, the bound can be removed.
528  */
remove_redundant_lower_bounds(__isl_take isl_pw_aff_list * list,__isl_keep isl_ast_build * build)529 static __isl_give isl_pw_aff_list *remove_redundant_lower_bounds(
530 	__isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
531 {
532 	int i, j;
533 	isl_size n;
534 	isl_set *domain;
535 
536 	list = isl_pw_aff_list_sort(list, &reduce_list_cmp, NULL);
537 
538 	n = isl_pw_aff_list_n_pw_aff(list);
539 	if (n < 0)
540 		return isl_pw_aff_list_free(list);
541 	if (n <= 1)
542 		return list;
543 
544 	domain = isl_ast_build_get_domain(build);
545 
546 	for (i = n - 1; i >= 0; --i) {
547 		isl_pw_aff *pa_i;
548 		isl_set *domain_i;
549 		int empty;
550 
551 		domain_i = isl_set_copy(domain);
552 		pa_i = isl_pw_aff_list_get_pw_aff(list, i);
553 
554 		for (j = 0; j < n; ++j) {
555 			isl_pw_aff *pa_j;
556 			isl_set *better;
557 
558 			if (j == i)
559 				continue;
560 
561 			pa_j = isl_pw_aff_list_get_pw_aff(list, j);
562 			better = isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i), pa_j);
563 			domain_i = isl_set_intersect(domain_i, better);
564 		}
565 
566 		empty = isl_set_is_empty(domain_i);
567 
568 		isl_set_free(domain_i);
569 		isl_pw_aff_free(pa_i);
570 
571 		if (empty < 0)
572 			goto error;
573 		if (!empty)
574 			continue;
575 		list = isl_pw_aff_list_drop(list, i, 1);
576 		n--;
577 	}
578 
579 	isl_set_free(domain);
580 
581 	return list;
582 error:
583 	isl_set_free(domain);
584 	return isl_pw_aff_list_free(list);
585 }
586 
587 /* Extract a lower bound on dimension "pos" from each constraint
588  * in "constraints" and return the list of lower bounds.
589  * If "constraints" has zero elements, then we extract a lower bound
590  * from "domain" instead.
591  *
592  * If the current dimension is strided, then the lower bound
593  * is adjusted by lower_bound to match the stride information.
594  * This modification may make one or more lower bounds redundant
595  * with respect to the other lower bounds.  We therefore check
596  * for this condition and remove the redundant lower bounds.
597  */
lower_bounds(__isl_keep isl_constraint_list * constraints,int pos,__isl_keep isl_set * domain,__isl_keep isl_ast_build * build)598 static __isl_give isl_pw_aff_list *lower_bounds(
599 	__isl_keep isl_constraint_list *constraints, int pos,
600 	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
601 {
602 	isl_ctx *ctx;
603 	isl_pw_aff_list *list;
604 	int i;
605 	isl_size n;
606 
607 	if (!build)
608 		return NULL;
609 
610 	n = isl_constraint_list_n_constraint(constraints);
611 	if (n < 0)
612 		return NULL;
613 	if (n == 0) {
614 		isl_pw_aff *pa;
615 		pa = exact_bound(domain, build, 0);
616 		return isl_pw_aff_list_from_pw_aff(pa);
617 	}
618 
619 	ctx = isl_ast_build_get_ctx(build);
620 	list = isl_pw_aff_list_alloc(ctx,n);
621 
622 	for (i = 0; i < n; ++i) {
623 		isl_aff *aff;
624 		isl_constraint *c;
625 
626 		c = isl_constraint_list_get_constraint(constraints, i);
627 		aff = lower_bound(c, pos, build);
628 		isl_constraint_free(c);
629 		list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
630 	}
631 
632 	if (isl_ast_build_has_stride(build, pos))
633 		list = remove_redundant_lower_bounds(list, build);
634 
635 	return list;
636 }
637 
638 /* Extract an upper bound on dimension "pos" from each constraint
639  * in "constraints" and return the list of upper bounds.
640  * If "constraints" has zero elements, then we extract an upper bound
641  * from "domain" instead.
642  */
upper_bounds(__isl_keep isl_constraint_list * constraints,int pos,__isl_keep isl_set * domain,__isl_keep isl_ast_build * build)643 static __isl_give isl_pw_aff_list *upper_bounds(
644 	__isl_keep isl_constraint_list *constraints, int pos,
645 	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
646 {
647 	isl_ctx *ctx;
648 	isl_pw_aff_list *list;
649 	int i;
650 	isl_size n;
651 
652 	n = isl_constraint_list_n_constraint(constraints);
653 	if (n < 0)
654 		return NULL;
655 	if (n == 0) {
656 		isl_pw_aff *pa;
657 		pa = exact_bound(domain, build, 1);
658 		return isl_pw_aff_list_from_pw_aff(pa);
659 	}
660 
661 	ctx = isl_ast_build_get_ctx(build);
662 	list = isl_pw_aff_list_alloc(ctx,n);
663 
664 	for (i = 0; i < n; ++i) {
665 		isl_aff *aff;
666 		isl_constraint *c;
667 
668 		c = isl_constraint_list_get_constraint(constraints, i);
669 		aff = isl_constraint_get_bound(c, isl_dim_set, pos);
670 		isl_constraint_free(c);
671 		aff = isl_aff_floor(aff);
672 		list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
673 	}
674 
675 	return list;
676 }
677 
678 /* Return an isl_ast_expr that performs the reduction of type "type"
679  * on AST expressions corresponding to the elements in "list".
680  *
681  * The list is assumed to contain at least one element.
682  * If the list contains exactly one element, then the returned isl_ast_expr
683  * simply computes that affine expression.
684  * If the list contains more than one element, then we sort it
685  * using a fairly arbitrary but hopefully reasonably stable order.
686  */
reduce_list(enum isl_ast_expr_op_type type,__isl_keep isl_pw_aff_list * list,__isl_keep isl_ast_build * build)687 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_expr_op_type type,
688 	__isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
689 {
690 	int i;
691 	isl_size n;
692 	isl_ctx *ctx;
693 	isl_ast_expr *expr;
694 
695 	n = isl_pw_aff_list_n_pw_aff(list);
696 	if (n < 0)
697 		return NULL;
698 
699 	if (n == 1)
700 		return isl_ast_build_expr_from_pw_aff_internal(build,
701 				isl_pw_aff_list_get_pw_aff(list, 0));
702 
703 	ctx = isl_pw_aff_list_get_ctx(list);
704 	expr = isl_ast_expr_alloc_op(ctx, type, n);
705 	if (!expr)
706 		return NULL;
707 
708 	list = isl_pw_aff_list_copy(list);
709 	list = isl_pw_aff_list_sort(list, &reduce_list_cmp, NULL);
710 	if (!list)
711 		return isl_ast_expr_free(expr);
712 
713 	for (i = 0; i < n; ++i) {
714 		isl_ast_expr *expr_i;
715 
716 		expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
717 				isl_pw_aff_list_get_pw_aff(list, i));
718 		if (!expr_i)
719 			goto error;
720 		expr->u.op.args[i] = expr_i;
721 	}
722 
723 	isl_pw_aff_list_free(list);
724 	return expr;
725 error:
726 	isl_pw_aff_list_free(list);
727 	isl_ast_expr_free(expr);
728 	return NULL;
729 }
730 
731 /* Add guards implied by the "generated constraints",
732  * but not (necessarily) enforced by the generated AST to "guard".
733  * In particular, if there is any stride constraints,
734  * then add the guard implied by those constraints.
735  * If we have generated a degenerate loop, then add the guard
736  * implied by "bounds" on the outer dimensions, i.e., the guard
737  * that ensures that the single value actually exists.
738  * Since there may also be guards implied by a combination
739  * of these constraints, we first combine them before
740  * deriving the implied constraints.
741  */
add_implied_guards(__isl_take isl_set * guard,int degenerate,__isl_keep isl_basic_set * bounds,__isl_keep isl_ast_build * build)742 static __isl_give isl_set *add_implied_guards(__isl_take isl_set *guard,
743 	int degenerate, __isl_keep isl_basic_set *bounds,
744 	__isl_keep isl_ast_build *build)
745 {
746 	int depth, has_stride;
747 	isl_space *space;
748 	isl_set *dom, *set;
749 
750 	depth = isl_ast_build_get_depth(build);
751 	has_stride = isl_ast_build_has_stride(build, depth);
752 	if (!has_stride && !degenerate)
753 		return guard;
754 
755 	space = isl_basic_set_get_space(bounds);
756 	dom = isl_set_universe(space);
757 
758 	if (degenerate) {
759 		bounds = isl_basic_set_copy(bounds);
760 		bounds = isl_basic_set_drop_constraints_not_involving_dims(
761 					bounds, isl_dim_set, depth, 1);
762 		set = isl_set_from_basic_set(bounds);
763 		dom = isl_set_intersect(dom, set);
764 	}
765 
766 	if (has_stride) {
767 		set = isl_ast_build_get_stride_constraint(build);
768 		dom = isl_set_intersect(dom, set);
769 	}
770 
771 	dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
772 	dom = isl_ast_build_compute_gist(build, dom);
773 	guard = isl_set_intersect(guard, dom);
774 
775 	return guard;
776 }
777 
778 /* Update "graft" based on "sub_build" for the degenerate case.
779  *
780  * "build" is the build in which graft->node was created
781  * "sub_build" contains information about the current level itself,
782  * including the single value attained.
783  *
784  * We set the initialization part of the for loop to the single
785  * value attained by the current dimension.
786  * The increment and condition are not strictly needed as the are known
787  * to be "1" and "iterator <= value" respectively.
788  */
refine_degenerate(__isl_take isl_ast_graft * graft,__isl_keep isl_ast_build * build,__isl_keep isl_ast_build * sub_build)789 static __isl_give isl_ast_graft *refine_degenerate(
790 	__isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build,
791 	__isl_keep isl_ast_build *sub_build)
792 {
793 	isl_pw_aff *value;
794 
795 	if (!graft || !sub_build)
796 		return isl_ast_graft_free(graft);
797 
798 	value = isl_pw_aff_copy(sub_build->value);
799 
800 	graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
801 						value);
802 	if (!graft->node->u.f.init)
803 		return isl_ast_graft_free(graft);
804 
805 	return graft;
806 }
807 
808 /* Return the intersection of constraints in "list" as a set.
809  */
intersect_constraints(__isl_keep isl_constraint_list * list)810 static __isl_give isl_set *intersect_constraints(
811 	__isl_keep isl_constraint_list *list)
812 {
813 	int i;
814 	isl_size n;
815 	isl_basic_set *bset;
816 
817 	n = isl_constraint_list_n_constraint(list);
818 	if (n < 0)
819 		return NULL;
820 	if (n < 1)
821 		isl_die(isl_constraint_list_get_ctx(list), isl_error_internal,
822 			"expecting at least one constraint", return NULL);
823 
824 	bset = isl_basic_set_from_constraint(
825 				isl_constraint_list_get_constraint(list, 0));
826 	for (i = 1; i < n; ++i) {
827 		isl_basic_set *bset_i;
828 
829 		bset_i = isl_basic_set_from_constraint(
830 				isl_constraint_list_get_constraint(list, i));
831 		bset = isl_basic_set_intersect(bset, bset_i);
832 	}
833 
834 	return isl_set_from_basic_set(bset);
835 }
836 
837 /* Compute the constraints on the outer dimensions enforced by
838  * graft->node and add those constraints to graft->enforced,
839  * in case the upper bound is expressed as a set "upper".
840  *
841  * In particular, if l(...) is a lower bound in "lower", and
842  *
843  *	-a i + f(...) >= 0		or	a i <= f(...)
844  *
845  * is an upper bound ocnstraint on the current dimension i,
846  * then the for loop enforces the constraint
847  *
848  *	-a l(...) + f(...) >= 0		or	a l(...) <= f(...)
849  *
850  * We therefore simply take each lower bound in turn, plug it into
851  * the upper bounds and compute the intersection over all lower bounds.
852  *
853  * If a lower bound is a rational expression, then
854  * isl_basic_set_preimage_multi_aff will force this rational
855  * expression to have only integer values.  However, the loop
856  * itself does not enforce this integrality constraint.  We therefore
857  * use the ceil of the lower bounds instead of the lower bounds themselves.
858  * Other constraints will make sure that the for loop is only executed
859  * when each of the lower bounds attains an integral value.
860  * In particular, potentially rational values only occur in
861  * lower_bound if the offset is a (seemingly) rational expression,
862  * but then outer conditions will make sure that this rational expression
863  * only attains integer values.
864  */
set_enforced_from_set(__isl_take isl_ast_graft * graft,__isl_keep isl_pw_aff_list * lower,int pos,__isl_keep isl_set * upper)865 static __isl_give isl_ast_graft *set_enforced_from_set(
866 	__isl_take isl_ast_graft *graft,
867 	__isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
868 {
869 	isl_space *space;
870 	isl_basic_set *enforced;
871 	isl_pw_multi_aff *pma;
872 	int i;
873 	isl_size n;
874 
875 	n = isl_pw_aff_list_n_pw_aff(lower);
876 	if (!graft || n < 0)
877 		return isl_ast_graft_free(graft);
878 
879 	space = isl_set_get_space(upper);
880 	enforced = isl_basic_set_universe(isl_space_copy(space));
881 
882 	space = isl_space_map_from_set(space);
883 	pma = isl_pw_multi_aff_identity(space);
884 
885 	for (i = 0; i < n; ++i) {
886 		isl_pw_aff *pa;
887 		isl_set *enforced_i;
888 		isl_basic_set *hull;
889 		isl_pw_multi_aff *pma_i;
890 
891 		pa = isl_pw_aff_list_get_pw_aff(lower, i);
892 		pa = isl_pw_aff_ceil(pa);
893 		pma_i = isl_pw_multi_aff_copy(pma);
894 		pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
895 		enforced_i = isl_set_copy(upper);
896 		enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
897 		hull = isl_set_simple_hull(enforced_i);
898 		enforced = isl_basic_set_intersect(enforced, hull);
899 	}
900 
901 	isl_pw_multi_aff_free(pma);
902 
903 	graft = isl_ast_graft_enforce(graft, enforced);
904 
905 	return graft;
906 }
907 
908 /* Compute the constraints on the outer dimensions enforced by
909  * graft->node and add those constraints to graft->enforced,
910  * in case the upper bound is expressed as
911  * a list of affine expressions "upper".
912  *
913  * The enforced condition is that each lower bound expression is less
914  * than or equal to each upper bound expression.
915  */
set_enforced_from_list(__isl_take isl_ast_graft * graft,__isl_keep isl_pw_aff_list * lower,__isl_keep isl_pw_aff_list * upper)916 static __isl_give isl_ast_graft *set_enforced_from_list(
917 	__isl_take isl_ast_graft *graft,
918 	__isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
919 {
920 	isl_set *cond;
921 	isl_basic_set *enforced;
922 
923 	lower = isl_pw_aff_list_copy(lower);
924 	upper = isl_pw_aff_list_copy(upper);
925 	cond = isl_pw_aff_list_le_set(lower, upper);
926 	enforced = isl_set_simple_hull(cond);
927 	graft = isl_ast_graft_enforce(graft, enforced);
928 
929 	return graft;
930 }
931 
932 /* Does "aff" have a negative constant term?
933  */
aff_constant_is_negative(__isl_keep isl_set * set,__isl_keep isl_aff * aff,void * user)934 static isl_bool aff_constant_is_negative(__isl_keep isl_set *set,
935 	__isl_keep isl_aff *aff, void *user)
936 {
937 	isl_bool is_neg;
938 	isl_val *v;
939 
940 	v = isl_aff_get_constant_val(aff);
941 	is_neg = isl_val_is_neg(v);
942 	isl_val_free(v);
943 
944 	return is_neg;
945 }
946 
947 /* Does "pa" have a negative constant term over its entire domain?
948  */
pw_aff_constant_is_negative(__isl_keep isl_pw_aff * pa,void * user)949 static isl_bool pw_aff_constant_is_negative(__isl_keep isl_pw_aff *pa,
950 	void *user)
951 {
952 	return isl_pw_aff_every_piece(pa, &aff_constant_is_negative, NULL);
953 }
954 
955 /* Does each element in "list" have a negative constant term?
956  */
list_constant_is_negative(__isl_keep isl_pw_aff_list * list)957 static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
958 {
959 	return isl_pw_aff_list_every(list, &pw_aff_constant_is_negative, NULL);
960 }
961 
962 /* Add 1 to each of the elements in "list", where each of these elements
963  * is defined over the internal schedule space of "build".
964  */
list_add_one(__isl_take isl_pw_aff_list * list,__isl_keep isl_ast_build * build)965 static __isl_give isl_pw_aff_list *list_add_one(
966 	__isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
967 {
968 	int i;
969 	isl_size n;
970 	isl_space *space;
971 	isl_aff *aff;
972 	isl_pw_aff *one;
973 
974 	n = isl_pw_aff_list_n_pw_aff(list);
975 	if (n < 0)
976 		return isl_pw_aff_list_free(list);
977 
978 	space = isl_ast_build_get_space(build, 1);
979 	aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
980 	aff = isl_aff_add_constant_si(aff, 1);
981 	one = isl_pw_aff_from_aff(aff);
982 
983 	for (i = 0; i < n; ++i) {
984 		isl_pw_aff *pa;
985 		pa = isl_pw_aff_list_get_pw_aff(list, i);
986 		pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
987 		list = isl_pw_aff_list_set_pw_aff(list, i, pa);
988 	}
989 
990 	isl_pw_aff_free(one);
991 
992 	return list;
993 }
994 
995 /* Set the condition part of the for node graft->node in case
996  * the upper bound is represented as a list of piecewise affine expressions.
997  *
998  * In particular, set the condition to
999  *
1000  *	iterator <= min(list of upper bounds)
1001  *
1002  * If each of the upper bounds has a negative constant term, then
1003  * set the condition to
1004  *
1005  *	iterator < min(list of (upper bound + 1)s)
1006  *
1007  */
set_for_cond_from_list(__isl_take isl_ast_graft * graft,__isl_keep isl_pw_aff_list * list,__isl_keep isl_ast_build * build)1008 static __isl_give isl_ast_graft *set_for_cond_from_list(
1009 	__isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
1010 	__isl_keep isl_ast_build *build)
1011 {
1012 	int neg;
1013 	isl_ast_expr *bound, *iterator, *cond;
1014 	enum isl_ast_expr_op_type type = isl_ast_expr_op_le;
1015 
1016 	if (!graft || !list)
1017 		return isl_ast_graft_free(graft);
1018 
1019 	neg = list_constant_is_negative(list);
1020 	if (neg < 0)
1021 		return isl_ast_graft_free(graft);
1022 	list = isl_pw_aff_list_copy(list);
1023 	if (neg) {
1024 		list = list_add_one(list, build);
1025 		type = isl_ast_expr_op_lt;
1026 	}
1027 
1028 	bound = reduce_list(isl_ast_expr_op_min, list, build);
1029 	iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
1030 	cond = isl_ast_expr_alloc_binary(type, iterator, bound);
1031 	graft->node->u.f.cond = cond;
1032 
1033 	isl_pw_aff_list_free(list);
1034 	if (!graft->node->u.f.cond)
1035 		return isl_ast_graft_free(graft);
1036 	return graft;
1037 }
1038 
1039 /* Set the condition part of the for node graft->node in case
1040  * the upper bound is represented as a set.
1041  */
set_for_cond_from_set(__isl_take isl_ast_graft * graft,__isl_keep isl_set * set,__isl_keep isl_ast_build * build)1042 static __isl_give isl_ast_graft *set_for_cond_from_set(
1043 	__isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
1044 	__isl_keep isl_ast_build *build)
1045 {
1046 	isl_ast_expr *cond;
1047 
1048 	if (!graft)
1049 		return NULL;
1050 
1051 	cond = isl_ast_build_expr_from_set_internal(build, isl_set_copy(set));
1052 	graft->node->u.f.cond = cond;
1053 	if (!graft->node->u.f.cond)
1054 		return isl_ast_graft_free(graft);
1055 	return graft;
1056 }
1057 
1058 /* Construct an isl_ast_expr for the increment (i.e., stride) of
1059  * the current dimension.
1060  */
for_inc(__isl_keep isl_ast_build * build)1061 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
1062 {
1063 	int depth;
1064 	isl_val *v;
1065 	isl_ctx *ctx;
1066 
1067 	if (!build)
1068 		return NULL;
1069 	ctx = isl_ast_build_get_ctx(build);
1070 	depth = isl_ast_build_get_depth(build);
1071 
1072 	if (!isl_ast_build_has_stride(build, depth))
1073 		return isl_ast_expr_alloc_int_si(ctx, 1);
1074 
1075 	v = isl_ast_build_get_stride(build, depth);
1076 	return isl_ast_expr_from_val(v);
1077 }
1078 
1079 /* Should we express the loop condition as
1080  *
1081  *	iterator <= min(list of upper bounds)
1082  *
1083  * or as a conjunction of constraints?
1084  *
1085  * The first is constructed from a list of upper bounds.
1086  * The second is constructed from a set.
1087  *
1088  * If there are no upper bounds in "constraints", then this could mean
1089  * that "domain" simply doesn't have an upper bound or that we didn't
1090  * pick any upper bound.  In the first case, we want to generate the
1091  * loop condition as a(n empty) conjunction of constraints
1092  * In the second case, we will compute
1093  * a single upper bound from "domain" and so we use the list form.
1094  *
1095  * If there are upper bounds in "constraints",
1096  * then we use the list form iff the atomic_upper_bound option is set.
1097  */
use_upper_bound_list(isl_ctx * ctx,int n_upper,__isl_keep isl_set * domain,int depth)1098 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
1099 	__isl_keep isl_set *domain, int depth)
1100 {
1101 	if (n_upper > 0)
1102 		return isl_options_get_ast_build_atomic_upper_bound(ctx);
1103 	else
1104 		return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
1105 }
1106 
1107 /* Fill in the expressions of the for node in graft->node.
1108  *
1109  * In particular,
1110  * - set the initialization part of the loop to the maximum of the lower bounds
1111  * - extract the increment from the stride of the current dimension
1112  * - construct the for condition either based on a list of upper bounds
1113  *	or on a set of upper bound constraints.
1114  */
set_for_node_expressions(__isl_take isl_ast_graft * graft,__isl_keep isl_pw_aff_list * lower,int use_list,__isl_keep isl_pw_aff_list * upper_list,__isl_keep isl_set * upper_set,__isl_keep isl_ast_build * build)1115 static __isl_give isl_ast_graft *set_for_node_expressions(
1116 	__isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
1117 	int use_list, __isl_keep isl_pw_aff_list *upper_list,
1118 	__isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
1119 {
1120 	isl_ast_node *node;
1121 
1122 	if (!graft)
1123 		return NULL;
1124 
1125 	build = isl_ast_build_copy(build);
1126 
1127 	node = graft->node;
1128 	node->u.f.init = reduce_list(isl_ast_expr_op_max, lower, build);
1129 	node->u.f.inc = for_inc(build);
1130 
1131 	if (!node->u.f.init || !node->u.f.inc)
1132 		graft = isl_ast_graft_free(graft);
1133 
1134 	if (use_list)
1135 		graft = set_for_cond_from_list(graft, upper_list, build);
1136 	else
1137 		graft = set_for_cond_from_set(graft, upper_set, build);
1138 
1139 	isl_ast_build_free(build);
1140 
1141 	return graft;
1142 }
1143 
1144 /* Update "graft" based on "bounds" and "domain" for the generic,
1145  * non-degenerate, case.
1146  *
1147  * "c_lower" and "c_upper" contain the lower and upper bounds
1148  * that the loop node should express.
1149  * "domain" is the subset of the intersection of the constraints
1150  * for which some code is executed.
1151  *
1152  * There may be zero lower bounds or zero upper bounds in "constraints"
1153  * in case the list of constraints was created
1154  * based on the atomic option or based on separation with explicit bounds.
1155  * In that case, we use "domain" to derive lower and/or upper bounds.
1156  *
1157  * We first compute a list of one or more lower bounds.
1158  *
1159  * Then we decide if we want to express the condition as
1160  *
1161  *	iterator <= min(list of upper bounds)
1162  *
1163  * or as a conjunction of constraints.
1164  *
1165  * The set of enforced constraints is then computed either based on
1166  * a list of upper bounds or on a set of upper bound constraints.
1167  * We do not compute any enforced constraints if we were forced
1168  * to compute a lower or upper bound using exact_bound.  The domains
1169  * of the resulting expressions may imply some bounds on outer dimensions
1170  * that we do not want to appear in the enforced constraints since
1171  * they are not actually enforced by the corresponding code.
1172  *
1173  * Finally, we fill in the expressions of the for node.
1174  */
refine_generic_bounds(__isl_take isl_ast_graft * graft,__isl_take isl_constraint_list * c_lower,__isl_take isl_constraint_list * c_upper,__isl_keep isl_set * domain,__isl_keep isl_ast_build * build)1175 static __isl_give isl_ast_graft *refine_generic_bounds(
1176 	__isl_take isl_ast_graft *graft,
1177 	__isl_take isl_constraint_list *c_lower,
1178 	__isl_take isl_constraint_list *c_upper,
1179 	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1180 {
1181 	int depth;
1182 	isl_ctx *ctx;
1183 	isl_pw_aff_list *lower;
1184 	int use_list;
1185 	isl_set *upper_set = NULL;
1186 	isl_pw_aff_list *upper_list = NULL;
1187 	isl_size n_lower, n_upper;
1188 
1189 	if (!graft || !c_lower || !c_upper || !build)
1190 		goto error;
1191 
1192 	depth = isl_ast_build_get_depth(build);
1193 	ctx = isl_ast_graft_get_ctx(graft);
1194 
1195 	n_lower = isl_constraint_list_n_constraint(c_lower);
1196 	n_upper = isl_constraint_list_n_constraint(c_upper);
1197 	if (n_lower < 0 || n_upper < 0)
1198 		goto error;
1199 
1200 	use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1201 
1202 	lower = lower_bounds(c_lower, depth, domain, build);
1203 
1204 	if (use_list)
1205 		upper_list = upper_bounds(c_upper, depth, domain, build);
1206 	else if (n_upper > 0)
1207 		upper_set = intersect_constraints(c_upper);
1208 	else
1209 		upper_set = isl_set_universe(isl_set_get_space(domain));
1210 
1211 	if (n_lower == 0 || n_upper == 0)
1212 		;
1213 	else if (use_list)
1214 		graft = set_enforced_from_list(graft, lower, upper_list);
1215 	else
1216 		graft = set_enforced_from_set(graft, lower, depth, upper_set);
1217 
1218 	graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1219 					upper_set, build);
1220 
1221 	isl_pw_aff_list_free(lower);
1222 	isl_pw_aff_list_free(upper_list);
1223 	isl_set_free(upper_set);
1224 	isl_constraint_list_free(c_lower);
1225 	isl_constraint_list_free(c_upper);
1226 
1227 	return graft;
1228 error:
1229 	isl_constraint_list_free(c_lower);
1230 	isl_constraint_list_free(c_upper);
1231 	return isl_ast_graft_free(graft);
1232 }
1233 
1234 /* Internal data structure used inside count_constraints to keep
1235  * track of the number of constraints that are independent of dimension "pos",
1236  * the lower bounds in "pos" and the upper bounds in "pos".
1237  */
1238 struct isl_ast_count_constraints_data {
1239 	int pos;
1240 
1241 	int n_indep;
1242 	int n_lower;
1243 	int n_upper;
1244 };
1245 
1246 /* Increment data->n_indep, data->lower or data->upper depending
1247  * on whether "c" is independenct of dimensions data->pos,
1248  * a lower bound or an upper bound.
1249  */
count_constraints(__isl_take isl_constraint * c,void * user)1250 static isl_stat count_constraints(__isl_take isl_constraint *c, void *user)
1251 {
1252 	struct isl_ast_count_constraints_data *data = user;
1253 
1254 	if (isl_constraint_is_lower_bound(c, isl_dim_set, data->pos))
1255 		data->n_lower++;
1256 	else if (isl_constraint_is_upper_bound(c, isl_dim_set, data->pos))
1257 		data->n_upper++;
1258 	else
1259 		data->n_indep++;
1260 
1261 	isl_constraint_free(c);
1262 
1263 	return isl_stat_ok;
1264 }
1265 
1266 /* Update "graft" based on "bounds" and "domain" for the generic,
1267  * non-degenerate, case.
1268  *
1269  * "list" respresent the list of bounds that need to be encoded by
1270  * the for loop.  Only the constraints that involve the iterator
1271  * are relevant here.  The other constraints are taken care of by
1272  * the caller and are included in the generated constraints of "build".
1273  * "domain" is the subset of the intersection of the constraints
1274  * for which some code is executed.
1275  * "build" is the build in which graft->node was created.
1276  *
1277  * We separate lower bounds, upper bounds and constraints that
1278  * are independent of the loop iterator.
1279  *
1280  * The actual for loop bounds are generated in refine_generic_bounds.
1281  */
refine_generic_split(__isl_take isl_ast_graft * graft,__isl_take isl_constraint_list * list,__isl_keep isl_set * domain,__isl_keep isl_ast_build * build)1282 static __isl_give isl_ast_graft *refine_generic_split(
1283 	__isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list,
1284 	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1285 {
1286 	struct isl_ast_count_constraints_data data;
1287 	isl_constraint_list *lower;
1288 	isl_constraint_list *upper;
1289 
1290 	if (!list)
1291 		return isl_ast_graft_free(graft);
1292 
1293 	data.pos = isl_ast_build_get_depth(build);
1294 
1295 	list = isl_constraint_list_sort(list, &cmp_constraint, &data.pos);
1296 	if (!list)
1297 		return isl_ast_graft_free(graft);
1298 
1299 	data.n_indep = data.n_lower = data.n_upper = 0;
1300 	if (isl_constraint_list_foreach(list, &count_constraints, &data) < 0) {
1301 		isl_constraint_list_free(list);
1302 		return isl_ast_graft_free(graft);
1303 	}
1304 
1305 	lower = isl_constraint_list_drop(list, 0, data.n_indep);
1306 	upper = isl_constraint_list_copy(lower);
1307 	lower = isl_constraint_list_drop(lower, data.n_lower, data.n_upper);
1308 	upper = isl_constraint_list_drop(upper, 0, data.n_lower);
1309 
1310 	return refine_generic_bounds(graft, lower, upper, domain, build);
1311 }
1312 
1313 /* Update "graft" based on "bounds" and "domain" for the generic,
1314  * non-degenerate, case.
1315  *
1316  * "bounds" respresent the bounds that need to be encoded by
1317  * the for loop (or a guard around the for loop).
1318  * "domain" is the subset of "bounds" for which some code is executed.
1319  * "build" is the build in which graft->node was created.
1320  *
1321  * We break up "bounds" into a list of constraints and continue with
1322  * refine_generic_split.
1323  */
refine_generic(__isl_take isl_ast_graft * graft,__isl_keep isl_basic_set * bounds,__isl_keep isl_set * domain,__isl_keep isl_ast_build * build)1324 static __isl_give isl_ast_graft *refine_generic(
1325 	__isl_take isl_ast_graft *graft,
1326 	__isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1327 	__isl_keep isl_ast_build *build)
1328 {
1329 	isl_constraint_list *list;
1330 
1331 	if (!build || !graft)
1332 		return isl_ast_graft_free(graft);
1333 
1334 	list = isl_basic_set_get_constraint_list(bounds);
1335 
1336 	graft = refine_generic_split(graft, list, domain, build);
1337 
1338 	return graft;
1339 }
1340 
1341 /* Create a for node for the current level.
1342  *
1343  * Mark the for node degenerate if "degenerate" is set.
1344  */
create_for(__isl_keep isl_ast_build * build,int degenerate)1345 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1346 	int degenerate)
1347 {
1348 	int depth;
1349 	isl_id *id;
1350 	isl_ast_node *node;
1351 
1352 	if (!build)
1353 		return NULL;
1354 
1355 	depth = isl_ast_build_get_depth(build);
1356 	id = isl_ast_build_get_iterator_id(build, depth);
1357 	node = isl_ast_node_alloc_for(id);
1358 	if (degenerate)
1359 		node = isl_ast_node_for_mark_degenerate(node);
1360 
1361 	return node;
1362 }
1363 
1364 /* If the ast_build_exploit_nested_bounds option is set, then return
1365  * the constraints enforced by all elements in "list".
1366  * Otherwise, return the universe.
1367  */
extract_shared_enforced(__isl_keep isl_ast_graft_list * list,__isl_keep isl_ast_build * build)1368 static __isl_give isl_basic_set *extract_shared_enforced(
1369 	__isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build)
1370 {
1371 	isl_ctx *ctx;
1372 	isl_space *space;
1373 
1374 	if (!list)
1375 		return NULL;
1376 
1377 	ctx = isl_ast_graft_list_get_ctx(list);
1378 	if (isl_options_get_ast_build_exploit_nested_bounds(ctx))
1379 		return isl_ast_graft_list_extract_shared_enforced(list, build);
1380 
1381 	space = isl_ast_build_get_space(build, 1);
1382 	return isl_basic_set_universe(space);
1383 }
1384 
1385 /* Return the pending constraints of "build" that are not already taken
1386  * care of (by a combination of "enforced" and the generated constraints
1387  * of "build").
1388  */
extract_pending(__isl_keep isl_ast_build * build,__isl_keep isl_basic_set * enforced)1389 static __isl_give isl_set *extract_pending(__isl_keep isl_ast_build *build,
1390 	__isl_keep isl_basic_set *enforced)
1391 {
1392 	isl_set *guard, *context;
1393 
1394 	guard = isl_ast_build_get_pending(build);
1395 	context = isl_set_from_basic_set(isl_basic_set_copy(enforced));
1396 	context = isl_set_intersect(context,
1397 					isl_ast_build_get_generated(build));
1398 	return isl_set_gist(guard, context);
1399 }
1400 
1401 /* Create an AST node for the current dimension based on
1402  * the schedule domain "bounds" and return the node encapsulated
1403  * in an isl_ast_graft.
1404  *
1405  * "executed" is the current inverse schedule, taking into account
1406  * the bounds in "bounds"
1407  * "domain" is the domain of "executed", with inner dimensions projected out.
1408  * It may be a strict subset of "bounds" in case "bounds" was created
1409  * based on the atomic option or based on separation with explicit bounds.
1410  *
1411  * "domain" may satisfy additional equalities that result
1412  * from intersecting "executed" with "bounds" in add_node.
1413  * It may also satisfy some global constraints that were dropped out because
1414  * we performed separation with explicit bounds.
1415  * The very first step is then to copy these constraints to "bounds".
1416  *
1417  * Since we may be calling before_each_for and after_each_for
1418  * callbacks, we record the current inverse schedule in the build.
1419  *
1420  * We consider three builds,
1421  * "build" is the one in which the current level is created,
1422  * "body_build" is the build in which the next level is created,
1423  * "sub_build" is essentially the same as "body_build", except that
1424  * the depth has not been increased yet.
1425  *
1426  * "build" already contains information (in strides and offsets)
1427  * about the strides at the current level, but this information is not
1428  * reflected in the build->domain.
1429  * We first add this information and the "bounds" to the sub_build->domain.
1430  * isl_ast_build_set_loop_bounds adds the stride information and
1431  * checks whether the current dimension attains
1432  * only a single value and whether this single value can be represented using
1433  * a single affine expression.
1434  * In the first case, the current level is considered "degenerate".
1435  * In the second, sub-case, the current level is considered "eliminated".
1436  * Eliminated levels don't need to be reflected in the AST since we can
1437  * simply plug in the affine expression.  For degenerate, but non-eliminated,
1438  * levels, we do introduce a for node, but mark is as degenerate so that
1439  * it can be printed as an assignment of the single value to the loop
1440  * "iterator".
1441  *
1442  * If the current level is eliminated, we explicitly plug in the value
1443  * for the current level found by isl_ast_build_set_loop_bounds in the
1444  * inverse schedule.  This ensures that if we are working on a slice
1445  * of the domain based on information available in the inverse schedule
1446  * and the build domain, that then this information is also reflected
1447  * in the inverse schedule.  This operation also eliminates the current
1448  * dimension from the inverse schedule making sure no inner dimensions depend
1449  * on the current dimension.  Otherwise, we create a for node, marking
1450  * it degenerate if appropriate.  The initial for node is still incomplete
1451  * and will be completed in either refine_degenerate or refine_generic.
1452  *
1453  * We then generate a sequence of grafts for the next level,
1454  * create a surrounding graft for the current level and insert
1455  * the for node we created (if the current level is not eliminated).
1456  * Before creating a graft for the current level, we first extract
1457  * hoistable constraints from the child guards and combine them
1458  * with the pending constraints in the build.  These constraints
1459  * are used to simplify the child guards and then added to the guard
1460  * of the current graft to ensure that they will be generated.
1461  * If the hoisted guard is a disjunction, then we use it directly
1462  * to gist the guards on the children before intersect it with the
1463  * pending constraints.  We do so because this disjunction is typically
1464  * identical to the guards on the children such that these guards
1465  * can be effectively removed completely.  After the intersection,
1466  * the gist operation would have a harder time figuring this out.
1467  *
1468  * Finally, we set the bounds of the for loop in either
1469  * refine_degenerate or refine_generic.
1470  * We do so in a context where the pending constraints of the build
1471  * have been replaced by the guard of the current graft.
1472  */
create_node_scaled(__isl_take isl_union_map * executed,__isl_take isl_basic_set * bounds,__isl_take isl_set * domain,__isl_take isl_ast_build * build)1473 static __isl_give isl_ast_graft *create_node_scaled(
1474 	__isl_take isl_union_map *executed,
1475 	__isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1476 	__isl_take isl_ast_build *build)
1477 {
1478 	int depth;
1479 	int degenerate;
1480 	isl_bool eliminated;
1481 	isl_size n;
1482 	isl_basic_set *hull;
1483 	isl_basic_set *enforced;
1484 	isl_set *guard, *hoisted;
1485 	isl_ast_node *node = NULL;
1486 	isl_ast_graft *graft;
1487 	isl_ast_graft_list *children;
1488 	isl_ast_build *sub_build;
1489 	isl_ast_build *body_build;
1490 
1491 	domain = isl_ast_build_eliminate_divs(build, domain);
1492 	domain = isl_set_detect_equalities(domain);
1493 	hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1494 	bounds = isl_basic_set_intersect(bounds, hull);
1495 	build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
1496 
1497 	depth = isl_ast_build_get_depth(build);
1498 	sub_build = isl_ast_build_copy(build);
1499 	bounds = isl_basic_set_remove_redundancies(bounds);
1500 	bounds = isl_ast_build_specialize_basic_set(sub_build, bounds);
1501 	sub_build = isl_ast_build_set_loop_bounds(sub_build,
1502 						isl_basic_set_copy(bounds));
1503 	degenerate = isl_ast_build_has_value(sub_build);
1504 	eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1505 	if (degenerate < 0 || eliminated < 0)
1506 		executed = isl_union_map_free(executed);
1507 	if (!degenerate)
1508 		bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1509 	sub_build = isl_ast_build_set_pending_generated(sub_build,
1510 						isl_basic_set_copy(bounds));
1511 	if (eliminated)
1512 		executed = plug_in_values(executed, sub_build);
1513 	else
1514 		node = create_for(build, degenerate);
1515 
1516 	body_build = isl_ast_build_copy(sub_build);
1517 	body_build = isl_ast_build_increase_depth(body_build);
1518 	if (!eliminated)
1519 		node = before_each_for(node, body_build);
1520 	children = generate_next_level(executed,
1521 				    isl_ast_build_copy(body_build));
1522 
1523 	enforced = extract_shared_enforced(children, build);
1524 	guard = extract_pending(sub_build, enforced);
1525 	hoisted = isl_ast_graft_list_extract_hoistable_guard(children, build);
1526 	n = isl_set_n_basic_set(hoisted);
1527 	if (n < 0)
1528 		children = isl_ast_graft_list_free(children);
1529 	if (n > 1)
1530 		children = isl_ast_graft_list_gist_guards(children,
1531 						    isl_set_copy(hoisted));
1532 	guard = isl_set_intersect(guard, hoisted);
1533 	if (!eliminated)
1534 		guard = add_implied_guards(guard, degenerate, bounds, build);
1535 
1536 	graft = isl_ast_graft_alloc_from_children(children,
1537 			    isl_set_copy(guard), enforced, build, sub_build);
1538 
1539 	if (!eliminated) {
1540 		isl_ast_build *for_build;
1541 
1542 		graft = isl_ast_graft_insert_for(graft, node);
1543 		for_build = isl_ast_build_copy(build);
1544 		for_build = isl_ast_build_replace_pending_by_guard(for_build,
1545 							isl_set_copy(guard));
1546 		if (degenerate)
1547 			graft = refine_degenerate(graft, for_build, sub_build);
1548 		else
1549 			graft = refine_generic(graft, bounds,
1550 					domain, for_build);
1551 		isl_ast_build_free(for_build);
1552 	}
1553 	isl_set_free(guard);
1554 	if (!eliminated)
1555 		graft = after_each_for(graft, body_build);
1556 
1557 	isl_ast_build_free(body_build);
1558 	isl_ast_build_free(sub_build);
1559 	isl_ast_build_free(build);
1560 	isl_basic_set_free(bounds);
1561 	isl_set_free(domain);
1562 
1563 	return graft;
1564 }
1565 
1566 /* Internal data structure for checking if all constraints involving
1567  * the input dimension "depth" are such that the other coefficients
1568  * are multiples of "m", reducing "m" if they are not.
1569  * If "m" is reduced all the way down to "1", then the check has failed
1570  * and we break out of the iteration.
1571  */
1572 struct isl_check_scaled_data {
1573 	int depth;
1574 	isl_val *m;
1575 };
1576 
1577 /* If constraint "c" involves the input dimension data->depth,
1578  * then make sure that all the other coefficients are multiples of data->m,
1579  * reducing data->m if needed.
1580  * Break out of the iteration if data->m has become equal to "1".
1581  */
constraint_check_scaled(__isl_take isl_constraint * c,void * user)1582 static isl_stat constraint_check_scaled(__isl_take isl_constraint *c,
1583 	void *user)
1584 {
1585 	struct isl_check_scaled_data *data = user;
1586 	int i, j;
1587 	isl_size n;
1588 	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1589 				    isl_dim_div };
1590 
1591 	if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1592 		isl_constraint_free(c);
1593 		return isl_stat_ok;
1594 	}
1595 
1596 	for (i = 0; i < 4; ++i) {
1597 		n = isl_constraint_dim(c, t[i]);
1598 		if (n < 0)
1599 			break;
1600 		for (j = 0; j < n; ++j) {
1601 			isl_val *d;
1602 
1603 			if (t[i] == isl_dim_in && j == data->depth)
1604 				continue;
1605 			if (!isl_constraint_involves_dims(c, t[i], j, 1))
1606 				continue;
1607 			d = isl_constraint_get_coefficient_val(c, t[i], j);
1608 			data->m = isl_val_gcd(data->m, d);
1609 			if (isl_val_is_one(data->m))
1610 				break;
1611 		}
1612 		if (j < n)
1613 			break;
1614 	}
1615 
1616 	isl_constraint_free(c);
1617 
1618 	return i < 4 ? isl_stat_error : isl_stat_ok;
1619 }
1620 
1621 /* For each constraint of "bmap" that involves the input dimension data->depth,
1622  * make sure that all the other coefficients are multiples of data->m,
1623  * reducing data->m if needed.
1624  * Break out of the iteration if data->m has become equal to "1".
1625  */
basic_map_check_scaled(__isl_take isl_basic_map * bmap,void * user)1626 static isl_stat basic_map_check_scaled(__isl_take isl_basic_map *bmap,
1627 	void *user)
1628 {
1629 	isl_stat r;
1630 
1631 	r = isl_basic_map_foreach_constraint(bmap,
1632 						&constraint_check_scaled, user);
1633 	isl_basic_map_free(bmap);
1634 
1635 	return r;
1636 }
1637 
1638 /* For each constraint of "map" that involves the input dimension data->depth,
1639  * make sure that all the other coefficients are multiples of data->m,
1640  * reducing data->m if needed.
1641  * Break out of the iteration if data->m has become equal to "1".
1642  */
map_check_scaled(__isl_take isl_map * map,void * user)1643 static isl_stat map_check_scaled(__isl_take isl_map *map, void *user)
1644 {
1645 	isl_stat r;
1646 
1647 	r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1648 	isl_map_free(map);
1649 
1650 	return r;
1651 }
1652 
1653 /* Create an AST node for the current dimension based on
1654  * the schedule domain "bounds" and return the node encapsulated
1655  * in an isl_ast_graft.
1656  *
1657  * "executed" is the current inverse schedule, taking into account
1658  * the bounds in "bounds"
1659  * "domain" is the domain of "executed", with inner dimensions projected out.
1660  *
1661  *
1662  * Before moving on to the actual AST node construction in create_node_scaled,
1663  * we first check if the current dimension is strided and if we can scale
1664  * down this stride.  Note that we only do this if the ast_build_scale_strides
1665  * option is set.
1666  *
1667  * In particular, let the current dimension take on values
1668  *
1669  *	f + s a
1670  *
1671  * with a an integer.  We check if we can find an integer m that (obviously)
1672  * divides both f and s.
1673  *
1674  * If so, we check if the current dimension only appears in constraints
1675  * where the coefficients of the other variables are multiples of m.
1676  * We perform this extra check to avoid the risk of introducing
1677  * divisions by scaling down the current dimension.
1678  *
1679  * If so, we scale the current dimension down by a factor of m.
1680  * That is, we plug in
1681  *
1682  *	i = m i'							(1)
1683  *
1684  * Note that in principle we could always scale down strided loops
1685  * by plugging in
1686  *
1687  *	i = f + s i'
1688  *
1689  * but this may result in i' taking on larger values than the original i,
1690  * due to the shift by "f".
1691  * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1692  */
create_node(__isl_take isl_union_map * executed,__isl_take isl_basic_set * bounds,__isl_take isl_set * domain,__isl_take isl_ast_build * build)1693 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1694 	__isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1695 	__isl_take isl_ast_build *build)
1696 {
1697 	struct isl_check_scaled_data data;
1698 	isl_ctx *ctx;
1699 	isl_aff *offset;
1700 	isl_val *d;
1701 
1702 	ctx = isl_ast_build_get_ctx(build);
1703 	if (!isl_options_get_ast_build_scale_strides(ctx))
1704 		return create_node_scaled(executed, bounds, domain, build);
1705 
1706 	data.depth = isl_ast_build_get_depth(build);
1707 	if (!isl_ast_build_has_stride(build, data.depth))
1708 		return create_node_scaled(executed, bounds, domain, build);
1709 
1710 	offset = isl_ast_build_get_offset(build, data.depth);
1711 	data.m = isl_ast_build_get_stride(build, data.depth);
1712 	if (!data.m)
1713 		offset = isl_aff_free(offset);
1714 	offset = isl_aff_scale_down_val(offset, isl_val_copy(data.m));
1715 	d = isl_aff_get_denominator_val(offset);
1716 	if (!d)
1717 		executed = isl_union_map_free(executed);
1718 
1719 	if (executed && isl_val_is_divisible_by(data.m, d))
1720 		data.m = isl_val_div(data.m, d);
1721 	else {
1722 		data.m = isl_val_set_si(data.m, 1);
1723 		isl_val_free(d);
1724 	}
1725 
1726 	if (!isl_val_is_one(data.m)) {
1727 		if (isl_union_map_foreach_map(executed, &map_check_scaled,
1728 						&data) < 0 &&
1729 		    !isl_val_is_one(data.m))
1730 			executed = isl_union_map_free(executed);
1731 	}
1732 
1733 	if (!isl_val_is_one(data.m)) {
1734 		isl_space *space;
1735 		isl_multi_aff *ma;
1736 		isl_aff *aff;
1737 		isl_map *map;
1738 		isl_union_map *umap;
1739 
1740 		space = isl_ast_build_get_space(build, 1);
1741 		space = isl_space_map_from_set(space);
1742 		ma = isl_multi_aff_identity(space);
1743 		aff = isl_multi_aff_get_aff(ma, data.depth);
1744 		aff = isl_aff_scale_val(aff, isl_val_copy(data.m));
1745 		ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1746 
1747 		bounds = isl_basic_set_preimage_multi_aff(bounds,
1748 						isl_multi_aff_copy(ma));
1749 		domain = isl_set_preimage_multi_aff(domain,
1750 						isl_multi_aff_copy(ma));
1751 		map = isl_map_reverse(isl_map_from_multi_aff(ma));
1752 		umap = isl_union_map_from_map(map);
1753 		executed = isl_union_map_apply_domain(executed,
1754 						isl_union_map_copy(umap));
1755 		build = isl_ast_build_scale_down(build, isl_val_copy(data.m),
1756 						umap);
1757 	}
1758 	isl_aff_free(offset);
1759 	isl_val_free(data.m);
1760 
1761 	return create_node_scaled(executed, bounds, domain, build);
1762 }
1763 
1764 /* Add the basic set to the list that "user" points to.
1765  */
collect_basic_set(__isl_take isl_basic_set * bset,void * user)1766 static isl_stat collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1767 {
1768 	isl_basic_set_list **list = user;
1769 
1770 	*list = isl_basic_set_list_add(*list, bset);
1771 
1772 	return isl_stat_ok;
1773 }
1774 
1775 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1776  */
isl_basic_set_list_from_set(__isl_take isl_set * set)1777 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1778 	__isl_take isl_set *set)
1779 {
1780 	isl_size n;
1781 	isl_ctx *ctx;
1782 	isl_basic_set_list *list;
1783 
1784 	n = isl_set_n_basic_set(set);
1785 	if (n < 0)
1786 		set = isl_set_free(set);
1787 	if (!set)
1788 		return NULL;
1789 
1790 	ctx = isl_set_get_ctx(set);
1791 
1792 	list = isl_basic_set_list_alloc(ctx, n);
1793 	if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1794 		list = isl_basic_set_list_free(list);
1795 
1796 	isl_set_free(set);
1797 	return list;
1798 }
1799 
1800 /* Generate code for the schedule domain "bounds"
1801  * and add the result to "list".
1802  *
1803  * We mainly detect strides here and check if the bounds do not
1804  * conflict with the current build domain
1805  * and then pass over control to create_node.
1806  *
1807  * "bounds" reflects the bounds on the current dimension and possibly
1808  * some extra conditions on outer dimensions.
1809  * It does not, however, include any divs involving the current dimension,
1810  * so it does not capture any stride constraints.
1811  * We therefore need to compute that part of the schedule domain that
1812  * intersects with "bounds" and derive the strides from the result.
1813  */
add_node(__isl_take isl_ast_graft_list * list,__isl_take isl_union_map * executed,__isl_take isl_basic_set * bounds,__isl_take isl_ast_build * build)1814 static __isl_give isl_ast_graft_list *add_node(
1815 	__isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1816 	__isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1817 {
1818 	isl_ast_graft *graft;
1819 	isl_set *domain = NULL;
1820 	isl_union_set *uset;
1821 	int empty, disjoint;
1822 
1823 	uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1824 	executed = isl_union_map_intersect_domain(executed, uset);
1825 	empty = isl_union_map_is_empty(executed);
1826 	if (empty < 0)
1827 		goto error;
1828 	if (empty)
1829 		goto done;
1830 
1831 	uset = isl_union_map_domain(isl_union_map_copy(executed));
1832 	domain = isl_set_from_union_set(uset);
1833 	domain = isl_ast_build_specialize(build, domain);
1834 
1835 	domain = isl_set_compute_divs(domain);
1836 	domain = isl_ast_build_eliminate_inner(build, domain);
1837 	disjoint = isl_set_is_disjoint(domain, build->domain);
1838 	if (disjoint < 0)
1839 		goto error;
1840 	if (disjoint)
1841 		goto done;
1842 
1843 	build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1844 
1845 	graft = create_node(executed, bounds, domain,
1846 				isl_ast_build_copy(build));
1847 	list = isl_ast_graft_list_add(list, graft);
1848 	isl_ast_build_free(build);
1849 	return list;
1850 error:
1851 	list = isl_ast_graft_list_free(list);
1852 done:
1853 	isl_set_free(domain);
1854 	isl_basic_set_free(bounds);
1855 	isl_union_map_free(executed);
1856 	isl_ast_build_free(build);
1857 	return list;
1858 }
1859 
1860 /* Does any element of i follow or coincide with any element of j
1861  * at the current depth for equal values of the outer dimensions?
1862  */
domain_follows_at_depth(__isl_keep isl_basic_set * i,__isl_keep isl_basic_set * j,void * user)1863 static isl_bool domain_follows_at_depth(__isl_keep isl_basic_set *i,
1864 	__isl_keep isl_basic_set *j, void *user)
1865 {
1866 	int depth = *(int *) user;
1867 	isl_basic_map *test;
1868 	isl_bool empty;
1869 	int l;
1870 
1871 	test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1872 						    isl_basic_set_copy(j));
1873 	for (l = 0; l < depth; ++l)
1874 		test = isl_basic_map_equate(test, isl_dim_in, l,
1875 						isl_dim_out, l);
1876 	test = isl_basic_map_order_ge(test, isl_dim_in, depth,
1877 					isl_dim_out, depth);
1878 	empty = isl_basic_map_is_empty(test);
1879 	isl_basic_map_free(test);
1880 
1881 	return isl_bool_not(empty);
1882 }
1883 
1884 /* Split up each element of "list" into a part that is related to "bset"
1885  * according to "gt" and a part that is not.
1886  * Return a list that consist of "bset" and all the pieces.
1887  */
add_split_on(__isl_take isl_basic_set_list * list,__isl_take isl_basic_set * bset,__isl_keep isl_basic_map * gt)1888 static __isl_give isl_basic_set_list *add_split_on(
1889 	__isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset,
1890 	__isl_keep isl_basic_map *gt)
1891 {
1892 	int i;
1893 	isl_size n;
1894 	isl_basic_set_list *res;
1895 
1896 	n = isl_basic_set_list_n_basic_set(list);
1897 	if (n < 0)
1898 		bset = isl_basic_set_free(bset);
1899 
1900 	gt = isl_basic_map_copy(gt);
1901 	gt = isl_basic_map_intersect_domain(gt, isl_basic_set_copy(bset));
1902 	res = isl_basic_set_list_from_basic_set(bset);
1903 	for (i = 0; res && i < n; ++i) {
1904 		isl_basic_set *bset;
1905 		isl_set *set1, *set2;
1906 		isl_basic_map *bmap;
1907 		int empty;
1908 
1909 		bset = isl_basic_set_list_get_basic_set(list, i);
1910 		bmap = isl_basic_map_copy(gt);
1911 		bmap = isl_basic_map_intersect_range(bmap, bset);
1912 		bset = isl_basic_map_range(bmap);
1913 		empty = isl_basic_set_is_empty(bset);
1914 		if (empty < 0)
1915 			res = isl_basic_set_list_free(res);
1916 		if (empty)  {
1917 			isl_basic_set_free(bset);
1918 			bset = isl_basic_set_list_get_basic_set(list, i);
1919 			res = isl_basic_set_list_add(res, bset);
1920 			continue;
1921 		}
1922 
1923 		res = isl_basic_set_list_add(res, isl_basic_set_copy(bset));
1924 		set1 = isl_set_from_basic_set(bset);
1925 		bset = isl_basic_set_list_get_basic_set(list, i);
1926 		set2 = isl_set_from_basic_set(bset);
1927 		set1 = isl_set_subtract(set2, set1);
1928 		set1 = isl_set_make_disjoint(set1);
1929 
1930 		res = isl_basic_set_list_concat(res,
1931 					    isl_basic_set_list_from_set(set1));
1932 	}
1933 	isl_basic_map_free(gt);
1934 	isl_basic_set_list_free(list);
1935 	return res;
1936 }
1937 
1938 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1939 	__isl_keep isl_basic_set_list *domain_list,
1940 	__isl_keep isl_union_map *executed,
1941 	__isl_keep isl_ast_build *build);
1942 
1943 /* Internal data structure for add_nodes.
1944  *
1945  * "executed" and "build" are extra arguments to be passed to add_node.
1946  * "list" collects the results.
1947  */
1948 struct isl_add_nodes_data {
1949 	isl_union_map *executed;
1950 	isl_ast_build *build;
1951 
1952 	isl_ast_graft_list *list;
1953 };
1954 
1955 /* Generate code for the schedule domains in "scc"
1956  * and add the results to "list".
1957  *
1958  * The domains in "scc" form a strongly connected component in the ordering.
1959  * If the number of domains in "scc" is larger than 1, then this means
1960  * that we cannot determine a valid ordering for the domains in the component.
1961  * This should be fairly rare because the individual domains
1962  * have been made disjoint first.
1963  * The problem is that the domains may be integrally disjoint but not
1964  * rationally disjoint.  For example, we may have domains
1965  *
1966  *	{ [i,i] : 0 <= i <= 1 }		and	{ [i,1-i] : 0 <= i <= 1 }
1967  *
1968  * These two domains have an empty intersection, but their rational
1969  * relaxations do intersect.  It is impossible to order these domains
1970  * in the second dimension because the first should be ordered before
1971  * the second for outer dimension equal to 0, while it should be ordered
1972  * after for outer dimension equal to 1.
1973  *
1974  * This may happen in particular in case of unrolling since the domain
1975  * of each slice is replaced by its simple hull.
1976  *
1977  * For each basic set i in "scc" and for each of the following basic sets j,
1978  * we split off that part of the basic set i that shares the outer dimensions
1979  * with j and lies before j in the current dimension.
1980  * We collect all the pieces in a new list that replaces "scc".
1981  *
1982  * While the elements in "scc" should be disjoint, we double-check
1983  * this property to avoid running into an infinite recursion in case
1984  * they intersect due to some internal error.
1985  */
add_nodes(__isl_take isl_basic_set_list * scc,void * user)1986 static isl_stat add_nodes(__isl_take isl_basic_set_list *scc, void *user)
1987 {
1988 	struct isl_add_nodes_data *data = user;
1989 	int i, depth;
1990 	isl_size n;
1991 	isl_basic_set *bset, *first;
1992 	isl_basic_set_list *list;
1993 	isl_space *space;
1994 	isl_basic_map *gt;
1995 
1996 	n = isl_basic_set_list_n_basic_set(scc);
1997 	if (n < 0)
1998 		goto error;
1999 	bset = isl_basic_set_list_get_basic_set(scc, 0);
2000 	if (n == 1) {
2001 		isl_basic_set_list_free(scc);
2002 		data->list = add_node(data->list,
2003 				isl_union_map_copy(data->executed), bset,
2004 				isl_ast_build_copy(data->build));
2005 		return data->list ? isl_stat_ok : isl_stat_error;
2006 	}
2007 
2008 	depth = isl_ast_build_get_depth(data->build);
2009 	space = isl_basic_set_get_space(bset);
2010 	space = isl_space_map_from_set(space);
2011 	gt = isl_basic_map_universe(space);
2012 	for (i = 0; i < depth; ++i)
2013 		gt = isl_basic_map_equate(gt, isl_dim_in, i, isl_dim_out, i);
2014 	gt = isl_basic_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth);
2015 
2016 	first = isl_basic_set_copy(bset);
2017 	list = isl_basic_set_list_from_basic_set(bset);
2018 	for (i = 1; i < n; ++i) {
2019 		int disjoint;
2020 
2021 		bset = isl_basic_set_list_get_basic_set(scc, i);
2022 
2023 		disjoint = isl_basic_set_is_disjoint(bset, first);
2024 		if (disjoint < 0)
2025 			list = isl_basic_set_list_free(list);
2026 		else if (!disjoint)
2027 			isl_die(isl_basic_set_list_get_ctx(scc),
2028 				isl_error_internal,
2029 				"basic sets in scc are assumed to be disjoint",
2030 				list = isl_basic_set_list_free(list));
2031 
2032 		list = add_split_on(list, bset, gt);
2033 	}
2034 	isl_basic_set_free(first);
2035 	isl_basic_map_free(gt);
2036 	isl_basic_set_list_free(scc);
2037 	scc = list;
2038 	data->list = isl_ast_graft_list_concat(data->list,
2039 		    generate_sorted_domains(scc, data->executed, data->build));
2040 	isl_basic_set_list_free(scc);
2041 
2042 	return data->list ? isl_stat_ok : isl_stat_error;
2043 error:
2044 	isl_basic_set_list_free(scc);
2045 	return isl_stat_error;
2046 }
2047 
2048 /* Sort the domains in "domain_list" according to the execution order
2049  * at the current depth (for equal values of the outer dimensions),
2050  * generate code for each of them, collecting the results in a list.
2051  * If no code is generated (because the intersection of the inverse schedule
2052  * with the domains turns out to be empty), then an empty list is returned.
2053  *
2054  * The caller is responsible for ensuring that the basic sets in "domain_list"
2055  * are pair-wise disjoint.  It can, however, in principle happen that
2056  * two basic sets should be ordered one way for one value of the outer
2057  * dimensions and the other way for some other value of the outer dimensions.
2058  * We therefore play safe and look for strongly connected components.
2059  * The function add_nodes takes care of handling non-trivial components.
2060  */
generate_sorted_domains(__isl_keep isl_basic_set_list * domain_list,__isl_keep isl_union_map * executed,__isl_keep isl_ast_build * build)2061 static __isl_give isl_ast_graft_list *generate_sorted_domains(
2062 	__isl_keep isl_basic_set_list *domain_list,
2063 	__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2064 {
2065 	isl_ctx *ctx;
2066 	struct isl_add_nodes_data data;
2067 	int depth;
2068 	isl_size n;
2069 
2070 	n = isl_basic_set_list_n_basic_set(domain_list);
2071 	if (n < 0)
2072 		return NULL;
2073 
2074 	ctx = isl_basic_set_list_get_ctx(domain_list);
2075 	data.list = isl_ast_graft_list_alloc(ctx, n);
2076 	if (n == 0)
2077 		return data.list;
2078 	if (n == 1)
2079 		return add_node(data.list, isl_union_map_copy(executed),
2080 			isl_basic_set_list_get_basic_set(domain_list, 0),
2081 			isl_ast_build_copy(build));
2082 
2083 	depth = isl_ast_build_get_depth(build);
2084 	data.executed = executed;
2085 	data.build = build;
2086 	if (isl_basic_set_list_foreach_scc(domain_list,
2087 					&domain_follows_at_depth, &depth,
2088 					&add_nodes, &data) < 0)
2089 		data.list = isl_ast_graft_list_free(data.list);
2090 
2091 	return data.list;
2092 }
2093 
2094 /* Do i and j share any values for the outer dimensions?
2095  */
shared_outer(__isl_keep isl_basic_set * i,__isl_keep isl_basic_set * j,void * user)2096 static isl_bool shared_outer(__isl_keep isl_basic_set *i,
2097 	__isl_keep isl_basic_set *j, void *user)
2098 {
2099 	int depth = *(int *) user;
2100 	isl_basic_map *test;
2101 	isl_bool empty;
2102 	int l;
2103 
2104 	test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
2105 						    isl_basic_set_copy(j));
2106 	for (l = 0; l < depth; ++l)
2107 		test = isl_basic_map_equate(test, isl_dim_in, l,
2108 						isl_dim_out, l);
2109 	empty = isl_basic_map_is_empty(test);
2110 	isl_basic_map_free(test);
2111 
2112 	return isl_bool_not(empty);
2113 }
2114 
2115 /* Internal data structure for generate_sorted_domains_wrap.
2116  *
2117  * "n" is the total number of basic sets
2118  * "executed" and "build" are extra arguments to be passed
2119  *	to generate_sorted_domains.
2120  *
2121  * "single" is set to 1 by generate_sorted_domains_wrap if there
2122  * is only a single component.
2123  * "list" collects the results.
2124  */
2125 struct isl_ast_generate_parallel_domains_data {
2126 	isl_size n;
2127 	isl_union_map *executed;
2128 	isl_ast_build *build;
2129 
2130 	int single;
2131 	isl_ast_graft_list *list;
2132 };
2133 
2134 /* Call generate_sorted_domains on "scc", fuse the result into a list
2135  * with either zero or one graft and collect the these single element
2136  * lists into data->list.
2137  *
2138  * If there is only one component, i.e., if the number of basic sets
2139  * in the current component is equal to the total number of basic sets,
2140  * then data->single is set to 1 and the result of generate_sorted_domains
2141  * is not fused.
2142  */
generate_sorted_domains_wrap(__isl_take isl_basic_set_list * scc,void * user)2143 static isl_stat generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc,
2144 	void *user)
2145 {
2146 	struct isl_ast_generate_parallel_domains_data *data = user;
2147 	isl_ast_graft_list *list;
2148 	isl_size n;
2149 
2150 	n = isl_basic_set_list_n_basic_set(scc);
2151 	if (n < 0)
2152 		scc = isl_basic_set_list_free(scc);
2153 	list = generate_sorted_domains(scc, data->executed, data->build);
2154 	data->single = n == data->n;
2155 	if (!data->single)
2156 		list = isl_ast_graft_list_fuse(list, data->build);
2157 	if (!data->list)
2158 		data->list = list;
2159 	else
2160 		data->list = isl_ast_graft_list_concat(data->list, list);
2161 
2162 	isl_basic_set_list_free(scc);
2163 	if (!data->list)
2164 		return isl_stat_error;
2165 
2166 	return isl_stat_ok;
2167 }
2168 
2169 /* Look for any (weakly connected) components in the "domain_list"
2170  * of domains that share some values of the outer dimensions.
2171  * That is, domains in different components do not share any values
2172  * of the outer dimensions.  This means that these components
2173  * can be freely reordered.
2174  * Within each of the components, we sort the domains according
2175  * to the execution order at the current depth.
2176  *
2177  * If there is more than one component, then generate_sorted_domains_wrap
2178  * fuses the result of each call to generate_sorted_domains
2179  * into a list with either zero or one graft and collects these (at most)
2180  * single element lists into a bigger list. This means that the elements of the
2181  * final list can be freely reordered.  In particular, we sort them
2182  * according to an arbitrary but fixed ordering to ease merging of
2183  * graft lists from different components.
2184  */
generate_parallel_domains(__isl_keep isl_basic_set_list * domain_list,__isl_keep isl_union_map * executed,__isl_keep isl_ast_build * build)2185 static __isl_give isl_ast_graft_list *generate_parallel_domains(
2186 	__isl_keep isl_basic_set_list *domain_list,
2187 	__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2188 {
2189 	int depth;
2190 	struct isl_ast_generate_parallel_domains_data data;
2191 
2192 	data.n = isl_basic_set_list_n_basic_set(domain_list);
2193 	if (data.n < 0)
2194 		return NULL;
2195 
2196 	if (data.n <= 1)
2197 		return generate_sorted_domains(domain_list, executed, build);
2198 
2199 	depth = isl_ast_build_get_depth(build);
2200 	data.list = NULL;
2201 	data.executed = executed;
2202 	data.build = build;
2203 	data.single = 0;
2204 	if (isl_basic_set_list_foreach_scc(domain_list, &shared_outer, &depth,
2205 					    &generate_sorted_domains_wrap,
2206 					    &data) < 0)
2207 		data.list = isl_ast_graft_list_free(data.list);
2208 
2209 	if (!data.single)
2210 		data.list = isl_ast_graft_list_sort_guard(data.list);
2211 
2212 	return data.list;
2213 }
2214 
2215 /* Internal data for separate_domain.
2216  *
2217  * "explicit" is set if we only want to use explicit bounds.
2218  *
2219  * "domain" collects the separated domains.
2220  */
2221 struct isl_separate_domain_data {
2222 	isl_ast_build *build;
2223 	int explicit;
2224 	isl_set *domain;
2225 };
2226 
2227 /* Extract implicit bounds on the current dimension for the executed "map".
2228  *
2229  * The domain of "map" may involve inner dimensions, so we
2230  * need to eliminate them.
2231  */
implicit_bounds(__isl_take isl_map * map,__isl_keep isl_ast_build * build)2232 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
2233 	__isl_keep isl_ast_build *build)
2234 {
2235 	isl_set *domain;
2236 
2237 	domain = isl_map_domain(map);
2238 	domain = isl_ast_build_eliminate(build, domain);
2239 
2240 	return domain;
2241 }
2242 
2243 /* Extract explicit bounds on the current dimension for the executed "map".
2244  *
2245  * Rather than eliminating the inner dimensions as in implicit_bounds,
2246  * we simply drop any constraints involving those inner dimensions.
2247  * The idea is that most bounds that are implied by constraints on the
2248  * inner dimensions will be enforced by for loops and not by explicit guards.
2249  * There is then no need to separate along those bounds.
2250  */
explicit_bounds(__isl_take isl_map * map,__isl_keep isl_ast_build * build)2251 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
2252 	__isl_keep isl_ast_build *build)
2253 {
2254 	isl_set *domain;
2255 	int depth;
2256 	isl_size dim;
2257 
2258 	dim = isl_map_dim(map, isl_dim_out);
2259 	if (dim < 0)
2260 		return isl_map_domain(isl_map_free(map));
2261 	map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
2262 
2263 	domain = isl_map_domain(map);
2264 	depth = isl_ast_build_get_depth(build);
2265 	dim = isl_set_dim(domain, isl_dim_set);
2266 	domain = isl_set_detect_equalities(domain);
2267 	domain = isl_set_drop_constraints_involving_dims(domain,
2268 				isl_dim_set, depth + 1, dim - (depth + 1));
2269 	domain = isl_set_remove_divs_involving_dims(domain,
2270 				isl_dim_set, depth, 1);
2271 	domain = isl_set_remove_unknown_divs(domain);
2272 
2273 	return domain;
2274 }
2275 
2276 /* Split data->domain into pieces that intersect with the range of "map"
2277  * and pieces that do not intersect with the range of "map"
2278  * and then add that part of the range of "map" that does not intersect
2279  * with data->domain.
2280  */
separate_domain(__isl_take isl_map * map,void * user)2281 static isl_stat separate_domain(__isl_take isl_map *map, void *user)
2282 {
2283 	struct isl_separate_domain_data *data = user;
2284 	isl_set *domain;
2285 	isl_set *d1, *d2;
2286 
2287 	if (data->explicit)
2288 		domain = explicit_bounds(map, data->build);
2289 	else
2290 		domain = implicit_bounds(map, data->build);
2291 
2292 	domain = isl_set_coalesce(domain);
2293 	domain = isl_set_make_disjoint(domain);
2294 	d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
2295 	d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
2296 	data->domain = isl_set_intersect(data->domain, domain);
2297 	data->domain = isl_set_union(data->domain, d1);
2298 	data->domain = isl_set_union(data->domain, d2);
2299 
2300 	return isl_stat_ok;
2301 }
2302 
2303 /* Separate the schedule domains of "executed".
2304  *
2305  * That is, break up the domain of "executed" into basic sets,
2306  * such that for each basic set S, every element in S is associated with
2307  * the same domain spaces.
2308  *
2309  * "space" is the (single) domain space of "executed".
2310  */
separate_schedule_domains(__isl_take isl_space * space,__isl_take isl_union_map * executed,__isl_keep isl_ast_build * build)2311 static __isl_give isl_set *separate_schedule_domains(
2312 	__isl_take isl_space *space, __isl_take isl_union_map *executed,
2313 	__isl_keep isl_ast_build *build)
2314 {
2315 	struct isl_separate_domain_data data = { build };
2316 	isl_ctx *ctx;
2317 
2318 	ctx = isl_ast_build_get_ctx(build);
2319 	data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
2320 				    ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
2321 	data.domain = isl_set_empty(space);
2322 	if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
2323 		data.domain = isl_set_free(data.domain);
2324 
2325 	isl_union_map_free(executed);
2326 	return data.domain;
2327 }
2328 
2329 /* Temporary data used during the search for a lower bound for unrolling.
2330  *
2331  * "build" is the build in which the unrolling will be performed
2332  * "domain" is the original set for which to find a lower bound
2333  * "depth" is the dimension for which to find a lower boudn
2334  * "expansion" is the expansion that needs to be applied to "domain"
2335  * in the unrolling that will be performed
2336  *
2337  * "lower" is the best lower bound found so far.  It is NULL if we have not
2338  * found any yet.
2339  * "n" is the corresponding size.  If lower is NULL, then the value of n
2340  * is undefined.
2341  * "n_div" is the maximal number of integer divisions in the first
2342  * unrolled iteration (after expansion).  It is set to -1 if it hasn't
2343  * been computed yet.
2344  */
2345 struct isl_find_unroll_data {
2346 	isl_ast_build *build;
2347 	isl_set *domain;
2348 	int depth;
2349 	isl_basic_map *expansion;
2350 
2351 	isl_aff *lower;
2352 	int *n;
2353 	int n_div;
2354 };
2355 
2356 /* Return the constraint
2357  *
2358  *	i_"depth" = aff + offset
2359  */
at_offset(int depth,__isl_keep isl_aff * aff,int offset)2360 static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
2361 	int offset)
2362 {
2363 	aff = isl_aff_copy(aff);
2364 	aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2365 	aff = isl_aff_add_constant_si(aff, offset);
2366 	return isl_equality_from_aff(aff);
2367 }
2368 
2369 /* Update *user to the number of integer divisions in the first element
2370  * of "ma", if it is larger than the current value.
2371  */
update_n_div(__isl_take isl_set * set,__isl_take isl_multi_aff * ma,void * user)2372 static isl_stat update_n_div(__isl_take isl_set *set,
2373 	__isl_take isl_multi_aff *ma, void *user)
2374 {
2375 	isl_aff *aff;
2376 	int *n = user;
2377 	isl_size n_div;
2378 
2379 	aff = isl_multi_aff_get_aff(ma, 0);
2380 	n_div = isl_aff_dim(aff, isl_dim_div);
2381 	isl_aff_free(aff);
2382 	isl_multi_aff_free(ma);
2383 	isl_set_free(set);
2384 
2385 	if (n_div > *n)
2386 		*n = n_div;
2387 
2388 	return n_div >= 0 ? isl_stat_ok : isl_stat_error;
2389 }
2390 
2391 /* Get the number of integer divisions in the expression for the iterator
2392  * value at the first slice in the unrolling based on lower bound "lower",
2393  * taking into account the expansion that needs to be performed on this slice.
2394  */
get_expanded_n_div(struct isl_find_unroll_data * data,__isl_keep isl_aff * lower)2395 static int get_expanded_n_div(struct isl_find_unroll_data *data,
2396 	__isl_keep isl_aff *lower)
2397 {
2398 	isl_constraint *c;
2399 	isl_set *set;
2400 	isl_map *it_map, *expansion;
2401 	isl_pw_multi_aff *pma;
2402 	int n;
2403 
2404 	c = at_offset(data->depth, lower, 0);
2405 	set = isl_set_copy(data->domain);
2406 	set = isl_set_add_constraint(set, c);
2407 	expansion = isl_map_from_basic_map(isl_basic_map_copy(data->expansion));
2408 	set = isl_set_apply(set, expansion);
2409 	it_map = isl_ast_build_map_to_iterator(data->build, set);
2410 	pma = isl_pw_multi_aff_from_map(it_map);
2411 	n = 0;
2412 	if (isl_pw_multi_aff_foreach_piece(pma, &update_n_div, &n) < 0)
2413 		n = -1;
2414 	isl_pw_multi_aff_free(pma);
2415 
2416 	return n;
2417 }
2418 
2419 /* Is the lower bound "lower" with corresponding iteration count "n"
2420  * better than the one stored in "data"?
2421  * If there is no upper bound on the iteration count ("n" is infinity) or
2422  * if the count is too large, then we cannot use this lower bound.
2423  * Otherwise, if there was no previous lower bound or
2424  * if the iteration count of the new lower bound is smaller than
2425  * the iteration count of the previous lower bound, then we consider
2426  * the new lower bound to be better.
2427  * If the iteration count is the same, then compare the number
2428  * of integer divisions that would be needed to express
2429  * the iterator value at the first slice in the unrolling
2430  * according to the lower bound.  If we end up computing this
2431  * number, then store the lowest value in data->n_div.
2432  */
is_better_lower_bound(struct isl_find_unroll_data * data,__isl_keep isl_aff * lower,__isl_keep isl_val * n)2433 static int is_better_lower_bound(struct isl_find_unroll_data *data,
2434 	__isl_keep isl_aff *lower, __isl_keep isl_val *n)
2435 {
2436 	int cmp;
2437 	int n_div;
2438 
2439 	if (!n)
2440 		return -1;
2441 	if (isl_val_is_infty(n))
2442 		return 0;
2443 	if (isl_val_cmp_si(n, INT_MAX) > 0)
2444 		return 0;
2445 	if (!data->lower)
2446 		return 1;
2447 	cmp = isl_val_cmp_si(n, *data->n);
2448 	if (cmp < 0)
2449 		return 1;
2450 	if (cmp > 0)
2451 		return 0;
2452 	if (data->n_div < 0)
2453 		data->n_div = get_expanded_n_div(data, data->lower);
2454 	if (data->n_div < 0)
2455 		return -1;
2456 	if (data->n_div == 0)
2457 		return 0;
2458 	n_div = get_expanded_n_div(data, lower);
2459 	if (n_div < 0)
2460 		return -1;
2461 	if (n_div >= data->n_div)
2462 		return 0;
2463 	data->n_div = n_div;
2464 
2465 	return 1;
2466 }
2467 
2468 /* Check if we can use "c" as a lower bound and if it is better than
2469  * any previously found lower bound.
2470  *
2471  * If "c" does not involve the dimension at the current depth,
2472  * then we cannot use it.
2473  * Otherwise, let "c" be of the form
2474  *
2475  *	i >= f(j)/a
2476  *
2477  * We compute the maximal value of
2478  *
2479  *	-ceil(f(j)/a)) + i + 1
2480  *
2481  * over the domain.  If there is such a value "n", then we know
2482  *
2483  *	-ceil(f(j)/a)) + i + 1 <= n
2484  *
2485  * or
2486  *
2487  *	i < ceil(f(j)/a)) + n
2488  *
2489  * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2490  * We just need to check if we have found any lower bound before and
2491  * if the new lower bound is better (smaller n or fewer integer divisions)
2492  * than the previously found lower bounds.
2493  */
update_unrolling_lower_bound(struct isl_find_unroll_data * data,__isl_keep isl_constraint * c)2494 static isl_stat update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2495 	__isl_keep isl_constraint *c)
2496 {
2497 	isl_aff *aff, *lower;
2498 	isl_val *max;
2499 	int better;
2500 
2501 	if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2502 		return isl_stat_ok;
2503 
2504 	lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2505 	lower = isl_aff_ceil(lower);
2506 	aff = isl_aff_copy(lower);
2507 	aff = isl_aff_neg(aff);
2508 	aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2509 	aff = isl_aff_add_constant_si(aff, 1);
2510 	max = isl_set_max_val(data->domain, aff);
2511 	isl_aff_free(aff);
2512 
2513 	better = is_better_lower_bound(data, lower, max);
2514 	if (better < 0 || !better) {
2515 		isl_val_free(max);
2516 		isl_aff_free(lower);
2517 		return better < 0 ? isl_stat_error : isl_stat_ok;
2518 	}
2519 
2520 	isl_aff_free(data->lower);
2521 	data->lower = lower;
2522 	*data->n = isl_val_get_num_si(max);
2523 	isl_val_free(max);
2524 
2525 	return isl_stat_ok;
2526 }
2527 
2528 /* Check if we can use "c" as a lower bound and if it is better than
2529  * any previously found lower bound.
2530  */
constraint_find_unroll(__isl_take isl_constraint * c,void * user)2531 static isl_stat constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2532 {
2533 	struct isl_find_unroll_data *data;
2534 	isl_stat r;
2535 
2536 	data = (struct isl_find_unroll_data *) user;
2537 	r = update_unrolling_lower_bound(data, c);
2538 	isl_constraint_free(c);
2539 
2540 	return r;
2541 }
2542 
2543 /* Look for a lower bound l(i) on the dimension at "depth"
2544  * and a size n such that "domain" is a subset of
2545  *
2546  *	{ [i] : l(i) <= i_d < l(i) + n }
2547  *
2548  * where d is "depth" and l(i) depends only on earlier dimensions.
2549  * Furthermore, try and find a lower bound such that n is as small as possible.
2550  * In particular, "n" needs to be finite.
2551  * "build" is the build in which the unrolling will be performed.
2552  * "expansion" is the expansion that needs to be applied to "domain"
2553  * in the unrolling that will be performed.
2554  *
2555  * Inner dimensions have been eliminated from "domain" by the caller.
2556  *
2557  * We first construct a collection of lower bounds on the input set
2558  * by computing its simple hull.  We then iterate through them,
2559  * discarding those that we cannot use (either because they do not
2560  * involve the dimension at "depth" or because they have no corresponding
2561  * upper bound, meaning that "n" would be unbounded) and pick out the
2562  * best from the remaining ones.
2563  *
2564  * If we cannot find a suitable lower bound, then we consider that
2565  * to be an error.
2566  */
find_unroll_lower_bound(__isl_keep isl_ast_build * build,__isl_keep isl_set * domain,int depth,__isl_keep isl_basic_map * expansion,int * n)2567 static __isl_give isl_aff *find_unroll_lower_bound(
2568 	__isl_keep isl_ast_build *build, __isl_keep isl_set *domain,
2569 	int depth, __isl_keep isl_basic_map *expansion, int *n)
2570 {
2571 	struct isl_find_unroll_data data =
2572 			{ build, domain, depth, expansion, NULL, n, -1 };
2573 	isl_basic_set *hull;
2574 
2575 	hull = isl_set_simple_hull(isl_set_copy(domain));
2576 
2577 	if (isl_basic_set_foreach_constraint(hull,
2578 					    &constraint_find_unroll, &data) < 0)
2579 		goto error;
2580 
2581 	isl_basic_set_free(hull);
2582 
2583 	if (!data.lower)
2584 		isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2585 			"cannot find lower bound for unrolling", return NULL);
2586 
2587 	return data.lower;
2588 error:
2589 	isl_basic_set_free(hull);
2590 	return isl_aff_free(data.lower);
2591 }
2592 
2593 /* Call "fn" on each iteration of the current dimension of "domain".
2594  * If "init" is not NULL, then it is called with the number of
2595  * iterations before any call to "fn".
2596  * Return -1 on failure.
2597  *
2598  * Since we are going to be iterating over the individual values,
2599  * we first check if there are any strides on the current dimension.
2600  * If there is, we rewrite the current dimension i as
2601  *
2602  *		i = stride i' + offset
2603  *
2604  * and then iterate over individual values of i' instead.
2605  *
2606  * We then look for a lower bound on i' and a size such that the domain
2607  * is a subset of
2608  *
2609  *	{ [j,i'] : l(j) <= i' < l(j) + n }
2610  *
2611  * and then take slices of the domain at values of i'
2612  * between l(j) and l(j) + n - 1.
2613  *
2614  * We compute the unshifted simple hull of each slice to ensure that
2615  * we have a single basic set per offset.  The slicing constraint
2616  * may get simplified away before the unshifted simple hull is taken
2617  * and may therefore in some rare cases disappear from the result.
2618  * We therefore explicitly add the constraint back after computing
2619  * the unshifted simple hull to ensure that the basic sets
2620  * remain disjoint.  The constraints that are dropped by taking the hull
2621  * will be taken into account at the next level, as in the case of the
2622  * atomic option.
2623  *
2624  * Finally, we map i' back to i and call "fn".
2625  */
foreach_iteration(__isl_take isl_set * domain,__isl_keep isl_ast_build * build,int (* init)(int n,void * user),int (* fn)(__isl_take isl_basic_set * bset,void * user),void * user)2626 static int foreach_iteration(__isl_take isl_set *domain,
2627 	__isl_keep isl_ast_build *build, int (*init)(int n, void *user),
2628 	int (*fn)(__isl_take isl_basic_set *bset, void *user), void *user)
2629 {
2630 	int i, n;
2631 	int empty;
2632 	int depth;
2633 	isl_multi_aff *expansion;
2634 	isl_basic_map *bmap;
2635 	isl_aff *lower = NULL;
2636 	isl_ast_build *stride_build;
2637 
2638 	depth = isl_ast_build_get_depth(build);
2639 
2640 	domain = isl_ast_build_eliminate_inner(build, domain);
2641 	domain = isl_set_intersect(domain, isl_ast_build_get_domain(build));
2642 	stride_build = isl_ast_build_copy(build);
2643 	stride_build = isl_ast_build_detect_strides(stride_build,
2644 							isl_set_copy(domain));
2645 	expansion = isl_ast_build_get_stride_expansion(stride_build);
2646 
2647 	domain = isl_set_preimage_multi_aff(domain,
2648 					    isl_multi_aff_copy(expansion));
2649 	domain = isl_ast_build_eliminate_divs(stride_build, domain);
2650 	isl_ast_build_free(stride_build);
2651 
2652 	bmap = isl_basic_map_from_multi_aff(expansion);
2653 
2654 	empty = isl_set_is_empty(domain);
2655 	if (empty < 0) {
2656 		n = -1;
2657 	} else if (empty) {
2658 		n = 0;
2659 	} else {
2660 		lower = find_unroll_lower_bound(build, domain, depth, bmap, &n);
2661 		if (!lower)
2662 			n = -1;
2663 	}
2664 	if (n >= 0 && init && init(n, user) < 0)
2665 		n = -1;
2666 	for (i = 0; i < n; ++i) {
2667 		isl_set *set;
2668 		isl_basic_set *bset;
2669 		isl_constraint *slice;
2670 
2671 		slice = at_offset(depth, lower, i);
2672 		set = isl_set_copy(domain);
2673 		set = isl_set_add_constraint(set, isl_constraint_copy(slice));
2674 		bset = isl_set_unshifted_simple_hull(set);
2675 		bset = isl_basic_set_add_constraint(bset, slice);
2676 		bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2677 
2678 		if (fn(bset, user) < 0)
2679 			break;
2680 	}
2681 
2682 	isl_aff_free(lower);
2683 	isl_set_free(domain);
2684 	isl_basic_map_free(bmap);
2685 
2686 	return n < 0 || i < n ? -1 : 0;
2687 }
2688 
2689 /* Data structure for storing the results and the intermediate objects
2690  * of compute_domains.
2691  *
2692  * "list" is the main result of the function and contains a list
2693  * of disjoint basic sets for which code should be generated.
2694  *
2695  * "executed" and "build" are inputs to compute_domains.
2696  * "schedule_domain" is the domain of "executed".
2697  *
2698  * "option" contains the domains at the current depth that should by
2699  * atomic, separated or unrolled.  These domains are as specified by
2700  * the user, except that inner dimensions have been eliminated and
2701  * that they have been made pair-wise disjoint.
2702  *
2703  * "sep_class" contains the user-specified split into separation classes
2704  * specialized to the current depth.
2705  * "done" contains the union of the separation domains that have already
2706  * been handled.
2707  */
2708 struct isl_codegen_domains {
2709 	isl_basic_set_list *list;
2710 
2711 	isl_union_map *executed;
2712 	isl_ast_build *build;
2713 	isl_set *schedule_domain;
2714 
2715 	isl_set *option[4];
2716 
2717 	isl_map *sep_class;
2718 	isl_set *done;
2719 };
2720 
2721 /* Internal data structure for do_unroll.
2722  *
2723  * "domains" stores the results of compute_domains.
2724  * "class_domain" is the original class domain passed to do_unroll.
2725  * "unroll_domain" collects the unrolled iterations.
2726  */
2727 struct isl_ast_unroll_data {
2728 	struct isl_codegen_domains *domains;
2729 	isl_set *class_domain;
2730 	isl_set *unroll_domain;
2731 };
2732 
2733 /* Given an iteration of an unrolled domain represented by "bset",
2734  * add it to data->domains->list.
2735  * Since we may have dropped some constraints, we intersect with
2736  * the class domain again to ensure that each element in the list
2737  * is disjoint from the other class domains.
2738  */
do_unroll_iteration(__isl_take isl_basic_set * bset,void * user)2739 static int do_unroll_iteration(__isl_take isl_basic_set *bset, void *user)
2740 {
2741 	struct isl_ast_unroll_data *data = user;
2742 	isl_set *set;
2743 	isl_basic_set_list *list;
2744 
2745 	set = isl_set_from_basic_set(bset);
2746 	data->unroll_domain = isl_set_union(data->unroll_domain,
2747 					    isl_set_copy(set));
2748 	set = isl_set_intersect(set, isl_set_copy(data->class_domain));
2749 	set = isl_set_make_disjoint(set);
2750 	list = isl_basic_set_list_from_set(set);
2751 	data->domains->list = isl_basic_set_list_concat(data->domains->list,
2752 							list);
2753 
2754 	return 0;
2755 }
2756 
2757 /* Extend domains->list with a list of basic sets, one for each value
2758  * of the current dimension in "domain" and remove the corresponding
2759  * sets from the class domain.  Return the updated class domain.
2760  * The divs that involve the current dimension have not been projected out
2761  * from this domain.
2762  *
2763  * We call foreach_iteration to iterate over the individual values and
2764  * in do_unroll_iteration we collect the individual basic sets in
2765  * domains->list and their union in data->unroll_domain, which is then
2766  * used to update the class domain.
2767  */
do_unroll(struct isl_codegen_domains * domains,__isl_take isl_set * domain,__isl_take isl_set * class_domain)2768 static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains,
2769 	__isl_take isl_set *domain, __isl_take isl_set *class_domain)
2770 {
2771 	struct isl_ast_unroll_data data;
2772 
2773 	if (!domain)
2774 		return isl_set_free(class_domain);
2775 	if (!class_domain)
2776 		return isl_set_free(domain);
2777 
2778 	data.domains = domains;
2779 	data.class_domain = class_domain;
2780 	data.unroll_domain = isl_set_empty(isl_set_get_space(domain));
2781 
2782 	if (foreach_iteration(domain, domains->build, NULL,
2783 				&do_unroll_iteration, &data) < 0)
2784 		data.unroll_domain = isl_set_free(data.unroll_domain);
2785 
2786 	class_domain = isl_set_subtract(class_domain, data.unroll_domain);
2787 
2788 	return class_domain;
2789 }
2790 
2791 /* Add domains to domains->list for each individual value of the current
2792  * dimension, for that part of the schedule domain that lies in the
2793  * intersection of the option domain and the class domain.
2794  * Remove the corresponding sets from the class domain and
2795  * return the updated class domain.
2796  *
2797  * We first break up the unroll option domain into individual pieces
2798  * and then handle each of them separately.  The unroll option domain
2799  * has been made disjoint in compute_domains_init_options,
2800  *
2801  * Note that we actively want to combine different pieces of the
2802  * schedule domain that have the same value at the current dimension.
2803  * We therefore need to break up the unroll option domain before
2804  * intersecting with class and schedule domain, hoping that the
2805  * unroll option domain specified by the user is relatively simple.
2806  */
compute_unroll_domains(struct isl_codegen_domains * domains,__isl_take isl_set * class_domain)2807 static __isl_give isl_set *compute_unroll_domains(
2808 	struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2809 {
2810 	isl_set *unroll_domain;
2811 	isl_basic_set_list *unroll_list;
2812 	int i;
2813 	isl_size n;
2814 	isl_bool empty;
2815 
2816 	empty = isl_set_is_empty(domains->option[isl_ast_loop_unroll]);
2817 	if (empty < 0)
2818 		return isl_set_free(class_domain);
2819 	if (empty)
2820 		return class_domain;
2821 
2822 	unroll_domain = isl_set_copy(domains->option[isl_ast_loop_unroll]);
2823 	unroll_list = isl_basic_set_list_from_set(unroll_domain);
2824 
2825 	n = isl_basic_set_list_n_basic_set(unroll_list);
2826 	if (n < 0)
2827 		class_domain = isl_set_free(class_domain);
2828 	for (i = 0; i < n; ++i) {
2829 		isl_basic_set *bset;
2830 
2831 		bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2832 		unroll_domain = isl_set_from_basic_set(bset);
2833 		unroll_domain = isl_set_intersect(unroll_domain,
2834 						    isl_set_copy(class_domain));
2835 		unroll_domain = isl_set_intersect(unroll_domain,
2836 					isl_set_copy(domains->schedule_domain));
2837 
2838 		empty = isl_set_is_empty(unroll_domain);
2839 		if (empty >= 0 && empty) {
2840 			isl_set_free(unroll_domain);
2841 			continue;
2842 		}
2843 
2844 		class_domain = do_unroll(domains, unroll_domain, class_domain);
2845 	}
2846 
2847 	isl_basic_set_list_free(unroll_list);
2848 
2849 	return class_domain;
2850 }
2851 
2852 /* Try and construct a single basic set that includes the intersection of
2853  * the schedule domain, the atomic option domain and the class domain.
2854  * Add the resulting basic set(s) to domains->list and remove them
2855  * from class_domain.  Return the updated class domain.
2856  *
2857  * We construct a single domain rather than trying to combine
2858  * the schedule domains of individual domains because we are working
2859  * within a single component so that non-overlapping schedule domains
2860  * should already have been separated.
2861  * We do however need to make sure that this single domains is a subset
2862  * of the class domain so that it would not intersect with any other
2863  * class domains.  This means that we may end up splitting up the atomic
2864  * domain in case separation classes are being used.
2865  *
2866  * "domain" is the intersection of the schedule domain and the class domain,
2867  * with inner dimensions projected out.
2868  */
compute_atomic_domain(struct isl_codegen_domains * domains,__isl_take isl_set * class_domain)2869 static __isl_give isl_set *compute_atomic_domain(
2870 	struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2871 {
2872 	isl_basic_set *bset;
2873 	isl_basic_set_list *list;
2874 	isl_set *domain, *atomic_domain;
2875 	int empty;
2876 
2877 	domain = isl_set_copy(domains->option[isl_ast_loop_atomic]);
2878 	domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2879 	domain = isl_set_intersect(domain,
2880 				isl_set_copy(domains->schedule_domain));
2881 	empty = isl_set_is_empty(domain);
2882 	if (empty < 0)
2883 		class_domain = isl_set_free(class_domain);
2884 	if (empty) {
2885 		isl_set_free(domain);
2886 		return class_domain;
2887 	}
2888 
2889 	domain = isl_ast_build_eliminate(domains->build, domain);
2890 	domain = isl_set_coalesce_preserve(domain);
2891 	bset = isl_set_unshifted_simple_hull(domain);
2892 	domain = isl_set_from_basic_set(bset);
2893 	atomic_domain = isl_set_copy(domain);
2894 	domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2895 	class_domain = isl_set_subtract(class_domain, atomic_domain);
2896 	domain = isl_set_make_disjoint(domain);
2897 	list = isl_basic_set_list_from_set(domain);
2898 	domains->list = isl_basic_set_list_concat(domains->list, list);
2899 
2900 	return class_domain;
2901 }
2902 
2903 /* Split up the schedule domain into uniform basic sets,
2904  * in the sense that each element in a basic set is associated to
2905  * elements of the same domains, and add the result to domains->list.
2906  * Do this for that part of the schedule domain that lies in the
2907  * intersection of "class_domain" and the separate option domain.
2908  *
2909  * "class_domain" may or may not include the constraints
2910  * of the schedule domain, but this does not make a difference
2911  * since we are going to intersect it with the domain of the inverse schedule.
2912  * If it includes schedule domain constraints, then they may involve
2913  * inner dimensions, but we will eliminate them in separation_domain.
2914  */
compute_separate_domain(struct isl_codegen_domains * domains,__isl_keep isl_set * class_domain)2915 static int compute_separate_domain(struct isl_codegen_domains *domains,
2916 	__isl_keep isl_set *class_domain)
2917 {
2918 	isl_space *space;
2919 	isl_set *domain;
2920 	isl_union_map *executed;
2921 	isl_basic_set_list *list;
2922 	int empty;
2923 
2924 	domain = isl_set_copy(domains->option[isl_ast_loop_separate]);
2925 	domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2926 	executed = isl_union_map_copy(domains->executed);
2927 	executed = isl_union_map_intersect_domain(executed,
2928 				    isl_union_set_from_set(domain));
2929 	empty = isl_union_map_is_empty(executed);
2930 	if (empty < 0 || empty) {
2931 		isl_union_map_free(executed);
2932 		return empty < 0 ? -1 : 0;
2933 	}
2934 
2935 	space = isl_set_get_space(class_domain);
2936 	domain = separate_schedule_domains(space, executed, domains->build);
2937 
2938 	list = isl_basic_set_list_from_set(domain);
2939 	domains->list = isl_basic_set_list_concat(domains->list, list);
2940 
2941 	return 0;
2942 }
2943 
2944 /* Split up the domain at the current depth into disjoint
2945  * basic sets for which code should be generated separately
2946  * for the given separation class domain.
2947  *
2948  * If any separation classes have been defined, then "class_domain"
2949  * is the domain of the current class and does not refer to inner dimensions.
2950  * Otherwise, "class_domain" is the universe domain.
2951  *
2952  * We first make sure that the class domain is disjoint from
2953  * previously considered class domains.
2954  *
2955  * The separate domains can be computed directly from the "class_domain".
2956  *
2957  * The unroll, atomic and remainder domains need the constraints
2958  * from the schedule domain.
2959  *
2960  * For unrolling, the actual schedule domain is needed (with divs that
2961  * may refer to the current dimension) so that stride detection can be
2962  * performed.
2963  *
2964  * For atomic and remainder domains, inner dimensions and divs involving
2965  * the current dimensions should be eliminated.
2966  * In case we are working within a separation class, we need to intersect
2967  * the result with the current "class_domain" to ensure that the domains
2968  * are disjoint from those generated from other class domains.
2969  *
2970  * The domain that has been made atomic may be larger than specified
2971  * by the user since it needs to be representable as a single basic set.
2972  * This possibly larger domain is removed from class_domain by
2973  * compute_atomic_domain.  It is computed first so that the extended domain
2974  * would not overlap with any domains computed before.
2975  * Similary, the unrolled domains may have some constraints removed and
2976  * may therefore also be larger than specified by the user.
2977  *
2978  * If anything is left after handling separate, unroll and atomic,
2979  * we split it up into basic sets and append the basic sets to domains->list.
2980  */
compute_partial_domains(struct isl_codegen_domains * domains,__isl_take isl_set * class_domain)2981 static isl_stat compute_partial_domains(struct isl_codegen_domains *domains,
2982 	__isl_take isl_set *class_domain)
2983 {
2984 	isl_basic_set_list *list;
2985 	isl_set *domain;
2986 
2987 	class_domain = isl_set_subtract(class_domain,
2988 					isl_set_copy(domains->done));
2989 	domains->done = isl_set_union(domains->done,
2990 					isl_set_copy(class_domain));
2991 
2992 	class_domain = compute_atomic_domain(domains, class_domain);
2993 	class_domain = compute_unroll_domains(domains, class_domain);
2994 
2995 	domain = isl_set_copy(class_domain);
2996 
2997 	if (compute_separate_domain(domains, domain) < 0)
2998 		goto error;
2999 	domain = isl_set_subtract(domain,
3000 			isl_set_copy(domains->option[isl_ast_loop_separate]));
3001 
3002 	domain = isl_set_intersect(domain,
3003 				isl_set_copy(domains->schedule_domain));
3004 
3005 	domain = isl_ast_build_eliminate(domains->build, domain);
3006 	domain = isl_set_intersect(domain, isl_set_copy(class_domain));
3007 
3008 	domain = isl_set_coalesce_preserve(domain);
3009 	domain = isl_set_make_disjoint(domain);
3010 
3011 	list = isl_basic_set_list_from_set(domain);
3012 	domains->list = isl_basic_set_list_concat(domains->list, list);
3013 
3014 	isl_set_free(class_domain);
3015 
3016 	return isl_stat_ok;
3017 error:
3018 	isl_set_free(domain);
3019 	isl_set_free(class_domain);
3020 	return isl_stat_error;
3021 }
3022 
3023 /* Split up the domain at the current depth into disjoint
3024  * basic sets for which code should be generated separately
3025  * for the separation class identified by "pnt".
3026  *
3027  * We extract the corresponding class domain from domains->sep_class,
3028  * eliminate inner dimensions and pass control to compute_partial_domains.
3029  */
compute_class_domains(__isl_take isl_point * pnt,void * user)3030 static isl_stat compute_class_domains(__isl_take isl_point *pnt, void *user)
3031 {
3032 	struct isl_codegen_domains *domains = user;
3033 	isl_set *class_set;
3034 	isl_set *domain;
3035 	int disjoint;
3036 
3037 	class_set = isl_set_from_point(pnt);
3038 	domain = isl_map_domain(isl_map_intersect_range(
3039 				isl_map_copy(domains->sep_class), class_set));
3040 	domain = isl_ast_build_compute_gist(domains->build, domain);
3041 	domain = isl_ast_build_eliminate(domains->build, domain);
3042 
3043 	disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
3044 	if (disjoint < 0)
3045 		return isl_stat_error;
3046 	if (disjoint) {
3047 		isl_set_free(domain);
3048 		return isl_stat_ok;
3049 	}
3050 
3051 	return compute_partial_domains(domains, domain);
3052 }
3053 
3054 /* Extract the domains at the current depth that should be atomic,
3055  * separated or unrolled and store them in option.
3056  *
3057  * The domains specified by the user might overlap, so we make
3058  * them disjoint by subtracting earlier domains from later domains.
3059  */
compute_domains_init_options(isl_set * option[4],__isl_keep isl_ast_build * build)3060 static void compute_domains_init_options(isl_set *option[4],
3061 	__isl_keep isl_ast_build *build)
3062 {
3063 	enum isl_ast_loop_type type, type2;
3064 	isl_set *unroll;
3065 
3066 	for (type = isl_ast_loop_atomic;
3067 	    type <= isl_ast_loop_separate; ++type) {
3068 		option[type] = isl_ast_build_get_option_domain(build, type);
3069 		for (type2 = isl_ast_loop_atomic; type2 < type; ++type2)
3070 			option[type] = isl_set_subtract(option[type],
3071 						isl_set_copy(option[type2]));
3072 	}
3073 
3074 	unroll = option[isl_ast_loop_unroll];
3075 	unroll = isl_set_coalesce(unroll);
3076 	unroll = isl_set_make_disjoint(unroll);
3077 	option[isl_ast_loop_unroll] = unroll;
3078 }
3079 
3080 /* Split up the domain at the current depth into disjoint
3081  * basic sets for which code should be generated separately,
3082  * based on the user-specified options.
3083  * Return the list of disjoint basic sets.
3084  *
3085  * There are three kinds of domains that we need to keep track of.
3086  * - the "schedule domain" is the domain of "executed"
3087  * - the "class domain" is the domain corresponding to the currrent
3088  *	separation class
3089  * - the "option domain" is the domain corresponding to one of the options
3090  *	atomic, unroll or separate
3091  *
3092  * We first consider the individial values of the separation classes
3093  * and split up the domain for each of them separately.
3094  * Finally, we consider the remainder.  If no separation classes were
3095  * specified, then we call compute_partial_domains with the universe
3096  * "class_domain".  Otherwise, we take the "schedule_domain" as "class_domain",
3097  * with inner dimensions removed.  We do this because we want to
3098  * avoid computing the complement of the class domains (i.e., the difference
3099  * between the universe and domains->done).
3100  */
compute_domains(__isl_keep isl_union_map * executed,__isl_keep isl_ast_build * build)3101 static __isl_give isl_basic_set_list *compute_domains(
3102 	__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
3103 {
3104 	struct isl_codegen_domains domains;
3105 	isl_ctx *ctx;
3106 	isl_set *domain;
3107 	isl_union_set *schedule_domain;
3108 	isl_set *classes;
3109 	isl_space *space;
3110 	int n_param;
3111 	enum isl_ast_loop_type type;
3112 	isl_bool empty;
3113 
3114 	if (!executed)
3115 		return NULL;
3116 
3117 	ctx = isl_union_map_get_ctx(executed);
3118 	domains.list = isl_basic_set_list_alloc(ctx, 0);
3119 
3120 	schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
3121 	domain = isl_set_from_union_set(schedule_domain);
3122 
3123 	compute_domains_init_options(domains.option, build);
3124 
3125 	domains.sep_class = isl_ast_build_get_separation_class(build);
3126 	classes = isl_map_range(isl_map_copy(domains.sep_class));
3127 	n_param = isl_set_dim(classes, isl_dim_param);
3128 	if (n_param < 0)
3129 		classes = isl_set_free(classes);
3130 	classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
3131 
3132 	space = isl_set_get_space(domain);
3133 	domains.build = build;
3134 	domains.schedule_domain = isl_set_copy(domain);
3135 	domains.executed = executed;
3136 	domains.done = isl_set_empty(space);
3137 
3138 	if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
3139 		domains.list = isl_basic_set_list_free(domains.list);
3140 	isl_set_free(classes);
3141 
3142 	empty = isl_set_is_empty(domains.done);
3143 	if (empty < 0) {
3144 		domains.list = isl_basic_set_list_free(domains.list);
3145 		domain = isl_set_free(domain);
3146 	} else if (empty) {
3147 		isl_set_free(domain);
3148 		domain = isl_set_universe(isl_set_get_space(domains.done));
3149 	} else {
3150 		domain = isl_ast_build_eliminate(build, domain);
3151 	}
3152 	if (compute_partial_domains(&domains, domain) < 0)
3153 		domains.list = isl_basic_set_list_free(domains.list);
3154 
3155 	isl_set_free(domains.schedule_domain);
3156 	isl_set_free(domains.done);
3157 	isl_map_free(domains.sep_class);
3158 	for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type)
3159 		isl_set_free(domains.option[type]);
3160 
3161 	return domains.list;
3162 }
3163 
3164 /* Generate code for a single component, after shifting (if any)
3165  * has been applied, in case the schedule was specified as a union map.
3166  *
3167  * We first split up the domain at the current depth into disjoint
3168  * basic sets based on the user-specified options.
3169  * Then we generated code for each of them and concatenate the results.
3170  */
generate_shifted_component_flat(__isl_take isl_union_map * executed,__isl_take isl_ast_build * build)3171 static __isl_give isl_ast_graft_list *generate_shifted_component_flat(
3172 	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3173 {
3174 	isl_basic_set_list *domain_list;
3175 	isl_ast_graft_list *list = NULL;
3176 
3177 	domain_list = compute_domains(executed, build);
3178 	list = generate_parallel_domains(domain_list, executed, build);
3179 
3180 	isl_basic_set_list_free(domain_list);
3181 	isl_union_map_free(executed);
3182 	isl_ast_build_free(build);
3183 
3184 	return list;
3185 }
3186 
3187 /* Generate code for a single component, after shifting (if any)
3188  * has been applied, in case the schedule was specified as a schedule tree
3189  * and the separate option was specified.
3190  *
3191  * We perform separation on the domain of "executed" and then generate
3192  * an AST for each of the resulting disjoint basic sets.
3193  */
generate_shifted_component_tree_separate(__isl_take isl_union_map * executed,__isl_take isl_ast_build * build)3194 static __isl_give isl_ast_graft_list *generate_shifted_component_tree_separate(
3195 	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3196 {
3197 	isl_space *space;
3198 	isl_set *domain;
3199 	isl_basic_set_list *domain_list;
3200 	isl_ast_graft_list *list;
3201 
3202 	space = isl_ast_build_get_space(build, 1);
3203 	domain = separate_schedule_domains(space,
3204 					isl_union_map_copy(executed), build);
3205 	domain_list = isl_basic_set_list_from_set(domain);
3206 
3207 	list = generate_parallel_domains(domain_list, executed, build);
3208 
3209 	isl_basic_set_list_free(domain_list);
3210 	isl_union_map_free(executed);
3211 	isl_ast_build_free(build);
3212 
3213 	return list;
3214 }
3215 
3216 /* Internal data structure for generate_shifted_component_tree_unroll.
3217  *
3218  * "executed" and "build" are inputs to generate_shifted_component_tree_unroll.
3219  * "list" collects the constructs grafts.
3220  */
3221 struct isl_ast_unroll_tree_data {
3222 	isl_union_map *executed;
3223 	isl_ast_build *build;
3224 	isl_ast_graft_list *list;
3225 };
3226 
3227 /* Initialize data->list to a list of "n" elements.
3228  */
init_unroll_tree(int n,void * user)3229 static int init_unroll_tree(int n, void *user)
3230 {
3231 	struct isl_ast_unroll_tree_data *data = user;
3232 	isl_ctx *ctx;
3233 
3234 	ctx = isl_ast_build_get_ctx(data->build);
3235 	data->list = isl_ast_graft_list_alloc(ctx, n);
3236 
3237 	return 0;
3238 }
3239 
3240 /* Given an iteration of an unrolled domain represented by "bset",
3241  * generate the corresponding AST and add the result to data->list.
3242  */
do_unroll_tree_iteration(__isl_take isl_basic_set * bset,void * user)3243 static int do_unroll_tree_iteration(__isl_take isl_basic_set *bset, void *user)
3244 {
3245 	struct isl_ast_unroll_tree_data *data = user;
3246 
3247 	data->list = add_node(data->list, isl_union_map_copy(data->executed),
3248 				bset, isl_ast_build_copy(data->build));
3249 
3250 	return 0;
3251 }
3252 
3253 /* Generate code for a single component, after shifting (if any)
3254  * has been applied, in case the schedule was specified as a schedule tree
3255  * and the unroll option was specified.
3256  *
3257  * We call foreach_iteration to iterate over the individual values and
3258  * construct and collect the corresponding grafts in do_unroll_tree_iteration.
3259  */
generate_shifted_component_tree_unroll(__isl_take isl_union_map * executed,__isl_take isl_set * domain,__isl_take isl_ast_build * build)3260 static __isl_give isl_ast_graft_list *generate_shifted_component_tree_unroll(
3261 	__isl_take isl_union_map *executed, __isl_take isl_set *domain,
3262 	__isl_take isl_ast_build *build)
3263 {
3264 	struct isl_ast_unroll_tree_data data = { executed, build, NULL };
3265 
3266 	if (foreach_iteration(domain, build, &init_unroll_tree,
3267 				&do_unroll_tree_iteration, &data) < 0)
3268 		data.list = isl_ast_graft_list_free(data.list);
3269 
3270 	isl_union_map_free(executed);
3271 	isl_ast_build_free(build);
3272 
3273 	return data.list;
3274 }
3275 
3276 /* Does "domain" involve a disjunction that is purely based on
3277  * constraints involving only outer dimension?
3278  *
3279  * In particular, is there a disjunction such that the constraints
3280  * involving the current and later dimensions are the same over
3281  * all the disjuncts?
3282  */
has_pure_outer_disjunction(__isl_keep isl_set * domain,__isl_keep isl_ast_build * build)3283 static isl_bool has_pure_outer_disjunction(__isl_keep isl_set *domain,
3284 	__isl_keep isl_ast_build *build)
3285 {
3286 	isl_basic_set *hull;
3287 	isl_set *shared, *inner;
3288 	isl_bool equal;
3289 	int depth;
3290 	isl_size n;
3291 	isl_size dim;
3292 
3293 	n = isl_set_n_basic_set(domain);
3294 	if (n < 0)
3295 		return isl_bool_error;
3296 	if (n <= 1)
3297 		return isl_bool_false;
3298 	dim = isl_set_dim(domain, isl_dim_set);
3299 	if (dim < 0)
3300 		return isl_bool_error;
3301 
3302 	inner = isl_set_copy(domain);
3303 	depth = isl_ast_build_get_depth(build);
3304 	inner = isl_set_drop_constraints_not_involving_dims(inner,
3305 					    isl_dim_set, depth, dim - depth);
3306 	hull = isl_set_plain_unshifted_simple_hull(isl_set_copy(inner));
3307 	shared = isl_set_from_basic_set(hull);
3308 	equal = isl_set_plain_is_equal(inner, shared);
3309 	isl_set_free(inner);
3310 	isl_set_free(shared);
3311 
3312 	return equal;
3313 }
3314 
3315 /* Generate code for a single component, after shifting (if any)
3316  * has been applied, in case the schedule was specified as a schedule tree.
3317  * In particular, handle the base case where there is either no isolated
3318  * set or we are within the isolated set (in which case "isolated" is set)
3319  * or the iterations that precede or follow the isolated set.
3320  *
3321  * The schedule domain is broken up or combined into basic sets
3322  * according to the AST generation option specified in the current
3323  * schedule node, which may be either atomic, separate, unroll or
3324  * unspecified.  If the option is unspecified, then we currently simply
3325  * split the schedule domain into disjoint basic sets.
3326  *
3327  * In case the separate option is specified, the AST generation is
3328  * handled by generate_shifted_component_tree_separate.
3329  * In the other cases, we need the global schedule domain.
3330  * In the unroll case, the AST generation is then handled by
3331  * generate_shifted_component_tree_unroll which needs the actual
3332  * schedule domain (with divs that may refer to the current dimension)
3333  * so that stride detection can be performed.
3334  * In the atomic or unspecified case, inner dimensions and divs involving
3335  * the current dimensions should be eliminated.
3336  * The result is then either combined into a single basic set or
3337  * split up into disjoint basic sets.
3338  * Finally an AST is generated for each basic set and the results are
3339  * concatenated.
3340  *
3341  * If the schedule domain involves a disjunction that is purely based on
3342  * constraints involving only outer dimension, then it is treated as
3343  * if atomic was specified.  This ensures that only a single loop
3344  * is generated instead of a sequence of identical loops with
3345  * different guards.
3346  */
generate_shifted_component_tree_base(__isl_take isl_union_map * executed,__isl_take isl_ast_build * build,int isolated)3347 static __isl_give isl_ast_graft_list *generate_shifted_component_tree_base(
3348 	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3349 	int isolated)
3350 {
3351 	isl_bool outer_disjunction;
3352 	isl_union_set *schedule_domain;
3353 	isl_set *domain;
3354 	isl_basic_set_list *domain_list;
3355 	isl_ast_graft_list *list;
3356 	enum isl_ast_loop_type type;
3357 
3358 	type = isl_ast_build_get_loop_type(build, isolated);
3359 	if (type < 0)
3360 		goto error;
3361 
3362 	if (type == isl_ast_loop_separate)
3363 		return generate_shifted_component_tree_separate(executed,
3364 								build);
3365 
3366 	schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
3367 	domain = isl_set_from_union_set(schedule_domain);
3368 
3369 	if (type == isl_ast_loop_unroll)
3370 		return generate_shifted_component_tree_unroll(executed, domain,
3371 								build);
3372 
3373 	domain = isl_ast_build_eliminate(build, domain);
3374 	domain = isl_set_coalesce_preserve(domain);
3375 
3376 	outer_disjunction = has_pure_outer_disjunction(domain, build);
3377 	if (outer_disjunction < 0)
3378 		domain = isl_set_free(domain);
3379 
3380 	if (outer_disjunction || type == isl_ast_loop_atomic) {
3381 		isl_basic_set *hull;
3382 		hull = isl_set_unshifted_simple_hull(domain);
3383 		domain_list = isl_basic_set_list_from_basic_set(hull);
3384 	} else {
3385 		domain = isl_set_make_disjoint(domain);
3386 		domain_list = isl_basic_set_list_from_set(domain);
3387 	}
3388 
3389 	list = generate_parallel_domains(domain_list, executed, build);
3390 
3391 	isl_basic_set_list_free(domain_list);
3392 	isl_union_map_free(executed);
3393 	isl_ast_build_free(build);
3394 
3395 	return list;
3396 error:
3397 	isl_union_map_free(executed);
3398 	isl_ast_build_free(build);
3399 	return NULL;
3400 }
3401 
3402 /* Extract out the disjunction imposed by "domain" on the outer
3403  * schedule dimensions.
3404  *
3405  * In particular, remove all inner dimensions from "domain" (including
3406  * the current dimension) and then remove the constraints that are shared
3407  * by all disjuncts in the result.
3408  */
extract_disjunction(__isl_take isl_set * domain,__isl_keep isl_ast_build * build)3409 static __isl_give isl_set *extract_disjunction(__isl_take isl_set *domain,
3410 	__isl_keep isl_ast_build *build)
3411 {
3412 	isl_set *hull;
3413 	int depth;
3414 	isl_size dim;
3415 
3416 	domain = isl_ast_build_specialize(build, domain);
3417 	depth = isl_ast_build_get_depth(build);
3418 	dim = isl_set_dim(domain, isl_dim_set);
3419 	if (dim < 0)
3420 		return isl_set_free(domain);
3421 	domain = isl_set_eliminate(domain, isl_dim_set, depth, dim - depth);
3422 	domain = isl_set_remove_unknown_divs(domain);
3423 	hull = isl_set_copy(domain);
3424 	hull = isl_set_from_basic_set(isl_set_unshifted_simple_hull(hull));
3425 	domain = isl_set_gist(domain, hull);
3426 
3427 	return domain;
3428 }
3429 
3430 /* Add "guard" to the grafts in "list".
3431  * "build" is the outer AST build, while "sub_build" includes "guard"
3432  * in its generated domain.
3433  *
3434  * First combine the grafts into a single graft and then add the guard.
3435  * If the list is empty, or if some error occurred, then simply return
3436  * the list.
3437  */
list_add_guard(__isl_take isl_ast_graft_list * list,__isl_keep isl_set * guard,__isl_keep isl_ast_build * build,__isl_keep isl_ast_build * sub_build)3438 static __isl_give isl_ast_graft_list *list_add_guard(
3439 	__isl_take isl_ast_graft_list *list, __isl_keep isl_set *guard,
3440 	__isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build)
3441 {
3442 	isl_ast_graft *graft;
3443 	isl_size n;
3444 
3445 	list = isl_ast_graft_list_fuse(list, sub_build);
3446 
3447 	n = isl_ast_graft_list_n_ast_graft(list);
3448 	if (n < 0)
3449 		return isl_ast_graft_list_free(list);
3450 	if (n != 1)
3451 		return list;
3452 
3453 	graft = isl_ast_graft_list_get_ast_graft(list, 0);
3454 	graft = isl_ast_graft_add_guard(graft, isl_set_copy(guard), build);
3455 	list = isl_ast_graft_list_set_ast_graft(list, 0, graft);
3456 
3457 	return list;
3458 }
3459 
3460 /* Generate code for a single component, after shifting (if any)
3461  * has been applied, in case the schedule was specified as a schedule tree.
3462  * In particular, do so for the specified subset of the schedule domain.
3463  *
3464  * If we are outside of the isolated part, then "domain" may include
3465  * a disjunction.  Explicitly generate this disjunction at this point
3466  * instead of relying on the disjunction getting hoisted back up
3467  * to this level.
3468  */
generate_shifted_component_tree_part(__isl_keep isl_union_map * executed,__isl_take isl_set * domain,__isl_keep isl_ast_build * build,int isolated)3469 static __isl_give isl_ast_graft_list *generate_shifted_component_tree_part(
3470 	__isl_keep isl_union_map *executed, __isl_take isl_set *domain,
3471 	__isl_keep isl_ast_build *build, int isolated)
3472 {
3473 	isl_union_set *uset;
3474 	isl_ast_graft_list *list;
3475 	isl_ast_build *sub_build;
3476 	int empty;
3477 
3478 	uset = isl_union_set_from_set(isl_set_copy(domain));
3479 	executed = isl_union_map_copy(executed);
3480 	executed = isl_union_map_intersect_domain(executed, uset);
3481 	empty = isl_union_map_is_empty(executed);
3482 	if (empty < 0)
3483 		goto error;
3484 	if (empty) {
3485 		isl_ctx *ctx;
3486 		isl_union_map_free(executed);
3487 		isl_set_free(domain);
3488 		ctx = isl_ast_build_get_ctx(build);
3489 		return isl_ast_graft_list_alloc(ctx, 0);
3490 	}
3491 
3492 	sub_build = isl_ast_build_copy(build);
3493 	if (!isolated) {
3494 		domain = extract_disjunction(domain, build);
3495 		sub_build = isl_ast_build_restrict_generated(sub_build,
3496 							isl_set_copy(domain));
3497 	}
3498 	list = generate_shifted_component_tree_base(executed,
3499 				isl_ast_build_copy(sub_build), isolated);
3500 	if (!isolated)
3501 		list = list_add_guard(list, domain, build, sub_build);
3502 	isl_ast_build_free(sub_build);
3503 	isl_set_free(domain);
3504 	return list;
3505 error:
3506 	isl_union_map_free(executed);
3507 	isl_set_free(domain);
3508 	return NULL;
3509 }
3510 
3511 /* Generate code for a single component, after shifting (if any)
3512  * has been applied, in case the schedule was specified as a schedule tree.
3513  * In particular, do so for the specified sequence of subsets
3514  * of the schedule domain, "before", "isolated", "after" and "other",
3515  * where only the "isolated" part is considered to be isolated.
3516  */
generate_shifted_component_parts(__isl_take isl_union_map * executed,__isl_take isl_set * before,__isl_take isl_set * isolated,__isl_take isl_set * after,__isl_take isl_set * other,__isl_take isl_ast_build * build)3517 static __isl_give isl_ast_graft_list *generate_shifted_component_parts(
3518 	__isl_take isl_union_map *executed, __isl_take isl_set *before,
3519 	__isl_take isl_set *isolated, __isl_take isl_set *after,
3520 	__isl_take isl_set *other, __isl_take isl_ast_build *build)
3521 {
3522 	isl_ast_graft_list *list, *res;
3523 
3524 	res = generate_shifted_component_tree_part(executed, before, build, 0);
3525 	list = generate_shifted_component_tree_part(executed, isolated,
3526 						    build, 1);
3527 	res = isl_ast_graft_list_concat(res, list);
3528 	list = generate_shifted_component_tree_part(executed, after, build, 0);
3529 	res = isl_ast_graft_list_concat(res, list);
3530 	list = generate_shifted_component_tree_part(executed, other, build, 0);
3531 	res = isl_ast_graft_list_concat(res, list);
3532 
3533 	isl_union_map_free(executed);
3534 	isl_ast_build_free(build);
3535 
3536 	return res;
3537 }
3538 
3539 /* Does "set" intersect "first", but not "second"?
3540  */
only_intersects_first(__isl_keep isl_set * set,__isl_keep isl_set * first,__isl_keep isl_set * second)3541 static isl_bool only_intersects_first(__isl_keep isl_set *set,
3542 	__isl_keep isl_set *first, __isl_keep isl_set *second)
3543 {
3544 	isl_bool disjoint;
3545 
3546 	disjoint = isl_set_is_disjoint(set, first);
3547 	if (disjoint < 0)
3548 		return isl_bool_error;
3549 	if (disjoint)
3550 		return isl_bool_false;
3551 
3552 	return isl_set_is_disjoint(set, second);
3553 }
3554 
3555 /* Generate code for a single component, after shifting (if any)
3556  * has been applied, in case the schedule was specified as a schedule tree.
3557  * In particular, do so in case of isolation where there is
3558  * only an "isolated" part and an "after" part.
3559  * "dead1" and "dead2" are freed by this function in order to simplify
3560  * the caller.
3561  *
3562  * The "before" and "other" parts are set to empty sets.
3563  */
generate_shifted_component_only_after(__isl_take isl_union_map * executed,__isl_take isl_set * isolated,__isl_take isl_set * after,__isl_take isl_ast_build * build,__isl_take isl_set * dead1,__isl_take isl_set * dead2)3564 static __isl_give isl_ast_graft_list *generate_shifted_component_only_after(
3565 	__isl_take isl_union_map *executed, __isl_take isl_set *isolated,
3566 	__isl_take isl_set *after, __isl_take isl_ast_build *build,
3567 	__isl_take isl_set *dead1, __isl_take isl_set *dead2)
3568 {
3569 	isl_set *empty;
3570 
3571 	empty = isl_set_empty(isl_set_get_space(after));
3572 	isl_set_free(dead1);
3573 	isl_set_free(dead2);
3574 	return generate_shifted_component_parts(executed, isl_set_copy(empty),
3575 						isolated, after, empty, build);
3576 }
3577 
3578 /* Generate code for a single component, after shifting (if any)
3579  * has been applied, in case the schedule was specified as a schedule tree.
3580  *
3581  * We first check if the user has specified an isolated schedule domain
3582  * and that we are not already outside of this isolated schedule domain.
3583  * If so, we break up the schedule domain into iterations that
3584  * precede the isolated domain, the isolated domain itself,
3585  * the iterations that follow the isolated domain and
3586  * the remaining iterations (those that are incomparable
3587  * to the isolated domain).
3588  * We generate an AST for each piece and concatenate the results.
3589  *
3590  * If the isolated domain is not convex, then it is replaced
3591  * by a convex superset to ensure that the sets of preceding and
3592  * following iterations are properly defined and, in particular,
3593  * that there are no intermediate iterations that do not belong
3594  * to the isolated domain.
3595  *
3596  * In the special case where at least one element of the schedule
3597  * domain that does not belong to the isolated domain needs
3598  * to be scheduled after this isolated domain, but none of those
3599  * elements need to be scheduled before, break up the schedule domain
3600  * in only two parts, the isolated domain, and a part that will be
3601  * scheduled after the isolated domain.
3602  *
3603  * If no isolated set has been specified, then we generate an
3604  * AST for the entire inverse schedule.
3605  */
generate_shifted_component_tree(__isl_take isl_union_map * executed,__isl_take isl_ast_build * build)3606 static __isl_give isl_ast_graft_list *generate_shifted_component_tree(
3607 	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3608 {
3609 	int i, depth;
3610 	int empty, has_isolate;
3611 	isl_space *space;
3612 	isl_union_set *schedule_domain;
3613 	isl_set *domain;
3614 	isl_basic_set *hull;
3615 	isl_set *isolated, *before, *after, *test;
3616 	isl_map *gt, *lt;
3617 	isl_bool pure;
3618 
3619 	build = isl_ast_build_extract_isolated(build);
3620 	has_isolate = isl_ast_build_has_isolated(build);
3621 	if (has_isolate < 0)
3622 		executed = isl_union_map_free(executed);
3623 	else if (!has_isolate)
3624 		return generate_shifted_component_tree_base(executed, build, 0);
3625 
3626 	schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
3627 	domain = isl_set_from_union_set(schedule_domain);
3628 
3629 	isolated = isl_ast_build_get_isolated(build);
3630 	isolated = isl_set_intersect(isolated, isl_set_copy(domain));
3631 	test = isl_ast_build_specialize(build, isl_set_copy(isolated));
3632 	empty = isl_set_is_empty(test);
3633 	isl_set_free(test);
3634 	if (empty < 0)
3635 		goto error;
3636 	if (empty) {
3637 		isl_set_free(isolated);
3638 		isl_set_free(domain);
3639 		return generate_shifted_component_tree_base(executed, build, 0);
3640 	}
3641 	isolated = isl_ast_build_eliminate(build, isolated);
3642 	hull = isl_set_unshifted_simple_hull(isolated);
3643 	isolated = isl_set_from_basic_set(hull);
3644 
3645 	depth = isl_ast_build_get_depth(build);
3646 	space = isl_space_map_from_set(isl_set_get_space(isolated));
3647 	gt = isl_map_universe(space);
3648 	for (i = 0; i < depth; ++i)
3649 		gt = isl_map_equate(gt, isl_dim_in, i, isl_dim_out, i);
3650 	gt = isl_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth);
3651 	lt = isl_map_reverse(isl_map_copy(gt));
3652 	before = isl_set_apply(isl_set_copy(isolated), gt);
3653 	after = isl_set_apply(isl_set_copy(isolated), lt);
3654 
3655 	domain = isl_set_subtract(domain, isl_set_copy(isolated));
3656 	pure = only_intersects_first(domain, after, before);
3657 	if (pure < 0)
3658 		executed = isl_union_map_free(executed);
3659 	else if (pure)
3660 		return generate_shifted_component_only_after(executed, isolated,
3661 						domain, build, before, after);
3662 	domain = isl_set_subtract(domain, isl_set_copy(before));
3663 	domain = isl_set_subtract(domain, isl_set_copy(after));
3664 	after = isl_set_subtract(after, isl_set_copy(isolated));
3665 	after = isl_set_subtract(after, isl_set_copy(before));
3666 	before = isl_set_subtract(before, isl_set_copy(isolated));
3667 
3668 	return generate_shifted_component_parts(executed, before, isolated,
3669 						after, domain, build);
3670 error:
3671 	isl_set_free(domain);
3672 	isl_set_free(isolated);
3673 	isl_union_map_free(executed);
3674 	isl_ast_build_free(build);
3675 	return NULL;
3676 }
3677 
3678 /* Generate code for a single component, after shifting (if any)
3679  * has been applied.
3680  *
3681  * Call generate_shifted_component_tree or generate_shifted_component_flat
3682  * depending on whether the schedule was specified as a schedule tree.
3683  */
generate_shifted_component(__isl_take isl_union_map * executed,__isl_take isl_ast_build * build)3684 static __isl_give isl_ast_graft_list *generate_shifted_component(
3685 	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3686 {
3687 	if (isl_ast_build_has_schedule_node(build))
3688 		return generate_shifted_component_tree(executed, build);
3689 	else
3690 		return generate_shifted_component_flat(executed, build);
3691 }
3692 
3693 struct isl_set_map_pair {
3694 	isl_set *set;
3695 	isl_map *map;
3696 };
3697 
3698 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3699  * of indices into the "domain" array,
3700  * return the union of the "map" fields of the elements
3701  * indexed by the first "n" elements of "order".
3702  */
construct_component_executed(struct isl_set_map_pair * domain,int * order,int n)3703 static __isl_give isl_union_map *construct_component_executed(
3704 	struct isl_set_map_pair *domain, int *order, int n)
3705 {
3706 	int i;
3707 	isl_map *map;
3708 	isl_union_map *executed;
3709 
3710 	map = isl_map_copy(domain[order[0]].map);
3711 	executed = isl_union_map_from_map(map);
3712 	for (i = 1; i < n; ++i) {
3713 		map = isl_map_copy(domain[order[i]].map);
3714 		executed = isl_union_map_add_map(executed, map);
3715 	}
3716 
3717 	return executed;
3718 }
3719 
3720 /* Generate code for a single component, after shifting (if any)
3721  * has been applied.
3722  *
3723  * The component inverse schedule is specified as the "map" fields
3724  * of the elements of "domain" indexed by the first "n" elements of "order".
3725  */
generate_shifted_component_from_list(struct isl_set_map_pair * domain,int * order,int n,__isl_take isl_ast_build * build)3726 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
3727 	struct isl_set_map_pair *domain, int *order, int n,
3728 	__isl_take isl_ast_build *build)
3729 {
3730 	isl_union_map *executed;
3731 
3732 	executed = construct_component_executed(domain, order, n);
3733 	return generate_shifted_component(executed, build);
3734 }
3735 
3736 /* Does set dimension "pos" of "set" have an obviously fixed value?
3737  */
dim_is_fixed(__isl_keep isl_set * set,int pos)3738 static int dim_is_fixed(__isl_keep isl_set *set, int pos)
3739 {
3740 	int fixed;
3741 	isl_val *v;
3742 
3743 	v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, pos);
3744 	if (!v)
3745 		return -1;
3746 	fixed = !isl_val_is_nan(v);
3747 	isl_val_free(v);
3748 
3749 	return fixed;
3750 }
3751 
3752 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3753  * of indices into the "domain" array,
3754  * do all (except for at most one) of the "set" field of the elements
3755  * indexed by the first "n" elements of "order" have a fixed value
3756  * at position "depth"?
3757  */
at_most_one_non_fixed(struct isl_set_map_pair * domain,int * order,int n,int depth)3758 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
3759 	int *order, int n, int depth)
3760 {
3761 	int i;
3762 	int non_fixed = -1;
3763 
3764 	for (i = 0; i < n; ++i) {
3765 		int f;
3766 
3767 		f = dim_is_fixed(domain[order[i]].set, depth);
3768 		if (f < 0)
3769 			return -1;
3770 		if (f)
3771 			continue;
3772 		if (non_fixed >= 0)
3773 			return 0;
3774 		non_fixed = i;
3775 	}
3776 
3777 	return 1;
3778 }
3779 
3780 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3781  * of indices into the "domain" array,
3782  * eliminate the inner dimensions from the "set" field of the elements
3783  * indexed by the first "n" elements of "order", provided the current
3784  * dimension does not have a fixed value.
3785  *
3786  * Return the index of the first element in "order" with a corresponding
3787  * "set" field that does not have an (obviously) fixed value.
3788  */
eliminate_non_fixed(struct isl_set_map_pair * domain,int * order,int n,int depth,__isl_keep isl_ast_build * build)3789 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
3790 	int *order, int n, int depth, __isl_keep isl_ast_build *build)
3791 {
3792 	int i;
3793 	int base = -1;
3794 
3795 	for (i = n - 1; i >= 0; --i) {
3796 		int f;
3797 		f = dim_is_fixed(domain[order[i]].set, depth);
3798 		if (f < 0)
3799 			return -1;
3800 		if (f)
3801 			continue;
3802 		domain[order[i]].set = isl_ast_build_eliminate_inner(build,
3803 							domain[order[i]].set);
3804 		base = i;
3805 	}
3806 
3807 	return base;
3808 }
3809 
3810 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3811  * of indices into the "domain" array,
3812  * find the element of "domain" (amongst those indexed by the first "n"
3813  * elements of "order") with the "set" field that has the smallest
3814  * value for the current iterator.
3815  *
3816  * Note that the domain with the smallest value may depend on the parameters
3817  * and/or outer loop dimension.  Since the result of this function is only
3818  * used as heuristic, we only make a reasonable attempt at finding the best
3819  * domain, one that should work in case a single domain provides the smallest
3820  * value for the current dimension over all values of the parameters
3821  * and outer dimensions.
3822  *
3823  * In particular, we compute the smallest value of the first domain
3824  * and replace it by that of any later domain if that later domain
3825  * has a smallest value that is smaller for at least some value
3826  * of the parameters and outer dimensions.
3827  */
first_offset(struct isl_set_map_pair * domain,int * order,int n,__isl_keep isl_ast_build * build)3828 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
3829 	__isl_keep isl_ast_build *build)
3830 {
3831 	int i;
3832 	isl_map *min_first;
3833 	int first = 0;
3834 
3835 	min_first = isl_ast_build_map_to_iterator(build,
3836 					isl_set_copy(domain[order[0]].set));
3837 	min_first = isl_map_lexmin(min_first);
3838 
3839 	for (i = 1; i < n; ++i) {
3840 		isl_map *min, *test;
3841 		int empty;
3842 
3843 		min = isl_ast_build_map_to_iterator(build,
3844 					isl_set_copy(domain[order[i]].set));
3845 		min = isl_map_lexmin(min);
3846 		test = isl_map_copy(min);
3847 		test = isl_map_apply_domain(isl_map_copy(min_first), test);
3848 		test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
3849 		empty = isl_map_is_empty(test);
3850 		isl_map_free(test);
3851 		if (empty >= 0 && !empty) {
3852 			isl_map_free(min_first);
3853 			first = i;
3854 			min_first = min;
3855 		} else
3856 			isl_map_free(min);
3857 
3858 		if (empty < 0)
3859 			break;
3860 	}
3861 
3862 	isl_map_free(min_first);
3863 
3864 	return i < n ? -1 : first;
3865 }
3866 
3867 /* Construct a shifted inverse schedule based on the original inverse schedule,
3868  * the stride and the offset.
3869  *
3870  * The original inverse schedule is specified as the "map" fields
3871  * of the elements of "domain" indexed by the first "n" elements of "order".
3872  *
3873  * "stride" and "offset" are such that the difference
3874  * between the values of the current dimension of domain "i"
3875  * and the values of the current dimension for some reference domain are
3876  * equal to
3877  *
3878  *	stride * integer + offset[i]
3879  *
3880  * Moreover, 0 <= offset[i] < stride.
3881  *
3882  * For each domain, we create a map
3883  *
3884  *	{ [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3885  *
3886  * where j refers to the current dimension and the other dimensions are
3887  * unchanged, and apply this map to the original schedule domain.
3888  *
3889  * For example, for the original schedule
3890  *
3891  *	{ A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3892  *
3893  * and assuming the offset is 0 for the A domain and 1 for the B domain,
3894  * we apply the mapping
3895  *
3896  *	{ [j] -> [j, 0] }
3897  *
3898  * to the schedule of the "A" domain and the mapping
3899  *
3900  *	{ [j - 1] -> [j, 1] }
3901  *
3902  * to the schedule of the "B" domain.
3903  *
3904  *
3905  * Note that after the transformation, the differences between pairs
3906  * of values of the current dimension over all domains are multiples
3907  * of stride and that we have therefore exposed the stride.
3908  *
3909  *
3910  * To see that the mapping preserves the lexicographic order,
3911  * first note that each of the individual maps above preserves the order.
3912  * If the value of the current iterator is j1 in one domain and j2 in another,
3913  * then if j1 = j2, we know that the same map is applied to both domains
3914  * and the order is preserved.
3915  * Otherwise, let us assume, without loss of generality, that j1 < j2.
3916  * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3917  *
3918  *	j1 - c1 < j2 - c2
3919  *
3920  * and the order is preserved.
3921  * If c1 < c2, then we know
3922  *
3923  *	0 <= c2 - c1 < s
3924  *
3925  * We also have
3926  *
3927  *	j2 - j1 = n * s + r
3928  *
3929  * with n >= 0 and 0 <= r < s.
3930  * In other words, r = c2 - c1.
3931  * If n > 0, then
3932  *
3933  *	j1 - c1 < j2 - c2
3934  *
3935  * If n = 0, then
3936  *
3937  *	j1 - c1 = j2 - c2
3938  *
3939  * and so
3940  *
3941  *	(j1 - c1, c1) << (j2 - c2, c2)
3942  *
3943  * with "<<" the lexicographic order, proving that the order is preserved
3944  * in all cases.
3945  */
construct_shifted_executed(struct isl_set_map_pair * domain,int * order,int n,__isl_keep isl_val * stride,__isl_keep isl_multi_val * offset,__isl_take isl_ast_build * build)3946 static __isl_give isl_union_map *construct_shifted_executed(
3947 	struct isl_set_map_pair *domain, int *order, int n,
3948 	__isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
3949 	__isl_take isl_ast_build *build)
3950 {
3951 	int i;
3952 	isl_union_map *executed;
3953 	isl_space *space;
3954 	isl_map *map;
3955 	int depth;
3956 	isl_constraint *c;
3957 
3958 	depth = isl_ast_build_get_depth(build);
3959 	space = isl_ast_build_get_space(build, 1);
3960 	executed = isl_union_map_empty(isl_space_copy(space));
3961 	space = isl_space_map_from_set(space);
3962 	map = isl_map_identity(isl_space_copy(space));
3963 	map = isl_map_eliminate(map, isl_dim_out, depth, 1);
3964 	map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
3965 	space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
3966 
3967 	c = isl_constraint_alloc_equality(isl_local_space_from_space(space));
3968 	c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
3969 	c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
3970 
3971 	for (i = 0; i < n; ++i) {
3972 		isl_map *map_i;
3973 		isl_val *v;
3974 
3975 		v = isl_multi_val_get_val(offset, i);
3976 		if (!v)
3977 			break;
3978 		map_i = isl_map_copy(map);
3979 		map_i = isl_map_fix_val(map_i, isl_dim_out, depth + 1,
3980 					isl_val_copy(v));
3981 		v = isl_val_neg(v);
3982 		c = isl_constraint_set_constant_val(c, v);
3983 		map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
3984 
3985 		map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
3986 						map_i);
3987 		executed = isl_union_map_add_map(executed, map_i);
3988 	}
3989 
3990 	isl_constraint_free(c);
3991 	isl_map_free(map);
3992 
3993 	if (i < n)
3994 		executed = isl_union_map_free(executed);
3995 
3996 	return executed;
3997 }
3998 
3999 /* Generate code for a single component, after exposing the stride,
4000  * given that the schedule domain is "shifted strided".
4001  *
4002  * The component inverse schedule is specified as the "map" fields
4003  * of the elements of "domain" indexed by the first "n" elements of "order".
4004  *
4005  * The schedule domain being "shifted strided" means that the differences
4006  * between the values of the current dimension of domain "i"
4007  * and the values of the current dimension for some reference domain are
4008  * equal to
4009  *
4010  *	stride * integer + offset[i]
4011  *
4012  * We first look for the domain with the "smallest" value for the current
4013  * dimension and adjust the offsets such that the offset of the "smallest"
4014  * domain is equal to zero.  The other offsets are reduced modulo stride.
4015  *
4016  * Based on this information, we construct a new inverse schedule in
4017  * construct_shifted_executed that exposes the stride.
4018  * Since this involves the introduction of a new schedule dimension,
4019  * the build needs to be changed accordingly.
4020  * After computing the AST, the newly introduced dimension needs
4021  * to be removed again from the list of grafts.  We do this by plugging
4022  * in a mapping that represents the new schedule domain in terms of the
4023  * old schedule domain.
4024  */
generate_shift_component(struct isl_set_map_pair * domain,int * order,int n,__isl_keep isl_val * stride,__isl_keep isl_multi_val * offset,__isl_take isl_ast_build * build)4025 static __isl_give isl_ast_graft_list *generate_shift_component(
4026 	struct isl_set_map_pair *domain, int *order, int n,
4027 	__isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
4028 	__isl_take isl_ast_build *build)
4029 {
4030 	isl_ast_graft_list *list;
4031 	int first;
4032 	int depth;
4033 	isl_val *val;
4034 	isl_multi_val *mv;
4035 	isl_space *space;
4036 	isl_multi_aff *ma, *zero;
4037 	isl_union_map *executed;
4038 
4039 	depth = isl_ast_build_get_depth(build);
4040 
4041 	first = first_offset(domain, order, n, build);
4042 	if (first < 0)
4043 		goto error;
4044 
4045 	mv = isl_multi_val_copy(offset);
4046 	val = isl_multi_val_get_val(offset, first);
4047 	val = isl_val_neg(val);
4048 	mv = isl_multi_val_add_val(mv, val);
4049 	mv = isl_multi_val_mod_val(mv, isl_val_copy(stride));
4050 
4051 	executed = construct_shifted_executed(domain, order, n, stride, mv,
4052 						build);
4053 	space = isl_ast_build_get_space(build, 1);
4054 	space = isl_space_map_from_set(space);
4055 	ma = isl_multi_aff_identity(isl_space_copy(space));
4056 	space = isl_space_from_domain(isl_space_domain(space));
4057 	space = isl_space_add_dims(space, isl_dim_out, 1);
4058 	zero = isl_multi_aff_zero(space);
4059 	ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
4060 	build = isl_ast_build_insert_dim(build, depth + 1);
4061 	list = generate_shifted_component(executed, build);
4062 
4063 	list = isl_ast_graft_list_preimage_multi_aff(list, ma);
4064 
4065 	isl_multi_val_free(mv);
4066 
4067 	return list;
4068 error:
4069 	isl_ast_build_free(build);
4070 	return NULL;
4071 }
4072 
4073 /* Does any node in the schedule tree rooted at the current schedule node
4074  * of "build" depend on outer schedule nodes?
4075  */
has_anchored_subtree(__isl_keep isl_ast_build * build)4076 static int has_anchored_subtree(__isl_keep isl_ast_build *build)
4077 {
4078 	isl_schedule_node *node;
4079 	int dependent = 0;
4080 
4081 	node = isl_ast_build_get_schedule_node(build);
4082 	dependent = isl_schedule_node_is_subtree_anchored(node);
4083 	isl_schedule_node_free(node);
4084 
4085 	return dependent;
4086 }
4087 
4088 /* Generate code for a single component.
4089  *
4090  * The component inverse schedule is specified as the "map" fields
4091  * of the elements of "domain" indexed by the first "n" elements of "order".
4092  *
4093  * This function may modify the "set" fields of "domain".
4094  *
4095  * Before proceeding with the actual code generation for the component,
4096  * we first check if there are any "shifted" strides, meaning that
4097  * the schedule domains of the individual domains are all strided,
4098  * but that they have different offsets, resulting in the union
4099  * of schedule domains not being strided anymore.
4100  *
4101  * The simplest example is the schedule
4102  *
4103  *	{ A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
4104  *
4105  * Both schedule domains are strided, but their union is not.
4106  * This function detects such cases and then rewrites the schedule to
4107  *
4108  *	{ A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
4109  *
4110  * In the new schedule, the schedule domains have the same offset (modulo
4111  * the stride), ensuring that the union of schedule domains is also strided.
4112  *
4113  *
4114  * If there is only a single domain in the component, then there is
4115  * nothing to do.   Similarly, if the current schedule dimension has
4116  * a fixed value for almost all domains then there is nothing to be done.
4117  * In particular, we need at least two domains where the current schedule
4118  * dimension does not have a fixed value.
4119  * Finally, in case of a schedule map input,
4120  * if any of the options refer to the current schedule dimension,
4121  * then we bail out as well.  It would be possible to reformulate the options
4122  * in terms of the new schedule domain, but that would introduce constraints
4123  * that separate the domains in the options and that is something we would
4124  * like to avoid.
4125  * In the case of a schedule tree input, we bail out if any of
4126  * the descendants of the current schedule node refer to outer
4127  * schedule nodes in any way.
4128  *
4129  *
4130  * To see if there is any shifted stride, we look at the differences
4131  * between the values of the current dimension in pairs of domains
4132  * for equal values of outer dimensions.  These differences should be
4133  * of the form
4134  *
4135  *	m x + r
4136  *
4137  * with "m" the stride and "r" a constant.  Note that we cannot perform
4138  * this analysis on individual domains as the lower bound in each domain
4139  * may depend on parameters or outer dimensions and so the current dimension
4140  * itself may not have a fixed remainder on division by the stride.
4141  *
4142  * In particular, we compare the first domain that does not have an
4143  * obviously fixed value for the current dimension to itself and all
4144  * other domains and collect the offsets and the gcd of the strides.
4145  * If the gcd becomes one, then we failed to find shifted strides.
4146  * If the gcd is zero, then the differences were all fixed, meaning
4147  * that some domains had non-obviously fixed values for the current dimension.
4148  * If all the offsets are the same (for those domains that do not have
4149  * an obviously fixed value for the current dimension), then we do not
4150  * apply the transformation.
4151  * If none of the domains were skipped, then there is nothing to do.
4152  * If some of them were skipped, then if we apply separation, the schedule
4153  * domain should get split in pieces with a (non-shifted) stride.
4154  *
4155  * Otherwise, we apply a shift to expose the stride in
4156  * generate_shift_component.
4157  */
generate_component(struct isl_set_map_pair * domain,int * order,int n,__isl_take isl_ast_build * build)4158 static __isl_give isl_ast_graft_list *generate_component(
4159 	struct isl_set_map_pair *domain, int *order, int n,
4160 	__isl_take isl_ast_build *build)
4161 {
4162 	int i, d;
4163 	int depth;
4164 	isl_ctx *ctx;
4165 	isl_map *map;
4166 	isl_set *deltas;
4167 	isl_val *gcd = NULL;
4168 	isl_multi_val *mv;
4169 	int fixed, skip;
4170 	int base;
4171 	isl_ast_graft_list *list;
4172 	int res = 0;
4173 
4174 	depth = isl_ast_build_get_depth(build);
4175 
4176 	skip = n == 1;
4177 	if (skip >= 0 && !skip)
4178 		skip = at_most_one_non_fixed(domain, order, n, depth);
4179 	if (skip >= 0 && !skip) {
4180 		if (isl_ast_build_has_schedule_node(build))
4181 			skip = has_anchored_subtree(build);
4182 		else
4183 			skip = isl_ast_build_options_involve_depth(build);
4184 	}
4185 	if (skip < 0)
4186 		goto error;
4187 	if (skip)
4188 		return generate_shifted_component_from_list(domain,
4189 							    order, n, build);
4190 
4191 	base = eliminate_non_fixed(domain, order, n, depth, build);
4192 	if (base < 0)
4193 		goto error;
4194 
4195 	ctx = isl_ast_build_get_ctx(build);
4196 
4197 	mv = isl_multi_val_zero(isl_space_set_alloc(ctx, 0, n));
4198 
4199 	fixed = 1;
4200 	for (i = 0; i < n; ++i) {
4201 		isl_val *r, *m;
4202 
4203 		map = isl_map_from_domain_and_range(
4204 					isl_set_copy(domain[order[base]].set),
4205 					isl_set_copy(domain[order[i]].set));
4206 		for (d = 0; d < depth; ++d)
4207 			map = isl_map_equate(map, isl_dim_in, d,
4208 						    isl_dim_out, d);
4209 		deltas = isl_map_deltas(map);
4210 		res = isl_set_dim_residue_class_val(deltas, depth, &m, &r);
4211 		isl_set_free(deltas);
4212 		if (res < 0)
4213 			break;
4214 
4215 		if (i == 0)
4216 			gcd = m;
4217 		else
4218 			gcd = isl_val_gcd(gcd, m);
4219 		if (isl_val_is_one(gcd)) {
4220 			isl_val_free(r);
4221 			break;
4222 		}
4223 		mv = isl_multi_val_set_val(mv, i, r);
4224 
4225 		res = dim_is_fixed(domain[order[i]].set, depth);
4226 		if (res < 0)
4227 			break;
4228 		if (res)
4229 			continue;
4230 
4231 		if (fixed && i > base) {
4232 			isl_val *a, *b;
4233 			a = isl_multi_val_get_val(mv, i);
4234 			b = isl_multi_val_get_val(mv, base);
4235 			if (isl_val_ne(a, b))
4236 				fixed = 0;
4237 			isl_val_free(a);
4238 			isl_val_free(b);
4239 		}
4240 	}
4241 
4242 	if (res < 0 || !gcd) {
4243 		isl_ast_build_free(build);
4244 		list = NULL;
4245 	} else if (i < n || fixed || isl_val_is_zero(gcd)) {
4246 		list = generate_shifted_component_from_list(domain,
4247 							    order, n, build);
4248 	} else {
4249 		list = generate_shift_component(domain, order, n, gcd, mv,
4250 						build);
4251 	}
4252 
4253 	isl_val_free(gcd);
4254 	isl_multi_val_free(mv);
4255 
4256 	return list;
4257 error:
4258 	isl_ast_build_free(build);
4259 	return NULL;
4260 }
4261 
4262 /* Store both "map" itself and its domain in the
4263  * structure pointed to by *next and advance to the next array element.
4264  */
extract_domain(__isl_take isl_map * map,void * user)4265 static isl_stat extract_domain(__isl_take isl_map *map, void *user)
4266 {
4267 	struct isl_set_map_pair **next = user;
4268 
4269 	(*next)->map = isl_map_copy(map);
4270 	(*next)->set = isl_map_domain(map);
4271 	(*next)++;
4272 
4273 	return isl_stat_ok;
4274 }
4275 
4276 static isl_bool after_in_tree(__isl_keep isl_union_map *umap,
4277 	__isl_keep isl_schedule_node *node);
4278 
4279 /* Is any domain element of "umap" scheduled after any of
4280  * the corresponding image elements by the tree rooted at
4281  * the child of "node"?
4282  */
after_in_child(__isl_keep isl_union_map * umap,__isl_keep isl_schedule_node * node)4283 static isl_bool after_in_child(__isl_keep isl_union_map *umap,
4284 	__isl_keep isl_schedule_node *node)
4285 {
4286 	isl_schedule_node *child;
4287 	isl_bool after;
4288 
4289 	child = isl_schedule_node_get_child(node, 0);
4290 	after = after_in_tree(umap, child);
4291 	isl_schedule_node_free(child);
4292 
4293 	return after;
4294 }
4295 
4296 /* Is any domain element of "umap" scheduled after any of
4297  * the corresponding image elements by the tree rooted at
4298  * the band node "node"?
4299  *
4300  * We first check if any domain element is scheduled after any
4301  * of the corresponding image elements by the band node itself.
4302  * If not, we restrict "map" to those pairs of element that
4303  * are scheduled together by the band node and continue with
4304  * the child of the band node.
4305  * If there are no such pairs then the map passed to after_in_child
4306  * will be empty causing it to return 0.
4307  */
after_in_band(__isl_keep isl_union_map * umap,__isl_keep isl_schedule_node * node)4308 static isl_bool after_in_band(__isl_keep isl_union_map *umap,
4309 	__isl_keep isl_schedule_node *node)
4310 {
4311 	isl_multi_union_pw_aff *mupa;
4312 	isl_union_map *partial, *test, *gt, *universe, *umap1, *umap2;
4313 	isl_union_set *domain, *range;
4314 	isl_space *space;
4315 	isl_bool empty;
4316 	isl_bool after;
4317 	isl_size n;
4318 
4319 	n = isl_schedule_node_band_n_member(node);
4320 	if (n < 0)
4321 		return isl_bool_error;
4322 	if (n == 0)
4323 		return after_in_child(umap, node);
4324 
4325 	mupa = isl_schedule_node_band_get_partial_schedule(node);
4326 	space = isl_multi_union_pw_aff_get_space(mupa);
4327 	partial = isl_union_map_from_multi_union_pw_aff(mupa);
4328 	test = isl_union_map_copy(umap);
4329 	test = isl_union_map_apply_domain(test, isl_union_map_copy(partial));
4330 	test = isl_union_map_apply_range(test, isl_union_map_copy(partial));
4331 	gt = isl_union_map_from_map(isl_map_lex_gt(space));
4332 	test = isl_union_map_intersect(test, gt);
4333 	empty = isl_union_map_is_empty(test);
4334 	isl_union_map_free(test);
4335 
4336 	if (empty < 0 || !empty) {
4337 		isl_union_map_free(partial);
4338 		return isl_bool_not(empty);
4339 	}
4340 
4341 	universe = isl_union_map_universe(isl_union_map_copy(umap));
4342 	domain = isl_union_map_domain(isl_union_map_copy(universe));
4343 	range = isl_union_map_range(universe);
4344 	umap1 = isl_union_map_copy(partial);
4345 	umap1 = isl_union_map_intersect_domain(umap1, domain);
4346 	umap2 = isl_union_map_intersect_domain(partial, range);
4347 	test = isl_union_map_apply_range(umap1, isl_union_map_reverse(umap2));
4348 	test = isl_union_map_intersect(test, isl_union_map_copy(umap));
4349 	after = after_in_child(test, node);
4350 	isl_union_map_free(test);
4351 	return after;
4352 }
4353 
4354 /* Is any domain element of "umap" scheduled after any of
4355  * the corresponding image elements by the tree rooted at
4356  * the context node "node"?
4357  *
4358  * The context constraints apply to the schedule domain,
4359  * so we cannot apply them directly to "umap", which contains
4360  * pairs of statement instances.  Instead, we add them
4361  * to the range of the prefix schedule for both domain and
4362  * range of "umap".
4363  */
after_in_context(__isl_keep isl_union_map * umap,__isl_keep isl_schedule_node * node)4364 static isl_bool after_in_context(__isl_keep isl_union_map *umap,
4365 	__isl_keep isl_schedule_node *node)
4366 {
4367 	isl_union_map *prefix, *universe, *umap1, *umap2;
4368 	isl_union_set *domain, *range;
4369 	isl_set *context;
4370 	isl_bool after;
4371 
4372 	umap = isl_union_map_copy(umap);
4373 	context = isl_schedule_node_context_get_context(node);
4374 	prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4375 	universe = isl_union_map_universe(isl_union_map_copy(umap));
4376 	domain = isl_union_map_domain(isl_union_map_copy(universe));
4377 	range = isl_union_map_range(universe);
4378 	umap1 = isl_union_map_copy(prefix);
4379 	umap1 = isl_union_map_intersect_domain(umap1, domain);
4380 	umap2 = isl_union_map_intersect_domain(prefix, range);
4381 	umap1 = isl_union_map_intersect_range(umap1,
4382 					    isl_union_set_from_set(context));
4383 	umap1 = isl_union_map_apply_range(umap1, isl_union_map_reverse(umap2));
4384 	umap = isl_union_map_intersect(umap, umap1);
4385 
4386 	after = after_in_child(umap, node);
4387 
4388 	isl_union_map_free(umap);
4389 
4390 	return after;
4391 }
4392 
4393 /* Is any domain element of "umap" scheduled after any of
4394  * the corresponding image elements by the tree rooted at
4395  * the expansion node "node"?
4396  *
4397  * We apply the expansion to domain and range of "umap" and
4398  * continue with its child.
4399  */
after_in_expansion(__isl_keep isl_union_map * umap,__isl_keep isl_schedule_node * node)4400 static isl_bool after_in_expansion(__isl_keep isl_union_map *umap,
4401 	__isl_keep isl_schedule_node *node)
4402 {
4403 	isl_union_map *expansion;
4404 	isl_bool after;
4405 
4406 	expansion = isl_schedule_node_expansion_get_expansion(node);
4407 	umap = isl_union_map_copy(umap);
4408 	umap = isl_union_map_apply_domain(umap, isl_union_map_copy(expansion));
4409 	umap = isl_union_map_apply_range(umap, expansion);
4410 
4411 	after = after_in_child(umap, node);
4412 
4413 	isl_union_map_free(umap);
4414 
4415 	return after;
4416 }
4417 
4418 /* Is any domain element of "umap" scheduled after any of
4419  * the corresponding image elements by the tree rooted at
4420  * the extension node "node"?
4421  *
4422  * Since the extension node may add statement instances before or
4423  * after the pairs of statement instances in "umap", we return isl_bool_true
4424  * to ensure that these pairs are not broken up.
4425  */
after_in_extension(__isl_keep isl_union_map * umap,__isl_keep isl_schedule_node * node)4426 static isl_bool after_in_extension(__isl_keep isl_union_map *umap,
4427 	__isl_keep isl_schedule_node *node)
4428 {
4429 	return isl_bool_true;
4430 }
4431 
4432 /* Is any domain element of "umap" scheduled after any of
4433  * the corresponding image elements by the tree rooted at
4434  * the filter node "node"?
4435  *
4436  * We intersect domain and range of "umap" with the filter and
4437  * continue with its child.
4438  */
after_in_filter(__isl_keep isl_union_map * umap,__isl_keep isl_schedule_node * node)4439 static isl_bool after_in_filter(__isl_keep isl_union_map *umap,
4440 	__isl_keep isl_schedule_node *node)
4441 {
4442 	isl_union_set *filter;
4443 	isl_bool after;
4444 
4445 	umap = isl_union_map_copy(umap);
4446 	filter = isl_schedule_node_filter_get_filter(node);
4447 	umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(filter));
4448 	umap = isl_union_map_intersect_range(umap, filter);
4449 
4450 	after = after_in_child(umap, node);
4451 
4452 	isl_union_map_free(umap);
4453 
4454 	return after;
4455 }
4456 
4457 /* Is any domain element of "umap" scheduled after any of
4458  * the corresponding image elements by the tree rooted at
4459  * the set node "node"?
4460  *
4461  * This is only the case if this condition holds in any
4462  * of the (filter) children of the set node.
4463  * In particular, if the domain and the range of "umap"
4464  * are contained in different children, then the condition
4465  * does not hold.
4466  */
after_in_set(__isl_keep isl_union_map * umap,__isl_keep isl_schedule_node * node)4467 static isl_bool after_in_set(__isl_keep isl_union_map *umap,
4468 	__isl_keep isl_schedule_node *node)
4469 {
4470 	int i;
4471 	isl_size n;
4472 
4473 	n = isl_schedule_node_n_children(node);
4474 	if (n < 0)
4475 		return isl_bool_error;
4476 	for (i = 0; i < n; ++i) {
4477 		isl_schedule_node *child;
4478 		isl_bool after;
4479 
4480 		child = isl_schedule_node_get_child(node, i);
4481 		after = after_in_tree(umap, child);
4482 		isl_schedule_node_free(child);
4483 
4484 		if (after < 0 || after)
4485 			return after;
4486 	}
4487 
4488 	return isl_bool_false;
4489 }
4490 
4491 /* Return the filter of child "i" of "node".
4492  */
child_filter(__isl_keep isl_schedule_node * node,int i)4493 static __isl_give isl_union_set *child_filter(
4494 	__isl_keep isl_schedule_node *node, int i)
4495 {
4496 	isl_schedule_node *child;
4497 	isl_union_set *filter;
4498 
4499 	child = isl_schedule_node_get_child(node, i);
4500 	filter = isl_schedule_node_filter_get_filter(child);
4501 	isl_schedule_node_free(child);
4502 
4503 	return filter;
4504 }
4505 
4506 /* Is any domain element of "umap" scheduled after any of
4507  * the corresponding image elements by the tree rooted at
4508  * the sequence node "node"?
4509  *
4510  * This happens in particular if any domain element is
4511  * contained in a later child than one containing a range element or
4512  * if the condition holds within a given child in the sequence.
4513  * The later part of the condition is checked by after_in_set.
4514  */
after_in_sequence(__isl_keep isl_union_map * umap,__isl_keep isl_schedule_node * node)4515 static isl_bool after_in_sequence(__isl_keep isl_union_map *umap,
4516 	__isl_keep isl_schedule_node *node)
4517 {
4518 	int i, j;
4519 	isl_size n;
4520 	isl_union_map *umap_i;
4521 	isl_bool empty;
4522 	isl_bool after = isl_bool_false;
4523 
4524 	n = isl_schedule_node_n_children(node);
4525 	if (n < 0)
4526 		return isl_bool_error;
4527 	for (i = 1; i < n; ++i) {
4528 		isl_union_set *filter_i;
4529 
4530 		umap_i = isl_union_map_copy(umap);
4531 		filter_i = child_filter(node, i);
4532 		umap_i = isl_union_map_intersect_domain(umap_i, filter_i);
4533 		empty = isl_union_map_is_empty(umap_i);
4534 		if (empty < 0)
4535 			goto error;
4536 		if (empty) {
4537 			isl_union_map_free(umap_i);
4538 			continue;
4539 		}
4540 
4541 		for (j = 0; j < i; ++j) {
4542 			isl_union_set *filter_j;
4543 			isl_union_map *umap_ij;
4544 
4545 			umap_ij = isl_union_map_copy(umap_i);
4546 			filter_j = child_filter(node, j);
4547 			umap_ij = isl_union_map_intersect_range(umap_ij,
4548 								filter_j);
4549 			empty = isl_union_map_is_empty(umap_ij);
4550 			isl_union_map_free(umap_ij);
4551 
4552 			if (empty < 0)
4553 				goto error;
4554 			if (!empty)
4555 				after = isl_bool_true;
4556 			if (after)
4557 				break;
4558 		}
4559 
4560 		isl_union_map_free(umap_i);
4561 		if (after)
4562 			break;
4563 	}
4564 
4565 	if (after < 0 || after)
4566 		return after;
4567 
4568 	return after_in_set(umap, node);
4569 error:
4570 	isl_union_map_free(umap_i);
4571 	return isl_bool_error;
4572 }
4573 
4574 /* Is any domain element of "umap" scheduled after any of
4575  * the corresponding image elements by the tree rooted at "node"?
4576  *
4577  * If "umap" is empty, then clearly there is no such element.
4578  * Otherwise, consider the different types of nodes separately.
4579  */
after_in_tree(__isl_keep isl_union_map * umap,__isl_keep isl_schedule_node * node)4580 static isl_bool after_in_tree(__isl_keep isl_union_map *umap,
4581 	__isl_keep isl_schedule_node *node)
4582 {
4583 	isl_bool empty;
4584 	enum isl_schedule_node_type type;
4585 
4586 	empty = isl_union_map_is_empty(umap);
4587 	if (empty < 0)
4588 		return isl_bool_error;
4589 	if (empty)
4590 		return isl_bool_false;
4591 	if (!node)
4592 		return isl_bool_error;
4593 
4594 	type = isl_schedule_node_get_type(node);
4595 	switch (type) {
4596 	case isl_schedule_node_error:
4597 		return isl_bool_error;
4598 	case isl_schedule_node_leaf:
4599 		return isl_bool_false;
4600 	case isl_schedule_node_band:
4601 		return after_in_band(umap, node);
4602 	case isl_schedule_node_domain:
4603 		isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
4604 			"unexpected internal domain node",
4605 			return isl_bool_error);
4606 	case isl_schedule_node_context:
4607 		return after_in_context(umap, node);
4608 	case isl_schedule_node_expansion:
4609 		return after_in_expansion(umap, node);
4610 	case isl_schedule_node_extension:
4611 		return after_in_extension(umap, node);
4612 	case isl_schedule_node_filter:
4613 		return after_in_filter(umap, node);
4614 	case isl_schedule_node_guard:
4615 	case isl_schedule_node_mark:
4616 		return after_in_child(umap, node);
4617 	case isl_schedule_node_set:
4618 		return after_in_set(umap, node);
4619 	case isl_schedule_node_sequence:
4620 		return after_in_sequence(umap, node);
4621 	}
4622 
4623 	return isl_bool_true;
4624 }
4625 
4626 /* Is any domain element of "map1" scheduled after any domain
4627  * element of "map2" by the subtree underneath the current band node,
4628  * while at the same time being scheduled together by the current
4629  * band node, i.e., by "map1" and "map2?
4630  *
4631  * If the child of the current band node is a leaf, then
4632  * no element can be scheduled after any other element.
4633  *
4634  * Otherwise, we construct a relation between domain elements
4635  * of "map1" and domain elements of "map2" that are scheduled
4636  * together and then check if the subtree underneath the current
4637  * band node determines their relative order.
4638  */
after_in_subtree(__isl_keep isl_ast_build * build,__isl_keep isl_map * map1,__isl_keep isl_map * map2)4639 static isl_bool after_in_subtree(__isl_keep isl_ast_build *build,
4640 	__isl_keep isl_map *map1, __isl_keep isl_map *map2)
4641 {
4642 	isl_schedule_node *node;
4643 	isl_map *map;
4644 	isl_union_map *umap;
4645 	isl_bool after;
4646 
4647 	node = isl_ast_build_get_schedule_node(build);
4648 	if (!node)
4649 		return isl_bool_error;
4650 	node = isl_schedule_node_child(node, 0);
4651 	if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf) {
4652 		isl_schedule_node_free(node);
4653 		return isl_bool_false;
4654 	}
4655 	map = isl_map_copy(map2);
4656 	map = isl_map_apply_domain(map, isl_map_copy(map1));
4657 	umap = isl_union_map_from_map(map);
4658 	after = after_in_tree(umap, node);
4659 	isl_union_map_free(umap);
4660 	isl_schedule_node_free(node);
4661 	return after;
4662 }
4663 
4664 /* Internal data for any_scheduled_after.
4665  *
4666  * "build" is the build in which the AST is constructed.
4667  * "depth" is the number of loops that have already been generated
4668  * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
4669  * "domain" is an array of set-map pairs corresponding to the different
4670  * iteration domains.  The set is the schedule domain, i.e., the domain
4671  * of the inverse schedule, while the map is the inverse schedule itself.
4672  */
4673 struct isl_any_scheduled_after_data {
4674 	isl_ast_build *build;
4675 	int depth;
4676 	int group_coscheduled;
4677 	struct isl_set_map_pair *domain;
4678 };
4679 
4680 /* Is any element of domain "i" scheduled after any element of domain "j"
4681  * (for a common iteration of the first data->depth loops)?
4682  *
4683  * data->domain[i].set contains the domain of the inverse schedule
4684  * for domain "i", i.e., elements in the schedule domain.
4685  *
4686  * If we are inside a band of a schedule tree and there is a pair
4687  * of elements in the two domains that is schedule together by
4688  * the current band, then we check if any element of "i" may be schedule
4689  * after element of "j" by the descendants of the band node.
4690  *
4691  * If data->group_coscheduled is set, then we also return 1 if there
4692  * is any pair of elements in the two domains that are scheduled together.
4693  */
any_scheduled_after(int i,int j,void * user)4694 static isl_bool any_scheduled_after(int i, int j, void *user)
4695 {
4696 	struct isl_any_scheduled_after_data *data = user;
4697 	isl_size dim = isl_set_dim(data->domain[i].set, isl_dim_set);
4698 	int pos;
4699 
4700 	if (dim < 0)
4701 		return isl_bool_error;
4702 
4703 	for (pos = data->depth; pos < dim; ++pos) {
4704 		int follows;
4705 
4706 		follows = isl_set_follows_at(data->domain[i].set,
4707 						data->domain[j].set, pos);
4708 
4709 		if (follows < -1)
4710 			return isl_bool_error;
4711 		if (follows > 0)
4712 			return isl_bool_true;
4713 		if (follows < 0)
4714 			return isl_bool_false;
4715 	}
4716 
4717 	if (isl_ast_build_has_schedule_node(data->build)) {
4718 		isl_bool after;
4719 
4720 		after = after_in_subtree(data->build, data->domain[i].map,
4721 					    data->domain[j].map);
4722 		if (after < 0 || after)
4723 			return after;
4724 	}
4725 
4726 	return isl_bool_ok(data->group_coscheduled);
4727 }
4728 
4729 /* Look for independent components at the current depth and generate code
4730  * for each component separately.  The resulting lists of grafts are
4731  * merged in an attempt to combine grafts with identical guards.
4732  *
4733  * Code for two domains can be generated separately if all the elements
4734  * of one domain are scheduled before (or together with) all the elements
4735  * of the other domain.  We therefore consider the graph with as nodes
4736  * the domains and an edge between two nodes if any element of the first
4737  * node is scheduled after any element of the second node.
4738  * If the ast_build_group_coscheduled is set, then we also add an edge if
4739  * there is any pair of elements in the two domains that are scheduled
4740  * together.
4741  * Code is then generated (by generate_component)
4742  * for each of the strongly connected components in this graph
4743  * in their topological order.
4744  *
4745  * Since the test is performed on the domain of the inverse schedules of
4746  * the different domains, we precompute these domains and store
4747  * them in data.domain.
4748  */
generate_components(__isl_take isl_union_map * executed,__isl_take isl_ast_build * build)4749 static __isl_give isl_ast_graft_list *generate_components(
4750 	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
4751 {
4752 	int i;
4753 	isl_ctx *ctx = isl_ast_build_get_ctx(build);
4754 	isl_size n = isl_union_map_n_map(executed);
4755 	struct isl_any_scheduled_after_data data;
4756 	struct isl_set_map_pair *next;
4757 	struct isl_tarjan_graph *g = NULL;
4758 	isl_ast_graft_list *list = NULL;
4759 	int n_domain = 0;
4760 
4761 	data.domain = NULL;
4762 	if (n < 0)
4763 		goto error;
4764 	data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
4765 	if (!data.domain)
4766 		goto error;
4767 	n_domain = n;
4768 
4769 	next = data.domain;
4770 	if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
4771 		goto error;
4772 
4773 	if (!build)
4774 		goto error;
4775 	data.build = build;
4776 	data.depth = isl_ast_build_get_depth(build);
4777 	data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
4778 	g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
4779 	if (!g)
4780 		goto error;
4781 
4782 	list = isl_ast_graft_list_alloc(ctx, 0);
4783 
4784 	i = 0;
4785 	while (list && n) {
4786 		isl_ast_graft_list *list_c;
4787 		int first = i;
4788 
4789 		if (g->order[i] == -1)
4790 			isl_die(ctx, isl_error_internal, "cannot happen",
4791 				goto error);
4792 		++i; --n;
4793 		while (g->order[i] != -1) {
4794 			++i; --n;
4795 		}
4796 
4797 		list_c = generate_component(data.domain,
4798 					    g->order + first, i - first,
4799 					    isl_ast_build_copy(build));
4800 		list = isl_ast_graft_list_merge(list, list_c, build);
4801 
4802 		++i;
4803 	}
4804 
4805 	if (0)
4806 error:		list = isl_ast_graft_list_free(list);
4807 	isl_tarjan_graph_free(g);
4808 	for (i = 0; i < n_domain; ++i) {
4809 		isl_map_free(data.domain[i].map);
4810 		isl_set_free(data.domain[i].set);
4811 	}
4812 	free(data.domain);
4813 	isl_union_map_free(executed);
4814 	isl_ast_build_free(build);
4815 
4816 	return list;
4817 }
4818 
4819 /* Generate code for the next level (and all inner levels).
4820  *
4821  * If "executed" is empty, i.e., no code needs to be generated,
4822  * then we return an empty list.
4823  *
4824  * If we have already generated code for all loop levels, then we pass
4825  * control to generate_inner_level.
4826  *
4827  * If "executed" lives in a single space, i.e., if code needs to be
4828  * generated for a single domain, then there can only be a single
4829  * component and we go directly to generate_shifted_component.
4830  * Otherwise, we call generate_components to detect the components
4831  * and to call generate_component on each of them separately.
4832  */
generate_next_level(__isl_take isl_union_map * executed,__isl_take isl_ast_build * build)4833 static __isl_give isl_ast_graft_list *generate_next_level(
4834 	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
4835 {
4836 	int depth;
4837 	isl_size dim;
4838 	isl_size n;
4839 
4840 	if (!build || !executed)
4841 		goto error;
4842 
4843 	if (isl_union_map_is_empty(executed)) {
4844 		isl_ctx *ctx = isl_ast_build_get_ctx(build);
4845 		isl_union_map_free(executed);
4846 		isl_ast_build_free(build);
4847 		return isl_ast_graft_list_alloc(ctx, 0);
4848 	}
4849 
4850 	depth = isl_ast_build_get_depth(build);
4851 	dim = isl_ast_build_dim(build, isl_dim_set);
4852 	if (dim < 0)
4853 		goto error;
4854 	if (depth >= dim)
4855 		return generate_inner_level(executed, build);
4856 
4857 	n = isl_union_map_n_map(executed);
4858 	if (n < 0)
4859 		goto error;
4860 	if (n == 1)
4861 		return generate_shifted_component(executed, build);
4862 
4863 	return generate_components(executed, build);
4864 error:
4865 	isl_union_map_free(executed);
4866 	isl_ast_build_free(build);
4867 	return NULL;
4868 }
4869 
4870 /* Internal data structure used by isl_ast_build_node_from_schedule_map.
4871  * internal, executed and build are the inputs to generate_code.
4872  * list collects the output.
4873  */
4874 struct isl_generate_code_data {
4875 	int internal;
4876 	isl_union_map *executed;
4877 	isl_ast_build *build;
4878 
4879 	isl_ast_graft_list *list;
4880 };
4881 
4882 /* Given an inverse schedule in terms of the external build schedule, i.e.,
4883  *
4884  *	[E -> S] -> D
4885  *
4886  * with E the external build schedule and S the additional schedule "space",
4887  * reformulate the inverse schedule in terms of the internal schedule domain,
4888  * i.e., return
4889  *
4890  *	[I -> S] -> D
4891  *
4892  * We first obtain a mapping
4893  *
4894  *	I -> E
4895  *
4896  * take the inverse and the product with S -> S, resulting in
4897  *
4898  *	[I -> S] -> [E -> S]
4899  *
4900  * Applying the map to the input produces the desired result.
4901  */
internal_executed(__isl_take isl_union_map * executed,__isl_keep isl_space * space,__isl_keep isl_ast_build * build)4902 static __isl_give isl_union_map *internal_executed(
4903 	__isl_take isl_union_map *executed, __isl_keep isl_space *space,
4904 	__isl_keep isl_ast_build *build)
4905 {
4906 	isl_map *id, *proj;
4907 
4908 	proj = isl_ast_build_get_schedule_map(build);
4909 	proj = isl_map_reverse(proj);
4910 	space = isl_space_map_from_set(isl_space_copy(space));
4911 	id = isl_map_identity(space);
4912 	proj = isl_map_product(proj, id);
4913 	executed = isl_union_map_apply_domain(executed,
4914 						isl_union_map_from_map(proj));
4915 	return executed;
4916 }
4917 
4918 /* Generate an AST that visits the elements in the range of data->executed
4919  * in the relative order specified by the corresponding domain element(s)
4920  * for those domain elements that belong to "set".
4921  * Add the result to data->list.
4922  *
4923  * The caller ensures that "set" is a universe domain.
4924  * "space" is the space of the additional part of the schedule.
4925  * It is equal to the space of "set" if build->domain is parametric.
4926  * Otherwise, it is equal to the range of the wrapped space of "set".
4927  *
4928  * If the build space is not parametric and
4929  * if isl_ast_build_node_from_schedule_map
4930  * was called from an outside user (data->internal not set), then
4931  * the (inverse) schedule refers to the external build domain and needs to
4932  * be transformed to refer to the internal build domain.
4933  *
4934  * If the build space is parametric, then we add some of the parameter
4935  * constraints to the executed relation.  Adding these constraints
4936  * allows for an earlier detection of conflicts in some cases.
4937  * However, we do not want to divide the executed relation into
4938  * more disjuncts than necessary.  We therefore approximate
4939  * the constraints on the parameters by a single disjunct set.
4940  *
4941  * The build is extended to include the additional part of the schedule.
4942  * If the original build space was not parametric, then the options
4943  * in data->build refer only to the additional part of the schedule
4944  * and they need to be adjusted to refer to the complete AST build
4945  * domain.
4946  *
4947  * After having adjusted inverse schedule and build, we start generating
4948  * code with the outer loop of the current code generation
4949  * in generate_next_level.
4950  *
4951  * If the original build space was not parametric, we undo the embedding
4952  * on the resulting isl_ast_node_list so that it can be used within
4953  * the outer AST build.
4954  */
generate_code_in_space(struct isl_generate_code_data * data,__isl_take isl_set * set,__isl_take isl_space * space)4955 static isl_stat generate_code_in_space(struct isl_generate_code_data *data,
4956 	__isl_take isl_set *set, __isl_take isl_space *space)
4957 {
4958 	isl_union_map *executed;
4959 	isl_ast_build *build;
4960 	isl_ast_graft_list *list;
4961 	int embed;
4962 
4963 	executed = isl_union_map_copy(data->executed);
4964 	executed = isl_union_map_intersect_domain(executed,
4965 						 isl_union_set_from_set(set));
4966 
4967 	embed = !isl_set_is_params(data->build->domain);
4968 	if (embed && !data->internal)
4969 		executed = internal_executed(executed, space, data->build);
4970 	if (!embed) {
4971 		isl_set *domain;
4972 		domain = isl_ast_build_get_domain(data->build);
4973 		domain = isl_set_from_basic_set(isl_set_simple_hull(domain));
4974 		executed = isl_union_map_intersect_params(executed, domain);
4975 	}
4976 
4977 	build = isl_ast_build_copy(data->build);
4978 	build = isl_ast_build_product(build, space);
4979 
4980 	list = generate_next_level(executed, build);
4981 
4982 	list = isl_ast_graft_list_unembed(list, embed);
4983 
4984 	data->list = isl_ast_graft_list_concat(data->list, list);
4985 
4986 	return isl_stat_ok;
4987 }
4988 
4989 /* Generate an AST that visits the elements in the range of data->executed
4990  * in the relative order specified by the corresponding domain element(s)
4991  * for those domain elements that belong to "set".
4992  * Add the result to data->list.
4993  *
4994  * The caller ensures that "set" is a universe domain.
4995  *
4996  * If the build space S is not parametric, then the space of "set"
4997  * need to be a wrapped relation with S as domain.  That is, it needs
4998  * to be of the form
4999  *
5000  *	[S -> T]
5001  *
5002  * Check this property and pass control to generate_code_in_space
5003  * passing along T.
5004  * If the build space is not parametric, then T is the space of "set".
5005  */
generate_code_set(__isl_take isl_set * set,void * user)5006 static isl_stat generate_code_set(__isl_take isl_set *set, void *user)
5007 {
5008 	struct isl_generate_code_data *data = user;
5009 	isl_space *space, *build_space;
5010 	int is_domain;
5011 
5012 	space = isl_set_get_space(set);
5013 
5014 	if (isl_set_is_params(data->build->domain))
5015 		return generate_code_in_space(data, set, space);
5016 
5017 	build_space = isl_ast_build_get_space(data->build, data->internal);
5018 	space = isl_space_unwrap(space);
5019 	is_domain = isl_space_is_domain(build_space, space);
5020 	isl_space_free(build_space);
5021 	space = isl_space_range(space);
5022 
5023 	if (is_domain < 0)
5024 		goto error;
5025 	if (!is_domain)
5026 		isl_die(isl_set_get_ctx(set), isl_error_invalid,
5027 			"invalid nested schedule space", goto error);
5028 
5029 	return generate_code_in_space(data, set, space);
5030 error:
5031 	isl_set_free(set);
5032 	isl_space_free(space);
5033 	return isl_stat_error;
5034 }
5035 
5036 /* Generate an AST that visits the elements in the range of "executed"
5037  * in the relative order specified by the corresponding domain element(s).
5038  *
5039  * "build" is an isl_ast_build that has either been constructed by
5040  * isl_ast_build_from_context or passed to a callback set by
5041  * isl_ast_build_set_create_leaf.
5042  * In the first case, the space of the isl_ast_build is typically
5043  * a parametric space, although this is currently not enforced.
5044  * In the second case, the space is never a parametric space.
5045  * If the space S is not parametric, then the domain space(s) of "executed"
5046  * need to be wrapped relations with S as domain.
5047  *
5048  * If the domain of "executed" consists of several spaces, then an AST
5049  * is generated for each of them (in arbitrary order) and the results
5050  * are concatenated.
5051  *
5052  * If "internal" is set, then the domain "S" above refers to the internal
5053  * schedule domain representation.  Otherwise, it refers to the external
5054  * representation, as returned by isl_ast_build_get_schedule_space.
5055  *
5056  * We essentially run over all the spaces in the domain of "executed"
5057  * and call generate_code_set on each of them.
5058  */
generate_code(__isl_take isl_union_map * executed,__isl_take isl_ast_build * build,int internal)5059 static __isl_give isl_ast_graft_list *generate_code(
5060 	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
5061 	int internal)
5062 {
5063 	isl_ctx *ctx;
5064 	struct isl_generate_code_data data = { 0 };
5065 	isl_space *space;
5066 	isl_union_set *schedule_domain;
5067 	isl_union_map *universe;
5068 
5069 	if (!build)
5070 		goto error;
5071 	space = isl_ast_build_get_space(build, 1);
5072 	space = isl_space_align_params(space,
5073 				    isl_union_map_get_space(executed));
5074 	space = isl_space_align_params(space,
5075 				    isl_union_map_get_space(build->options));
5076 	build = isl_ast_build_align_params(build, isl_space_copy(space));
5077 	executed = isl_union_map_align_params(executed, space);
5078 	if (!executed || !build)
5079 		goto error;
5080 
5081 	ctx = isl_ast_build_get_ctx(build);
5082 
5083 	data.internal = internal;
5084 	data.executed = executed;
5085 	data.build = build;
5086 	data.list = isl_ast_graft_list_alloc(ctx, 0);
5087 
5088 	universe = isl_union_map_universe(isl_union_map_copy(executed));
5089 	schedule_domain = isl_union_map_domain(universe);
5090 	if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
5091 					&data) < 0)
5092 		data.list = isl_ast_graft_list_free(data.list);
5093 
5094 	isl_union_set_free(schedule_domain);
5095 	isl_union_map_free(executed);
5096 
5097 	isl_ast_build_free(build);
5098 	return data.list;
5099 error:
5100 	isl_union_map_free(executed);
5101 	isl_ast_build_free(build);
5102 	return NULL;
5103 }
5104 
5105 /* Generate an AST that visits the elements in the domain of "schedule"
5106  * in the relative order specified by the corresponding image element(s).
5107  *
5108  * "build" is an isl_ast_build that has either been constructed by
5109  * isl_ast_build_from_context or passed to a callback set by
5110  * isl_ast_build_set_create_leaf.
5111  * In the first case, the space of the isl_ast_build is typically
5112  * a parametric space, although this is currently not enforced.
5113  * In the second case, the space is never a parametric space.
5114  * If the space S is not parametric, then the range space(s) of "schedule"
5115  * need to be wrapped relations with S as domain.
5116  *
5117  * If the range of "schedule" consists of several spaces, then an AST
5118  * is generated for each of them (in arbitrary order) and the results
5119  * are concatenated.
5120  *
5121  * We first initialize the local copies of the relevant options.
5122  * We do this here rather than when the isl_ast_build is created
5123  * because the options may have changed between the construction
5124  * of the isl_ast_build and the call to isl_generate_code.
5125  *
5126  * The main computation is performed on an inverse schedule (with
5127  * the schedule domain in the domain and the elements to be executed
5128  * in the range) called "executed".
5129  */
isl_ast_build_node_from_schedule_map(__isl_keep isl_ast_build * build,__isl_take isl_union_map * schedule)5130 __isl_give isl_ast_node *isl_ast_build_node_from_schedule_map(
5131 	__isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
5132 {
5133 	isl_ast_graft_list *list;
5134 	isl_ast_node *node;
5135 	isl_union_map *executed;
5136 
5137 	build = isl_ast_build_copy(build);
5138 	build = isl_ast_build_set_single_valued(build, 0);
5139 	schedule = isl_union_map_coalesce(schedule);
5140 	schedule = isl_union_map_remove_redundancies(schedule);
5141 	executed = isl_union_map_reverse(schedule);
5142 	list = generate_code(executed, isl_ast_build_copy(build), 0);
5143 	node = isl_ast_node_from_graft_list(list, build);
5144 	isl_ast_build_free(build);
5145 
5146 	return node;
5147 }
5148 
5149 /* The old name for isl_ast_build_node_from_schedule_map.
5150  * It is being kept for backward compatibility, but
5151  * it will be removed in the future.
5152  */
isl_ast_build_ast_from_schedule(__isl_keep isl_ast_build * build,__isl_take isl_union_map * schedule)5153 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
5154 	__isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
5155 {
5156 	return isl_ast_build_node_from_schedule_map(build, schedule);
5157 }
5158 
5159 /* Generate an AST that visits the elements in the domain of "executed"
5160  * in the relative order specified by the leaf node "node".
5161  *
5162  * The relation "executed" maps the outer generated loop iterators
5163  * to the domain elements executed by those iterations.
5164  *
5165  * Simply pass control to generate_inner_level.
5166  * Note that the current build does not refer to any band node, so
5167  * that generate_inner_level will not try to visit the child of
5168  * the leaf node.
5169  *
5170  * If multiple statement instances reach a leaf,
5171  * then they can be executed in any order.
5172  * Group the list of grafts based on shared guards
5173  * such that identical guards are only generated once
5174  * when the list is eventually passed on to isl_ast_graft_list_fuse.
5175  */
build_ast_from_leaf(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node,__isl_take isl_union_map * executed)5176 static __isl_give isl_ast_graft_list *build_ast_from_leaf(
5177 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5178 	__isl_take isl_union_map *executed)
5179 {
5180 	isl_ast_graft_list *list;
5181 
5182 	isl_schedule_node_free(node);
5183 	list = generate_inner_level(executed, isl_ast_build_copy(build));
5184 	list = isl_ast_graft_list_group_on_guard(list, build);
5185 	isl_ast_build_free(build);
5186 
5187 	return list;
5188 }
5189 
5190 /* Generate an AST that visits the elements in the domain of "executed"
5191  * in the relative order specified by the band node "node" and its descendants.
5192  *
5193  * The relation "executed" maps the outer generated loop iterators
5194  * to the domain elements executed by those iterations.
5195  *
5196  * If the band is empty, we continue with its descendants.
5197  * Otherwise, we extend the build and the inverse schedule with
5198  * the additional space/partial schedule and continue generating
5199  * an AST in generate_next_level.
5200  * As soon as we have extended the inverse schedule with the additional
5201  * partial schedule, we look for equalities that may exists between
5202  * the old and the new part.
5203  */
build_ast_from_band(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node,__isl_take isl_union_map * executed)5204 static __isl_give isl_ast_graft_list *build_ast_from_band(
5205 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5206 	__isl_take isl_union_map *executed)
5207 {
5208 	isl_space *space;
5209 	isl_multi_union_pw_aff *extra;
5210 	isl_union_map *extra_umap;
5211 	isl_ast_graft_list *list;
5212 	isl_size n1, n2;
5213 	isl_size n;
5214 
5215 	n = isl_schedule_node_band_n_member(node);
5216 	if (!build || n < 0 || !executed)
5217 		goto error;
5218 
5219 	if (n == 0)
5220 		return build_ast_from_child(build, node, executed);
5221 
5222 	extra = isl_schedule_node_band_get_partial_schedule(node);
5223 	extra = isl_multi_union_pw_aff_align_params(extra,
5224 				isl_ast_build_get_space(build, 1));
5225 	space = isl_multi_union_pw_aff_get_space(extra);
5226 
5227 	extra_umap = isl_union_map_from_multi_union_pw_aff(extra);
5228 	extra_umap = isl_union_map_reverse(extra_umap);
5229 
5230 	executed = isl_union_map_domain_product(executed, extra_umap);
5231 	executed = isl_union_map_detect_equalities(executed);
5232 
5233 	n1 = isl_ast_build_dim(build, isl_dim_param);
5234 	build = isl_ast_build_product(build, space);
5235 	n2 = isl_ast_build_dim(build, isl_dim_param);
5236 	if (n1 < 0 || n2 < 0)
5237 		build = isl_ast_build_free(build);
5238 	else if (n2 > n1)
5239 		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5240 			"band node is not allowed to introduce new parameters",
5241 			build = isl_ast_build_free(build));
5242 	build = isl_ast_build_set_schedule_node(build, node);
5243 
5244 	list = generate_next_level(executed, build);
5245 
5246 	list = isl_ast_graft_list_unembed(list, 1);
5247 
5248 	return list;
5249 error:
5250 	isl_schedule_node_free(node);
5251 	isl_union_map_free(executed);
5252 	isl_ast_build_free(build);
5253 	return NULL;
5254 }
5255 
5256 /* Hoist a list of grafts (in practice containing a single graft)
5257  * from "sub_build" (which includes extra context information)
5258  * to "build".
5259  *
5260  * In particular, project out all additional parameters introduced
5261  * by the context node from the enforced constraints and the guard
5262  * of the single graft.
5263  */
hoist_out_of_context(__isl_take isl_ast_graft_list * list,__isl_keep isl_ast_build * build,__isl_keep isl_ast_build * sub_build)5264 static __isl_give isl_ast_graft_list *hoist_out_of_context(
5265 	__isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build,
5266 	__isl_keep isl_ast_build *sub_build)
5267 {
5268 	isl_ast_graft *graft;
5269 	isl_basic_set *enforced;
5270 	isl_set *guard;
5271 	isl_size n_param, extra_param;
5272 
5273 	n_param = isl_ast_build_dim(build, isl_dim_param);
5274 	extra_param = isl_ast_build_dim(sub_build, isl_dim_param);
5275 	if (n_param < 0 || extra_param < 0)
5276 		return isl_ast_graft_list_free(list);
5277 
5278 	if (extra_param == n_param)
5279 		return list;
5280 
5281 	extra_param -= n_param;
5282 	enforced = isl_ast_graft_list_extract_shared_enforced(list, sub_build);
5283 	enforced = isl_basic_set_project_out(enforced, isl_dim_param,
5284 							n_param, extra_param);
5285 	enforced = isl_basic_set_remove_unknown_divs(enforced);
5286 	guard = isl_ast_graft_list_extract_hoistable_guard(list, sub_build);
5287 	guard = isl_set_remove_divs_involving_dims(guard, isl_dim_param,
5288 							n_param, extra_param);
5289 	guard = isl_set_project_out(guard, isl_dim_param, n_param, extra_param);
5290 	guard = isl_set_compute_divs(guard);
5291 	graft = isl_ast_graft_alloc_from_children(list, guard, enforced,
5292 							build, sub_build);
5293 	list = isl_ast_graft_list_from_ast_graft(graft);
5294 
5295 	return list;
5296 }
5297 
5298 /* Generate an AST that visits the elements in the domain of "executed"
5299  * in the relative order specified by the context node "node"
5300  * and its descendants.
5301  *
5302  * The relation "executed" maps the outer generated loop iterators
5303  * to the domain elements executed by those iterations.
5304  *
5305  * The context node may introduce additional parameters as well as
5306  * constraints on the outer schedule dimensions or original parameters.
5307  *
5308  * We add the extra parameters to a new build and the context
5309  * constraints to both the build and (as a single disjunct)
5310  * to the domain of "executed".  Since the context constraints
5311  * are specified in terms of the input schedule, we first need
5312  * to map them to the internal schedule domain.
5313  *
5314  * After constructing the AST from the descendants of "node",
5315  * we combine the list of grafts into a single graft within
5316  * the new build, in order to be able to exploit the additional
5317  * context constraints during this combination.
5318  *
5319  * Additionally, if the current node is the outermost node in
5320  * the schedule tree (apart from the root domain node), we generate
5321  * all pending guards, again to be able to exploit the additional
5322  * context constraints.  We currently do not do this for internal
5323  * context nodes since we may still want to hoist conditions
5324  * to outer AST nodes.
5325  *
5326  * If the context node introduced any new parameters, then they
5327  * are removed from the set of enforced constraints and guard
5328  * in hoist_out_of_context.
5329  */
build_ast_from_context(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node,__isl_take isl_union_map * executed)5330 static __isl_give isl_ast_graft_list *build_ast_from_context(
5331 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5332 	__isl_take isl_union_map *executed)
5333 {
5334 	isl_set *context;
5335 	isl_space *space;
5336 	isl_multi_aff *internal2input;
5337 	isl_ast_build *sub_build;
5338 	isl_ast_graft_list *list;
5339 	isl_size n;
5340 	isl_size depth;
5341 
5342 	depth = isl_schedule_node_get_tree_depth(node);
5343 	if (depth < 0)
5344 		build = isl_ast_build_free(build);
5345 	space = isl_ast_build_get_space(build, 1);
5346 	context = isl_schedule_node_context_get_context(node);
5347 	context = isl_set_align_params(context, space);
5348 	sub_build = isl_ast_build_copy(build);
5349 	space = isl_set_get_space(context);
5350 	sub_build = isl_ast_build_align_params(sub_build, space);
5351 	internal2input = isl_ast_build_get_internal2input(sub_build);
5352 	context = isl_set_preimage_multi_aff(context, internal2input);
5353 	sub_build = isl_ast_build_restrict_generated(sub_build,
5354 					isl_set_copy(context));
5355 	context = isl_set_from_basic_set(isl_set_simple_hull(context));
5356 	executed = isl_union_map_intersect_domain(executed,
5357 					isl_union_set_from_set(context));
5358 
5359 	list = build_ast_from_child(isl_ast_build_copy(sub_build),
5360 						node, executed);
5361 	n = isl_ast_graft_list_n_ast_graft(list);
5362 	if (n < 0)
5363 		list = isl_ast_graft_list_free(list);
5364 
5365 	list = isl_ast_graft_list_fuse(list, sub_build);
5366 	if (depth == 1)
5367 		list = isl_ast_graft_list_insert_pending_guard_nodes(list,
5368 								sub_build);
5369 	if (n >= 1)
5370 		list = hoist_out_of_context(list, build, sub_build);
5371 
5372 	isl_ast_build_free(build);
5373 	isl_ast_build_free(sub_build);
5374 
5375 	return list;
5376 }
5377 
5378 /* Generate an AST that visits the elements in the domain of "executed"
5379  * in the relative order specified by the expansion node "node" and
5380  * its descendants.
5381  *
5382  * The relation "executed" maps the outer generated loop iterators
5383  * to the domain elements executed by those iterations.
5384  *
5385  * We expand the domain elements by the expansion and
5386  * continue with the descendants of the node.
5387  */
build_ast_from_expansion(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node,__isl_take isl_union_map * executed)5388 static __isl_give isl_ast_graft_list *build_ast_from_expansion(
5389 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5390 	__isl_take isl_union_map *executed)
5391 {
5392 	isl_union_map *expansion;
5393 	isl_size n1, n2;
5394 
5395 	expansion = isl_schedule_node_expansion_get_expansion(node);
5396 	expansion = isl_union_map_align_params(expansion,
5397 				isl_union_map_get_space(executed));
5398 
5399 	n1 = isl_union_map_dim(executed, isl_dim_param);
5400 	executed = isl_union_map_apply_range(executed, expansion);
5401 	n2 = isl_union_map_dim(executed, isl_dim_param);
5402 	if (n1 < 0 || n2 < 0)
5403 		goto error;
5404 	if (n2 > n1)
5405 		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5406 			"expansion node is not allowed to introduce "
5407 			"new parameters", goto error);
5408 
5409 	return build_ast_from_child(build, node, executed);
5410 error:
5411 	isl_ast_build_free(build);
5412 	isl_schedule_node_free(node);
5413 	isl_union_map_free(executed);
5414 	return NULL;
5415 }
5416 
5417 /* Generate an AST that visits the elements in the domain of "executed"
5418  * in the relative order specified by the extension node "node" and
5419  * its descendants.
5420  *
5421  * The relation "executed" maps the outer generated loop iterators
5422  * to the domain elements executed by those iterations.
5423  *
5424  * Extend the inverse schedule with the extension applied to current
5425  * set of generated constraints.  Since the extension if formulated
5426  * in terms of the input schedule, it first needs to be transformed
5427  * to refer to the internal schedule.
5428  */
build_ast_from_extension(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node,__isl_take isl_union_map * executed)5429 static __isl_give isl_ast_graft_list *build_ast_from_extension(
5430 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5431 	__isl_take isl_union_map *executed)
5432 {
5433 	isl_union_set *schedule_domain;
5434 	isl_union_map *extension;
5435 	isl_set *set;
5436 
5437 	set = isl_ast_build_get_generated(build);
5438 	set = isl_set_from_basic_set(isl_set_simple_hull(set));
5439 	schedule_domain = isl_union_set_from_set(set);
5440 
5441 	extension = isl_schedule_node_extension_get_extension(node);
5442 
5443 	extension = isl_union_map_preimage_domain_multi_aff(extension,
5444 			isl_multi_aff_copy(build->internal2input));
5445 	extension = isl_union_map_intersect_domain(extension, schedule_domain);
5446 	extension = isl_ast_build_substitute_values_union_map_domain(build,
5447 								    extension);
5448 	executed = isl_union_map_union(executed, extension);
5449 
5450 	return build_ast_from_child(build, node, executed);
5451 }
5452 
5453 /* Generate an AST that visits the elements in the domain of "executed"
5454  * in the relative order specified by the filter node "node" and
5455  * its descendants.
5456  *
5457  * The relation "executed" maps the outer generated loop iterators
5458  * to the domain elements executed by those iterations.
5459  *
5460  * We simply intersect the iteration domain (i.e., the range of "executed")
5461  * with the filter and continue with the descendants of the node,
5462  * unless the resulting inverse schedule is empty, in which
5463  * case we return an empty list.
5464  *
5465  * If the result of the intersection is equal to the original "executed"
5466  * relation, then keep the original representation since the intersection
5467  * may have unnecessarily broken up the relation into a greater number
5468  * of disjuncts.
5469  */
build_ast_from_filter(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node,__isl_take isl_union_map * executed)5470 static __isl_give isl_ast_graft_list *build_ast_from_filter(
5471 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5472 	__isl_take isl_union_map *executed)
5473 {
5474 	isl_ctx *ctx;
5475 	isl_union_set *filter;
5476 	isl_union_map *orig;
5477 	isl_ast_graft_list *list;
5478 	int empty;
5479 	isl_bool unchanged;
5480 	isl_size n1, n2;
5481 
5482 	orig = isl_union_map_copy(executed);
5483 	if (!build || !node || !executed)
5484 		goto error;
5485 
5486 	filter = isl_schedule_node_filter_get_filter(node);
5487 	filter = isl_union_set_align_params(filter,
5488 				isl_union_map_get_space(executed));
5489 	n1 = isl_union_map_dim(executed, isl_dim_param);
5490 	executed = isl_union_map_intersect_range(executed, filter);
5491 	n2 = isl_union_map_dim(executed, isl_dim_param);
5492 	if (n1 < 0 || n2 < 0)
5493 		goto error;
5494 	if (n2 > n1)
5495 		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5496 			"filter node is not allowed to introduce "
5497 			"new parameters", goto error);
5498 
5499 	unchanged = isl_union_map_is_subset(orig, executed);
5500 	empty = isl_union_map_is_empty(executed);
5501 	if (unchanged < 0 || empty < 0)
5502 		goto error;
5503 	if (unchanged) {
5504 		isl_union_map_free(executed);
5505 		return build_ast_from_child(build, node, orig);
5506 	}
5507 	isl_union_map_free(orig);
5508 	if (!empty)
5509 		return build_ast_from_child(build, node, executed);
5510 
5511 	ctx = isl_ast_build_get_ctx(build);
5512 	list = isl_ast_graft_list_alloc(ctx, 0);
5513 	isl_ast_build_free(build);
5514 	isl_schedule_node_free(node);
5515 	isl_union_map_free(executed);
5516 	return list;
5517 error:
5518 	isl_ast_build_free(build);
5519 	isl_schedule_node_free(node);
5520 	isl_union_map_free(executed);
5521 	isl_union_map_free(orig);
5522 	return NULL;
5523 }
5524 
5525 /* Generate an AST that visits the elements in the domain of "executed"
5526  * in the relative order specified by the guard node "node" and
5527  * its descendants.
5528  *
5529  * The relation "executed" maps the outer generated loop iterators
5530  * to the domain elements executed by those iterations.
5531  *
5532  * Ensure that the associated guard is enforced by the outer AST
5533  * constructs by adding it to the guard of the graft.
5534  * Since we know that we will enforce the guard, we can also include it
5535  * in the generated constraints used to construct an AST for
5536  * the descendant nodes.
5537  */
build_ast_from_guard(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node,__isl_take isl_union_map * executed)5538 static __isl_give isl_ast_graft_list *build_ast_from_guard(
5539 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5540 	__isl_take isl_union_map *executed)
5541 {
5542 	isl_space *space;
5543 	isl_set *guard, *hoisted;
5544 	isl_basic_set *enforced;
5545 	isl_ast_build *sub_build;
5546 	isl_ast_graft *graft;
5547 	isl_ast_graft_list *list;
5548 	isl_size n1, n2, n;
5549 
5550 	space = isl_ast_build_get_space(build, 1);
5551 	guard = isl_schedule_node_guard_get_guard(node);
5552 	n1 = isl_space_dim(space, isl_dim_param);
5553 	guard = isl_set_align_params(guard, space);
5554 	n2 = isl_set_dim(guard, isl_dim_param);
5555 	if (n1 < 0 || n2 < 0)
5556 		guard = isl_set_free(guard);
5557 	else if (n2 > n1)
5558 		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
5559 			"guard node is not allowed to introduce "
5560 			"new parameters", guard = isl_set_free(guard));
5561 	guard = isl_set_preimage_multi_aff(guard,
5562 			isl_multi_aff_copy(build->internal2input));
5563 	guard = isl_ast_build_specialize(build, guard);
5564 	guard = isl_set_gist(guard, isl_set_copy(build->generated));
5565 
5566 	sub_build = isl_ast_build_copy(build);
5567 	sub_build = isl_ast_build_restrict_generated(sub_build,
5568 							isl_set_copy(guard));
5569 
5570 	list = build_ast_from_child(isl_ast_build_copy(sub_build),
5571 							node, executed);
5572 
5573 	hoisted = isl_ast_graft_list_extract_hoistable_guard(list, sub_build);
5574 	n = isl_set_n_basic_set(hoisted);
5575 	if (n < 0)
5576 		list = isl_ast_graft_list_free(list);
5577 	if (n > 1)
5578 		list = isl_ast_graft_list_gist_guards(list,
5579 						    isl_set_copy(hoisted));
5580 	guard = isl_set_intersect(guard, hoisted);
5581 	enforced = extract_shared_enforced(list, build);
5582 	graft = isl_ast_graft_alloc_from_children(list, guard, enforced,
5583 						    build, sub_build);
5584 
5585 	isl_ast_build_free(sub_build);
5586 	isl_ast_build_free(build);
5587 	return isl_ast_graft_list_from_ast_graft(graft);
5588 }
5589 
5590 /* Call the before_each_mark callback, if requested by the user.
5591  *
5592  * Return 0 on success and -1 on error.
5593  *
5594  * The caller is responsible for recording the current inverse schedule
5595  * in "build".
5596  */
before_each_mark(__isl_keep isl_id * mark,__isl_keep isl_ast_build * build)5597 static isl_stat before_each_mark(__isl_keep isl_id *mark,
5598 	__isl_keep isl_ast_build *build)
5599 {
5600 	if (!build)
5601 		return isl_stat_error;
5602 	if (!build->before_each_mark)
5603 		return isl_stat_ok;
5604 	return build->before_each_mark(mark, build,
5605 					build->before_each_mark_user);
5606 }
5607 
5608 /* Call the after_each_mark callback, if requested by the user.
5609  *
5610  * The caller is responsible for recording the current inverse schedule
5611  * in "build".
5612  */
after_each_mark(__isl_take isl_ast_graft * graft,__isl_keep isl_ast_build * build)5613 static __isl_give isl_ast_graft *after_each_mark(
5614 	__isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build)
5615 {
5616 	if (!graft || !build)
5617 		return isl_ast_graft_free(graft);
5618 	if (!build->after_each_mark)
5619 		return graft;
5620 	graft->node = build->after_each_mark(graft->node, build,
5621 						build->after_each_mark_user);
5622 	if (!graft->node)
5623 		return isl_ast_graft_free(graft);
5624 	return graft;
5625 }
5626 
5627 
5628 /* Generate an AST that visits the elements in the domain of "executed"
5629  * in the relative order specified by the mark node "node" and
5630  * its descendants.
5631  *
5632  * The relation "executed" maps the outer generated loop iterators
5633  * to the domain elements executed by those iterations.
5634 
5635  * Since we may be calling before_each_mark and after_each_mark
5636  * callbacks, we record the current inverse schedule in the build.
5637  *
5638  * We generate an AST for the child of the mark node, combine
5639  * the graft list into a single graft and then insert the mark
5640  * in the AST of that single graft.
5641  */
build_ast_from_mark(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node,__isl_take isl_union_map * executed)5642 static __isl_give isl_ast_graft_list *build_ast_from_mark(
5643 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5644 	__isl_take isl_union_map *executed)
5645 {
5646 	isl_id *mark;
5647 	isl_ast_graft *graft;
5648 	isl_ast_graft_list *list;
5649 	isl_size n;
5650 
5651 	build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
5652 
5653 	mark = isl_schedule_node_mark_get_id(node);
5654 	if (before_each_mark(mark, build) < 0)
5655 		node = isl_schedule_node_free(node);
5656 
5657 	list = build_ast_from_child(isl_ast_build_copy(build), node, executed);
5658 	list = isl_ast_graft_list_fuse(list, build);
5659 	n = isl_ast_graft_list_n_ast_graft(list);
5660 	if (n < 0)
5661 		list = isl_ast_graft_list_free(list);
5662 	if (n == 0) {
5663 		isl_id_free(mark);
5664 	} else {
5665 		graft = isl_ast_graft_list_get_ast_graft(list, 0);
5666 		graft = isl_ast_graft_insert_mark(graft, mark);
5667 		graft = after_each_mark(graft, build);
5668 		list = isl_ast_graft_list_set_ast_graft(list, 0, graft);
5669 	}
5670 	isl_ast_build_free(build);
5671 
5672 	return list;
5673 }
5674 
5675 static __isl_give isl_ast_graft_list *build_ast_from_schedule_node(
5676 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5677 	__isl_take isl_union_map *executed);
5678 
5679 /* Generate an AST that visits the elements in the domain of "executed"
5680  * in the relative order specified by the sequence (or set) node "node" and
5681  * its descendants.
5682  *
5683  * The relation "executed" maps the outer generated loop iterators
5684  * to the domain elements executed by those iterations.
5685  *
5686  * We simply generate an AST for each of the children and concatenate
5687  * the results.
5688  */
build_ast_from_sequence(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node,__isl_take isl_union_map * executed)5689 static __isl_give isl_ast_graft_list *build_ast_from_sequence(
5690 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5691 	__isl_take isl_union_map *executed)
5692 {
5693 	int i;
5694 	isl_size n;
5695 	isl_ctx *ctx;
5696 	isl_ast_graft_list *list;
5697 
5698 	ctx = isl_ast_build_get_ctx(build);
5699 	list = isl_ast_graft_list_alloc(ctx, 0);
5700 
5701 	n = isl_schedule_node_n_children(node);
5702 	if (n < 0)
5703 		list = isl_ast_graft_list_free(list);
5704 	for (i = 0; i < n; ++i) {
5705 		isl_schedule_node *child;
5706 		isl_ast_graft_list *list_i;
5707 
5708 		child = isl_schedule_node_get_child(node, i);
5709 		list_i = build_ast_from_schedule_node(isl_ast_build_copy(build),
5710 					child, isl_union_map_copy(executed));
5711 		list = isl_ast_graft_list_concat(list, list_i);
5712 	}
5713 	isl_ast_build_free(build);
5714 	isl_schedule_node_free(node);
5715 	isl_union_map_free(executed);
5716 
5717 	return list;
5718 }
5719 
5720 /* Generate an AST that visits the elements in the domain of "executed"
5721  * in the relative order specified by the node "node" and its descendants.
5722  *
5723  * The relation "executed" maps the outer generated loop iterators
5724  * to the domain elements executed by those iterations.
5725  *
5726  * The node types are handled in separate functions.
5727  * Set nodes are currently treated in the same way as sequence nodes.
5728  * The children of a set node may be executed in any order,
5729  * including the order of the children.
5730  */
build_ast_from_schedule_node(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node,__isl_take isl_union_map * executed)5731 static __isl_give isl_ast_graft_list *build_ast_from_schedule_node(
5732 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5733 	__isl_take isl_union_map *executed)
5734 {
5735 	enum isl_schedule_node_type type;
5736 
5737 	type = isl_schedule_node_get_type(node);
5738 
5739 	switch (type) {
5740 	case isl_schedule_node_error:
5741 		goto error;
5742 	case isl_schedule_node_leaf:
5743 		return build_ast_from_leaf(build, node, executed);
5744 	case isl_schedule_node_band:
5745 		return build_ast_from_band(build, node, executed);
5746 	case isl_schedule_node_context:
5747 		return build_ast_from_context(build, node, executed);
5748 	case isl_schedule_node_domain:
5749 		isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported,
5750 			"unexpected internal domain node", goto error);
5751 	case isl_schedule_node_expansion:
5752 		return build_ast_from_expansion(build, node, executed);
5753 	case isl_schedule_node_extension:
5754 		return build_ast_from_extension(build, node, executed);
5755 	case isl_schedule_node_filter:
5756 		return build_ast_from_filter(build, node, executed);
5757 	case isl_schedule_node_guard:
5758 		return build_ast_from_guard(build, node, executed);
5759 	case isl_schedule_node_mark:
5760 		return build_ast_from_mark(build, node, executed);
5761 	case isl_schedule_node_sequence:
5762 	case isl_schedule_node_set:
5763 		return build_ast_from_sequence(build, node, executed);
5764 	}
5765 
5766 	isl_die(isl_ast_build_get_ctx(build), isl_error_internal,
5767 		"unhandled type", goto error);
5768 error:
5769 	isl_union_map_free(executed);
5770 	isl_schedule_node_free(node);
5771 	isl_ast_build_free(build);
5772 
5773 	return NULL;
5774 }
5775 
5776 /* Generate an AST that visits the elements in the domain of "executed"
5777  * in the relative order specified by the (single) child of "node" and
5778  * its descendants.
5779  *
5780  * The relation "executed" maps the outer generated loop iterators
5781  * to the domain elements executed by those iterations.
5782  *
5783  * This function is never called on a leaf, set or sequence node,
5784  * so the node always has exactly one child.
5785  */
build_ast_from_child(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node,__isl_take isl_union_map * executed)5786 static __isl_give isl_ast_graft_list *build_ast_from_child(
5787 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
5788 	__isl_take isl_union_map *executed)
5789 {
5790 	node = isl_schedule_node_child(node, 0);
5791 	return build_ast_from_schedule_node(build, node, executed);
5792 }
5793 
5794 /* Generate an AST that visits the elements in the domain of the domain
5795  * node "node" in the relative order specified by its descendants.
5796  *
5797  * An initial inverse schedule is created that maps a zero-dimensional
5798  * schedule space to the node domain.
5799  * The input "build" is assumed to have a parametric domain and
5800  * is replaced by the same zero-dimensional schedule space.
5801  *
5802  * We also add some of the parameter constraints in the build domain
5803  * to the executed relation.  Adding these constraints
5804  * allows for an earlier detection of conflicts in some cases.
5805  * However, we do not want to divide the executed relation into
5806  * more disjuncts than necessary.  We therefore approximate
5807  * the constraints on the parameters by a single disjunct set.
5808  */
build_ast_from_domain(__isl_take isl_ast_build * build,__isl_take isl_schedule_node * node)5809 static __isl_give isl_ast_node *build_ast_from_domain(
5810 	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node)
5811 {
5812 	isl_ctx *ctx;
5813 	isl_union_set *domain, *schedule_domain;
5814 	isl_union_map *executed;
5815 	isl_space *space;
5816 	isl_set *set;
5817 	isl_ast_graft_list *list;
5818 	isl_ast_node *ast;
5819 	int is_params;
5820 
5821 	if (!build)
5822 		goto error;
5823 
5824 	ctx = isl_ast_build_get_ctx(build);
5825 	space = isl_ast_build_get_space(build, 1);
5826 	is_params = isl_space_is_params(space);
5827 	isl_space_free(space);
5828 	if (is_params < 0)
5829 		goto error;
5830 	if (!is_params)
5831 		isl_die(ctx, isl_error_unsupported,
5832 			"expecting parametric initial context", goto error);
5833 
5834 	domain = isl_schedule_node_domain_get_domain(node);
5835 	domain = isl_union_set_coalesce(domain);
5836 
5837 	space = isl_union_set_get_space(domain);
5838 	space = isl_space_set_from_params(space);
5839 	build = isl_ast_build_product(build, space);
5840 
5841 	set = isl_ast_build_get_domain(build);
5842 	set = isl_set_from_basic_set(isl_set_simple_hull(set));
5843 	schedule_domain = isl_union_set_from_set(set);
5844 
5845 	executed = isl_union_map_from_domain_and_range(schedule_domain, domain);
5846 	list = build_ast_from_child(isl_ast_build_copy(build), node, executed);
5847 	ast = isl_ast_node_from_graft_list(list, build);
5848 	isl_ast_build_free(build);
5849 
5850 	return ast;
5851 error:
5852 	isl_schedule_node_free(node);
5853 	isl_ast_build_free(build);
5854 	return NULL;
5855 }
5856 
5857 /* Generate an AST that visits the elements in the domain of "schedule"
5858  * in the relative order specified by the schedule tree.
5859  *
5860  * "build" is an isl_ast_build that has been created using
5861  * isl_ast_build_alloc or isl_ast_build_from_context based
5862  * on a parametric set.
5863  *
5864  * The construction starts at the root node of the schedule,
5865  * which is assumed to be a domain node.
5866  */
isl_ast_build_node_from_schedule(__isl_keep isl_ast_build * build,__isl_take isl_schedule * schedule)5867 __isl_give isl_ast_node *isl_ast_build_node_from_schedule(
5868 	__isl_keep isl_ast_build *build, __isl_take isl_schedule *schedule)
5869 {
5870 	isl_ctx *ctx;
5871 	isl_schedule_node *node;
5872 
5873 	if (!build || !schedule)
5874 		goto error;
5875 
5876 	ctx = isl_ast_build_get_ctx(build);
5877 
5878 	node = isl_schedule_get_root(schedule);
5879 	if (!node)
5880 		goto error;
5881 	isl_schedule_free(schedule);
5882 
5883 	build = isl_ast_build_copy(build);
5884 	build = isl_ast_build_set_single_valued(build, 0);
5885 	if (isl_schedule_node_get_type(node) != isl_schedule_node_domain)
5886 		isl_die(ctx, isl_error_unsupported,
5887 			"expecting root domain node",
5888 			build = isl_ast_build_free(build));
5889 	return build_ast_from_domain(build, node);
5890 error:
5891 	isl_schedule_free(schedule);
5892 	return NULL;
5893 }
5894