1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
6 *
7 * Use of this software is governed by the MIT license
8 *
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
14 */
15
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
19 #include <isl/map.h>
20 #include <isl_seq.h>
21 #include "isl_tab.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
25
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
29 #include <set_from_map.c>
30
swap_equality(__isl_keep isl_basic_map * bmap,int a,int b)31 static void swap_equality(__isl_keep isl_basic_map *bmap, int a, int b)
32 {
33 isl_int *t = bmap->eq[a];
34 bmap->eq[a] = bmap->eq[b];
35 bmap->eq[b] = t;
36 }
37
swap_inequality(__isl_keep isl_basic_map * bmap,int a,int b)38 static void swap_inequality(__isl_keep isl_basic_map *bmap, int a, int b)
39 {
40 if (a != b) {
41 isl_int *t = bmap->ineq[a];
42 bmap->ineq[a] = bmap->ineq[b];
43 bmap->ineq[b] = t;
44 }
45 }
46
isl_basic_map_normalize_constraints(__isl_take isl_basic_map * bmap)47 __isl_give isl_basic_map *isl_basic_map_normalize_constraints(
48 __isl_take isl_basic_map *bmap)
49 {
50 int i;
51 isl_int gcd;
52 isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
53
54 if (total < 0)
55 return isl_basic_map_free(bmap);
56
57 isl_int_init(gcd);
58 for (i = bmap->n_eq - 1; i >= 0; --i) {
59 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
60 if (isl_int_is_zero(gcd)) {
61 if (!isl_int_is_zero(bmap->eq[i][0])) {
62 bmap = isl_basic_map_set_to_empty(bmap);
63 break;
64 }
65 if (isl_basic_map_drop_equality(bmap, i) < 0)
66 goto error;
67 continue;
68 }
69 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
70 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
71 if (isl_int_is_one(gcd))
72 continue;
73 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
74 bmap = isl_basic_map_set_to_empty(bmap);
75 break;
76 }
77 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
78 }
79
80 for (i = bmap->n_ineq - 1; i >= 0; --i) {
81 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
82 if (isl_int_is_zero(gcd)) {
83 if (isl_int_is_neg(bmap->ineq[i][0])) {
84 bmap = isl_basic_map_set_to_empty(bmap);
85 break;
86 }
87 if (isl_basic_map_drop_inequality(bmap, i) < 0)
88 goto error;
89 continue;
90 }
91 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
92 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
93 if (isl_int_is_one(gcd))
94 continue;
95 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
96 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
97 }
98 isl_int_clear(gcd);
99
100 return bmap;
101 error:
102 isl_int_clear(gcd);
103 isl_basic_map_free(bmap);
104 return NULL;
105 }
106
isl_basic_set_normalize_constraints(__isl_take isl_basic_set * bset)107 __isl_give isl_basic_set *isl_basic_set_normalize_constraints(
108 __isl_take isl_basic_set *bset)
109 {
110 isl_basic_map *bmap = bset_to_bmap(bset);
111 return bset_from_bmap(isl_basic_map_normalize_constraints(bmap));
112 }
113
114 /* Reduce the coefficient of the variable at position "pos"
115 * in integer division "div", such that it lies in the half-open
116 * interval (1/2,1/2], extracting any excess value from this integer division.
117 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
118 * corresponds to the constant term.
119 *
120 * That is, the integer division is of the form
121 *
122 * floor((... + (c * d + r) * x_pos + ...)/d)
123 *
124 * with -d < 2 * r <= d.
125 * Replace it by
126 *
127 * floor((... + r * x_pos + ...)/d) + c * x_pos
128 *
129 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
130 * Otherwise, c = floor((c * d + r)/d) + 1.
131 *
132 * This is the same normalization that is performed by isl_aff_floor.
133 */
reduce_coefficient_in_div(__isl_take isl_basic_map * bmap,int div,int pos)134 static __isl_give isl_basic_map *reduce_coefficient_in_div(
135 __isl_take isl_basic_map *bmap, int div, int pos)
136 {
137 isl_int shift;
138 int add_one;
139
140 isl_int_init(shift);
141 isl_int_fdiv_r(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
142 isl_int_mul_ui(shift, shift, 2);
143 add_one = isl_int_gt(shift, bmap->div[div][0]);
144 isl_int_fdiv_q(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
145 if (add_one)
146 isl_int_add_ui(shift, shift, 1);
147 isl_int_neg(shift, shift);
148 bmap = isl_basic_map_shift_div(bmap, div, pos, shift);
149 isl_int_clear(shift);
150
151 return bmap;
152 }
153
154 /* Does the coefficient of the variable at position "pos"
155 * in integer division "div" need to be reduced?
156 * That is, does it lie outside the half-open interval (1/2,1/2]?
157 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
158 * 2 * c != d.
159 */
needs_reduction(__isl_keep isl_basic_map * bmap,int div,int pos)160 static isl_bool needs_reduction(__isl_keep isl_basic_map *bmap, int div,
161 int pos)
162 {
163 isl_bool r;
164
165 if (isl_int_is_zero(bmap->div[div][1 + pos]))
166 return isl_bool_false;
167
168 isl_int_mul_ui(bmap->div[div][1 + pos], bmap->div[div][1 + pos], 2);
169 r = isl_int_abs_ge(bmap->div[div][1 + pos], bmap->div[div][0]) &&
170 !isl_int_eq(bmap->div[div][1 + pos], bmap->div[div][0]);
171 isl_int_divexact_ui(bmap->div[div][1 + pos],
172 bmap->div[div][1 + pos], 2);
173
174 return r;
175 }
176
177 /* Reduce the coefficients (including the constant term) of
178 * integer division "div", if needed.
179 * In particular, make sure all coefficients lie in
180 * the half-open interval (1/2,1/2].
181 */
reduce_div_coefficients_of_div(__isl_take isl_basic_map * bmap,int div)182 static __isl_give isl_basic_map *reduce_div_coefficients_of_div(
183 __isl_take isl_basic_map *bmap, int div)
184 {
185 int i;
186 isl_size total;
187
188 total = isl_basic_map_dim(bmap, isl_dim_all);
189 if (total < 0)
190 return isl_basic_map_free(bmap);
191 for (i = 0; i < 1 + total; ++i) {
192 isl_bool reduce;
193
194 reduce = needs_reduction(bmap, div, i);
195 if (reduce < 0)
196 return isl_basic_map_free(bmap);
197 if (!reduce)
198 continue;
199 bmap = reduce_coefficient_in_div(bmap, div, i);
200 if (!bmap)
201 break;
202 }
203
204 return bmap;
205 }
206
207 /* Reduce the coefficients (including the constant term) of
208 * the known integer divisions, if needed
209 * In particular, make sure all coefficients lie in
210 * the half-open interval (1/2,1/2].
211 */
reduce_div_coefficients(__isl_take isl_basic_map * bmap)212 static __isl_give isl_basic_map *reduce_div_coefficients(
213 __isl_take isl_basic_map *bmap)
214 {
215 int i;
216
217 if (!bmap)
218 return NULL;
219 if (bmap->n_div == 0)
220 return bmap;
221
222 for (i = 0; i < bmap->n_div; ++i) {
223 if (isl_int_is_zero(bmap->div[i][0]))
224 continue;
225 bmap = reduce_div_coefficients_of_div(bmap, i);
226 if (!bmap)
227 break;
228 }
229
230 return bmap;
231 }
232
233 /* Remove any common factor in numerator and denominator of the div expression,
234 * not taking into account the constant term.
235 * That is, if the div is of the form
236 *
237 * floor((a + m f(x))/(m d))
238 *
239 * then replace it by
240 *
241 * floor((floor(a/m) + f(x))/d)
242 *
243 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
244 * and can therefore not influence the result of the floor.
245 */
normalize_div_expression(__isl_take isl_basic_map * bmap,int div)246 static __isl_give isl_basic_map *normalize_div_expression(
247 __isl_take isl_basic_map *bmap, int div)
248 {
249 isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
250 isl_ctx *ctx = bmap->ctx;
251
252 if (total < 0)
253 return isl_basic_map_free(bmap);
254 if (isl_int_is_zero(bmap->div[div][0]))
255 return bmap;
256 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
257 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
258 if (isl_int_is_one(ctx->normalize_gcd))
259 return bmap;
260 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
261 ctx->normalize_gcd);
262 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
263 ctx->normalize_gcd);
264 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
265 ctx->normalize_gcd, total);
266
267 return bmap;
268 }
269
270 /* Remove any common factor in numerator and denominator of a div expression,
271 * not taking into account the constant term.
272 * That is, look for any div of the form
273 *
274 * floor((a + m f(x))/(m d))
275 *
276 * and replace it by
277 *
278 * floor((floor(a/m) + f(x))/d)
279 *
280 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
281 * and can therefore not influence the result of the floor.
282 */
normalize_div_expressions(__isl_take isl_basic_map * bmap)283 static __isl_give isl_basic_map *normalize_div_expressions(
284 __isl_take isl_basic_map *bmap)
285 {
286 int i;
287
288 if (!bmap)
289 return NULL;
290 if (bmap->n_div == 0)
291 return bmap;
292
293 for (i = 0; i < bmap->n_div; ++i)
294 bmap = normalize_div_expression(bmap, i);
295
296 return bmap;
297 }
298
299 /* Assumes divs have been ordered if keep_divs is set.
300 */
eliminate_var_using_equality(__isl_take isl_basic_map * bmap,unsigned pos,isl_int * eq,int keep_divs,int * progress)301 static __isl_give isl_basic_map *eliminate_var_using_equality(
302 __isl_take isl_basic_map *bmap,
303 unsigned pos, isl_int *eq, int keep_divs, int *progress)
304 {
305 isl_size total;
306 isl_size v_div;
307 int k;
308 int last_div;
309
310 total = isl_basic_map_dim(bmap, isl_dim_all);
311 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
312 if (total < 0 || v_div < 0)
313 return isl_basic_map_free(bmap);
314 last_div = isl_seq_last_non_zero(eq + 1 + v_div, bmap->n_div);
315 for (k = 0; k < bmap->n_eq; ++k) {
316 if (bmap->eq[k] == eq)
317 continue;
318 if (isl_int_is_zero(bmap->eq[k][1+pos]))
319 continue;
320 if (progress)
321 *progress = 1;
322 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
323 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
324 }
325
326 for (k = 0; k < bmap->n_ineq; ++k) {
327 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
328 continue;
329 if (progress)
330 *progress = 1;
331 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
332 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
333 ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
334 ISL_F_CLR(bmap, ISL_BASIC_MAP_SORTED);
335 }
336
337 for (k = 0; k < bmap->n_div; ++k) {
338 if (isl_int_is_zero(bmap->div[k][0]))
339 continue;
340 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
341 continue;
342 if (progress)
343 *progress = 1;
344 /* We need to be careful about circular definitions,
345 * so for now we just remove the definition of div k
346 * if the equality contains any divs.
347 * If keep_divs is set, then the divs have been ordered
348 * and we can keep the definition as long as the result
349 * is still ordered.
350 */
351 if (last_div == -1 || (keep_divs && last_div < k)) {
352 isl_seq_elim(bmap->div[k]+1, eq,
353 1+pos, 1+total, &bmap->div[k][0]);
354 bmap = normalize_div_expression(bmap, k);
355 if (!bmap)
356 return NULL;
357 } else
358 isl_seq_clr(bmap->div[k], 1 + total);
359 }
360
361 return bmap;
362 }
363
364 /* Assumes divs have been ordered if keep_divs is set.
365 */
eliminate_div(__isl_take isl_basic_map * bmap,isl_int * eq,unsigned div,int keep_divs)366 static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap,
367 isl_int *eq, unsigned div, int keep_divs)
368 {
369 isl_size v_div;
370 unsigned pos;
371
372 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
373 if (v_div < 0)
374 return isl_basic_map_free(bmap);
375 pos = v_div + div;
376 bmap = eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
377
378 bmap = isl_basic_map_drop_div(bmap, div);
379
380 return bmap;
381 }
382
383 /* Check if elimination of div "div" using equality "eq" would not
384 * result in a div depending on a later div.
385 */
ok_to_eliminate_div(__isl_keep isl_basic_map * bmap,isl_int * eq,unsigned div)386 static isl_bool ok_to_eliminate_div(__isl_keep isl_basic_map *bmap, isl_int *eq,
387 unsigned div)
388 {
389 int k;
390 int last_div;
391 isl_size v_div;
392 unsigned pos;
393
394 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
395 if (v_div < 0)
396 return isl_bool_error;
397 pos = v_div + div;
398
399 last_div = isl_seq_last_non_zero(eq + 1 + v_div, bmap->n_div);
400 if (last_div < 0 || last_div <= div)
401 return isl_bool_true;
402
403 for (k = 0; k <= last_div; ++k) {
404 if (isl_int_is_zero(bmap->div[k][0]))
405 continue;
406 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
407 return isl_bool_false;
408 }
409
410 return isl_bool_true;
411 }
412
413 /* Eliminate divs based on equalities
414 */
eliminate_divs_eq(__isl_take isl_basic_map * bmap,int * progress)415 static __isl_give isl_basic_map *eliminate_divs_eq(
416 __isl_take isl_basic_map *bmap, int *progress)
417 {
418 int d;
419 int i;
420 int modified = 0;
421 unsigned off;
422
423 bmap = isl_basic_map_order_divs(bmap);
424
425 if (!bmap)
426 return NULL;
427
428 off = isl_basic_map_offset(bmap, isl_dim_div);
429
430 for (d = bmap->n_div - 1; d >= 0 ; --d) {
431 for (i = 0; i < bmap->n_eq; ++i) {
432 isl_bool ok;
433
434 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
435 !isl_int_is_negone(bmap->eq[i][off + d]))
436 continue;
437 ok = ok_to_eliminate_div(bmap, bmap->eq[i], d);
438 if (ok < 0)
439 return isl_basic_map_free(bmap);
440 if (!ok)
441 continue;
442 modified = 1;
443 *progress = 1;
444 bmap = eliminate_div(bmap, bmap->eq[i], d, 1);
445 if (isl_basic_map_drop_equality(bmap, i) < 0)
446 return isl_basic_map_free(bmap);
447 break;
448 }
449 }
450 if (modified)
451 return eliminate_divs_eq(bmap, progress);
452 return bmap;
453 }
454
455 /* Eliminate divs based on inequalities
456 */
eliminate_divs_ineq(__isl_take isl_basic_map * bmap,int * progress)457 static __isl_give isl_basic_map *eliminate_divs_ineq(
458 __isl_take isl_basic_map *bmap, int *progress)
459 {
460 int d;
461 int i;
462 unsigned off;
463 struct isl_ctx *ctx;
464
465 if (!bmap)
466 return NULL;
467
468 ctx = bmap->ctx;
469 off = isl_basic_map_offset(bmap, isl_dim_div);
470
471 for (d = bmap->n_div - 1; d >= 0 ; --d) {
472 for (i = 0; i < bmap->n_eq; ++i)
473 if (!isl_int_is_zero(bmap->eq[i][off + d]))
474 break;
475 if (i < bmap->n_eq)
476 continue;
477 for (i = 0; i < bmap->n_ineq; ++i)
478 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
479 break;
480 if (i < bmap->n_ineq)
481 continue;
482 *progress = 1;
483 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
484 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
485 break;
486 bmap = isl_basic_map_drop_div(bmap, d);
487 if (!bmap)
488 break;
489 }
490 return bmap;
491 }
492
493 /* Does the equality constraint at position "eq" in "bmap" involve
494 * any local variables in the range [first, first + n)
495 * that are not marked as having an explicit representation?
496 */
bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map * bmap,int eq,unsigned first,unsigned n)497 static isl_bool bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map *bmap,
498 int eq, unsigned first, unsigned n)
499 {
500 unsigned o_div;
501 int i;
502
503 if (!bmap)
504 return isl_bool_error;
505
506 o_div = isl_basic_map_offset(bmap, isl_dim_div);
507 for (i = 0; i < n; ++i) {
508 isl_bool unknown;
509
510 if (isl_int_is_zero(bmap->eq[eq][o_div + first + i]))
511 continue;
512 unknown = isl_basic_map_div_is_marked_unknown(bmap, first + i);
513 if (unknown < 0)
514 return isl_bool_error;
515 if (unknown)
516 return isl_bool_true;
517 }
518
519 return isl_bool_false;
520 }
521
522 /* The last local variable involved in the equality constraint
523 * at position "eq" in "bmap" is the local variable at position "div".
524 * It can therefore be used to extract an explicit representation
525 * for that variable.
526 * Do so unless the local variable already has an explicit representation or
527 * the explicit representation would involve any other local variables
528 * that in turn do not have an explicit representation.
529 * An equality constraint involving local variables without an explicit
530 * representation can be used in isl_basic_map_drop_redundant_divs
531 * to separate out an independent local variable. Introducing
532 * an explicit representation here would block this transformation,
533 * while the partial explicit representation in itself is not very useful.
534 * Set *progress if anything is changed.
535 *
536 * The equality constraint is of the form
537 *
538 * f(x) + n e >= 0
539 *
540 * with n a positive number. The explicit representation derived from
541 * this constraint is
542 *
543 * floor((-f(x))/n)
544 */
set_div_from_eq(__isl_take isl_basic_map * bmap,int div,int eq,int * progress)545 static __isl_give isl_basic_map *set_div_from_eq(__isl_take isl_basic_map *bmap,
546 int div, int eq, int *progress)
547 {
548 isl_size total;
549 unsigned o_div;
550 isl_bool involves;
551
552 if (!bmap)
553 return NULL;
554
555 if (!isl_int_is_zero(bmap->div[div][0]))
556 return bmap;
557
558 involves = bmap_eq_involves_unknown_divs(bmap, eq, 0, div);
559 if (involves < 0)
560 return isl_basic_map_free(bmap);
561 if (involves)
562 return bmap;
563
564 total = isl_basic_map_dim(bmap, isl_dim_all);
565 if (total < 0)
566 return isl_basic_map_free(bmap);
567 o_div = isl_basic_map_offset(bmap, isl_dim_div);
568 isl_seq_neg(bmap->div[div] + 1, bmap->eq[eq], 1 + total);
569 isl_int_set_si(bmap->div[div][1 + o_div + div], 0);
570 isl_int_set(bmap->div[div][0], bmap->eq[eq][o_div + div]);
571 if (progress)
572 *progress = 1;
573
574 return bmap;
575 }
576
577 /* Perform fangcheng (Gaussian elimination) on the equality
578 * constraints of "bmap".
579 * That is, put them into row-echelon form, starting from the last column
580 * backward and use them to eliminate the corresponding coefficients
581 * from all constraints.
582 *
583 * If "progress" is not NULL, then it gets set if the elimination
584 * results in any changes.
585 * The elimination process may result in some equality constraints
586 * getting interchanged or removed.
587 * If "swap" or "drop" are not NULL, then they get called when
588 * two equality constraints get interchanged or
589 * when a number of final equality constraints get removed.
590 * As a special case, if the input turns out to be empty,
591 * then drop gets called with the number of removed equality
592 * constraints set to the total number of equality constraints.
593 * If "swap" or "drop" are not NULL, then the local variables (if any)
594 * are assumed to be in a valid order.
595 */
isl_basic_map_gauss5(__isl_take isl_basic_map * bmap,int * progress,isl_stat (* swap)(unsigned a,unsigned b,void * user),isl_stat (* drop)(unsigned n,void * user),void * user)596 __isl_give isl_basic_map *isl_basic_map_gauss5(__isl_take isl_basic_map *bmap,
597 int *progress,
598 isl_stat (*swap)(unsigned a, unsigned b, void *user),
599 isl_stat (*drop)(unsigned n, void *user), void *user)
600 {
601 int k;
602 int done;
603 int last_var;
604 unsigned total_var;
605 isl_size total;
606 unsigned n_drop;
607
608 if (!swap && !drop)
609 bmap = isl_basic_map_order_divs(bmap);
610
611 total = isl_basic_map_dim(bmap, isl_dim_all);
612 if (total < 0)
613 return isl_basic_map_free(bmap);
614
615 total_var = total - bmap->n_div;
616
617 last_var = total - 1;
618 for (done = 0; done < bmap->n_eq; ++done) {
619 for (; last_var >= 0; --last_var) {
620 for (k = done; k < bmap->n_eq; ++k)
621 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
622 break;
623 if (k < bmap->n_eq)
624 break;
625 }
626 if (last_var < 0)
627 break;
628 if (k != done) {
629 swap_equality(bmap, k, done);
630 if (swap && swap(k, done, user) < 0)
631 return isl_basic_map_free(bmap);
632 }
633 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
634 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
635
636 bmap = eliminate_var_using_equality(bmap, last_var,
637 bmap->eq[done], 1, progress);
638
639 if (last_var >= total_var)
640 bmap = set_div_from_eq(bmap, last_var - total_var,
641 done, progress);
642 if (!bmap)
643 return NULL;
644 }
645 if (done == bmap->n_eq)
646 return bmap;
647 for (k = done; k < bmap->n_eq; ++k) {
648 if (isl_int_is_zero(bmap->eq[k][0]))
649 continue;
650 if (drop && drop(bmap->n_eq, user) < 0)
651 return isl_basic_map_free(bmap);
652 return isl_basic_map_set_to_empty(bmap);
653 }
654 n_drop = bmap->n_eq - done;
655 bmap = isl_basic_map_free_equality(bmap, n_drop);
656 if (drop && drop(n_drop, user) < 0)
657 return isl_basic_map_free(bmap);
658 return bmap;
659 }
660
isl_basic_map_gauss(__isl_take isl_basic_map * bmap,int * progress)661 __isl_give isl_basic_map *isl_basic_map_gauss(__isl_take isl_basic_map *bmap,
662 int *progress)
663 {
664 return isl_basic_map_gauss5(bmap, progress, NULL, NULL, NULL);
665 }
666
isl_basic_set_gauss(__isl_take isl_basic_set * bset,int * progress)667 __isl_give isl_basic_set *isl_basic_set_gauss(
668 __isl_take isl_basic_set *bset, int *progress)
669 {
670 return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset),
671 progress));
672 }
673
674
round_up(unsigned int v)675 static unsigned int round_up(unsigned int v)
676 {
677 int old_v = v;
678
679 while (v) {
680 old_v = v;
681 v ^= v & -v;
682 }
683 return old_v << 1;
684 }
685
686 /* Hash table of inequalities in a basic map.
687 * "index" is an array of addresses of inequalities in the basic map, some
688 * of which are NULL. The inequalities are hashed on the coefficients
689 * except the constant term.
690 * "size" is the number of elements in the array and is always a power of two
691 * "bits" is the number of bits need to represent an index into the array.
692 * "total" is the total dimension of the basic map.
693 */
694 struct isl_constraint_index {
695 unsigned int size;
696 int bits;
697 isl_int ***index;
698 isl_size total;
699 };
700
701 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
702 */
create_constraint_index(struct isl_constraint_index * ci,__isl_keep isl_basic_map * bmap)703 static isl_stat create_constraint_index(struct isl_constraint_index *ci,
704 __isl_keep isl_basic_map *bmap)
705 {
706 isl_ctx *ctx;
707
708 ci->index = NULL;
709 if (!bmap)
710 return isl_stat_error;
711 ci->total = isl_basic_map_dim(bmap, isl_dim_all);
712 if (ci->total < 0)
713 return isl_stat_error;
714 if (bmap->n_ineq == 0)
715 return isl_stat_ok;
716 ci->size = round_up(4 * (bmap->n_ineq + 1) / 3 - 1);
717 ci->bits = ffs(ci->size) - 1;
718 ctx = isl_basic_map_get_ctx(bmap);
719 ci->index = isl_calloc_array(ctx, isl_int **, ci->size);
720 if (!ci->index)
721 return isl_stat_error;
722
723 return isl_stat_ok;
724 }
725
726 /* Free the memory allocated by create_constraint_index.
727 */
constraint_index_free(struct isl_constraint_index * ci)728 static void constraint_index_free(struct isl_constraint_index *ci)
729 {
730 free(ci->index);
731 }
732
733 /* Return the position in ci->index that contains the address of
734 * an inequality that is equal to *ineq up to the constant term,
735 * provided this address is not identical to "ineq".
736 * If there is no such inequality, then return the position where
737 * such an inequality should be inserted.
738 */
hash_index_ineq(struct isl_constraint_index * ci,isl_int ** ineq)739 static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq)
740 {
741 int h;
742 uint32_t hash = isl_seq_get_hash_bits((*ineq) + 1, ci->total, ci->bits);
743 for (h = hash; ci->index[h]; h = (h+1) % ci->size)
744 if (ineq != ci->index[h] &&
745 isl_seq_eq((*ineq) + 1, ci->index[h][0]+1, ci->total))
746 break;
747 return h;
748 }
749
750 /* Return the position in ci->index that contains the address of
751 * an inequality that is equal to the k'th inequality of "bmap"
752 * up to the constant term, provided it does not point to the very
753 * same inequality.
754 * If there is no such inequality, then return the position where
755 * such an inequality should be inserted.
756 */
hash_index(struct isl_constraint_index * ci,__isl_keep isl_basic_map * bmap,int k)757 static int hash_index(struct isl_constraint_index *ci,
758 __isl_keep isl_basic_map *bmap, int k)
759 {
760 return hash_index_ineq(ci, &bmap->ineq[k]);
761 }
762
set_hash_index(struct isl_constraint_index * ci,__isl_keep isl_basic_set * bset,int k)763 static int set_hash_index(struct isl_constraint_index *ci,
764 __isl_keep isl_basic_set *bset, int k)
765 {
766 return hash_index(ci, bset, k);
767 }
768
769 /* Fill in the "ci" data structure with the inequalities of "bset".
770 */
setup_constraint_index(struct isl_constraint_index * ci,__isl_keep isl_basic_set * bset)771 static isl_stat setup_constraint_index(struct isl_constraint_index *ci,
772 __isl_keep isl_basic_set *bset)
773 {
774 int k, h;
775
776 if (create_constraint_index(ci, bset) < 0)
777 return isl_stat_error;
778
779 for (k = 0; k < bset->n_ineq; ++k) {
780 h = set_hash_index(ci, bset, k);
781 ci->index[h] = &bset->ineq[k];
782 }
783
784 return isl_stat_ok;
785 }
786
787 /* Is the inequality ineq (obviously) redundant with respect
788 * to the constraints in "ci"?
789 *
790 * Look for an inequality in "ci" with the same coefficients and then
791 * check if the contant term of "ineq" is greater than or equal
792 * to the constant term of that inequality. If so, "ineq" is clearly
793 * redundant.
794 *
795 * Note that hash_index_ineq ignores a stored constraint if it has
796 * the same address as the passed inequality. It is ok to pass
797 * the address of a local variable here since it will never be
798 * the same as the address of a constraint in "ci".
799 */
constraint_index_is_redundant(struct isl_constraint_index * ci,isl_int * ineq)800 static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci,
801 isl_int *ineq)
802 {
803 int h;
804
805 h = hash_index_ineq(ci, &ineq);
806 if (!ci->index[h])
807 return isl_bool_false;
808 return isl_int_ge(ineq[0], (*ci->index[h])[0]);
809 }
810
811 /* If we can eliminate more than one div, then we need to make
812 * sure we do it from last div to first div, in order not to
813 * change the position of the other divs that still need to
814 * be removed.
815 */
remove_duplicate_divs(__isl_take isl_basic_map * bmap,int * progress)816 static __isl_give isl_basic_map *remove_duplicate_divs(
817 __isl_take isl_basic_map *bmap, int *progress)
818 {
819 unsigned int size;
820 int *index;
821 int *elim_for;
822 int k, l, h;
823 int bits;
824 struct isl_blk eq;
825 isl_size v_div;
826 unsigned total;
827 struct isl_ctx *ctx;
828
829 bmap = isl_basic_map_order_divs(bmap);
830 if (!bmap || bmap->n_div <= 1)
831 return bmap;
832
833 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
834 if (v_div < 0)
835 return isl_basic_map_free(bmap);
836 total = v_div + bmap->n_div;
837
838 ctx = bmap->ctx;
839 for (k = bmap->n_div - 1; k >= 0; --k)
840 if (!isl_int_is_zero(bmap->div[k][0]))
841 break;
842 if (k <= 0)
843 return bmap;
844
845 size = round_up(4 * bmap->n_div / 3 - 1);
846 if (size == 0)
847 return bmap;
848 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
849 bits = ffs(size) - 1;
850 index = isl_calloc_array(ctx, int, size);
851 if (!elim_for || !index)
852 goto out;
853 eq = isl_blk_alloc(ctx, 1+total);
854 if (isl_blk_is_error(eq))
855 goto out;
856
857 isl_seq_clr(eq.data, 1+total);
858 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
859 for (--k; k >= 0; --k) {
860 uint32_t hash;
861
862 if (isl_int_is_zero(bmap->div[k][0]))
863 continue;
864
865 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
866 for (h = hash; index[h]; h = (h+1) % size)
867 if (isl_seq_eq(bmap->div[k],
868 bmap->div[index[h]-1], 2+total))
869 break;
870 if (index[h]) {
871 *progress = 1;
872 l = index[h] - 1;
873 elim_for[l] = k + 1;
874 }
875 index[h] = k+1;
876 }
877 for (l = bmap->n_div - 1; l >= 0; --l) {
878 if (!elim_for[l])
879 continue;
880 k = elim_for[l] - 1;
881 isl_int_set_si(eq.data[1 + v_div + k], -1);
882 isl_int_set_si(eq.data[1 + v_div + l], 1);
883 bmap = eliminate_div(bmap, eq.data, l, 1);
884 if (!bmap)
885 break;
886 isl_int_set_si(eq.data[1 + v_div + k], 0);
887 isl_int_set_si(eq.data[1 + v_div + l], 0);
888 }
889
890 isl_blk_free(ctx, eq);
891 out:
892 free(index);
893 free(elim_for);
894 return bmap;
895 }
896
n_pure_div_eq(__isl_keep isl_basic_map * bmap)897 static int n_pure_div_eq(__isl_keep isl_basic_map *bmap)
898 {
899 int i, j;
900 isl_size v_div;
901
902 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
903 if (v_div < 0)
904 return -1;
905 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
906 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
907 --j;
908 if (j < 0)
909 break;
910 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + v_div, j) != -1)
911 return 0;
912 }
913 return i;
914 }
915
916 /* Normalize divs that appear in equalities.
917 *
918 * In particular, we assume that bmap contains some equalities
919 * of the form
920 *
921 * a x = m * e_i
922 *
923 * and we want to replace the set of e_i by a minimal set and
924 * such that the new e_i have a canonical representation in terms
925 * of the vector x.
926 * If any of the equalities involves more than one divs, then
927 * we currently simply bail out.
928 *
929 * Let us first additionally assume that all equalities involve
930 * a div. The equalities then express modulo constraints on the
931 * remaining variables and we can use "parameter compression"
932 * to find a minimal set of constraints. The result is a transformation
933 *
934 * x = T(x') = x_0 + G x'
935 *
936 * with G a lower-triangular matrix with all elements below the diagonal
937 * non-negative and smaller than the diagonal element on the same row.
938 * We first normalize x_0 by making the same property hold in the affine
939 * T matrix.
940 * The rows i of G with a 1 on the diagonal do not impose any modulo
941 * constraint and simply express x_i = x'_i.
942 * For each of the remaining rows i, we introduce a div and a corresponding
943 * equality. In particular
944 *
945 * g_ii e_j = x_i - g_i(x')
946 *
947 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
948 * corresponding div (if g_kk != 1).
949 *
950 * If there are any equalities not involving any div, then we
951 * first apply a variable compression on the variables x:
952 *
953 * x = C x'' x'' = C_2 x
954 *
955 * and perform the above parameter compression on A C instead of on A.
956 * The resulting compression is then of the form
957 *
958 * x'' = T(x') = x_0 + G x'
959 *
960 * and in constructing the new divs and the corresponding equalities,
961 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
962 * by the corresponding row from C_2.
963 */
normalize_divs(__isl_take isl_basic_map * bmap,int * progress)964 static __isl_give isl_basic_map *normalize_divs(__isl_take isl_basic_map *bmap,
965 int *progress)
966 {
967 int i, j, k;
968 isl_size v_div;
969 int div_eq;
970 struct isl_mat *B;
971 struct isl_vec *d;
972 struct isl_mat *T = NULL;
973 struct isl_mat *C = NULL;
974 struct isl_mat *C2 = NULL;
975 isl_int v;
976 int *pos = NULL;
977 int dropped, needed;
978
979 if (!bmap)
980 return NULL;
981
982 if (bmap->n_div == 0)
983 return bmap;
984
985 if (bmap->n_eq == 0)
986 return bmap;
987
988 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
989 return bmap;
990
991 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
992 div_eq = n_pure_div_eq(bmap);
993 if (v_div < 0 || div_eq < 0)
994 return isl_basic_map_free(bmap);
995 if (div_eq == 0)
996 return bmap;
997
998 if (div_eq < bmap->n_eq) {
999 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
1000 bmap->n_eq - div_eq, 0, 1 + v_div);
1001 C = isl_mat_variable_compression(B, &C2);
1002 if (!C || !C2)
1003 goto error;
1004 if (C->n_col == 0) {
1005 bmap = isl_basic_map_set_to_empty(bmap);
1006 isl_mat_free(C);
1007 isl_mat_free(C2);
1008 goto done;
1009 }
1010 }
1011
1012 d = isl_vec_alloc(bmap->ctx, div_eq);
1013 if (!d)
1014 goto error;
1015 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
1016 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
1017 --j;
1018 isl_int_set(d->block.data[i], bmap->eq[i][1 + v_div + j]);
1019 }
1020 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + v_div);
1021
1022 if (C) {
1023 B = isl_mat_product(B, C);
1024 C = NULL;
1025 }
1026
1027 T = isl_mat_parameter_compression(B, d);
1028 if (!T)
1029 goto error;
1030 if (T->n_col == 0) {
1031 bmap = isl_basic_map_set_to_empty(bmap);
1032 isl_mat_free(C2);
1033 isl_mat_free(T);
1034 goto done;
1035 }
1036 isl_int_init(v);
1037 for (i = 0; i < T->n_row - 1; ++i) {
1038 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
1039 if (isl_int_is_zero(v))
1040 continue;
1041 isl_mat_col_submul(T, 0, v, 1 + i);
1042 }
1043 isl_int_clear(v);
1044 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
1045 if (!pos)
1046 goto error;
1047 /* We have to be careful because dropping equalities may reorder them */
1048 dropped = 0;
1049 for (j = bmap->n_div - 1; j >= 0; --j) {
1050 for (i = 0; i < bmap->n_eq; ++i)
1051 if (!isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
1052 break;
1053 if (i < bmap->n_eq) {
1054 bmap = isl_basic_map_drop_div(bmap, j);
1055 if (isl_basic_map_drop_equality(bmap, i) < 0)
1056 goto error;
1057 ++dropped;
1058 }
1059 }
1060 pos[0] = 0;
1061 needed = 0;
1062 for (i = 1; i < T->n_row; ++i) {
1063 if (isl_int_is_one(T->row[i][i]))
1064 pos[i] = i;
1065 else
1066 needed++;
1067 }
1068 if (needed > dropped) {
1069 bmap = isl_basic_map_extend(bmap, needed, needed, 0);
1070 if (!bmap)
1071 goto error;
1072 }
1073 for (i = 1; i < T->n_row; ++i) {
1074 if (isl_int_is_one(T->row[i][i]))
1075 continue;
1076 k = isl_basic_map_alloc_div(bmap);
1077 pos[i] = 1 + v_div + k;
1078 isl_seq_clr(bmap->div[k] + 1, 1 + v_div + bmap->n_div);
1079 isl_int_set(bmap->div[k][0], T->row[i][i]);
1080 if (C2)
1081 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + v_div);
1082 else
1083 isl_int_set_si(bmap->div[k][1 + i], 1);
1084 for (j = 0; j < i; ++j) {
1085 if (isl_int_is_zero(T->row[i][j]))
1086 continue;
1087 if (pos[j] < T->n_row && C2)
1088 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
1089 C2->row[pos[j]], 1 + v_div);
1090 else
1091 isl_int_neg(bmap->div[k][1 + pos[j]],
1092 T->row[i][j]);
1093 }
1094 j = isl_basic_map_alloc_equality(bmap);
1095 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+v_div+bmap->n_div);
1096 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
1097 }
1098 free(pos);
1099 isl_mat_free(C2);
1100 isl_mat_free(T);
1101
1102 if (progress)
1103 *progress = 1;
1104 done:
1105 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
1106
1107 return bmap;
1108 error:
1109 free(pos);
1110 isl_mat_free(C);
1111 isl_mat_free(C2);
1112 isl_mat_free(T);
1113 isl_basic_map_free(bmap);
1114 return NULL;
1115 }
1116
set_div_from_lower_bound(__isl_take isl_basic_map * bmap,int div,int ineq)1117 static __isl_give isl_basic_map *set_div_from_lower_bound(
1118 __isl_take isl_basic_map *bmap, int div, int ineq)
1119 {
1120 unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1121
1122 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1123 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1124 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1125 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1126 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1127
1128 return bmap;
1129 }
1130
1131 /* Check whether it is ok to define a div based on an inequality.
1132 * To avoid the introduction of circular definitions of divs, we
1133 * do not allow such a definition if the resulting expression would refer to
1134 * any other undefined divs or if any known div is defined in
1135 * terms of the unknown div.
1136 */
ok_to_set_div_from_bound(__isl_keep isl_basic_map * bmap,int div,int ineq)1137 static isl_bool ok_to_set_div_from_bound(__isl_keep isl_basic_map *bmap,
1138 int div, int ineq)
1139 {
1140 int j;
1141 unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1142
1143 /* Not defined in terms of unknown divs */
1144 for (j = 0; j < bmap->n_div; ++j) {
1145 if (div == j)
1146 continue;
1147 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1148 continue;
1149 if (isl_int_is_zero(bmap->div[j][0]))
1150 return isl_bool_false;
1151 }
1152
1153 /* No other div defined in terms of this one => avoid loops */
1154 for (j = 0; j < bmap->n_div; ++j) {
1155 if (div == j)
1156 continue;
1157 if (isl_int_is_zero(bmap->div[j][0]))
1158 continue;
1159 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1160 return isl_bool_false;
1161 }
1162
1163 return isl_bool_true;
1164 }
1165
1166 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1167 * be a better expression than the current one?
1168 *
1169 * If we do not have any expression yet, then any expression would be better.
1170 * Otherwise we check if the last variable involved in the inequality
1171 * (disregarding the div that it would define) is in an earlier position
1172 * than the last variable involved in the current div expression.
1173 */
better_div_constraint(__isl_keep isl_basic_map * bmap,int div,int ineq)1174 static isl_bool better_div_constraint(__isl_keep isl_basic_map *bmap,
1175 int div, int ineq)
1176 {
1177 unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1178 int last_div;
1179 int last_ineq;
1180
1181 if (isl_int_is_zero(bmap->div[div][0]))
1182 return isl_bool_true;
1183
1184 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1185 bmap->n_div - (div + 1)) >= 0)
1186 return isl_bool_false;
1187
1188 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1189 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1190 total + bmap->n_div);
1191
1192 return last_ineq < last_div;
1193 }
1194
1195 /* Given two constraints "k" and "l" that are opposite to each other,
1196 * except for the constant term, check if we can use them
1197 * to obtain an expression for one of the hitherto unknown divs or
1198 * a "better" expression for a div for which we already have an expression.
1199 * "sum" is the sum of the constant terms of the constraints.
1200 * If this sum is strictly smaller than the coefficient of one
1201 * of the divs, then this pair can be used define the div.
1202 * To avoid the introduction of circular definitions of divs, we
1203 * do not use the pair if the resulting expression would refer to
1204 * any other undefined divs or if any known div is defined in
1205 * terms of the unknown div.
1206 */
check_for_div_constraints(__isl_take isl_basic_map * bmap,int k,int l,isl_int sum,int * progress)1207 static __isl_give isl_basic_map *check_for_div_constraints(
1208 __isl_take isl_basic_map *bmap, int k, int l, isl_int sum,
1209 int *progress)
1210 {
1211 int i;
1212 unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1213
1214 for (i = 0; i < bmap->n_div; ++i) {
1215 isl_bool set_div;
1216
1217 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1218 continue;
1219 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1220 continue;
1221 set_div = better_div_constraint(bmap, i, k);
1222 if (set_div >= 0 && set_div)
1223 set_div = ok_to_set_div_from_bound(bmap, i, k);
1224 if (set_div < 0)
1225 return isl_basic_map_free(bmap);
1226 if (!set_div)
1227 break;
1228 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1229 bmap = set_div_from_lower_bound(bmap, i, k);
1230 else
1231 bmap = set_div_from_lower_bound(bmap, i, l);
1232 if (progress)
1233 *progress = 1;
1234 break;
1235 }
1236 return bmap;
1237 }
1238
isl_basic_map_remove_duplicate_constraints(__isl_take isl_basic_map * bmap,int * progress,int detect_divs)1239 __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1240 __isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1241 {
1242 struct isl_constraint_index ci;
1243 int k, l, h;
1244 isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
1245 isl_int sum;
1246
1247 if (total < 0 || bmap->n_ineq <= 1)
1248 return bmap;
1249
1250 if (create_constraint_index(&ci, bmap) < 0)
1251 return bmap;
1252
1253 h = isl_seq_get_hash_bits(bmap->ineq[0] + 1, total, ci.bits);
1254 ci.index[h] = &bmap->ineq[0];
1255 for (k = 1; k < bmap->n_ineq; ++k) {
1256 h = hash_index(&ci, bmap, k);
1257 if (!ci.index[h]) {
1258 ci.index[h] = &bmap->ineq[k];
1259 continue;
1260 }
1261 if (progress)
1262 *progress = 1;
1263 l = ci.index[h] - &bmap->ineq[0];
1264 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1265 swap_inequality(bmap, k, l);
1266 isl_basic_map_drop_inequality(bmap, k);
1267 --k;
1268 }
1269 isl_int_init(sum);
1270 for (k = 0; bmap && k < bmap->n_ineq-1; ++k) {
1271 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1272 h = hash_index(&ci, bmap, k);
1273 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1274 if (!ci.index[h])
1275 continue;
1276 l = ci.index[h] - &bmap->ineq[0];
1277 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1278 if (isl_int_is_pos(sum)) {
1279 if (detect_divs)
1280 bmap = check_for_div_constraints(bmap, k, l,
1281 sum, progress);
1282 continue;
1283 }
1284 if (isl_int_is_zero(sum)) {
1285 /* We need to break out of the loop after these
1286 * changes since the contents of the hash
1287 * will no longer be valid.
1288 * Plus, we probably we want to regauss first.
1289 */
1290 if (progress)
1291 *progress = 1;
1292 isl_basic_map_drop_inequality(bmap, l);
1293 isl_basic_map_inequality_to_equality(bmap, k);
1294 } else
1295 bmap = isl_basic_map_set_to_empty(bmap);
1296 break;
1297 }
1298 isl_int_clear(sum);
1299
1300 constraint_index_free(&ci);
1301 return bmap;
1302 }
1303
1304 /* Detect all pairs of inequalities that form an equality.
1305 *
1306 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1307 * Call it repeatedly while it is making progress.
1308 */
isl_basic_map_detect_inequality_pairs(__isl_take isl_basic_map * bmap,int * progress)1309 __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
1310 __isl_take isl_basic_map *bmap, int *progress)
1311 {
1312 int duplicate;
1313
1314 do {
1315 duplicate = 0;
1316 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1317 &duplicate, 0);
1318 if (progress && duplicate)
1319 *progress = 1;
1320 } while (duplicate);
1321
1322 return bmap;
1323 }
1324
1325 /* Given a known integer division "div" that is not integral
1326 * (with denominator 1), eliminate it from the constraints in "bmap"
1327 * where it appears with a (positive or negative) unit coefficient.
1328 * If "progress" is not NULL, then it gets set if the elimination
1329 * results in any changes.
1330 *
1331 * That is, replace
1332 *
1333 * floor(e/m) + f >= 0
1334 *
1335 * by
1336 *
1337 * e + m f >= 0
1338 *
1339 * and
1340 *
1341 * -floor(e/m) + f >= 0
1342 *
1343 * by
1344 *
1345 * -e + m f + m - 1 >= 0
1346 *
1347 * The first conversion is valid because floor(e/m) >= -f is equivalent
1348 * to e/m >= -f because -f is an integral expression.
1349 * The second conversion follows from the fact that
1350 *
1351 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1352 *
1353 *
1354 * Note that one of the div constraints may have been eliminated
1355 * due to being redundant with respect to the constraint that is
1356 * being modified by this function. The modified constraint may
1357 * no longer imply this div constraint, so we add it back to make
1358 * sure we do not lose any information.
1359 */
eliminate_unit_div(__isl_take isl_basic_map * bmap,int div,int * progress)1360 static __isl_give isl_basic_map *eliminate_unit_div(
1361 __isl_take isl_basic_map *bmap, int div, int *progress)
1362 {
1363 int j;
1364 isl_size v_div, dim;
1365 isl_ctx *ctx;
1366
1367 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1368 dim = isl_basic_map_dim(bmap, isl_dim_all);
1369 if (v_div < 0 || dim < 0)
1370 return isl_basic_map_free(bmap);
1371
1372 ctx = isl_basic_map_get_ctx(bmap);
1373
1374 for (j = 0; j < bmap->n_ineq; ++j) {
1375 int s;
1376
1377 if (!isl_int_is_one(bmap->ineq[j][1 + v_div + div]) &&
1378 !isl_int_is_negone(bmap->ineq[j][1 + v_div + div]))
1379 continue;
1380
1381 if (progress)
1382 *progress = 1;
1383
1384 s = isl_int_sgn(bmap->ineq[j][1 + v_div + div]);
1385 isl_int_set_si(bmap->ineq[j][1 + v_div + div], 0);
1386 if (s < 0)
1387 isl_seq_combine(bmap->ineq[j],
1388 ctx->negone, bmap->div[div] + 1,
1389 bmap->div[div][0], bmap->ineq[j], 1 + dim);
1390 else
1391 isl_seq_combine(bmap->ineq[j],
1392 ctx->one, bmap->div[div] + 1,
1393 bmap->div[div][0], bmap->ineq[j], 1 + dim);
1394 if (s < 0) {
1395 isl_int_add(bmap->ineq[j][0],
1396 bmap->ineq[j][0], bmap->div[div][0]);
1397 isl_int_sub_ui(bmap->ineq[j][0],
1398 bmap->ineq[j][0], 1);
1399 }
1400
1401 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1402 bmap = isl_basic_map_add_div_constraint(bmap, div, s);
1403 if (!bmap)
1404 return NULL;
1405 }
1406
1407 return bmap;
1408 }
1409
1410 /* Eliminate selected known divs from constraints where they appear with
1411 * a (positive or negative) unit coefficient.
1412 * In particular, only handle those for which "select" returns isl_bool_true.
1413 * If "progress" is not NULL, then it gets set if the elimination
1414 * results in any changes.
1415 *
1416 * We skip integral divs, i.e., those with denominator 1, as we would
1417 * risk eliminating the div from the div constraints. We do not need
1418 * to handle those divs here anyway since the div constraints will turn
1419 * out to form an equality and this equality can then be used to eliminate
1420 * the div from all constraints.
1421 */
eliminate_selected_unit_divs(__isl_take isl_basic_map * bmap,isl_bool (* select)(__isl_keep isl_basic_map * bmap,int div),int * progress)1422 static __isl_give isl_basic_map *eliminate_selected_unit_divs(
1423 __isl_take isl_basic_map *bmap,
1424 isl_bool (*select)(__isl_keep isl_basic_map *bmap, int div),
1425 int *progress)
1426 {
1427 int i;
1428
1429 if (!bmap)
1430 return NULL;
1431
1432 for (i = 0; i < bmap->n_div; ++i) {
1433 isl_bool selected;
1434
1435 if (isl_int_is_zero(bmap->div[i][0]))
1436 continue;
1437 if (isl_int_is_one(bmap->div[i][0]))
1438 continue;
1439 selected = select(bmap, i);
1440 if (selected < 0)
1441 return isl_basic_map_free(bmap);
1442 if (!selected)
1443 continue;
1444 bmap = eliminate_unit_div(bmap, i, progress);
1445 if (!bmap)
1446 return NULL;
1447 }
1448
1449 return bmap;
1450 }
1451
1452 /* eliminate_selected_unit_divs callback that selects every
1453 * integer division.
1454 */
is_any_div(__isl_keep isl_basic_map * bmap,int div)1455 static isl_bool is_any_div(__isl_keep isl_basic_map *bmap, int div)
1456 {
1457 return isl_bool_true;
1458 }
1459
1460 /* Eliminate known divs from constraints where they appear with
1461 * a (positive or negative) unit coefficient.
1462 * If "progress" is not NULL, then it gets set if the elimination
1463 * results in any changes.
1464 */
eliminate_unit_divs(__isl_take isl_basic_map * bmap,int * progress)1465 static __isl_give isl_basic_map *eliminate_unit_divs(
1466 __isl_take isl_basic_map *bmap, int *progress)
1467 {
1468 return eliminate_selected_unit_divs(bmap, &is_any_div, progress);
1469 }
1470
1471 /* eliminate_selected_unit_divs callback that selects
1472 * integer divisions that only appear with
1473 * a (positive or negative) unit coefficient
1474 * (outside their div constraints).
1475 */
is_pure_unit_div(__isl_keep isl_basic_map * bmap,int div)1476 static isl_bool is_pure_unit_div(__isl_keep isl_basic_map *bmap, int div)
1477 {
1478 int i;
1479 isl_size v_div, n_ineq;
1480
1481 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1482 n_ineq = isl_basic_map_n_inequality(bmap);
1483 if (v_div < 0 || n_ineq < 0)
1484 return isl_bool_error;
1485
1486 for (i = 0; i < n_ineq; ++i) {
1487 isl_bool skip;
1488
1489 if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div]))
1490 continue;
1491 skip = isl_basic_map_is_div_constraint(bmap,
1492 bmap->ineq[i], div);
1493 if (skip < 0)
1494 return isl_bool_error;
1495 if (skip)
1496 continue;
1497 if (!isl_int_is_one(bmap->ineq[i][1 + v_div + div]) &&
1498 !isl_int_is_negone(bmap->ineq[i][1 + v_div + div]))
1499 return isl_bool_false;
1500 }
1501
1502 return isl_bool_true;
1503 }
1504
1505 /* Eliminate known divs from constraints where they appear with
1506 * a (positive or negative) unit coefficient,
1507 * but only if they do not appear in any other constraints
1508 * (other than the div constraints).
1509 */
isl_basic_map_eliminate_pure_unit_divs(__isl_take isl_basic_map * bmap)1510 __isl_give isl_basic_map *isl_basic_map_eliminate_pure_unit_divs(
1511 __isl_take isl_basic_map *bmap)
1512 {
1513 return eliminate_selected_unit_divs(bmap, &is_pure_unit_div, NULL);
1514 }
1515
isl_basic_map_simplify(__isl_take isl_basic_map * bmap)1516 __isl_give isl_basic_map *isl_basic_map_simplify(__isl_take isl_basic_map *bmap)
1517 {
1518 int progress = 1;
1519 if (!bmap)
1520 return NULL;
1521 while (progress) {
1522 isl_bool empty;
1523
1524 progress = 0;
1525 empty = isl_basic_map_plain_is_empty(bmap);
1526 if (empty < 0)
1527 return isl_basic_map_free(bmap);
1528 if (empty)
1529 break;
1530 bmap = isl_basic_map_normalize_constraints(bmap);
1531 bmap = reduce_div_coefficients(bmap);
1532 bmap = normalize_div_expressions(bmap);
1533 bmap = remove_duplicate_divs(bmap, &progress);
1534 bmap = eliminate_unit_divs(bmap, &progress);
1535 bmap = eliminate_divs_eq(bmap, &progress);
1536 bmap = eliminate_divs_ineq(bmap, &progress);
1537 bmap = isl_basic_map_gauss(bmap, &progress);
1538 /* requires equalities in normal form */
1539 bmap = normalize_divs(bmap, &progress);
1540 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1541 &progress, 1);
1542 if (bmap && progress)
1543 ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
1544 }
1545 return bmap;
1546 }
1547
isl_basic_set_simplify(__isl_take isl_basic_set * bset)1548 __isl_give isl_basic_set *isl_basic_set_simplify(
1549 __isl_take isl_basic_set *bset)
1550 {
1551 return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset)));
1552 }
1553
1554
isl_basic_map_is_div_constraint(__isl_keep isl_basic_map * bmap,isl_int * constraint,unsigned div)1555 isl_bool isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1556 isl_int *constraint, unsigned div)
1557 {
1558 unsigned pos;
1559
1560 if (!bmap)
1561 return isl_bool_error;
1562
1563 pos = isl_basic_map_offset(bmap, isl_dim_div) + div;
1564
1565 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1566 int neg;
1567 isl_int_sub(bmap->div[div][1],
1568 bmap->div[div][1], bmap->div[div][0]);
1569 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1570 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1571 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1572 isl_int_add(bmap->div[div][1],
1573 bmap->div[div][1], bmap->div[div][0]);
1574 if (!neg)
1575 return isl_bool_false;
1576 if (isl_seq_first_non_zero(constraint+pos+1,
1577 bmap->n_div-div-1) != -1)
1578 return isl_bool_false;
1579 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1580 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1581 return isl_bool_false;
1582 if (isl_seq_first_non_zero(constraint+pos+1,
1583 bmap->n_div-div-1) != -1)
1584 return isl_bool_false;
1585 } else
1586 return isl_bool_false;
1587
1588 return isl_bool_true;
1589 }
1590
1591 /* If the only constraints a div d=floor(f/m)
1592 * appears in are its two defining constraints
1593 *
1594 * f - m d >=0
1595 * -(f - (m - 1)) + m d >= 0
1596 *
1597 * then it can safely be removed.
1598 */
div_is_redundant(__isl_keep isl_basic_map * bmap,int div)1599 static isl_bool div_is_redundant(__isl_keep isl_basic_map *bmap, int div)
1600 {
1601 int i;
1602 isl_size v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1603 unsigned pos = 1 + v_div + div;
1604
1605 if (v_div < 0)
1606 return isl_bool_error;
1607
1608 for (i = 0; i < bmap->n_eq; ++i)
1609 if (!isl_int_is_zero(bmap->eq[i][pos]))
1610 return isl_bool_false;
1611
1612 for (i = 0; i < bmap->n_ineq; ++i) {
1613 isl_bool red;
1614
1615 if (isl_int_is_zero(bmap->ineq[i][pos]))
1616 continue;
1617 red = isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div);
1618 if (red < 0 || !red)
1619 return red;
1620 }
1621
1622 for (i = 0; i < bmap->n_div; ++i) {
1623 if (isl_int_is_zero(bmap->div[i][0]))
1624 continue;
1625 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1626 return isl_bool_false;
1627 }
1628
1629 return isl_bool_true;
1630 }
1631
1632 /*
1633 * Remove divs that don't occur in any of the constraints or other divs.
1634 * These can arise when dropping constraints from a basic map or
1635 * when the divs of a basic map have been temporarily aligned
1636 * with the divs of another basic map.
1637 */
remove_redundant_divs(__isl_take isl_basic_map * bmap)1638 static __isl_give isl_basic_map *remove_redundant_divs(
1639 __isl_take isl_basic_map *bmap)
1640 {
1641 int i;
1642 isl_size v_div;
1643
1644 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1645 if (v_div < 0)
1646 return isl_basic_map_free(bmap);
1647
1648 for (i = bmap->n_div-1; i >= 0; --i) {
1649 isl_bool redundant;
1650
1651 redundant = div_is_redundant(bmap, i);
1652 if (redundant < 0)
1653 return isl_basic_map_free(bmap);
1654 if (!redundant)
1655 continue;
1656 bmap = isl_basic_map_drop_constraints_involving(bmap,
1657 v_div + i, 1);
1658 bmap = isl_basic_map_drop_div(bmap, i);
1659 }
1660 return bmap;
1661 }
1662
1663 /* Mark "bmap" as final, without checking for obviously redundant
1664 * integer divisions. This function should be used when "bmap"
1665 * is known not to involve any such integer divisions.
1666 */
isl_basic_map_mark_final(__isl_take isl_basic_map * bmap)1667 __isl_give isl_basic_map *isl_basic_map_mark_final(
1668 __isl_take isl_basic_map *bmap)
1669 {
1670 if (!bmap)
1671 return NULL;
1672 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1673 return bmap;
1674 }
1675
1676 /* Mark "bmap" as final, after removing obviously redundant integer divisions.
1677 */
isl_basic_map_finalize(__isl_take isl_basic_map * bmap)1678 __isl_give isl_basic_map *isl_basic_map_finalize(__isl_take isl_basic_map *bmap)
1679 {
1680 bmap = remove_redundant_divs(bmap);
1681 bmap = isl_basic_map_mark_final(bmap);
1682 return bmap;
1683 }
1684
isl_basic_set_finalize(__isl_take isl_basic_set * bset)1685 __isl_give isl_basic_set *isl_basic_set_finalize(
1686 __isl_take isl_basic_set *bset)
1687 {
1688 return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset)));
1689 }
1690
1691 /* Remove definition of any div that is defined in terms of the given variable.
1692 * The div itself is not removed. Functions such as
1693 * eliminate_divs_ineq depend on the other divs remaining in place.
1694 */
remove_dependent_vars(__isl_take isl_basic_map * bmap,int pos)1695 static __isl_give isl_basic_map *remove_dependent_vars(
1696 __isl_take isl_basic_map *bmap, int pos)
1697 {
1698 int i;
1699
1700 if (!bmap)
1701 return NULL;
1702
1703 for (i = 0; i < bmap->n_div; ++i) {
1704 if (isl_int_is_zero(bmap->div[i][0]))
1705 continue;
1706 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1707 continue;
1708 bmap = isl_basic_map_mark_div_unknown(bmap, i);
1709 if (!bmap)
1710 return NULL;
1711 }
1712 return bmap;
1713 }
1714
1715 /* Eliminate the specified variables from the constraints using
1716 * Fourier-Motzkin. The variables themselves are not removed.
1717 */
isl_basic_map_eliminate_vars(__isl_take isl_basic_map * bmap,unsigned pos,unsigned n)1718 __isl_give isl_basic_map *isl_basic_map_eliminate_vars(
1719 __isl_take isl_basic_map *bmap, unsigned pos, unsigned n)
1720 {
1721 int d;
1722 int i, j, k;
1723 isl_size total;
1724 int need_gauss = 0;
1725
1726 if (n == 0)
1727 return bmap;
1728 total = isl_basic_map_dim(bmap, isl_dim_all);
1729 if (total < 0)
1730 return isl_basic_map_free(bmap);
1731
1732 bmap = isl_basic_map_cow(bmap);
1733 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1734 bmap = remove_dependent_vars(bmap, d);
1735 if (!bmap)
1736 return NULL;
1737
1738 for (d = pos + n - 1;
1739 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1740 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1741 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1742 int n_lower, n_upper;
1743 if (!bmap)
1744 return NULL;
1745 for (i = 0; i < bmap->n_eq; ++i) {
1746 if (isl_int_is_zero(bmap->eq[i][1+d]))
1747 continue;
1748 bmap = eliminate_var_using_equality(bmap, d,
1749 bmap->eq[i], 0, NULL);
1750 if (isl_basic_map_drop_equality(bmap, i) < 0)
1751 return isl_basic_map_free(bmap);
1752 need_gauss = 1;
1753 break;
1754 }
1755 if (i < bmap->n_eq)
1756 continue;
1757 n_lower = 0;
1758 n_upper = 0;
1759 for (i = 0; i < bmap->n_ineq; ++i) {
1760 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1761 n_lower++;
1762 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1763 n_upper++;
1764 }
1765 bmap = isl_basic_map_extend_constraints(bmap,
1766 0, n_lower * n_upper);
1767 if (!bmap)
1768 goto error;
1769 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1770 int last;
1771 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1772 continue;
1773 last = -1;
1774 for (j = 0; j < i; ++j) {
1775 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1776 continue;
1777 last = j;
1778 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1779 isl_int_sgn(bmap->ineq[j][1+d]))
1780 continue;
1781 k = isl_basic_map_alloc_inequality(bmap);
1782 if (k < 0)
1783 goto error;
1784 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1785 1+total);
1786 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1787 1+d, 1+total, NULL);
1788 }
1789 isl_basic_map_drop_inequality(bmap, i);
1790 i = last + 1;
1791 }
1792 if (n_lower > 0 && n_upper > 0) {
1793 bmap = isl_basic_map_normalize_constraints(bmap);
1794 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1795 NULL, 0);
1796 bmap = isl_basic_map_gauss(bmap, NULL);
1797 bmap = isl_basic_map_remove_redundancies(bmap);
1798 need_gauss = 0;
1799 if (!bmap)
1800 goto error;
1801 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1802 break;
1803 }
1804 }
1805 if (need_gauss)
1806 bmap = isl_basic_map_gauss(bmap, NULL);
1807 return bmap;
1808 error:
1809 isl_basic_map_free(bmap);
1810 return NULL;
1811 }
1812
isl_basic_set_eliminate_vars(__isl_take isl_basic_set * bset,unsigned pos,unsigned n)1813 __isl_give isl_basic_set *isl_basic_set_eliminate_vars(
1814 __isl_take isl_basic_set *bset, unsigned pos, unsigned n)
1815 {
1816 return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset),
1817 pos, n));
1818 }
1819
1820 /* Eliminate the specified n dimensions starting at first from the
1821 * constraints, without removing the dimensions from the space.
1822 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1823 * Otherwise, they are projected out and the original space is restored.
1824 */
isl_basic_map_eliminate(__isl_take isl_basic_map * bmap,enum isl_dim_type type,unsigned first,unsigned n)1825 __isl_give isl_basic_map *isl_basic_map_eliminate(
1826 __isl_take isl_basic_map *bmap,
1827 enum isl_dim_type type, unsigned first, unsigned n)
1828 {
1829 isl_space *space;
1830
1831 if (!bmap)
1832 return NULL;
1833 if (n == 0)
1834 return bmap;
1835
1836 if (isl_basic_map_check_range(bmap, type, first, n) < 0)
1837 return isl_basic_map_free(bmap);
1838
1839 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1840 first += isl_basic_map_offset(bmap, type) - 1;
1841 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1842 return isl_basic_map_finalize(bmap);
1843 }
1844
1845 space = isl_basic_map_get_space(bmap);
1846 bmap = isl_basic_map_project_out(bmap, type, first, n);
1847 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1848 bmap = isl_basic_map_reset_space(bmap, space);
1849 return bmap;
1850 }
1851
isl_basic_set_eliminate(__isl_take isl_basic_set * bset,enum isl_dim_type type,unsigned first,unsigned n)1852 __isl_give isl_basic_set *isl_basic_set_eliminate(
1853 __isl_take isl_basic_set *bset,
1854 enum isl_dim_type type, unsigned first, unsigned n)
1855 {
1856 return isl_basic_map_eliminate(bset, type, first, n);
1857 }
1858
1859 /* Remove all constraints from "bmap" that reference any unknown local
1860 * variables (directly or indirectly).
1861 *
1862 * Dropping all constraints on a local variable will make it redundant,
1863 * so it will get removed implicitly by
1864 * isl_basic_map_drop_constraints_involving_dims. Some other local
1865 * variables may also end up becoming redundant if they only appear
1866 * in constraints together with the unknown local variable.
1867 * Therefore, start over after calling
1868 * isl_basic_map_drop_constraints_involving_dims.
1869 */
isl_basic_map_drop_constraints_involving_unknown_divs(__isl_take isl_basic_map * bmap)1870 __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_unknown_divs(
1871 __isl_take isl_basic_map *bmap)
1872 {
1873 isl_bool known;
1874 isl_size n_div;
1875 int i, o_div;
1876
1877 known = isl_basic_map_divs_known(bmap);
1878 if (known < 0)
1879 return isl_basic_map_free(bmap);
1880 if (known)
1881 return bmap;
1882
1883 n_div = isl_basic_map_dim(bmap, isl_dim_div);
1884 if (n_div < 0)
1885 return isl_basic_map_free(bmap);
1886 o_div = isl_basic_map_offset(bmap, isl_dim_div) - 1;
1887
1888 for (i = 0; i < n_div; ++i) {
1889 known = isl_basic_map_div_is_known(bmap, i);
1890 if (known < 0)
1891 return isl_basic_map_free(bmap);
1892 if (known)
1893 continue;
1894 bmap = remove_dependent_vars(bmap, o_div + i);
1895 bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
1896 isl_dim_div, i, 1);
1897 n_div = isl_basic_map_dim(bmap, isl_dim_div);
1898 if (n_div < 0)
1899 return isl_basic_map_free(bmap);
1900 i = -1;
1901 }
1902
1903 return bmap;
1904 }
1905
1906 /* Remove all constraints from "bset" that reference any unknown local
1907 * variables (directly or indirectly).
1908 */
isl_basic_set_drop_constraints_involving_unknown_divs(__isl_take isl_basic_set * bset)1909 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_unknown_divs(
1910 __isl_take isl_basic_set *bset)
1911 {
1912 isl_basic_map *bmap;
1913
1914 bmap = bset_to_bmap(bset);
1915 bmap = isl_basic_map_drop_constraints_involving_unknown_divs(bmap);
1916 return bset_from_bmap(bmap);
1917 }
1918
1919 /* Remove all constraints from "map" that reference any unknown local
1920 * variables (directly or indirectly).
1921 *
1922 * Since constraints may get dropped from the basic maps,
1923 * they may no longer be disjoint from each other.
1924 */
isl_map_drop_constraints_involving_unknown_divs(__isl_take isl_map * map)1925 __isl_give isl_map *isl_map_drop_constraints_involving_unknown_divs(
1926 __isl_take isl_map *map)
1927 {
1928 int i;
1929 isl_bool known;
1930
1931 known = isl_map_divs_known(map);
1932 if (known < 0)
1933 return isl_map_free(map);
1934 if (known)
1935 return map;
1936
1937 map = isl_map_cow(map);
1938 if (!map)
1939 return NULL;
1940
1941 for (i = 0; i < map->n; ++i) {
1942 map->p[i] =
1943 isl_basic_map_drop_constraints_involving_unknown_divs(
1944 map->p[i]);
1945 if (!map->p[i])
1946 return isl_map_free(map);
1947 }
1948
1949 if (map->n > 1)
1950 ISL_F_CLR(map, ISL_MAP_DISJOINT);
1951
1952 return map;
1953 }
1954
1955 /* Don't assume equalities are in order, because align_divs
1956 * may have changed the order of the divs.
1957 */
compute_elimination_index(__isl_keep isl_basic_map * bmap,int * elim,unsigned len)1958 static void compute_elimination_index(__isl_keep isl_basic_map *bmap, int *elim,
1959 unsigned len)
1960 {
1961 int d, i;
1962
1963 for (d = 0; d < len; ++d)
1964 elim[d] = -1;
1965 for (i = 0; i < bmap->n_eq; ++i) {
1966 for (d = len - 1; d >= 0; --d) {
1967 if (isl_int_is_zero(bmap->eq[i][1+d]))
1968 continue;
1969 elim[d] = i;
1970 break;
1971 }
1972 }
1973 }
1974
set_compute_elimination_index(__isl_keep isl_basic_set * bset,int * elim,unsigned len)1975 static void set_compute_elimination_index(__isl_keep isl_basic_set *bset,
1976 int *elim, unsigned len)
1977 {
1978 compute_elimination_index(bset_to_bmap(bset), elim, len);
1979 }
1980
reduced_using_equalities(isl_int * dst,isl_int * src,__isl_keep isl_basic_map * bmap,int * elim,unsigned total)1981 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1982 __isl_keep isl_basic_map *bmap, int *elim, unsigned total)
1983 {
1984 int d;
1985 int copied = 0;
1986
1987 for (d = total - 1; d >= 0; --d) {
1988 if (isl_int_is_zero(src[1+d]))
1989 continue;
1990 if (elim[d] == -1)
1991 continue;
1992 if (!copied) {
1993 isl_seq_cpy(dst, src, 1 + total);
1994 copied = 1;
1995 }
1996 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1997 }
1998 return copied;
1999 }
2000
set_reduced_using_equalities(isl_int * dst,isl_int * src,__isl_keep isl_basic_set * bset,int * elim,unsigned total)2001 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
2002 __isl_keep isl_basic_set *bset, int *elim, unsigned total)
2003 {
2004 return reduced_using_equalities(dst, src,
2005 bset_to_bmap(bset), elim, total);
2006 }
2007
isl_basic_set_reduce_using_equalities(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * context)2008 static __isl_give isl_basic_set *isl_basic_set_reduce_using_equalities(
2009 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
2010 {
2011 int i;
2012 int *elim;
2013 isl_size dim;
2014
2015 if (!bset || !context)
2016 goto error;
2017
2018 if (context->n_eq == 0) {
2019 isl_basic_set_free(context);
2020 return bset;
2021 }
2022
2023 bset = isl_basic_set_cow(bset);
2024 dim = isl_basic_set_dim(bset, isl_dim_set);
2025 if (dim < 0)
2026 goto error;
2027
2028 elim = isl_alloc_array(bset->ctx, int, dim);
2029 if (!elim)
2030 goto error;
2031 set_compute_elimination_index(context, elim, dim);
2032 for (i = 0; i < bset->n_eq; ++i)
2033 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
2034 context, elim, dim);
2035 for (i = 0; i < bset->n_ineq; ++i)
2036 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
2037 context, elim, dim);
2038 isl_basic_set_free(context);
2039 free(elim);
2040 bset = isl_basic_set_simplify(bset);
2041 bset = isl_basic_set_finalize(bset);
2042 return bset;
2043 error:
2044 isl_basic_set_free(bset);
2045 isl_basic_set_free(context);
2046 return NULL;
2047 }
2048
2049 /* For each inequality in "ineq" that is a shifted (more relaxed)
2050 * copy of an inequality in "context", mark the corresponding entry
2051 * in "row" with -1.
2052 * If an inequality only has a non-negative constant term, then
2053 * mark it as well.
2054 */
mark_shifted_constraints(__isl_keep isl_mat * ineq,__isl_keep isl_basic_set * context,int * row)2055 static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq,
2056 __isl_keep isl_basic_set *context, int *row)
2057 {
2058 struct isl_constraint_index ci;
2059 isl_size n_ineq, cols;
2060 unsigned total;
2061 int k;
2062
2063 if (!ineq || !context)
2064 return isl_stat_error;
2065 if (context->n_ineq == 0)
2066 return isl_stat_ok;
2067 if (setup_constraint_index(&ci, context) < 0)
2068 return isl_stat_error;
2069
2070 n_ineq = isl_mat_rows(ineq);
2071 cols = isl_mat_cols(ineq);
2072 if (n_ineq < 0 || cols < 0)
2073 return isl_stat_error;
2074 total = cols - 1;
2075 for (k = 0; k < n_ineq; ++k) {
2076 int l;
2077 isl_bool redundant;
2078
2079 l = isl_seq_first_non_zero(ineq->row[k] + 1, total);
2080 if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) {
2081 row[k] = -1;
2082 continue;
2083 }
2084 redundant = constraint_index_is_redundant(&ci, ineq->row[k]);
2085 if (redundant < 0)
2086 goto error;
2087 if (!redundant)
2088 continue;
2089 row[k] = -1;
2090 }
2091 constraint_index_free(&ci);
2092 return isl_stat_ok;
2093 error:
2094 constraint_index_free(&ci);
2095 return isl_stat_error;
2096 }
2097
remove_shifted_constraints(__isl_take isl_basic_set * bset,__isl_keep isl_basic_set * context)2098 static __isl_give isl_basic_set *remove_shifted_constraints(
2099 __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *context)
2100 {
2101 struct isl_constraint_index ci;
2102 int k;
2103
2104 if (!bset || !context)
2105 return bset;
2106
2107 if (context->n_ineq == 0)
2108 return bset;
2109 if (setup_constraint_index(&ci, context) < 0)
2110 return bset;
2111
2112 for (k = 0; k < bset->n_ineq; ++k) {
2113 isl_bool redundant;
2114
2115 redundant = constraint_index_is_redundant(&ci, bset->ineq[k]);
2116 if (redundant < 0)
2117 goto error;
2118 if (!redundant)
2119 continue;
2120 bset = isl_basic_set_cow(bset);
2121 if (!bset)
2122 goto error;
2123 isl_basic_set_drop_inequality(bset, k);
2124 --k;
2125 }
2126 constraint_index_free(&ci);
2127 return bset;
2128 error:
2129 constraint_index_free(&ci);
2130 return bset;
2131 }
2132
2133 /* Remove constraints from "bmap" that are identical to constraints
2134 * in "context" or that are more relaxed (greater constant term).
2135 *
2136 * We perform the test for shifted copies on the pure constraints
2137 * in remove_shifted_constraints.
2138 */
isl_basic_map_remove_shifted_constraints(__isl_take isl_basic_map * bmap,__isl_take isl_basic_map * context)2139 static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
2140 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
2141 {
2142 isl_basic_set *bset, *bset_context;
2143
2144 if (!bmap || !context)
2145 goto error;
2146
2147 if (bmap->n_ineq == 0 || context->n_ineq == 0) {
2148 isl_basic_map_free(context);
2149 return bmap;
2150 }
2151
2152 context = isl_basic_map_align_divs(context, bmap);
2153 bmap = isl_basic_map_align_divs(bmap, context);
2154
2155 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
2156 bset_context = isl_basic_map_underlying_set(context);
2157 bset = remove_shifted_constraints(bset, bset_context);
2158 isl_basic_set_free(bset_context);
2159
2160 bmap = isl_basic_map_overlying_set(bset, bmap);
2161
2162 return bmap;
2163 error:
2164 isl_basic_map_free(bmap);
2165 isl_basic_map_free(context);
2166 return NULL;
2167 }
2168
2169 /* Does the (linear part of a) constraint "c" involve any of the "len"
2170 * "relevant" dimensions?
2171 */
is_related(isl_int * c,int len,int * relevant)2172 static int is_related(isl_int *c, int len, int *relevant)
2173 {
2174 int i;
2175
2176 for (i = 0; i < len; ++i) {
2177 if (!relevant[i])
2178 continue;
2179 if (!isl_int_is_zero(c[i]))
2180 return 1;
2181 }
2182
2183 return 0;
2184 }
2185
2186 /* Drop constraints from "bmap" that do not involve any of
2187 * the dimensions marked "relevant".
2188 */
drop_unrelated_constraints(__isl_take isl_basic_map * bmap,int * relevant)2189 static __isl_give isl_basic_map *drop_unrelated_constraints(
2190 __isl_take isl_basic_map *bmap, int *relevant)
2191 {
2192 int i;
2193 isl_size dim;
2194
2195 dim = isl_basic_map_dim(bmap, isl_dim_all);
2196 if (dim < 0)
2197 return isl_basic_map_free(bmap);
2198 for (i = 0; i < dim; ++i)
2199 if (!relevant[i])
2200 break;
2201 if (i >= dim)
2202 return bmap;
2203
2204 for (i = bmap->n_eq - 1; i >= 0; --i)
2205 if (!is_related(bmap->eq[i] + 1, dim, relevant)) {
2206 bmap = isl_basic_map_cow(bmap);
2207 if (isl_basic_map_drop_equality(bmap, i) < 0)
2208 return isl_basic_map_free(bmap);
2209 }
2210
2211 for (i = bmap->n_ineq - 1; i >= 0; --i)
2212 if (!is_related(bmap->ineq[i] + 1, dim, relevant)) {
2213 bmap = isl_basic_map_cow(bmap);
2214 if (isl_basic_map_drop_inequality(bmap, i) < 0)
2215 return isl_basic_map_free(bmap);
2216 }
2217
2218 return bmap;
2219 }
2220
2221 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2222 *
2223 * In particular, for any variable involved in the constraint,
2224 * find the actual group id from before and replace the group
2225 * of the corresponding variable by the minimal group of all
2226 * the variables involved in the constraint considered so far
2227 * (if this minimum is smaller) or replace the minimum by this group
2228 * (if the minimum is larger).
2229 *
2230 * At the end, all the variables in "c" will (indirectly) point
2231 * to the minimal of the groups that they referred to originally.
2232 */
update_groups(int dim,int * group,isl_int * c)2233 static void update_groups(int dim, int *group, isl_int *c)
2234 {
2235 int j;
2236 int min = dim;
2237
2238 for (j = 0; j < dim; ++j) {
2239 if (isl_int_is_zero(c[j]))
2240 continue;
2241 while (group[j] >= 0 && group[group[j]] != group[j])
2242 group[j] = group[group[j]];
2243 if (group[j] == min)
2244 continue;
2245 if (group[j] < min) {
2246 if (min >= 0 && min < dim)
2247 group[min] = group[j];
2248 min = group[j];
2249 } else
2250 group[group[j]] = min;
2251 }
2252 }
2253
2254 /* Allocate an array of groups of variables, one for each variable
2255 * in "context", initialized to zero.
2256 */
alloc_groups(__isl_keep isl_basic_set * context)2257 static int *alloc_groups(__isl_keep isl_basic_set *context)
2258 {
2259 isl_ctx *ctx;
2260 isl_size dim;
2261
2262 dim = isl_basic_set_dim(context, isl_dim_set);
2263 if (dim < 0)
2264 return NULL;
2265 ctx = isl_basic_set_get_ctx(context);
2266 return isl_calloc_array(ctx, int, dim);
2267 }
2268
2269 /* Drop constraints from "bmap" that only involve variables that are
2270 * not related to any of the variables marked with a "-1" in "group".
2271 *
2272 * We construct groups of variables that collect variables that
2273 * (indirectly) appear in some common constraint of "bmap".
2274 * Each group is identified by the first variable in the group,
2275 * except for the special group of variables that was already identified
2276 * in the input as -1 (or are related to those variables).
2277 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2278 * otherwise the group of i is the group of group[i].
2279 *
2280 * We first initialize groups for the remaining variables.
2281 * Then we iterate over the constraints of "bmap" and update the
2282 * group of the variables in the constraint by the smallest group.
2283 * Finally, we resolve indirect references to groups by running over
2284 * the variables.
2285 *
2286 * After computing the groups, we drop constraints that do not involve
2287 * any variables in the -1 group.
2288 */
isl_basic_map_drop_unrelated_constraints(__isl_take isl_basic_map * bmap,__isl_take int * group)2289 __isl_give isl_basic_map *isl_basic_map_drop_unrelated_constraints(
2290 __isl_take isl_basic_map *bmap, __isl_take int *group)
2291 {
2292 isl_size dim;
2293 int i;
2294 int last;
2295
2296 dim = isl_basic_map_dim(bmap, isl_dim_all);
2297 if (dim < 0)
2298 return isl_basic_map_free(bmap);
2299
2300 last = -1;
2301 for (i = 0; i < dim; ++i)
2302 if (group[i] >= 0)
2303 last = group[i] = i;
2304 if (last < 0) {
2305 free(group);
2306 return bmap;
2307 }
2308
2309 for (i = 0; i < bmap->n_eq; ++i)
2310 update_groups(dim, group, bmap->eq[i] + 1);
2311 for (i = 0; i < bmap->n_ineq; ++i)
2312 update_groups(dim, group, bmap->ineq[i] + 1);
2313
2314 for (i = 0; i < dim; ++i)
2315 if (group[i] >= 0)
2316 group[i] = group[group[i]];
2317
2318 for (i = 0; i < dim; ++i)
2319 group[i] = group[i] == -1;
2320
2321 bmap = drop_unrelated_constraints(bmap, group);
2322
2323 free(group);
2324 return bmap;
2325 }
2326
2327 /* Drop constraints from "context" that are irrelevant for computing
2328 * the gist of "bset".
2329 *
2330 * In particular, drop constraints in variables that are not related
2331 * to any of the variables involved in the constraints of "bset"
2332 * in the sense that there is no sequence of constraints that connects them.
2333 *
2334 * We first mark all variables that appear in "bset" as belonging
2335 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2336 */
drop_irrelevant_constraints(__isl_take isl_basic_set * context,__isl_keep isl_basic_set * bset)2337 static __isl_give isl_basic_set *drop_irrelevant_constraints(
2338 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
2339 {
2340 int *group;
2341 isl_size dim;
2342 int i, j;
2343
2344 dim = isl_basic_set_dim(bset, isl_dim_set);
2345 if (!context || dim < 0)
2346 return isl_basic_set_free(context);
2347
2348 group = alloc_groups(context);
2349
2350 if (!group)
2351 return isl_basic_set_free(context);
2352
2353 for (i = 0; i < dim; ++i) {
2354 for (j = 0; j < bset->n_eq; ++j)
2355 if (!isl_int_is_zero(bset->eq[j][1 + i]))
2356 break;
2357 if (j < bset->n_eq) {
2358 group[i] = -1;
2359 continue;
2360 }
2361 for (j = 0; j < bset->n_ineq; ++j)
2362 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
2363 break;
2364 if (j < bset->n_ineq)
2365 group[i] = -1;
2366 }
2367
2368 return isl_basic_map_drop_unrelated_constraints(context, group);
2369 }
2370
2371 /* Drop constraints from "context" that are irrelevant for computing
2372 * the gist of the inequalities "ineq".
2373 * Inequalities in "ineq" for which the corresponding element of row
2374 * is set to -1 have already been marked for removal and should be ignored.
2375 *
2376 * In particular, drop constraints in variables that are not related
2377 * to any of the variables involved in "ineq"
2378 * in the sense that there is no sequence of constraints that connects them.
2379 *
2380 * We first mark all variables that appear in "bset" as belonging
2381 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2382 */
drop_irrelevant_constraints_marked(__isl_take isl_basic_set * context,__isl_keep isl_mat * ineq,int * row)2383 static __isl_give isl_basic_set *drop_irrelevant_constraints_marked(
2384 __isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row)
2385 {
2386 int *group;
2387 isl_size dim;
2388 int i, j;
2389 isl_size n;
2390
2391 dim = isl_basic_set_dim(context, isl_dim_set);
2392 n = isl_mat_rows(ineq);
2393 if (dim < 0 || n < 0)
2394 return isl_basic_set_free(context);
2395
2396 group = alloc_groups(context);
2397
2398 if (!group)
2399 return isl_basic_set_free(context);
2400
2401 for (i = 0; i < dim; ++i) {
2402 for (j = 0; j < n; ++j) {
2403 if (row[j] < 0)
2404 continue;
2405 if (!isl_int_is_zero(ineq->row[j][1 + i]))
2406 break;
2407 }
2408 if (j < n)
2409 group[i] = -1;
2410 }
2411
2412 return isl_basic_map_drop_unrelated_constraints(context, group);
2413 }
2414
2415 /* Do all "n" entries of "row" contain a negative value?
2416 */
all_neg(int * row,int n)2417 static int all_neg(int *row, int n)
2418 {
2419 int i;
2420
2421 for (i = 0; i < n; ++i)
2422 if (row[i] >= 0)
2423 return 0;
2424
2425 return 1;
2426 }
2427
2428 /* Update the inequalities in "bset" based on the information in "row"
2429 * and "tab".
2430 *
2431 * In particular, the array "row" contains either -1, meaning that
2432 * the corresponding inequality of "bset" is redundant, or the index
2433 * of an inequality in "tab".
2434 *
2435 * If the row entry is -1, then drop the inequality.
2436 * Otherwise, if the constraint is marked redundant in the tableau,
2437 * then drop the inequality. Similarly, if it is marked as an equality
2438 * in the tableau, then turn the inequality into an equality and
2439 * perform Gaussian elimination.
2440 */
update_ineq(__isl_take isl_basic_set * bset,__isl_keep int * row,struct isl_tab * tab)2441 static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset,
2442 __isl_keep int *row, struct isl_tab *tab)
2443 {
2444 int i;
2445 unsigned n_ineq;
2446 unsigned n_eq;
2447 int found_equality = 0;
2448
2449 if (!bset)
2450 return NULL;
2451 if (tab && tab->empty)
2452 return isl_basic_set_set_to_empty(bset);
2453
2454 n_ineq = bset->n_ineq;
2455 for (i = n_ineq - 1; i >= 0; --i) {
2456 if (row[i] < 0) {
2457 if (isl_basic_set_drop_inequality(bset, i) < 0)
2458 return isl_basic_set_free(bset);
2459 continue;
2460 }
2461 if (!tab)
2462 continue;
2463 n_eq = tab->n_eq;
2464 if (isl_tab_is_equality(tab, n_eq + row[i])) {
2465 isl_basic_map_inequality_to_equality(bset, i);
2466 found_equality = 1;
2467 } else if (isl_tab_is_redundant(tab, n_eq + row[i])) {
2468 if (isl_basic_set_drop_inequality(bset, i) < 0)
2469 return isl_basic_set_free(bset);
2470 }
2471 }
2472
2473 if (found_equality)
2474 bset = isl_basic_set_gauss(bset, NULL);
2475 bset = isl_basic_set_finalize(bset);
2476 return bset;
2477 }
2478
2479 /* Update the inequalities in "bset" based on the information in "row"
2480 * and "tab" and free all arguments (other than "bset").
2481 */
update_ineq_free(__isl_take isl_basic_set * bset,__isl_take isl_mat * ineq,__isl_take isl_basic_set * context,__isl_take int * row,struct isl_tab * tab)2482 static __isl_give isl_basic_set *update_ineq_free(
2483 __isl_take isl_basic_set *bset, __isl_take isl_mat *ineq,
2484 __isl_take isl_basic_set *context, __isl_take int *row,
2485 struct isl_tab *tab)
2486 {
2487 isl_mat_free(ineq);
2488 isl_basic_set_free(context);
2489
2490 bset = update_ineq(bset, row, tab);
2491
2492 free(row);
2493 isl_tab_free(tab);
2494 return bset;
2495 }
2496
2497 /* Remove all information from bset that is redundant in the context
2498 * of context.
2499 * "ineq" contains the (possibly transformed) inequalities of "bset",
2500 * in the same order.
2501 * The (explicit) equalities of "bset" are assumed to have been taken
2502 * into account by the transformation such that only the inequalities
2503 * are relevant.
2504 * "context" is assumed not to be empty.
2505 *
2506 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2507 * A value of -1 means that the inequality is obviously redundant and may
2508 * not even appear in "tab".
2509 *
2510 * We first mark the inequalities of "bset"
2511 * that are obviously redundant with respect to some inequality in "context".
2512 * Then we remove those constraints from "context" that have become
2513 * irrelevant for computing the gist of "bset".
2514 * Note that this removal of constraints cannot be replaced by
2515 * a factorization because factors in "bset" may still be connected
2516 * to each other through constraints in "context".
2517 *
2518 * If there are any inequalities left, we construct a tableau for
2519 * the context and then add the inequalities of "bset".
2520 * Before adding these inequalities, we freeze all constraints such that
2521 * they won't be considered redundant in terms of the constraints of "bset".
2522 * Then we detect all redundant constraints (among the
2523 * constraints that weren't frozen), first by checking for redundancy in the
2524 * the tableau and then by checking if replacing a constraint by its negation
2525 * would lead to an empty set. This last step is fairly expensive
2526 * and could be optimized by more reuse of the tableau.
2527 * Finally, we update bset according to the results.
2528 */
uset_gist_full(__isl_take isl_basic_set * bset,__isl_take isl_mat * ineq,__isl_take isl_basic_set * context)2529 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
2530 __isl_take isl_mat *ineq, __isl_take isl_basic_set *context)
2531 {
2532 int i, r;
2533 int *row = NULL;
2534 isl_ctx *ctx;
2535 isl_basic_set *combined = NULL;
2536 struct isl_tab *tab = NULL;
2537 unsigned n_eq, context_ineq;
2538
2539 if (!bset || !ineq || !context)
2540 goto error;
2541
2542 if (bset->n_ineq == 0 || isl_basic_set_plain_is_universe(context)) {
2543 isl_basic_set_free(context);
2544 isl_mat_free(ineq);
2545 return bset;
2546 }
2547
2548 ctx = isl_basic_set_get_ctx(context);
2549 row = isl_calloc_array(ctx, int, bset->n_ineq);
2550 if (!row)
2551 goto error;
2552
2553 if (mark_shifted_constraints(ineq, context, row) < 0)
2554 goto error;
2555 if (all_neg(row, bset->n_ineq))
2556 return update_ineq_free(bset, ineq, context, row, NULL);
2557
2558 context = drop_irrelevant_constraints_marked(context, ineq, row);
2559 if (!context)
2560 goto error;
2561 if (isl_basic_set_plain_is_universe(context))
2562 return update_ineq_free(bset, ineq, context, row, NULL);
2563
2564 n_eq = context->n_eq;
2565 context_ineq = context->n_ineq;
2566 combined = isl_basic_set_cow(isl_basic_set_copy(context));
2567 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2568 tab = isl_tab_from_basic_set(combined, 0);
2569 for (i = 0; i < context_ineq; ++i)
2570 if (isl_tab_freeze_constraint(tab, n_eq + i) < 0)
2571 goto error;
2572 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2573 goto error;
2574 r = context_ineq;
2575 for (i = 0; i < bset->n_ineq; ++i) {
2576 if (row[i] < 0)
2577 continue;
2578 combined = isl_basic_set_add_ineq(combined, ineq->row[i]);
2579 if (isl_tab_add_ineq(tab, ineq->row[i]) < 0)
2580 goto error;
2581 row[i] = r++;
2582 }
2583 if (isl_tab_detect_implicit_equalities(tab) < 0)
2584 goto error;
2585 if (isl_tab_detect_redundant(tab) < 0)
2586 goto error;
2587 for (i = bset->n_ineq - 1; i >= 0; --i) {
2588 isl_basic_set *test;
2589 int is_empty;
2590
2591 if (row[i] < 0)
2592 continue;
2593 r = row[i];
2594 if (tab->con[n_eq + r].is_redundant)
2595 continue;
2596 test = isl_basic_set_dup(combined);
2597 test = isl_inequality_negate(test, r);
2598 test = isl_basic_set_update_from_tab(test, tab);
2599 is_empty = isl_basic_set_is_empty(test);
2600 isl_basic_set_free(test);
2601 if (is_empty < 0)
2602 goto error;
2603 if (is_empty)
2604 tab->con[n_eq + r].is_redundant = 1;
2605 }
2606 bset = update_ineq_free(bset, ineq, context, row, tab);
2607 if (bset) {
2608 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2609 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2610 }
2611
2612 isl_basic_set_free(combined);
2613 return bset;
2614 error:
2615 free(row);
2616 isl_mat_free(ineq);
2617 isl_tab_free(tab);
2618 isl_basic_set_free(combined);
2619 isl_basic_set_free(context);
2620 isl_basic_set_free(bset);
2621 return NULL;
2622 }
2623
2624 /* Extract the inequalities of "bset" as an isl_mat.
2625 */
extract_ineq(__isl_keep isl_basic_set * bset)2626 static __isl_give isl_mat *extract_ineq(__isl_keep isl_basic_set *bset)
2627 {
2628 isl_size total;
2629 isl_ctx *ctx;
2630 isl_mat *ineq;
2631
2632 total = isl_basic_set_dim(bset, isl_dim_all);
2633 if (total < 0)
2634 return NULL;
2635
2636 ctx = isl_basic_set_get_ctx(bset);
2637 ineq = isl_mat_sub_alloc6(ctx, bset->ineq, 0, bset->n_ineq,
2638 0, 1 + total);
2639
2640 return ineq;
2641 }
2642
2643 /* Remove all information from "bset" that is redundant in the context
2644 * of "context", for the case where both "bset" and "context" are
2645 * full-dimensional.
2646 */
uset_gist_uncompressed(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * context)2647 static __isl_give isl_basic_set *uset_gist_uncompressed(
2648 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
2649 {
2650 isl_mat *ineq;
2651
2652 ineq = extract_ineq(bset);
2653 return uset_gist_full(bset, ineq, context);
2654 }
2655
2656 /* Replace "bset" by an empty basic set in the same space.
2657 */
replace_by_empty(__isl_take isl_basic_set * bset)2658 static __isl_give isl_basic_set *replace_by_empty(
2659 __isl_take isl_basic_set *bset)
2660 {
2661 isl_space *space;
2662
2663 space = isl_basic_set_get_space(bset);
2664 isl_basic_set_free(bset);
2665 return isl_basic_set_empty(space);
2666 }
2667
2668 /* Remove all information from "bset" that is redundant in the context
2669 * of "context", for the case where the combined equalities of
2670 * "bset" and "context" allow for a compression that can be obtained
2671 * by preapplication of "T".
2672 * If the compression of "context" is empty, meaning that "bset" and
2673 * "context" do not intersect, then return the empty set.
2674 *
2675 * "bset" itself is not transformed by "T". Instead, the inequalities
2676 * are extracted from "bset" and those are transformed by "T".
2677 * uset_gist_full then determines which of the transformed inequalities
2678 * are redundant with respect to the transformed "context" and removes
2679 * the corresponding inequalities from "bset".
2680 *
2681 * After preapplying "T" to the inequalities, any common factor is
2682 * removed from the coefficients. If this results in a tightening
2683 * of the constant term, then the same tightening is applied to
2684 * the corresponding untransformed inequality in "bset".
2685 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2686 *
2687 * g f'(x) + r >= 0
2688 *
2689 * with 0 <= r < g, then it is equivalent to
2690 *
2691 * f'(x) >= 0
2692 *
2693 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2694 * subspace compressed by T since the latter would be transformed to
2695 *
2696 * g f'(x) >= 0
2697 */
uset_gist_compressed(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * context,__isl_take isl_mat * T)2698 static __isl_give isl_basic_set *uset_gist_compressed(
2699 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context,
2700 __isl_take isl_mat *T)
2701 {
2702 isl_ctx *ctx;
2703 isl_mat *ineq;
2704 int i;
2705 isl_size n_row, n_col;
2706 isl_int rem;
2707
2708 ineq = extract_ineq(bset);
2709 ineq = isl_mat_product(ineq, isl_mat_copy(T));
2710 context = isl_basic_set_preimage(context, T);
2711
2712 if (!ineq || !context)
2713 goto error;
2714 if (isl_basic_set_plain_is_empty(context)) {
2715 isl_mat_free(ineq);
2716 isl_basic_set_free(context);
2717 return replace_by_empty(bset);
2718 }
2719
2720 ctx = isl_mat_get_ctx(ineq);
2721 n_row = isl_mat_rows(ineq);
2722 n_col = isl_mat_cols(ineq);
2723 if (n_row < 0 || n_col < 0)
2724 goto error;
2725 isl_int_init(rem);
2726 for (i = 0; i < n_row; ++i) {
2727 isl_seq_gcd(ineq->row[i] + 1, n_col - 1, &ctx->normalize_gcd);
2728 if (isl_int_is_zero(ctx->normalize_gcd))
2729 continue;
2730 if (isl_int_is_one(ctx->normalize_gcd))
2731 continue;
2732 isl_seq_scale_down(ineq->row[i] + 1, ineq->row[i] + 1,
2733 ctx->normalize_gcd, n_col - 1);
2734 isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd);
2735 isl_int_fdiv_q(ineq->row[i][0],
2736 ineq->row[i][0], ctx->normalize_gcd);
2737 if (isl_int_is_zero(rem))
2738 continue;
2739 bset = isl_basic_set_cow(bset);
2740 if (!bset)
2741 break;
2742 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem);
2743 }
2744 isl_int_clear(rem);
2745
2746 return uset_gist_full(bset, ineq, context);
2747 error:
2748 isl_mat_free(ineq);
2749 isl_basic_set_free(context);
2750 isl_basic_set_free(bset);
2751 return NULL;
2752 }
2753
2754 /* Project "bset" onto the variables that are involved in "template".
2755 */
project_onto_involved(__isl_take isl_basic_set * bset,__isl_keep isl_basic_set * template)2756 static __isl_give isl_basic_set *project_onto_involved(
2757 __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *template)
2758 {
2759 int i;
2760 isl_size n;
2761
2762 n = isl_basic_set_dim(template, isl_dim_set);
2763 if (n < 0 || !template)
2764 return isl_basic_set_free(bset);
2765
2766 for (i = 0; i < n; ++i) {
2767 isl_bool involved;
2768
2769 involved = isl_basic_set_involves_dims(template,
2770 isl_dim_set, i, 1);
2771 if (involved < 0)
2772 return isl_basic_set_free(bset);
2773 if (involved)
2774 continue;
2775 bset = isl_basic_set_eliminate_vars(bset, i, 1);
2776 }
2777
2778 return bset;
2779 }
2780
2781 /* Remove all information from bset that is redundant in the context
2782 * of context. In particular, equalities that are linear combinations
2783 * of those in context are removed. Then the inequalities that are
2784 * redundant in the context of the equalities and inequalities of
2785 * context are removed.
2786 *
2787 * First of all, we drop those constraints from "context"
2788 * that are irrelevant for computing the gist of "bset".
2789 * Alternatively, we could factorize the intersection of "context" and "bset".
2790 *
2791 * We first compute the intersection of the integer affine hulls
2792 * of "bset" and "context",
2793 * compute the gist inside this intersection and then reduce
2794 * the constraints with respect to the equalities of the context
2795 * that only involve variables already involved in the input.
2796 * If the intersection of the affine hulls turns out to be empty,
2797 * then return the empty set.
2798 *
2799 * If two constraints are mutually redundant, then uset_gist_full
2800 * will remove the second of those constraints. We therefore first
2801 * sort the constraints so that constraints not involving existentially
2802 * quantified variables are given precedence over those that do.
2803 * We have to perform this sorting before the variable compression,
2804 * because that may effect the order of the variables.
2805 */
uset_gist(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * context)2806 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2807 __isl_take isl_basic_set *context)
2808 {
2809 isl_mat *eq;
2810 isl_mat *T;
2811 isl_basic_set *aff;
2812 isl_basic_set *aff_context;
2813 isl_size total;
2814
2815 total = isl_basic_set_dim(bset, isl_dim_all);
2816 if (total < 0 || !context)
2817 goto error;
2818
2819 context = drop_irrelevant_constraints(context, bset);
2820
2821 bset = isl_basic_set_detect_equalities(bset);
2822 aff = isl_basic_set_copy(bset);
2823 aff = isl_basic_set_plain_affine_hull(aff);
2824 context = isl_basic_set_detect_equalities(context);
2825 aff_context = isl_basic_set_copy(context);
2826 aff_context = isl_basic_set_plain_affine_hull(aff_context);
2827 aff = isl_basic_set_intersect(aff, aff_context);
2828 if (!aff)
2829 goto error;
2830 if (isl_basic_set_plain_is_empty(aff)) {
2831 isl_basic_set_free(bset);
2832 isl_basic_set_free(context);
2833 return aff;
2834 }
2835 bset = isl_basic_set_sort_constraints(bset);
2836 if (aff->n_eq == 0) {
2837 isl_basic_set_free(aff);
2838 return uset_gist_uncompressed(bset, context);
2839 }
2840 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2841 eq = isl_mat_cow(eq);
2842 T = isl_mat_variable_compression(eq, NULL);
2843 isl_basic_set_free(aff);
2844 if (T && T->n_col == 0) {
2845 isl_mat_free(T);
2846 isl_basic_set_free(context);
2847 return replace_by_empty(bset);
2848 }
2849
2850 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2851 aff_context = project_onto_involved(aff_context, bset);
2852
2853 bset = uset_gist_compressed(bset, context, T);
2854 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2855
2856 if (bset) {
2857 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2858 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2859 }
2860
2861 return bset;
2862 error:
2863 isl_basic_set_free(bset);
2864 isl_basic_set_free(context);
2865 return NULL;
2866 }
2867
2868 /* Return the number of equality constraints in "bmap" that involve
2869 * local variables. This function assumes that Gaussian elimination
2870 * has been applied to the equality constraints.
2871 */
n_div_eq(__isl_keep isl_basic_map * bmap)2872 static int n_div_eq(__isl_keep isl_basic_map *bmap)
2873 {
2874 int i;
2875 isl_size total, n_div;
2876
2877 if (!bmap)
2878 return -1;
2879
2880 if (bmap->n_eq == 0)
2881 return 0;
2882
2883 total = isl_basic_map_dim(bmap, isl_dim_all);
2884 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2885 if (total < 0 || n_div < 0)
2886 return -1;
2887 total -= n_div;
2888
2889 for (i = 0; i < bmap->n_eq; ++i)
2890 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total,
2891 n_div) == -1)
2892 return i;
2893
2894 return bmap->n_eq;
2895 }
2896
2897 /* Construct a basic map in "space" defined by the equality constraints in "eq".
2898 * The constraints are assumed not to involve any local variables.
2899 */
basic_map_from_equalities(__isl_take isl_space * space,__isl_take isl_mat * eq)2900 static __isl_give isl_basic_map *basic_map_from_equalities(
2901 __isl_take isl_space *space, __isl_take isl_mat *eq)
2902 {
2903 int i, k;
2904 isl_size total;
2905 isl_basic_map *bmap = NULL;
2906
2907 total = isl_space_dim(space, isl_dim_all);
2908 if (total < 0 || !eq)
2909 goto error;
2910
2911 if (1 + total != eq->n_col)
2912 isl_die(isl_space_get_ctx(space), isl_error_internal,
2913 "unexpected number of columns", goto error);
2914
2915 bmap = isl_basic_map_alloc_space(isl_space_copy(space),
2916 0, eq->n_row, 0);
2917 for (i = 0; i < eq->n_row; ++i) {
2918 k = isl_basic_map_alloc_equality(bmap);
2919 if (k < 0)
2920 goto error;
2921 isl_seq_cpy(bmap->eq[k], eq->row[i], eq->n_col);
2922 }
2923
2924 isl_space_free(space);
2925 isl_mat_free(eq);
2926 return bmap;
2927 error:
2928 isl_space_free(space);
2929 isl_mat_free(eq);
2930 isl_basic_map_free(bmap);
2931 return NULL;
2932 }
2933
2934 /* Construct and return a variable compression based on the equality
2935 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
2936 * "n1" is the number of (initial) equality constraints in "bmap1"
2937 * that do involve local variables.
2938 * "n2" is the number of (initial) equality constraints in "bmap2"
2939 * that do involve local variables.
2940 * "total" is the total number of other variables.
2941 * This function assumes that Gaussian elimination
2942 * has been applied to the equality constraints in both "bmap1" and "bmap2"
2943 * such that the equality constraints not involving local variables
2944 * are those that start at "n1" or "n2".
2945 *
2946 * If either of "bmap1" and "bmap2" does not have such equality constraints,
2947 * then simply compute the compression based on the equality constraints
2948 * in the other basic map.
2949 * Otherwise, combine the equality constraints from both into a new
2950 * basic map such that Gaussian elimination can be applied to this combination
2951 * and then construct a variable compression from the resulting
2952 * equality constraints.
2953 */
combined_variable_compression(__isl_keep isl_basic_map * bmap1,int n1,__isl_keep isl_basic_map * bmap2,int n2,int total)2954 static __isl_give isl_mat *combined_variable_compression(
2955 __isl_keep isl_basic_map *bmap1, int n1,
2956 __isl_keep isl_basic_map *bmap2, int n2, int total)
2957 {
2958 isl_ctx *ctx;
2959 isl_mat *E1, *E2, *V;
2960 isl_basic_map *bmap;
2961
2962 ctx = isl_basic_map_get_ctx(bmap1);
2963 if (bmap1->n_eq == n1) {
2964 E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
2965 n2, bmap2->n_eq - n2, 0, 1 + total);
2966 return isl_mat_variable_compression(E2, NULL);
2967 }
2968 if (bmap2->n_eq == n2) {
2969 E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
2970 n1, bmap1->n_eq - n1, 0, 1 + total);
2971 return isl_mat_variable_compression(E1, NULL);
2972 }
2973 E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
2974 n1, bmap1->n_eq - n1, 0, 1 + total);
2975 E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
2976 n2, bmap2->n_eq - n2, 0, 1 + total);
2977 E1 = isl_mat_concat(E1, E2);
2978 bmap = basic_map_from_equalities(isl_basic_map_get_space(bmap1), E1);
2979 bmap = isl_basic_map_gauss(bmap, NULL);
2980 if (!bmap)
2981 return NULL;
2982 E1 = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
2983 V = isl_mat_variable_compression(E1, NULL);
2984 isl_basic_map_free(bmap);
2985
2986 return V;
2987 }
2988
2989 /* Extract the stride constraints from "bmap", compressed
2990 * with respect to both the stride constraints in "context" and
2991 * the remaining equality constraints in both "bmap" and "context".
2992 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
2993 * "context_n_eq" is the number of (initial) stride constraints in "context".
2994 *
2995 * Let x be all variables in "bmap" (and "context") other than the local
2996 * variables. First compute a variable compression
2997 *
2998 * x = V x'
2999 *
3000 * based on the non-stride equality constraints in "bmap" and "context".
3001 * Consider the stride constraints of "context",
3002 *
3003 * A(x) + B(y) = 0
3004 *
3005 * with y the local variables and plug in the variable compression,
3006 * resulting in
3007 *
3008 * A(V x') + B(y) = 0
3009 *
3010 * Use these constraints to compute a parameter compression on x'
3011 *
3012 * x' = T x''
3013 *
3014 * Now consider the stride constraints of "bmap"
3015 *
3016 * C(x) + D(y) = 0
3017 *
3018 * and plug in x = V*T x''.
3019 * That is, return A = [C*V*T D].
3020 */
extract_compressed_stride_constraints(__isl_keep isl_basic_map * bmap,int bmap_n_eq,__isl_keep isl_basic_map * context,int context_n_eq)3021 static __isl_give isl_mat *extract_compressed_stride_constraints(
3022 __isl_keep isl_basic_map *bmap, int bmap_n_eq,
3023 __isl_keep isl_basic_map *context, int context_n_eq)
3024 {
3025 isl_size total, n_div;
3026 isl_ctx *ctx;
3027 isl_mat *A, *B, *T, *V;
3028
3029 total = isl_basic_map_dim(context, isl_dim_all);
3030 n_div = isl_basic_map_dim(context, isl_dim_div);
3031 if (total < 0 || n_div < 0)
3032 return NULL;
3033 total -= n_div;
3034
3035 ctx = isl_basic_map_get_ctx(bmap);
3036
3037 V = combined_variable_compression(bmap, bmap_n_eq,
3038 context, context_n_eq, total);
3039
3040 A = isl_mat_sub_alloc6(ctx, context->eq, 0, context_n_eq, 0, 1 + total);
3041 B = isl_mat_sub_alloc6(ctx, context->eq,
3042 0, context_n_eq, 1 + total, n_div);
3043 A = isl_mat_product(A, isl_mat_copy(V));
3044 T = isl_mat_parameter_compression_ext(A, B);
3045 T = isl_mat_product(V, T);
3046
3047 n_div = isl_basic_map_dim(bmap, isl_dim_div);
3048 if (n_div < 0)
3049 T = isl_mat_free(T);
3050 else
3051 T = isl_mat_diagonal(T, isl_mat_identity(ctx, n_div));
3052
3053 A = isl_mat_sub_alloc6(ctx, bmap->eq,
3054 0, bmap_n_eq, 0, 1 + total + n_div);
3055 A = isl_mat_product(A, T);
3056
3057 return A;
3058 }
3059
3060 /* Remove the prime factors from *g that have an exponent that
3061 * is strictly smaller than the exponent in "c".
3062 * All exponents in *g are known to be smaller than or equal
3063 * to those in "c".
3064 *
3065 * That is, if *g is equal to
3066 *
3067 * p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
3068 *
3069 * and "c" is equal to
3070 *
3071 * p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
3072 *
3073 * then update *g to
3074 *
3075 * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
3076 * p_n^{e_n * (e_n = f_n)}
3077 *
3078 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
3079 * neither does the gcd of *g and c / *g.
3080 * If e_i < f_i, then the gcd of *g and c / *g has a positive
3081 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
3082 * Dividing *g by this gcd therefore strictly reduces the exponent
3083 * of the prime factors that need to be removed, while leaving the
3084 * other prime factors untouched.
3085 * Repeating this process until gcd(*g, c / *g) = 1 therefore
3086 * removes all undesired factors, without removing any others.
3087 */
remove_incomplete_powers(isl_int * g,isl_int c)3088 static void remove_incomplete_powers(isl_int *g, isl_int c)
3089 {
3090 isl_int t;
3091
3092 isl_int_init(t);
3093 for (;;) {
3094 isl_int_divexact(t, c, *g);
3095 isl_int_gcd(t, t, *g);
3096 if (isl_int_is_one(t))
3097 break;
3098 isl_int_divexact(*g, *g, t);
3099 }
3100 isl_int_clear(t);
3101 }
3102
3103 /* Reduce the "n" stride constraints in "bmap" based on a copy "A"
3104 * of the same stride constraints in a compressed space that exploits
3105 * all equalities in the context and the other equalities in "bmap".
3106 *
3107 * If the stride constraints of "bmap" are of the form
3108 *
3109 * C(x) + D(y) = 0
3110 *
3111 * then A is of the form
3112 *
3113 * B(x') + D(y) = 0
3114 *
3115 * If any of these constraints involves only a single local variable y,
3116 * then the constraint appears as
3117 *
3118 * f(x) + m y_i = 0
3119 *
3120 * in "bmap" and as
3121 *
3122 * h(x') + m y_i = 0
3123 *
3124 * in "A".
3125 *
3126 * Let g be the gcd of m and the coefficients of h.
3127 * Then, in particular, g is a divisor of the coefficients of h and
3128 *
3129 * f(x) = h(x')
3130 *
3131 * is known to be a multiple of g.
3132 * If some prime factor in m appears with the same exponent in g,
3133 * then it can be removed from m because f(x) is already known
3134 * to be a multiple of g and therefore in particular of this power
3135 * of the prime factors.
3136 * Prime factors that appear with a smaller exponent in g cannot
3137 * be removed from m.
3138 * Let g' be the divisor of g containing all prime factors that
3139 * appear with the same exponent in m and g, then
3140 *
3141 * f(x) + m y_i = 0
3142 *
3143 * can be replaced by
3144 *
3145 * f(x) + m/g' y_i' = 0
3146 *
3147 * Note that (if g' != 1) this changes the explicit representation
3148 * of y_i to that of y_i', so the integer division at position i
3149 * is marked unknown and later recomputed by a call to
3150 * isl_basic_map_gauss.
3151 */
reduce_stride_constraints(__isl_take isl_basic_map * bmap,int n,__isl_keep isl_mat * A)3152 static __isl_give isl_basic_map *reduce_stride_constraints(
3153 __isl_take isl_basic_map *bmap, int n, __isl_keep isl_mat *A)
3154 {
3155 int i;
3156 isl_size total, n_div;
3157 int any = 0;
3158 isl_int gcd;
3159
3160 total = isl_basic_map_dim(bmap, isl_dim_all);
3161 n_div = isl_basic_map_dim(bmap, isl_dim_div);
3162 if (total < 0 || n_div < 0 || !A)
3163 return isl_basic_map_free(bmap);
3164 total -= n_div;
3165
3166 isl_int_init(gcd);
3167 for (i = 0; i < n; ++i) {
3168 int div;
3169
3170 div = isl_seq_first_non_zero(bmap->eq[i] + 1 + total, n_div);
3171 if (div < 0)
3172 isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
3173 "equality constraints modified unexpectedly",
3174 goto error);
3175 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total + div + 1,
3176 n_div - div - 1) != -1)
3177 continue;
3178 if (isl_mat_row_gcd(A, i, &gcd) < 0)
3179 goto error;
3180 if (isl_int_is_one(gcd))
3181 continue;
3182 remove_incomplete_powers(&gcd, bmap->eq[i][1 + total + div]);
3183 if (isl_int_is_one(gcd))
3184 continue;
3185 isl_int_divexact(bmap->eq[i][1 + total + div],
3186 bmap->eq[i][1 + total + div], gcd);
3187 bmap = isl_basic_map_mark_div_unknown(bmap, div);
3188 if (!bmap)
3189 goto error;
3190 any = 1;
3191 }
3192 isl_int_clear(gcd);
3193
3194 if (any)
3195 bmap = isl_basic_map_gauss(bmap, NULL);
3196
3197 return bmap;
3198 error:
3199 isl_int_clear(gcd);
3200 isl_basic_map_free(bmap);
3201 return NULL;
3202 }
3203
3204 /* Simplify the stride constraints in "bmap" based on
3205 * the remaining equality constraints in "bmap" and all equality
3206 * constraints in "context".
3207 * Only do this if both "bmap" and "context" have stride constraints.
3208 *
3209 * First extract a copy of the stride constraints in "bmap" in a compressed
3210 * space exploiting all the other equality constraints and then
3211 * use this compressed copy to simplify the original stride constraints.
3212 */
gist_strides(__isl_take isl_basic_map * bmap,__isl_keep isl_basic_map * context)3213 static __isl_give isl_basic_map *gist_strides(__isl_take isl_basic_map *bmap,
3214 __isl_keep isl_basic_map *context)
3215 {
3216 int bmap_n_eq, context_n_eq;
3217 isl_mat *A;
3218
3219 if (!bmap || !context)
3220 return isl_basic_map_free(bmap);
3221
3222 bmap_n_eq = n_div_eq(bmap);
3223 context_n_eq = n_div_eq(context);
3224
3225 if (bmap_n_eq < 0 || context_n_eq < 0)
3226 return isl_basic_map_free(bmap);
3227 if (bmap_n_eq == 0 || context_n_eq == 0)
3228 return bmap;
3229
3230 A = extract_compressed_stride_constraints(bmap, bmap_n_eq,
3231 context, context_n_eq);
3232 bmap = reduce_stride_constraints(bmap, bmap_n_eq, A);
3233
3234 isl_mat_free(A);
3235
3236 return bmap;
3237 }
3238
3239 /* Return a basic map that has the same intersection with "context" as "bmap"
3240 * and that is as "simple" as possible.
3241 *
3242 * The core computation is performed on the pure constraints.
3243 * When we add back the meaning of the integer divisions, we need
3244 * to (re)introduce the div constraints. If we happen to have
3245 * discovered that some of these integer divisions are equal to
3246 * some affine combination of other variables, then these div
3247 * constraints may end up getting simplified in terms of the equalities,
3248 * resulting in extra inequalities on the other variables that
3249 * may have been removed already or that may not even have been
3250 * part of the input. We try and remove those constraints of
3251 * this form that are most obviously redundant with respect to
3252 * the context. We also remove those div constraints that are
3253 * redundant with respect to the other constraints in the result.
3254 *
3255 * The stride constraints among the equality constraints in "bmap" are
3256 * also simplified with respecting to the other equality constraints
3257 * in "bmap" and with respect to all equality constraints in "context".
3258 */
isl_basic_map_gist(__isl_take isl_basic_map * bmap,__isl_take isl_basic_map * context)3259 __isl_give isl_basic_map *isl_basic_map_gist(__isl_take isl_basic_map *bmap,
3260 __isl_take isl_basic_map *context)
3261 {
3262 isl_basic_set *bset, *eq;
3263 isl_basic_map *eq_bmap;
3264 isl_size total, n_div, n_div_bmap;
3265 unsigned extra, n_eq, n_ineq;
3266
3267 if (!bmap || !context)
3268 goto error;
3269
3270 if (isl_basic_map_plain_is_universe(bmap)) {
3271 isl_basic_map_free(context);
3272 return bmap;
3273 }
3274 if (isl_basic_map_plain_is_empty(context)) {
3275 isl_space *space = isl_basic_map_get_space(bmap);
3276 isl_basic_map_free(bmap);
3277 isl_basic_map_free(context);
3278 return isl_basic_map_universe(space);
3279 }
3280 if (isl_basic_map_plain_is_empty(bmap)) {
3281 isl_basic_map_free(context);
3282 return bmap;
3283 }
3284
3285 bmap = isl_basic_map_remove_redundancies(bmap);
3286 context = isl_basic_map_remove_redundancies(context);
3287 context = isl_basic_map_align_divs(context, bmap);
3288
3289 n_div = isl_basic_map_dim(context, isl_dim_div);
3290 total = isl_basic_map_dim(bmap, isl_dim_all);
3291 n_div_bmap = isl_basic_map_dim(bmap, isl_dim_div);
3292 if (n_div < 0 || total < 0 || n_div_bmap < 0)
3293 goto error;
3294 extra = n_div - n_div_bmap;
3295
3296 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
3297 bset = isl_basic_set_add_dims(bset, isl_dim_set, extra);
3298 bset = uset_gist(bset,
3299 isl_basic_map_underlying_set(isl_basic_map_copy(context)));
3300 bset = isl_basic_set_project_out(bset, isl_dim_set, total, extra);
3301
3302 if (!bset || bset->n_eq == 0 || n_div == 0 ||
3303 isl_basic_set_plain_is_empty(bset)) {
3304 isl_basic_map_free(context);
3305 return isl_basic_map_overlying_set(bset, bmap);
3306 }
3307
3308 n_eq = bset->n_eq;
3309 n_ineq = bset->n_ineq;
3310 eq = isl_basic_set_copy(bset);
3311 eq = isl_basic_set_cow(eq);
3312 eq = isl_basic_set_free_inequality(eq, n_ineq);
3313 bset = isl_basic_set_free_equality(bset, n_eq);
3314
3315 eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
3316 eq_bmap = gist_strides(eq_bmap, context);
3317 eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
3318 bmap = isl_basic_map_overlying_set(bset, bmap);
3319 bmap = isl_basic_map_intersect(bmap, eq_bmap);
3320 bmap = isl_basic_map_remove_redundancies(bmap);
3321
3322 return bmap;
3323 error:
3324 isl_basic_map_free(bmap);
3325 isl_basic_map_free(context);
3326 return NULL;
3327 }
3328
3329 /*
3330 * Assumes context has no implicit divs.
3331 */
isl_map_gist_basic_map(__isl_take isl_map * map,__isl_take isl_basic_map * context)3332 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
3333 __isl_take isl_basic_map *context)
3334 {
3335 int i;
3336
3337 if (!map || !context)
3338 goto error;
3339
3340 if (isl_basic_map_plain_is_empty(context)) {
3341 isl_space *space = isl_map_get_space(map);
3342 isl_map_free(map);
3343 isl_basic_map_free(context);
3344 return isl_map_universe(space);
3345 }
3346
3347 context = isl_basic_map_remove_redundancies(context);
3348 map = isl_map_cow(map);
3349 if (isl_map_basic_map_check_equal_space(map, context) < 0)
3350 goto error;
3351 map = isl_map_compute_divs(map);
3352 if (!map)
3353 goto error;
3354 for (i = map->n - 1; i >= 0; --i) {
3355 map->p[i] = isl_basic_map_gist(map->p[i],
3356 isl_basic_map_copy(context));
3357 if (!map->p[i])
3358 goto error;
3359 if (isl_basic_map_plain_is_empty(map->p[i])) {
3360 isl_basic_map_free(map->p[i]);
3361 if (i != map->n - 1)
3362 map->p[i] = map->p[map->n - 1];
3363 map->n--;
3364 }
3365 }
3366 isl_basic_map_free(context);
3367 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3368 return map;
3369 error:
3370 isl_map_free(map);
3371 isl_basic_map_free(context);
3372 return NULL;
3373 }
3374
3375 /* Drop all inequalities from "bmap" that also appear in "context".
3376 * "context" is assumed to have only known local variables and
3377 * the initial local variables of "bmap" are assumed to be the same
3378 * as those of "context".
3379 * The constraints of both "bmap" and "context" are assumed
3380 * to have been sorted using isl_basic_map_sort_constraints.
3381 *
3382 * Run through the inequality constraints of "bmap" and "context"
3383 * in sorted order.
3384 * If a constraint of "bmap" involves variables not in "context",
3385 * then it cannot appear in "context".
3386 * If a matching constraint is found, it is removed from "bmap".
3387 */
drop_inequalities(__isl_take isl_basic_map * bmap,__isl_keep isl_basic_map * context)3388 static __isl_give isl_basic_map *drop_inequalities(
3389 __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3390 {
3391 int i1, i2;
3392 isl_size total, bmap_total;
3393 unsigned extra;
3394
3395 total = isl_basic_map_dim(context, isl_dim_all);
3396 bmap_total = isl_basic_map_dim(bmap, isl_dim_all);
3397 if (total < 0 || bmap_total < 0)
3398 return isl_basic_map_free(bmap);
3399
3400 extra = bmap_total - total;
3401
3402 i1 = bmap->n_ineq - 1;
3403 i2 = context->n_ineq - 1;
3404 while (bmap && i1 >= 0 && i2 >= 0) {
3405 int cmp;
3406
3407 if (isl_seq_first_non_zero(bmap->ineq[i1] + 1 + total,
3408 extra) != -1) {
3409 --i1;
3410 continue;
3411 }
3412 cmp = isl_basic_map_constraint_cmp(context, bmap->ineq[i1],
3413 context->ineq[i2]);
3414 if (cmp < 0) {
3415 --i2;
3416 continue;
3417 }
3418 if (cmp > 0) {
3419 --i1;
3420 continue;
3421 }
3422 if (isl_int_eq(bmap->ineq[i1][0], context->ineq[i2][0])) {
3423 bmap = isl_basic_map_cow(bmap);
3424 if (isl_basic_map_drop_inequality(bmap, i1) < 0)
3425 bmap = isl_basic_map_free(bmap);
3426 }
3427 --i1;
3428 --i2;
3429 }
3430
3431 return bmap;
3432 }
3433
3434 /* Drop all equalities from "bmap" that also appear in "context".
3435 * "context" is assumed to have only known local variables and
3436 * the initial local variables of "bmap" are assumed to be the same
3437 * as those of "context".
3438 *
3439 * Run through the equality constraints of "bmap" and "context"
3440 * in sorted order.
3441 * If a constraint of "bmap" involves variables not in "context",
3442 * then it cannot appear in "context".
3443 * If a matching constraint is found, it is removed from "bmap".
3444 */
drop_equalities(__isl_take isl_basic_map * bmap,__isl_keep isl_basic_map * context)3445 static __isl_give isl_basic_map *drop_equalities(
3446 __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3447 {
3448 int i1, i2;
3449 isl_size total, bmap_total;
3450 unsigned extra;
3451
3452 total = isl_basic_map_dim(context, isl_dim_all);
3453 bmap_total = isl_basic_map_dim(bmap, isl_dim_all);
3454 if (total < 0 || bmap_total < 0)
3455 return isl_basic_map_free(bmap);
3456
3457 extra = bmap_total - total;
3458
3459 i1 = bmap->n_eq - 1;
3460 i2 = context->n_eq - 1;
3461
3462 while (bmap && i1 >= 0 && i2 >= 0) {
3463 int last1, last2;
3464
3465 if (isl_seq_first_non_zero(bmap->eq[i1] + 1 + total,
3466 extra) != -1)
3467 break;
3468 last1 = isl_seq_last_non_zero(bmap->eq[i1] + 1, total);
3469 last2 = isl_seq_last_non_zero(context->eq[i2] + 1, total);
3470 if (last1 > last2) {
3471 --i2;
3472 continue;
3473 }
3474 if (last1 < last2) {
3475 --i1;
3476 continue;
3477 }
3478 if (isl_seq_eq(bmap->eq[i1], context->eq[i2], 1 + total)) {
3479 bmap = isl_basic_map_cow(bmap);
3480 if (isl_basic_map_drop_equality(bmap, i1) < 0)
3481 bmap = isl_basic_map_free(bmap);
3482 }
3483 --i1;
3484 --i2;
3485 }
3486
3487 return bmap;
3488 }
3489
3490 /* Remove the constraints in "context" from "bmap".
3491 * "context" is assumed to have explicit representations
3492 * for all local variables.
3493 *
3494 * First align the divs of "bmap" to those of "context" and
3495 * sort the constraints. Then drop all constraints from "bmap"
3496 * that appear in "context".
3497 */
isl_basic_map_plain_gist(__isl_take isl_basic_map * bmap,__isl_take isl_basic_map * context)3498 __isl_give isl_basic_map *isl_basic_map_plain_gist(
3499 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
3500 {
3501 isl_bool done, known;
3502
3503 done = isl_basic_map_plain_is_universe(context);
3504 if (done == isl_bool_false)
3505 done = isl_basic_map_plain_is_universe(bmap);
3506 if (done == isl_bool_false)
3507 done = isl_basic_map_plain_is_empty(context);
3508 if (done == isl_bool_false)
3509 done = isl_basic_map_plain_is_empty(bmap);
3510 if (done < 0)
3511 goto error;
3512 if (done) {
3513 isl_basic_map_free(context);
3514 return bmap;
3515 }
3516 known = isl_basic_map_divs_known(context);
3517 if (known < 0)
3518 goto error;
3519 if (!known)
3520 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
3521 "context has unknown divs", goto error);
3522
3523 bmap = isl_basic_map_align_divs(bmap, context);
3524 bmap = isl_basic_map_gauss(bmap, NULL);
3525 bmap = isl_basic_map_sort_constraints(bmap);
3526 context = isl_basic_map_sort_constraints(context);
3527
3528 bmap = drop_inequalities(bmap, context);
3529 bmap = drop_equalities(bmap, context);
3530
3531 isl_basic_map_free(context);
3532 bmap = isl_basic_map_finalize(bmap);
3533 return bmap;
3534 error:
3535 isl_basic_map_free(bmap);
3536 isl_basic_map_free(context);
3537 return NULL;
3538 }
3539
3540 /* Replace "map" by the disjunct at position "pos" and free "context".
3541 */
replace_by_disjunct(__isl_take isl_map * map,int pos,__isl_take isl_basic_map * context)3542 static __isl_give isl_map *replace_by_disjunct(__isl_take isl_map *map,
3543 int pos, __isl_take isl_basic_map *context)
3544 {
3545 isl_basic_map *bmap;
3546
3547 bmap = isl_basic_map_copy(map->p[pos]);
3548 isl_map_free(map);
3549 isl_basic_map_free(context);
3550 return isl_map_from_basic_map(bmap);
3551 }
3552
3553 /* Remove the constraints in "context" from "map".
3554 * If any of the disjuncts in the result turns out to be the universe,
3555 * then return this universe.
3556 * "context" is assumed to have explicit representations
3557 * for all local variables.
3558 */
isl_map_plain_gist_basic_map(__isl_take isl_map * map,__isl_take isl_basic_map * context)3559 __isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map,
3560 __isl_take isl_basic_map *context)
3561 {
3562 int i;
3563 isl_bool univ, known;
3564
3565 univ = isl_basic_map_plain_is_universe(context);
3566 if (univ < 0)
3567 goto error;
3568 if (univ) {
3569 isl_basic_map_free(context);
3570 return map;
3571 }
3572 known = isl_basic_map_divs_known(context);
3573 if (known < 0)
3574 goto error;
3575 if (!known)
3576 isl_die(isl_map_get_ctx(map), isl_error_invalid,
3577 "context has unknown divs", goto error);
3578
3579 map = isl_map_cow(map);
3580 if (!map)
3581 goto error;
3582 for (i = 0; i < map->n; ++i) {
3583 map->p[i] = isl_basic_map_plain_gist(map->p[i],
3584 isl_basic_map_copy(context));
3585 univ = isl_basic_map_plain_is_universe(map->p[i]);
3586 if (univ < 0)
3587 goto error;
3588 if (univ && map->n > 1)
3589 return replace_by_disjunct(map, i, context);
3590 }
3591
3592 isl_basic_map_free(context);
3593 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3594 if (map->n > 1)
3595 ISL_F_CLR(map, ISL_MAP_DISJOINT);
3596 return map;
3597 error:
3598 isl_map_free(map);
3599 isl_basic_map_free(context);
3600 return NULL;
3601 }
3602
3603 /* Remove the constraints in "context" from "set".
3604 * If any of the disjuncts in the result turns out to be the universe,
3605 * then return this universe.
3606 * "context" is assumed to have explicit representations
3607 * for all local variables.
3608 */
isl_set_plain_gist_basic_set(__isl_take isl_set * set,__isl_take isl_basic_set * context)3609 __isl_give isl_set *isl_set_plain_gist_basic_set(__isl_take isl_set *set,
3610 __isl_take isl_basic_set *context)
3611 {
3612 return set_from_map(isl_map_plain_gist_basic_map(set_to_map(set),
3613 bset_to_bmap(context)));
3614 }
3615
3616 /* Remove the constraints in "context" from "map".
3617 * If any of the disjuncts in the result turns out to be the universe,
3618 * then return this universe.
3619 * "context" is assumed to consist of a single disjunct and
3620 * to have explicit representations for all local variables.
3621 */
isl_map_plain_gist(__isl_take isl_map * map,__isl_take isl_map * context)3622 __isl_give isl_map *isl_map_plain_gist(__isl_take isl_map *map,
3623 __isl_take isl_map *context)
3624 {
3625 isl_basic_map *hull;
3626
3627 hull = isl_map_unshifted_simple_hull(context);
3628 return isl_map_plain_gist_basic_map(map, hull);
3629 }
3630
3631 /* Replace "map" by a universe map in the same space and free "drop".
3632 */
replace_by_universe(__isl_take isl_map * map,__isl_take isl_map * drop)3633 static __isl_give isl_map *replace_by_universe(__isl_take isl_map *map,
3634 __isl_take isl_map *drop)
3635 {
3636 isl_map *res;
3637
3638 res = isl_map_universe(isl_map_get_space(map));
3639 isl_map_free(map);
3640 isl_map_free(drop);
3641 return res;
3642 }
3643
3644 /* Return a map that has the same intersection with "context" as "map"
3645 * and that is as "simple" as possible.
3646 *
3647 * If "map" is already the universe, then we cannot make it any simpler.
3648 * Similarly, if "context" is the universe, then we cannot exploit it
3649 * to simplify "map"
3650 * If "map" and "context" are identical to each other, then we can
3651 * return the corresponding universe.
3652 *
3653 * If either "map" or "context" consists of multiple disjuncts,
3654 * then check if "context" happens to be a subset of "map",
3655 * in which case all constraints can be removed.
3656 * In case of multiple disjuncts, the standard procedure
3657 * may not be able to detect that all constraints can be removed.
3658 *
3659 * If none of these cases apply, we have to work a bit harder.
3660 * During this computation, we make use of a single disjunct context,
3661 * so if the original context consists of more than one disjunct
3662 * then we need to approximate the context by a single disjunct set.
3663 * Simply taking the simple hull may drop constraints that are
3664 * only implicitly available in each disjunct. We therefore also
3665 * look for constraints among those defining "map" that are valid
3666 * for the context. These can then be used to simplify away
3667 * the corresponding constraints in "map".
3668 */
isl_map_gist(__isl_take isl_map * map,__isl_take isl_map * context)3669 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
3670 __isl_take isl_map *context)
3671 {
3672 int equal;
3673 int is_universe;
3674 isl_size n_disjunct_map, n_disjunct_context;
3675 isl_bool subset;
3676 isl_basic_map *hull;
3677
3678 is_universe = isl_map_plain_is_universe(map);
3679 if (is_universe >= 0 && !is_universe)
3680 is_universe = isl_map_plain_is_universe(context);
3681 if (is_universe < 0)
3682 goto error;
3683 if (is_universe) {
3684 isl_map_free(context);
3685 return map;
3686 }
3687
3688 isl_map_align_params_bin(&map, &context);
3689 equal = isl_map_plain_is_equal(map, context);
3690 if (equal < 0)
3691 goto error;
3692 if (equal)
3693 return replace_by_universe(map, context);
3694
3695 n_disjunct_map = isl_map_n_basic_map(map);
3696 n_disjunct_context = isl_map_n_basic_map(context);
3697 if (n_disjunct_map < 0 || n_disjunct_context < 0)
3698 goto error;
3699 if (n_disjunct_map != 1 || n_disjunct_context != 1) {
3700 subset = isl_map_is_subset(context, map);
3701 if (subset < 0)
3702 goto error;
3703 if (subset)
3704 return replace_by_universe(map, context);
3705 }
3706
3707 context = isl_map_compute_divs(context);
3708 if (!context)
3709 goto error;
3710 if (n_disjunct_context == 1) {
3711 hull = isl_map_simple_hull(context);
3712 } else {
3713 isl_ctx *ctx;
3714 isl_map_list *list;
3715
3716 ctx = isl_map_get_ctx(map);
3717 list = isl_map_list_alloc(ctx, 2);
3718 list = isl_map_list_add(list, isl_map_copy(context));
3719 list = isl_map_list_add(list, isl_map_copy(map));
3720 hull = isl_map_unshifted_simple_hull_from_map_list(context,
3721 list);
3722 }
3723 return isl_map_gist_basic_map(map, hull);
3724 error:
3725 isl_map_free(map);
3726 isl_map_free(context);
3727 return NULL;
3728 }
3729
isl_basic_set_gist(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * context)3730 __isl_give isl_basic_set *isl_basic_set_gist(__isl_take isl_basic_set *bset,
3731 __isl_take isl_basic_set *context)
3732 {
3733 return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset),
3734 bset_to_bmap(context)));
3735 }
3736
isl_set_gist_basic_set(__isl_take isl_set * set,__isl_take isl_basic_set * context)3737 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
3738 __isl_take isl_basic_set *context)
3739 {
3740 return set_from_map(isl_map_gist_basic_map(set_to_map(set),
3741 bset_to_bmap(context)));
3742 }
3743
isl_set_gist_params_basic_set(__isl_take isl_set * set,__isl_take isl_basic_set * context)3744 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
3745 __isl_take isl_basic_set *context)
3746 {
3747 isl_space *space = isl_set_get_space(set);
3748 isl_basic_set *dom_context = isl_basic_set_universe(space);
3749 dom_context = isl_basic_set_intersect_params(dom_context, context);
3750 return isl_set_gist_basic_set(set, dom_context);
3751 }
3752
isl_set_gist(__isl_take isl_set * set,__isl_take isl_set * context)3753 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
3754 __isl_take isl_set *context)
3755 {
3756 return set_from_map(isl_map_gist(set_to_map(set), set_to_map(context)));
3757 }
3758
3759 /* Compute the gist of "bmap" with respect to the constraints "context"
3760 * on the domain.
3761 */
isl_basic_map_gist_domain(__isl_take isl_basic_map * bmap,__isl_take isl_basic_set * context)3762 __isl_give isl_basic_map *isl_basic_map_gist_domain(
3763 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
3764 {
3765 isl_space *space = isl_basic_map_get_space(bmap);
3766 isl_basic_map *bmap_context = isl_basic_map_universe(space);
3767
3768 bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
3769 return isl_basic_map_gist(bmap, bmap_context);
3770 }
3771
isl_map_gist_domain(__isl_take isl_map * map,__isl_take isl_set * context)3772 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
3773 __isl_take isl_set *context)
3774 {
3775 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3776 map_context = isl_map_intersect_domain(map_context, context);
3777 return isl_map_gist(map, map_context);
3778 }
3779
isl_map_gist_range(__isl_take isl_map * map,__isl_take isl_set * context)3780 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
3781 __isl_take isl_set *context)
3782 {
3783 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3784 map_context = isl_map_intersect_range(map_context, context);
3785 return isl_map_gist(map, map_context);
3786 }
3787
isl_map_gist_params(__isl_take isl_map * map,__isl_take isl_set * context)3788 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
3789 __isl_take isl_set *context)
3790 {
3791 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3792 map_context = isl_map_intersect_params(map_context, context);
3793 return isl_map_gist(map, map_context);
3794 }
3795
isl_set_gist_params(__isl_take isl_set * set,__isl_take isl_set * context)3796 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
3797 __isl_take isl_set *context)
3798 {
3799 return isl_map_gist_params(set, context);
3800 }
3801
3802 /* Quick check to see if two basic maps are disjoint.
3803 * In particular, we reduce the equalities and inequalities of
3804 * one basic map in the context of the equalities of the other
3805 * basic map and check if we get a contradiction.
3806 */
isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map * bmap1,__isl_keep isl_basic_map * bmap2)3807 isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
3808 __isl_keep isl_basic_map *bmap2)
3809 {
3810 struct isl_vec *v = NULL;
3811 int *elim = NULL;
3812 isl_size total;
3813 int i;
3814
3815 if (isl_basic_map_check_equal_space(bmap1, bmap2) < 0)
3816 return isl_bool_error;
3817 if (bmap1->n_div || bmap2->n_div)
3818 return isl_bool_false;
3819 if (!bmap1->n_eq && !bmap2->n_eq)
3820 return isl_bool_false;
3821
3822 total = isl_space_dim(bmap1->dim, isl_dim_all);
3823 if (total < 0)
3824 return isl_bool_error;
3825 if (total == 0)
3826 return isl_bool_false;
3827 v = isl_vec_alloc(bmap1->ctx, 1 + total);
3828 if (!v)
3829 goto error;
3830 elim = isl_alloc_array(bmap1->ctx, int, total);
3831 if (!elim)
3832 goto error;
3833 compute_elimination_index(bmap1, elim, total);
3834 for (i = 0; i < bmap2->n_eq; ++i) {
3835 int reduced;
3836 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
3837 bmap1, elim, total);
3838 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
3839 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3840 goto disjoint;
3841 }
3842 for (i = 0; i < bmap2->n_ineq; ++i) {
3843 int reduced;
3844 reduced = reduced_using_equalities(v->block.data,
3845 bmap2->ineq[i], bmap1, elim, total);
3846 if (reduced && isl_int_is_neg(v->block.data[0]) &&
3847 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3848 goto disjoint;
3849 }
3850 compute_elimination_index(bmap2, elim, total);
3851 for (i = 0; i < bmap1->n_ineq; ++i) {
3852 int reduced;
3853 reduced = reduced_using_equalities(v->block.data,
3854 bmap1->ineq[i], bmap2, elim, total);
3855 if (reduced && isl_int_is_neg(v->block.data[0]) &&
3856 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3857 goto disjoint;
3858 }
3859 isl_vec_free(v);
3860 free(elim);
3861 return isl_bool_false;
3862 disjoint:
3863 isl_vec_free(v);
3864 free(elim);
3865 return isl_bool_true;
3866 error:
3867 isl_vec_free(v);
3868 free(elim);
3869 return isl_bool_error;
3870 }
3871
isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set * bset1,__isl_keep isl_basic_set * bset2)3872 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
3873 __isl_keep isl_basic_set *bset2)
3874 {
3875 return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1),
3876 bset_to_bmap(bset2));
3877 }
3878
3879 /* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
3880 */
all_pairs(__isl_keep isl_map * map1,__isl_keep isl_map * map2,isl_bool (* test)(__isl_keep isl_basic_map * bmap1,__isl_keep isl_basic_map * bmap2))3881 static isl_bool all_pairs(__isl_keep isl_map *map1, __isl_keep isl_map *map2,
3882 isl_bool (*test)(__isl_keep isl_basic_map *bmap1,
3883 __isl_keep isl_basic_map *bmap2))
3884 {
3885 int i, j;
3886
3887 if (!map1 || !map2)
3888 return isl_bool_error;
3889
3890 for (i = 0; i < map1->n; ++i) {
3891 for (j = 0; j < map2->n; ++j) {
3892 isl_bool d = test(map1->p[i], map2->p[j]);
3893 if (d != isl_bool_true)
3894 return d;
3895 }
3896 }
3897
3898 return isl_bool_true;
3899 }
3900
3901 /* Are "map1" and "map2" obviously disjoint, based on information
3902 * that can be derived without looking at the individual basic maps?
3903 *
3904 * In particular, if one of them is empty or if they live in different spaces
3905 * (ignoring parameters), then they are clearly disjoint.
3906 */
isl_map_plain_is_disjoint_global(__isl_keep isl_map * map1,__isl_keep isl_map * map2)3907 static isl_bool isl_map_plain_is_disjoint_global(__isl_keep isl_map *map1,
3908 __isl_keep isl_map *map2)
3909 {
3910 isl_bool disjoint;
3911 isl_bool match;
3912
3913 if (!map1 || !map2)
3914 return isl_bool_error;
3915
3916 disjoint = isl_map_plain_is_empty(map1);
3917 if (disjoint < 0 || disjoint)
3918 return disjoint;
3919
3920 disjoint = isl_map_plain_is_empty(map2);
3921 if (disjoint < 0 || disjoint)
3922 return disjoint;
3923
3924 match = isl_map_tuple_is_equal(map1, isl_dim_in, map2, isl_dim_in);
3925 if (match < 0 || !match)
3926 return match < 0 ? isl_bool_error : isl_bool_true;
3927
3928 match = isl_map_tuple_is_equal(map1, isl_dim_out, map2, isl_dim_out);
3929 if (match < 0 || !match)
3930 return match < 0 ? isl_bool_error : isl_bool_true;
3931
3932 return isl_bool_false;
3933 }
3934
3935 /* Are "map1" and "map2" obviously disjoint?
3936 *
3937 * If one of them is empty or if they live in different spaces (ignoring
3938 * parameters), then they are clearly disjoint.
3939 * This is checked by isl_map_plain_is_disjoint_global.
3940 *
3941 * If they have different parameters, then we skip any further tests.
3942 *
3943 * If they are obviously equal, but not obviously empty, then we will
3944 * not be able to detect if they are disjoint.
3945 *
3946 * Otherwise we check if each basic map in "map1" is obviously disjoint
3947 * from each basic map in "map2".
3948 */
isl_map_plain_is_disjoint(__isl_keep isl_map * map1,__isl_keep isl_map * map2)3949 isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
3950 __isl_keep isl_map *map2)
3951 {
3952 isl_bool disjoint;
3953 isl_bool intersect;
3954 isl_bool match;
3955
3956 disjoint = isl_map_plain_is_disjoint_global(map1, map2);
3957 if (disjoint < 0 || disjoint)
3958 return disjoint;
3959
3960 match = isl_map_has_equal_params(map1, map2);
3961 if (match < 0 || !match)
3962 return match < 0 ? isl_bool_error : isl_bool_false;
3963
3964 intersect = isl_map_plain_is_equal(map1, map2);
3965 if (intersect < 0 || intersect)
3966 return intersect < 0 ? isl_bool_error : isl_bool_false;
3967
3968 return all_pairs(map1, map2, &isl_basic_map_plain_is_disjoint);
3969 }
3970
3971 /* Are "map1" and "map2" disjoint?
3972 * The parameters are assumed to have been aligned.
3973 *
3974 * In particular, check whether all pairs of basic maps are disjoint.
3975 */
isl_map_is_disjoint_aligned(__isl_keep isl_map * map1,__isl_keep isl_map * map2)3976 static isl_bool isl_map_is_disjoint_aligned(__isl_keep isl_map *map1,
3977 __isl_keep isl_map *map2)
3978 {
3979 return all_pairs(map1, map2, &isl_basic_map_is_disjoint);
3980 }
3981
3982 /* Are "map1" and "map2" disjoint?
3983 *
3984 * They are disjoint if they are "obviously disjoint" or if one of them
3985 * is empty. Otherwise, they are not disjoint if one of them is universal.
3986 * If the two inputs are (obviously) equal and not empty, then they are
3987 * not disjoint.
3988 * If none of these cases apply, then check if all pairs of basic maps
3989 * are disjoint after aligning the parameters.
3990 */
isl_map_is_disjoint(__isl_keep isl_map * map1,__isl_keep isl_map * map2)3991 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
3992 {
3993 isl_bool disjoint;
3994 isl_bool intersect;
3995
3996 disjoint = isl_map_plain_is_disjoint_global(map1, map2);
3997 if (disjoint < 0 || disjoint)
3998 return disjoint;
3999
4000 disjoint = isl_map_is_empty(map1);
4001 if (disjoint < 0 || disjoint)
4002 return disjoint;
4003
4004 disjoint = isl_map_is_empty(map2);
4005 if (disjoint < 0 || disjoint)
4006 return disjoint;
4007
4008 intersect = isl_map_plain_is_universe(map1);
4009 if (intersect < 0 || intersect)
4010 return isl_bool_not(intersect);
4011
4012 intersect = isl_map_plain_is_universe(map2);
4013 if (intersect < 0 || intersect)
4014 return isl_bool_not(intersect);
4015
4016 intersect = isl_map_plain_is_equal(map1, map2);
4017 if (intersect < 0 || intersect)
4018 return isl_bool_not(intersect);
4019
4020 return isl_map_align_params_map_map_and_test(map1, map2,
4021 &isl_map_is_disjoint_aligned);
4022 }
4023
4024 /* Are "bmap1" and "bmap2" disjoint?
4025 *
4026 * They are disjoint if they are "obviously disjoint" or if one of them
4027 * is empty. Otherwise, they are not disjoint if one of them is universal.
4028 * If none of these cases apply, we compute the intersection and see if
4029 * the result is empty.
4030 */
isl_basic_map_is_disjoint(__isl_keep isl_basic_map * bmap1,__isl_keep isl_basic_map * bmap2)4031 isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
4032 __isl_keep isl_basic_map *bmap2)
4033 {
4034 isl_bool disjoint;
4035 isl_bool intersect;
4036 isl_basic_map *test;
4037
4038 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
4039 if (disjoint < 0 || disjoint)
4040 return disjoint;
4041
4042 disjoint = isl_basic_map_is_empty(bmap1);
4043 if (disjoint < 0 || disjoint)
4044 return disjoint;
4045
4046 disjoint = isl_basic_map_is_empty(bmap2);
4047 if (disjoint < 0 || disjoint)
4048 return disjoint;
4049
4050 intersect = isl_basic_map_plain_is_universe(bmap1);
4051 if (intersect < 0 || intersect)
4052 return isl_bool_not(intersect);
4053
4054 intersect = isl_basic_map_plain_is_universe(bmap2);
4055 if (intersect < 0 || intersect)
4056 return isl_bool_not(intersect);
4057
4058 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
4059 isl_basic_map_copy(bmap2));
4060 disjoint = isl_basic_map_is_empty(test);
4061 isl_basic_map_free(test);
4062
4063 return disjoint;
4064 }
4065
4066 /* Are "bset1" and "bset2" disjoint?
4067 */
isl_basic_set_is_disjoint(__isl_keep isl_basic_set * bset1,__isl_keep isl_basic_set * bset2)4068 isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
4069 __isl_keep isl_basic_set *bset2)
4070 {
4071 return isl_basic_map_is_disjoint(bset1, bset2);
4072 }
4073
isl_set_plain_is_disjoint(__isl_keep isl_set * set1,__isl_keep isl_set * set2)4074 isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
4075 __isl_keep isl_set *set2)
4076 {
4077 return isl_map_plain_is_disjoint(set_to_map(set1), set_to_map(set2));
4078 }
4079
4080 /* Are "set1" and "set2" disjoint?
4081 */
isl_set_is_disjoint(__isl_keep isl_set * set1,__isl_keep isl_set * set2)4082 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
4083 {
4084 return isl_map_is_disjoint(set1, set2);
4085 }
4086
4087 /* Is "v" equal to 0, 1 or -1?
4088 */
is_zero_or_one(isl_int v)4089 static int is_zero_or_one(isl_int v)
4090 {
4091 return isl_int_is_zero(v) || isl_int_is_one(v) || isl_int_is_negone(v);
4092 }
4093
4094 /* Are the "n" coefficients starting at "first" of inequality constraints
4095 * "i" and "j" of "bmap" opposite to each other?
4096 */
is_opposite_part(__isl_keep isl_basic_map * bmap,int i,int j,int first,int n)4097 static int is_opposite_part(__isl_keep isl_basic_map *bmap, int i, int j,
4098 int first, int n)
4099 {
4100 return isl_seq_is_neg(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4101 }
4102
4103 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4104 * apart from the constant term?
4105 */
is_opposite(__isl_keep isl_basic_map * bmap,int i,int j)4106 static isl_bool is_opposite(__isl_keep isl_basic_map *bmap, int i, int j)
4107 {
4108 isl_size total;
4109
4110 total = isl_basic_map_dim(bmap, isl_dim_all);
4111 if (total < 0)
4112 return isl_bool_error;
4113 return is_opposite_part(bmap, i, j, 1, total);
4114 }
4115
4116 /* Check if we can combine a given div with lower bound l and upper
4117 * bound u with some other div and if so return that other div.
4118 * Otherwise, return a position beyond the integer divisions.
4119 * Return -1 on error.
4120 *
4121 * We first check that
4122 * - the bounds are opposites of each other (except for the constant
4123 * term)
4124 * - the bounds do not reference any other div
4125 * - no div is defined in terms of this div
4126 *
4127 * Let m be the size of the range allowed on the div by the bounds.
4128 * That is, the bounds are of the form
4129 *
4130 * e <= a <= e + m - 1
4131 *
4132 * with e some expression in the other variables.
4133 * We look for another div b such that no third div is defined in terms
4134 * of this second div b and such that in any constraint that contains
4135 * a (except for the given lower and upper bound), also contains b
4136 * with a coefficient that is m times that of b.
4137 * That is, all constraints (except for the lower and upper bound)
4138 * are of the form
4139 *
4140 * e + f (a + m b) >= 0
4141 *
4142 * Furthermore, in the constraints that only contain b, the coefficient
4143 * of b should be equal to 1 or -1.
4144 * If so, we return b so that "a + m b" can be replaced by
4145 * a single div "c = a + m b".
4146 */
div_find_coalesce(__isl_keep isl_basic_map * bmap,int * pairs,unsigned div,unsigned l,unsigned u)4147 static int div_find_coalesce(__isl_keep isl_basic_map *bmap, int *pairs,
4148 unsigned div, unsigned l, unsigned u)
4149 {
4150 int i, j;
4151 unsigned n_div;
4152 isl_size v_div;
4153 int coalesce;
4154 isl_bool opp;
4155
4156 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4157 if (n_div <= 1)
4158 return n_div;
4159 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4160 if (v_div < 0)
4161 return -1;
4162 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + v_div, div) != -1)
4163 return n_div;
4164 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + v_div + div + 1,
4165 n_div - div - 1) != -1)
4166 return n_div;
4167 opp = is_opposite(bmap, l, u);
4168 if (opp < 0 || !opp)
4169 return opp < 0 ? -1 : n_div;
4170
4171 for (i = 0; i < n_div; ++i) {
4172 if (isl_int_is_zero(bmap->div[i][0]))
4173 continue;
4174 if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div]))
4175 return n_div;
4176 }
4177
4178 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
4179 if (isl_int_is_neg(bmap->ineq[l][0])) {
4180 isl_int_sub(bmap->ineq[l][0],
4181 bmap->ineq[l][0], bmap->ineq[u][0]);
4182 bmap = isl_basic_map_copy(bmap);
4183 bmap = isl_basic_map_set_to_empty(bmap);
4184 isl_basic_map_free(bmap);
4185 return n_div;
4186 }
4187 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
4188 coalesce = n_div;
4189 for (i = 0; i < n_div; ++i) {
4190 if (i == div)
4191 continue;
4192 if (!pairs[i])
4193 continue;
4194 for (j = 0; j < n_div; ++j) {
4195 if (isl_int_is_zero(bmap->div[j][0]))
4196 continue;
4197 if (!isl_int_is_zero(bmap->div[j][1 + 1 + v_div + i]))
4198 break;
4199 }
4200 if (j < n_div)
4201 continue;
4202 for (j = 0; j < bmap->n_ineq; ++j) {
4203 int valid;
4204 if (j == l || j == u)
4205 continue;
4206 if (isl_int_is_zero(bmap->ineq[j][1 + v_div + div])) {
4207 if (is_zero_or_one(bmap->ineq[j][1 + v_div + i]))
4208 continue;
4209 break;
4210 }
4211 if (isl_int_is_zero(bmap->ineq[j][1 + v_div + i]))
4212 break;
4213 isl_int_mul(bmap->ineq[j][1 + v_div + div],
4214 bmap->ineq[j][1 + v_div + div],
4215 bmap->ineq[l][0]);
4216 valid = isl_int_eq(bmap->ineq[j][1 + v_div + div],
4217 bmap->ineq[j][1 + v_div + i]);
4218 isl_int_divexact(bmap->ineq[j][1 + v_div + div],
4219 bmap->ineq[j][1 + v_div + div],
4220 bmap->ineq[l][0]);
4221 if (!valid)
4222 break;
4223 }
4224 if (j < bmap->n_ineq)
4225 continue;
4226 coalesce = i;
4227 break;
4228 }
4229 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
4230 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
4231 return coalesce;
4232 }
4233
4234 /* Internal data structure used during the construction and/or evaluation of
4235 * an inequality that ensures that a pair of bounds always allows
4236 * for an integer value.
4237 *
4238 * "tab" is the tableau in which the inequality is evaluated. It may
4239 * be NULL until it is actually needed.
4240 * "v" contains the inequality coefficients.
4241 * "g", "fl" and "fu" are temporary scalars used during the construction and
4242 * evaluation.
4243 */
4244 struct test_ineq_data {
4245 struct isl_tab *tab;
4246 isl_vec *v;
4247 isl_int g;
4248 isl_int fl;
4249 isl_int fu;
4250 };
4251
4252 /* Free all the memory allocated by the fields of "data".
4253 */
test_ineq_data_clear(struct test_ineq_data * data)4254 static void test_ineq_data_clear(struct test_ineq_data *data)
4255 {
4256 isl_tab_free(data->tab);
4257 isl_vec_free(data->v);
4258 isl_int_clear(data->g);
4259 isl_int_clear(data->fl);
4260 isl_int_clear(data->fu);
4261 }
4262
4263 /* Is the inequality stored in data->v satisfied by "bmap"?
4264 * That is, does it only attain non-negative values?
4265 * data->tab is a tableau corresponding to "bmap".
4266 */
test_ineq_is_satisfied(__isl_keep isl_basic_map * bmap,struct test_ineq_data * data)4267 static isl_bool test_ineq_is_satisfied(__isl_keep isl_basic_map *bmap,
4268 struct test_ineq_data *data)
4269 {
4270 isl_ctx *ctx;
4271 enum isl_lp_result res;
4272
4273 ctx = isl_basic_map_get_ctx(bmap);
4274 if (!data->tab)
4275 data->tab = isl_tab_from_basic_map(bmap, 0);
4276 res = isl_tab_min(data->tab, data->v->el, ctx->one, &data->g, NULL, 0);
4277 if (res == isl_lp_error)
4278 return isl_bool_error;
4279 return res == isl_lp_ok && isl_int_is_nonneg(data->g);
4280 }
4281
4282 /* Given a lower and an upper bound on div i, do they always allow
4283 * for an integer value of the given div?
4284 * Determine this property by constructing an inequality
4285 * such that the property is guaranteed when the inequality is nonnegative.
4286 * The lower bound is inequality l, while the upper bound is inequality u.
4287 * The constructed inequality is stored in data->v.
4288 *
4289 * Let the upper bound be
4290 *
4291 * -n_u a + e_u >= 0
4292 *
4293 * and the lower bound
4294 *
4295 * n_l a + e_l >= 0
4296 *
4297 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4298 * We have
4299 *
4300 * - f_u e_l <= f_u f_l g a <= f_l e_u
4301 *
4302 * Since all variables are integer valued, this is equivalent to
4303 *
4304 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4305 *
4306 * If this interval is at least f_u f_l g, then it contains at least
4307 * one integer value for a.
4308 * That is, the test constraint is
4309 *
4310 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4311 *
4312 * or
4313 *
4314 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4315 *
4316 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4317 * then the constraint can be scaled down by a factor g',
4318 * with the constant term replaced by
4319 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4320 * Note that the result of applying Fourier-Motzkin to this pair
4321 * of constraints is
4322 *
4323 * f_l e_u + f_u e_l >= 0
4324 *
4325 * If the constant term of the scaled down version of this constraint,
4326 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4327 * term of the scaled down test constraint, then the test constraint
4328 * is known to hold and no explicit evaluation is required.
4329 * This is essentially the Omega test.
4330 *
4331 * If the test constraint consists of only a constant term, then
4332 * it is sufficient to look at the sign of this constant term.
4333 */
int_between_bounds(__isl_keep isl_basic_map * bmap,int i,int l,int u,struct test_ineq_data * data)4334 static isl_bool int_between_bounds(__isl_keep isl_basic_map *bmap, int i,
4335 int l, int u, struct test_ineq_data *data)
4336 {
4337 unsigned offset;
4338 isl_size n_div;
4339
4340 offset = isl_basic_map_offset(bmap, isl_dim_div);
4341 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4342 if (n_div < 0)
4343 return isl_bool_error;
4344
4345 isl_int_gcd(data->g,
4346 bmap->ineq[l][offset + i], bmap->ineq[u][offset + i]);
4347 isl_int_divexact(data->fl, bmap->ineq[l][offset + i], data->g);
4348 isl_int_divexact(data->fu, bmap->ineq[u][offset + i], data->g);
4349 isl_int_neg(data->fu, data->fu);
4350 isl_seq_combine(data->v->el, data->fl, bmap->ineq[u],
4351 data->fu, bmap->ineq[l], offset + n_div);
4352 isl_int_mul(data->g, data->g, data->fl);
4353 isl_int_mul(data->g, data->g, data->fu);
4354 isl_int_sub(data->g, data->g, data->fl);
4355 isl_int_sub(data->g, data->g, data->fu);
4356 isl_int_add_ui(data->g, data->g, 1);
4357 isl_int_sub(data->fl, data->v->el[0], data->g);
4358
4359 isl_seq_gcd(data->v->el + 1, offset - 1 + n_div, &data->g);
4360 if (isl_int_is_zero(data->g))
4361 return isl_int_is_nonneg(data->fl);
4362 if (isl_int_is_one(data->g)) {
4363 isl_int_set(data->v->el[0], data->fl);
4364 return test_ineq_is_satisfied(bmap, data);
4365 }
4366 isl_int_fdiv_q(data->fl, data->fl, data->g);
4367 isl_int_fdiv_q(data->v->el[0], data->v->el[0], data->g);
4368 if (isl_int_eq(data->fl, data->v->el[0]))
4369 return isl_bool_true;
4370 isl_int_set(data->v->el[0], data->fl);
4371 isl_seq_scale_down(data->v->el + 1, data->v->el + 1, data->g,
4372 offset - 1 + n_div);
4373
4374 return test_ineq_is_satisfied(bmap, data);
4375 }
4376
4377 /* Remove more kinds of divs that are not strictly needed.
4378 * In particular, if all pairs of lower and upper bounds on a div
4379 * are such that they allow at least one integer value of the div,
4380 * then we can eliminate the div using Fourier-Motzkin without
4381 * introducing any spurious solutions.
4382 *
4383 * If at least one of the two constraints has a unit coefficient for the div,
4384 * then the presence of such a value is guaranteed so there is no need to check.
4385 * In particular, the value attained by the bound with unit coefficient
4386 * can serve as this intermediate value.
4387 */
drop_more_redundant_divs(__isl_take isl_basic_map * bmap,__isl_take int * pairs,int n)4388 static __isl_give isl_basic_map *drop_more_redundant_divs(
4389 __isl_take isl_basic_map *bmap, __isl_take int *pairs, int n)
4390 {
4391 isl_ctx *ctx;
4392 struct test_ineq_data data = { NULL, NULL };
4393 unsigned off;
4394 isl_size n_div;
4395 int remove = -1;
4396
4397 isl_int_init(data.g);
4398 isl_int_init(data.fl);
4399 isl_int_init(data.fu);
4400
4401 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4402 if (n_div < 0)
4403 goto error;
4404
4405 ctx = isl_basic_map_get_ctx(bmap);
4406 off = isl_basic_map_offset(bmap, isl_dim_div);
4407 data.v = isl_vec_alloc(ctx, off + n_div);
4408 if (!data.v)
4409 goto error;
4410
4411 while (n > 0) {
4412 int i, l, u;
4413 int best = -1;
4414 isl_bool has_int;
4415
4416 for (i = 0; i < n_div; ++i) {
4417 if (!pairs[i])
4418 continue;
4419 if (best >= 0 && pairs[best] <= pairs[i])
4420 continue;
4421 best = i;
4422 }
4423
4424 i = best;
4425 for (l = 0; l < bmap->n_ineq; ++l) {
4426 if (!isl_int_is_pos(bmap->ineq[l][off + i]))
4427 continue;
4428 if (isl_int_is_one(bmap->ineq[l][off + i]))
4429 continue;
4430 for (u = 0; u < bmap->n_ineq; ++u) {
4431 if (!isl_int_is_neg(bmap->ineq[u][off + i]))
4432 continue;
4433 if (isl_int_is_negone(bmap->ineq[u][off + i]))
4434 continue;
4435 has_int = int_between_bounds(bmap, i, l, u,
4436 &data);
4437 if (has_int < 0)
4438 goto error;
4439 if (data.tab && data.tab->empty)
4440 break;
4441 if (!has_int)
4442 break;
4443 }
4444 if (u < bmap->n_ineq)
4445 break;
4446 }
4447 if (data.tab && data.tab->empty) {
4448 bmap = isl_basic_map_set_to_empty(bmap);
4449 break;
4450 }
4451 if (l == bmap->n_ineq) {
4452 remove = i;
4453 break;
4454 }
4455 pairs[i] = 0;
4456 --n;
4457 }
4458
4459 test_ineq_data_clear(&data);
4460
4461 free(pairs);
4462
4463 if (remove < 0)
4464 return bmap;
4465
4466 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
4467 return isl_basic_map_drop_redundant_divs(bmap);
4468 error:
4469 free(pairs);
4470 isl_basic_map_free(bmap);
4471 test_ineq_data_clear(&data);
4472 return NULL;
4473 }
4474
4475 /* Given a pair of divs div1 and div2 such that, except for the lower bound l
4476 * and the upper bound u, div1 always occurs together with div2 in the form
4477 * (div1 + m div2), where m is the constant range on the variable div1
4478 * allowed by l and u, replace the pair div1 and div2 by a single
4479 * div that is equal to div1 + m div2.
4480 *
4481 * The new div will appear in the location that contains div2.
4482 * We need to modify all constraints that contain
4483 * div2 = (div - div1) / m
4484 * The coefficient of div2 is known to be equal to 1 or -1.
4485 * (If a constraint does not contain div2, it will also not contain div1.)
4486 * If the constraint also contains div1, then we know they appear
4487 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4488 * i.e., the coefficient of div is f.
4489 *
4490 * Otherwise, we first need to introduce div1 into the constraint.
4491 * Let l be
4492 *
4493 * div1 + f >=0
4494 *
4495 * and u
4496 *
4497 * -div1 + f' >= 0
4498 *
4499 * A lower bound on div2
4500 *
4501 * div2 + t >= 0
4502 *
4503 * can be replaced by
4504 *
4505 * m div2 + div1 + m t + f >= 0
4506 *
4507 * An upper bound
4508 *
4509 * -div2 + t >= 0
4510 *
4511 * can be replaced by
4512 *
4513 * -(m div2 + div1) + m t + f' >= 0
4514 *
4515 * These constraint are those that we would obtain from eliminating
4516 * div1 using Fourier-Motzkin.
4517 *
4518 * After all constraints have been modified, we drop the lower and upper
4519 * bound and then drop div1.
4520 * Since the new div is only placed in the same location that used
4521 * to store div2, but otherwise has a different meaning, any possible
4522 * explicit representation of the original div2 is removed.
4523 */
coalesce_divs(__isl_take isl_basic_map * bmap,unsigned div1,unsigned div2,unsigned l,unsigned u)4524 static __isl_give isl_basic_map *coalesce_divs(__isl_take isl_basic_map *bmap,
4525 unsigned div1, unsigned div2, unsigned l, unsigned u)
4526 {
4527 isl_ctx *ctx;
4528 isl_int m;
4529 isl_size v_div;
4530 unsigned total;
4531 int i;
4532
4533 ctx = isl_basic_map_get_ctx(bmap);
4534
4535 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4536 if (v_div < 0)
4537 return isl_basic_map_free(bmap);
4538 total = 1 + v_div + bmap->n_div;
4539
4540 isl_int_init(m);
4541 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
4542 isl_int_add_ui(m, m, 1);
4543
4544 for (i = 0; i < bmap->n_ineq; ++i) {
4545 if (i == l || i == u)
4546 continue;
4547 if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div2]))
4548 continue;
4549 if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div1])) {
4550 if (isl_int_is_pos(bmap->ineq[i][1 + v_div + div2]))
4551 isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4552 ctx->one, bmap->ineq[l], total);
4553 else
4554 isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4555 ctx->one, bmap->ineq[u], total);
4556 }
4557 isl_int_set(bmap->ineq[i][1 + v_div + div2],
4558 bmap->ineq[i][1 + v_div + div1]);
4559 isl_int_set_si(bmap->ineq[i][1 + v_div + div1], 0);
4560 }
4561
4562 isl_int_clear(m);
4563 if (l > u) {
4564 isl_basic_map_drop_inequality(bmap, l);
4565 isl_basic_map_drop_inequality(bmap, u);
4566 } else {
4567 isl_basic_map_drop_inequality(bmap, u);
4568 isl_basic_map_drop_inequality(bmap, l);
4569 }
4570 bmap = isl_basic_map_mark_div_unknown(bmap, div2);
4571 bmap = isl_basic_map_drop_div(bmap, div1);
4572 return bmap;
4573 }
4574
4575 /* First check if we can coalesce any pair of divs and
4576 * then continue with dropping more redundant divs.
4577 *
4578 * We loop over all pairs of lower and upper bounds on a div
4579 * with coefficient 1 and -1, respectively, check if there
4580 * is any other div "c" with which we can coalesce the div
4581 * and if so, perform the coalescing.
4582 */
coalesce_or_drop_more_redundant_divs(__isl_take isl_basic_map * bmap,int * pairs,int n)4583 static __isl_give isl_basic_map *coalesce_or_drop_more_redundant_divs(
4584 __isl_take isl_basic_map *bmap, int *pairs, int n)
4585 {
4586 int i, l, u;
4587 isl_size v_div;
4588 isl_size n_div;
4589
4590 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4591 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4592 if (v_div < 0 || n_div < 0)
4593 return isl_basic_map_free(bmap);
4594
4595 for (i = 0; i < n_div; ++i) {
4596 if (!pairs[i])
4597 continue;
4598 for (l = 0; l < bmap->n_ineq; ++l) {
4599 if (!isl_int_is_one(bmap->ineq[l][1 + v_div + i]))
4600 continue;
4601 for (u = 0; u < bmap->n_ineq; ++u) {
4602 int c;
4603
4604 if (!isl_int_is_negone(bmap->ineq[u][1+v_div+i]))
4605 continue;
4606 c = div_find_coalesce(bmap, pairs, i, l, u);
4607 if (c < 0)
4608 goto error;
4609 if (c >= n_div)
4610 continue;
4611 free(pairs);
4612 bmap = coalesce_divs(bmap, i, c, l, u);
4613 return isl_basic_map_drop_redundant_divs(bmap);
4614 }
4615 }
4616 }
4617
4618 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
4619 free(pairs);
4620 return bmap;
4621 }
4622
4623 return drop_more_redundant_divs(bmap, pairs, n);
4624 error:
4625 free(pairs);
4626 isl_basic_map_free(bmap);
4627 return NULL;
4628 }
4629
4630 /* Are the "n" coefficients starting at "first" of inequality constraints
4631 * "i" and "j" of "bmap" equal to each other?
4632 */
is_parallel_part(__isl_keep isl_basic_map * bmap,int i,int j,int first,int n)4633 static int is_parallel_part(__isl_keep isl_basic_map *bmap, int i, int j,
4634 int first, int n)
4635 {
4636 return isl_seq_eq(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4637 }
4638
4639 /* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4640 * apart from the constant term and the coefficient at position "pos"?
4641 */
is_parallel_except(__isl_keep isl_basic_map * bmap,int i,int j,int pos)4642 static isl_bool is_parallel_except(__isl_keep isl_basic_map *bmap, int i, int j,
4643 int pos)
4644 {
4645 isl_size total;
4646
4647 total = isl_basic_map_dim(bmap, isl_dim_all);
4648 if (total < 0)
4649 return isl_bool_error;
4650 return is_parallel_part(bmap, i, j, 1, pos - 1) &&
4651 is_parallel_part(bmap, i, j, pos + 1, total - pos);
4652 }
4653
4654 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4655 * apart from the constant term and the coefficient at position "pos"?
4656 */
is_opposite_except(__isl_keep isl_basic_map * bmap,int i,int j,int pos)4657 static isl_bool is_opposite_except(__isl_keep isl_basic_map *bmap, int i, int j,
4658 int pos)
4659 {
4660 isl_size total;
4661
4662 total = isl_basic_map_dim(bmap, isl_dim_all);
4663 if (total < 0)
4664 return isl_bool_error;
4665 return is_opposite_part(bmap, i, j, 1, pos - 1) &&
4666 is_opposite_part(bmap, i, j, pos + 1, total - pos);
4667 }
4668
4669 /* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4670 * been modified, simplying it if "simplify" is set.
4671 * Free the temporary data structure "pairs" that was associated
4672 * to the old version of "bmap".
4673 */
drop_redundant_divs_again(__isl_take isl_basic_map * bmap,__isl_take int * pairs,int simplify)4674 static __isl_give isl_basic_map *drop_redundant_divs_again(
4675 __isl_take isl_basic_map *bmap, __isl_take int *pairs, int simplify)
4676 {
4677 if (simplify)
4678 bmap = isl_basic_map_simplify(bmap);
4679 free(pairs);
4680 return isl_basic_map_drop_redundant_divs(bmap);
4681 }
4682
4683 /* Is "div" the single unknown existentially quantified variable
4684 * in inequality constraint "ineq" of "bmap"?
4685 * "div" is known to have a non-zero coefficient in "ineq".
4686 */
single_unknown(__isl_keep isl_basic_map * bmap,int ineq,int div)4687 static isl_bool single_unknown(__isl_keep isl_basic_map *bmap, int ineq,
4688 int div)
4689 {
4690 int i;
4691 isl_size n_div;
4692 unsigned o_div;
4693 isl_bool known;
4694
4695 known = isl_basic_map_div_is_known(bmap, div);
4696 if (known < 0 || known)
4697 return isl_bool_not(known);
4698 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4699 if (n_div < 0)
4700 return isl_bool_error;
4701 if (n_div == 1)
4702 return isl_bool_true;
4703 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4704 for (i = 0; i < n_div; ++i) {
4705 isl_bool known;
4706
4707 if (i == div)
4708 continue;
4709 if (isl_int_is_zero(bmap->ineq[ineq][o_div + i]))
4710 continue;
4711 known = isl_basic_map_div_is_known(bmap, i);
4712 if (known < 0 || !known)
4713 return known;
4714 }
4715
4716 return isl_bool_true;
4717 }
4718
4719 /* Does integer division "div" have coefficient 1 in inequality constraint
4720 * "ineq" of "map"?
4721 */
has_coef_one(__isl_keep isl_basic_map * bmap,int div,int ineq)4722 static isl_bool has_coef_one(__isl_keep isl_basic_map *bmap, int div, int ineq)
4723 {
4724 unsigned o_div;
4725
4726 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4727 if (isl_int_is_one(bmap->ineq[ineq][o_div + div]))
4728 return isl_bool_true;
4729
4730 return isl_bool_false;
4731 }
4732
4733 /* Turn inequality constraint "ineq" of "bmap" into an equality and
4734 * then try and drop redundant divs again,
4735 * freeing the temporary data structure "pairs" that was associated
4736 * to the old version of "bmap".
4737 */
set_eq_and_try_again(__isl_take isl_basic_map * bmap,int ineq,__isl_take int * pairs)4738 static __isl_give isl_basic_map *set_eq_and_try_again(
4739 __isl_take isl_basic_map *bmap, int ineq, __isl_take int *pairs)
4740 {
4741 bmap = isl_basic_map_cow(bmap);
4742 isl_basic_map_inequality_to_equality(bmap, ineq);
4743 return drop_redundant_divs_again(bmap, pairs, 1);
4744 }
4745
4746 /* Drop the integer division at position "div", along with the two
4747 * inequality constraints "ineq1" and "ineq2" in which it appears
4748 * from "bmap" and then try and drop redundant divs again,
4749 * freeing the temporary data structure "pairs" that was associated
4750 * to the old version of "bmap".
4751 */
drop_div_and_try_again(__isl_take isl_basic_map * bmap,int div,int ineq1,int ineq2,__isl_take int * pairs)4752 static __isl_give isl_basic_map *drop_div_and_try_again(
4753 __isl_take isl_basic_map *bmap, int div, int ineq1, int ineq2,
4754 __isl_take int *pairs)
4755 {
4756 if (ineq1 > ineq2) {
4757 isl_basic_map_drop_inequality(bmap, ineq1);
4758 isl_basic_map_drop_inequality(bmap, ineq2);
4759 } else {
4760 isl_basic_map_drop_inequality(bmap, ineq2);
4761 isl_basic_map_drop_inequality(bmap, ineq1);
4762 }
4763 bmap = isl_basic_map_drop_div(bmap, div);
4764 return drop_redundant_divs_again(bmap, pairs, 0);
4765 }
4766
4767 /* Given two inequality constraints
4768 *
4769 * f(x) + n d + c >= 0, (ineq)
4770 *
4771 * with d the variable at position "pos", and
4772 *
4773 * f(x) + c0 >= 0, (lower)
4774 *
4775 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4776 * determined by the first constraint.
4777 * That is, store
4778 *
4779 * ceil((c0 - c)/n)
4780 *
4781 * in *l.
4782 */
lower_bound_from_parallel(__isl_keep isl_basic_map * bmap,int ineq,int lower,int pos,isl_int * l)4783 static void lower_bound_from_parallel(__isl_keep isl_basic_map *bmap,
4784 int ineq, int lower, int pos, isl_int *l)
4785 {
4786 isl_int_neg(*l, bmap->ineq[ineq][0]);
4787 isl_int_add(*l, *l, bmap->ineq[lower][0]);
4788 isl_int_cdiv_q(*l, *l, bmap->ineq[ineq][pos]);
4789 }
4790
4791 /* Given two inequality constraints
4792 *
4793 * f(x) + n d + c >= 0, (ineq)
4794 *
4795 * with d the variable at position "pos", and
4796 *
4797 * -f(x) - c0 >= 0, (upper)
4798 *
4799 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4800 * determined by the first constraint.
4801 * That is, store
4802 *
4803 * ceil((-c1 - c)/n)
4804 *
4805 * in *u.
4806 */
lower_bound_from_opposite(__isl_keep isl_basic_map * bmap,int ineq,int upper,int pos,isl_int * u)4807 static void lower_bound_from_opposite(__isl_keep isl_basic_map *bmap,
4808 int ineq, int upper, int pos, isl_int *u)
4809 {
4810 isl_int_neg(*u, bmap->ineq[ineq][0]);
4811 isl_int_sub(*u, *u, bmap->ineq[upper][0]);
4812 isl_int_cdiv_q(*u, *u, bmap->ineq[ineq][pos]);
4813 }
4814
4815 /* Given a lower bound constraint "ineq" on "div" in "bmap",
4816 * does the corresponding lower bound have a fixed value in "bmap"?
4817 *
4818 * In particular, "ineq" is of the form
4819 *
4820 * f(x) + n d + c >= 0
4821 *
4822 * with n > 0, c the constant term and
4823 * d the existentially quantified variable "div".
4824 * That is, the lower bound is
4825 *
4826 * ceil((-f(x) - c)/n)
4827 *
4828 * Look for a pair of constraints
4829 *
4830 * f(x) + c0 >= 0
4831 * -f(x) + c1 >= 0
4832 *
4833 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4834 * That is, check that
4835 *
4836 * ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4837 *
4838 * If so, return the index of inequality f(x) + c0 >= 0.
4839 * Otherwise, return bmap->n_ineq.
4840 * Return -1 on error.
4841 */
lower_bound_is_cst(__isl_keep isl_basic_map * bmap,int div,int ineq)4842 static int lower_bound_is_cst(__isl_keep isl_basic_map *bmap, int div, int ineq)
4843 {
4844 int i;
4845 int lower = -1, upper = -1;
4846 unsigned o_div;
4847 isl_int l, u;
4848 int equal;
4849
4850 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4851 for (i = 0; i < bmap->n_ineq && (lower < 0 || upper < 0); ++i) {
4852 isl_bool par, opp;
4853
4854 if (i == ineq)
4855 continue;
4856 if (!isl_int_is_zero(bmap->ineq[i][o_div + div]))
4857 continue;
4858 par = isl_bool_false;
4859 if (lower < 0)
4860 par = is_parallel_except(bmap, ineq, i, o_div + div);
4861 if (par < 0)
4862 return -1;
4863 if (par) {
4864 lower = i;
4865 continue;
4866 }
4867 opp = isl_bool_false;
4868 if (upper < 0)
4869 opp = is_opposite_except(bmap, ineq, i, o_div + div);
4870 if (opp < 0)
4871 return -1;
4872 if (opp)
4873 upper = i;
4874 }
4875
4876 if (lower < 0 || upper < 0)
4877 return bmap->n_ineq;
4878
4879 isl_int_init(l);
4880 isl_int_init(u);
4881
4882 lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &l);
4883 lower_bound_from_opposite(bmap, ineq, upper, o_div + div, &u);
4884
4885 equal = isl_int_eq(l, u);
4886
4887 isl_int_clear(l);
4888 isl_int_clear(u);
4889
4890 return equal ? lower : bmap->n_ineq;
4891 }
4892
4893 /* Given a lower bound constraint "ineq" on the existentially quantified
4894 * variable "div", such that the corresponding lower bound has
4895 * a fixed value in "bmap", assign this fixed value to the variable and
4896 * then try and drop redundant divs again,
4897 * freeing the temporary data structure "pairs" that was associated
4898 * to the old version of "bmap".
4899 * "lower" determines the constant value for the lower bound.
4900 *
4901 * In particular, "ineq" is of the form
4902 *
4903 * f(x) + n d + c >= 0,
4904 *
4905 * while "lower" is of the form
4906 *
4907 * f(x) + c0 >= 0
4908 *
4909 * The lower bound is ceil((-f(x) - c)/n) and its constant value
4910 * is ceil((c0 - c)/n).
4911 */
fix_cst_lower(__isl_take isl_basic_map * bmap,int div,int ineq,int lower,int * pairs)4912 static __isl_give isl_basic_map *fix_cst_lower(__isl_take isl_basic_map *bmap,
4913 int div, int ineq, int lower, int *pairs)
4914 {
4915 isl_int c;
4916 unsigned o_div;
4917
4918 isl_int_init(c);
4919
4920 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4921 lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &c);
4922 bmap = isl_basic_map_fix(bmap, isl_dim_div, div, c);
4923 free(pairs);
4924
4925 isl_int_clear(c);
4926
4927 return isl_basic_map_drop_redundant_divs(bmap);
4928 }
4929
4930 /* Do any of the integer divisions of "bmap" involve integer division "div"?
4931 *
4932 * The integer division "div" could only ever appear in any later
4933 * integer division (with an explicit representation).
4934 */
any_div_involves_div(__isl_keep isl_basic_map * bmap,int div)4935 static isl_bool any_div_involves_div(__isl_keep isl_basic_map *bmap, int div)
4936 {
4937 int i;
4938 isl_size v_div, n_div;
4939
4940 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4941 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4942 if (v_div < 0 || n_div < 0)
4943 return isl_bool_error;
4944
4945 for (i = div + 1; i < n_div; ++i) {
4946 isl_bool unknown;
4947
4948 unknown = isl_basic_map_div_is_marked_unknown(bmap, i);
4949 if (unknown < 0)
4950 return isl_bool_error;
4951 if (unknown)
4952 continue;
4953 if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div]))
4954 return isl_bool_true;
4955 }
4956
4957 return isl_bool_false;
4958 }
4959
4960 /* Remove divs that are not strictly needed based on the inequality
4961 * constraints.
4962 * In particular, if a div only occurs positively (or negatively)
4963 * in constraints, then it can simply be dropped.
4964 * Also, if a div occurs in only two constraints and if moreover
4965 * those two constraints are opposite to each other, except for the constant
4966 * term and if the sum of the constant terms is such that for any value
4967 * of the other values, there is always at least one integer value of the
4968 * div, i.e., if one plus this sum is greater than or equal to
4969 * the (absolute value) of the coefficient of the div in the constraints,
4970 * then we can also simply drop the div.
4971 *
4972 * If an existentially quantified variable does not have an explicit
4973 * representation, appears in only a single lower bound that does not
4974 * involve any other such existentially quantified variables and appears
4975 * in this lower bound with coefficient 1,
4976 * then fix the variable to the value of the lower bound. That is,
4977 * turn the inequality into an equality.
4978 * If for any value of the other variables, there is any value
4979 * for the existentially quantified variable satisfying the constraints,
4980 * then this lower bound also satisfies the constraints.
4981 * It is therefore safe to pick this lower bound.
4982 *
4983 * The same reasoning holds even if the coefficient is not one.
4984 * However, fixing the variable to the value of the lower bound may
4985 * in general introduce an extra integer division, in which case
4986 * it may be better to pick another value.
4987 * If this integer division has a known constant value, then plugging
4988 * in this constant value removes the existentially quantified variable
4989 * completely. In particular, if the lower bound is of the form
4990 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
4991 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
4992 * then the existentially quantified variable can be assigned this
4993 * shared value.
4994 *
4995 * We skip divs that appear in equalities or in the definition of other divs.
4996 * Divs that appear in the definition of other divs usually occur in at least
4997 * 4 constraints, but the constraints may have been simplified.
4998 *
4999 * If any divs are left after these simple checks then we move on
5000 * to more complicated cases in drop_more_redundant_divs.
5001 */
isl_basic_map_drop_redundant_divs_ineq(__isl_take isl_basic_map * bmap)5002 static __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs_ineq(
5003 __isl_take isl_basic_map *bmap)
5004 {
5005 int i, j;
5006 isl_size off;
5007 int *pairs = NULL;
5008 int n = 0;
5009 isl_size n_ineq;
5010
5011 if (!bmap)
5012 goto error;
5013 if (bmap->n_div == 0)
5014 return bmap;
5015
5016 off = isl_basic_map_var_offset(bmap, isl_dim_div);
5017 if (off < 0)
5018 return isl_basic_map_free(bmap);
5019 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
5020 if (!pairs)
5021 goto error;
5022
5023 n_ineq = isl_basic_map_n_inequality(bmap);
5024 if (n_ineq < 0)
5025 goto error;
5026 for (i = 0; i < bmap->n_div; ++i) {
5027 int pos, neg;
5028 int last_pos, last_neg;
5029 int redundant;
5030 int defined;
5031 isl_bool involves, opp, set_div;
5032
5033 defined = !isl_int_is_zero(bmap->div[i][0]);
5034 involves = any_div_involves_div(bmap, i);
5035 if (involves < 0)
5036 goto error;
5037 if (involves)
5038 continue;
5039 for (j = 0; j < bmap->n_eq; ++j)
5040 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
5041 break;
5042 if (j < bmap->n_eq)
5043 continue;
5044 ++n;
5045 pos = neg = 0;
5046 for (j = 0; j < bmap->n_ineq; ++j) {
5047 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
5048 last_pos = j;
5049 ++pos;
5050 }
5051 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
5052 last_neg = j;
5053 ++neg;
5054 }
5055 }
5056 pairs[i] = pos * neg;
5057 if (pairs[i] == 0) {
5058 for (j = bmap->n_ineq - 1; j >= 0; --j)
5059 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
5060 isl_basic_map_drop_inequality(bmap, j);
5061 bmap = isl_basic_map_drop_div(bmap, i);
5062 return drop_redundant_divs_again(bmap, pairs, 0);
5063 }
5064 if (pairs[i] != 1)
5065 opp = isl_bool_false;
5066 else
5067 opp = is_opposite(bmap, last_pos, last_neg);
5068 if (opp < 0)
5069 goto error;
5070 if (!opp) {
5071 int lower;
5072 isl_bool single, one;
5073
5074 if (pos != 1)
5075 continue;
5076 single = single_unknown(bmap, last_pos, i);
5077 if (single < 0)
5078 goto error;
5079 if (!single)
5080 continue;
5081 one = has_coef_one(bmap, i, last_pos);
5082 if (one < 0)
5083 goto error;
5084 if (one)
5085 return set_eq_and_try_again(bmap, last_pos,
5086 pairs);
5087 lower = lower_bound_is_cst(bmap, i, last_pos);
5088 if (lower < 0)
5089 goto error;
5090 if (lower < n_ineq)
5091 return fix_cst_lower(bmap, i, last_pos, lower,
5092 pairs);
5093 continue;
5094 }
5095
5096 isl_int_add(bmap->ineq[last_pos][0],
5097 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
5098 isl_int_add_ui(bmap->ineq[last_pos][0],
5099 bmap->ineq[last_pos][0], 1);
5100 redundant = isl_int_ge(bmap->ineq[last_pos][0],
5101 bmap->ineq[last_pos][1+off+i]);
5102 isl_int_sub_ui(bmap->ineq[last_pos][0],
5103 bmap->ineq[last_pos][0], 1);
5104 isl_int_sub(bmap->ineq[last_pos][0],
5105 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
5106 if (redundant)
5107 return drop_div_and_try_again(bmap, i,
5108 last_pos, last_neg, pairs);
5109 if (defined)
5110 set_div = isl_bool_false;
5111 else
5112 set_div = ok_to_set_div_from_bound(bmap, i, last_pos);
5113 if (set_div < 0)
5114 return isl_basic_map_free(bmap);
5115 if (set_div) {
5116 bmap = set_div_from_lower_bound(bmap, i, last_pos);
5117 return drop_redundant_divs_again(bmap, pairs, 1);
5118 }
5119 pairs[i] = 0;
5120 --n;
5121 }
5122
5123 if (n > 0)
5124 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
5125
5126 free(pairs);
5127 return bmap;
5128 error:
5129 free(pairs);
5130 isl_basic_map_free(bmap);
5131 return NULL;
5132 }
5133
5134 /* Consider the coefficients at "c" as a row vector and replace
5135 * them with their product with "T". "T" is assumed to be a square matrix.
5136 */
preimage(isl_int * c,__isl_keep isl_mat * T)5137 static isl_stat preimage(isl_int *c, __isl_keep isl_mat *T)
5138 {
5139 isl_size n;
5140 isl_ctx *ctx;
5141 isl_vec *v;
5142
5143 n = isl_mat_rows(T);
5144 if (n < 0)
5145 return isl_stat_error;
5146 if (isl_seq_first_non_zero(c, n) == -1)
5147 return isl_stat_ok;
5148 ctx = isl_mat_get_ctx(T);
5149 v = isl_vec_alloc(ctx, n);
5150 if (!v)
5151 return isl_stat_error;
5152 isl_seq_swp_or_cpy(v->el, c, n);
5153 v = isl_vec_mat_product(v, isl_mat_copy(T));
5154 if (!v)
5155 return isl_stat_error;
5156 isl_seq_swp_or_cpy(c, v->el, n);
5157 isl_vec_free(v);
5158
5159 return isl_stat_ok;
5160 }
5161
5162 /* Plug in T for the variables in "bmap" starting at "pos".
5163 * T is a linear unimodular matrix, i.e., without constant term.
5164 */
isl_basic_map_preimage_vars(__isl_take isl_basic_map * bmap,unsigned pos,__isl_take isl_mat * T)5165 static __isl_give isl_basic_map *isl_basic_map_preimage_vars(
5166 __isl_take isl_basic_map *bmap, unsigned pos, __isl_take isl_mat *T)
5167 {
5168 int i;
5169 isl_size n_row, n_col;
5170
5171 bmap = isl_basic_map_cow(bmap);
5172 n_row = isl_mat_rows(T);
5173 n_col = isl_mat_cols(T);
5174 if (!bmap || n_row < 0 || n_col < 0)
5175 goto error;
5176
5177 if (n_col != n_row)
5178 isl_die(isl_mat_get_ctx(T), isl_error_invalid,
5179 "expecting square matrix", goto error);
5180
5181 if (isl_basic_map_check_range(bmap, isl_dim_all, pos, n_col) < 0)
5182 goto error;
5183
5184 for (i = 0; i < bmap->n_eq; ++i)
5185 if (preimage(bmap->eq[i] + 1 + pos, T) < 0)
5186 goto error;
5187 for (i = 0; i < bmap->n_ineq; ++i)
5188 if (preimage(bmap->ineq[i] + 1 + pos, T) < 0)
5189 goto error;
5190 for (i = 0; i < bmap->n_div; ++i) {
5191 if (isl_basic_map_div_is_marked_unknown(bmap, i))
5192 continue;
5193 if (preimage(bmap->div[i] + 1 + 1 + pos, T) < 0)
5194 goto error;
5195 }
5196
5197 isl_mat_free(T);
5198 return bmap;
5199 error:
5200 isl_basic_map_free(bmap);
5201 isl_mat_free(T);
5202 return NULL;
5203 }
5204
5205 /* Remove divs that are not strictly needed.
5206 *
5207 * First look for an equality constraint involving two or more
5208 * existentially quantified variables without an explicit
5209 * representation. Replace the combination that appears
5210 * in the equality constraint by a single existentially quantified
5211 * variable such that the equality can be used to derive
5212 * an explicit representation for the variable.
5213 * If there are no more such equality constraints, then continue
5214 * with isl_basic_map_drop_redundant_divs_ineq.
5215 *
5216 * In particular, if the equality constraint is of the form
5217 *
5218 * f(x) + \sum_i c_i a_i = 0
5219 *
5220 * with a_i existentially quantified variable without explicit
5221 * representation, then apply a transformation on the existentially
5222 * quantified variables to turn the constraint into
5223 *
5224 * f(x) + g a_1' = 0
5225 *
5226 * with g the gcd of the c_i.
5227 * In order to easily identify which existentially quantified variables
5228 * have a complete explicit representation, i.e., without being defined
5229 * in terms of other existentially quantified variables without
5230 * an explicit representation, the existentially quantified variables
5231 * are first sorted.
5232 *
5233 * The variable transformation is computed by extending the row
5234 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
5235 *
5236 * [a_1'] [c_1/g ... c_n/g] [ a_1 ]
5237 * [a_2'] [ a_2 ]
5238 * ... = U ....
5239 * [a_n'] [ a_n ]
5240 *
5241 * with [c_1/g ... c_n/g] representing the first row of U.
5242 * The inverse of U is then plugged into the original constraints.
5243 * The call to isl_basic_map_simplify makes sure the explicit
5244 * representation for a_1' is extracted from the equality constraint.
5245 */
isl_basic_map_drop_redundant_divs(__isl_take isl_basic_map * bmap)5246 __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs(
5247 __isl_take isl_basic_map *bmap)
5248 {
5249 int first;
5250 int i;
5251 unsigned o_div;
5252 isl_size n_div;
5253 int l;
5254 isl_ctx *ctx;
5255 isl_mat *T;
5256
5257 if (!bmap)
5258 return NULL;
5259 if (isl_basic_map_divs_known(bmap))
5260 return isl_basic_map_drop_redundant_divs_ineq(bmap);
5261 if (bmap->n_eq == 0)
5262 return isl_basic_map_drop_redundant_divs_ineq(bmap);
5263 bmap = isl_basic_map_sort_divs(bmap);
5264 if (!bmap)
5265 return NULL;
5266
5267 first = isl_basic_map_first_unknown_div(bmap);
5268 if (first < 0)
5269 return isl_basic_map_free(bmap);
5270
5271 o_div = isl_basic_map_offset(bmap, isl_dim_div);
5272 n_div = isl_basic_map_dim(bmap, isl_dim_div);
5273 if (n_div < 0)
5274 return isl_basic_map_free(bmap);
5275
5276 for (i = 0; i < bmap->n_eq; ++i) {
5277 l = isl_seq_first_non_zero(bmap->eq[i] + o_div + first,
5278 n_div - (first));
5279 if (l < 0)
5280 continue;
5281 l += first;
5282 if (isl_seq_first_non_zero(bmap->eq[i] + o_div + l + 1,
5283 n_div - (l + 1)) == -1)
5284 continue;
5285 break;
5286 }
5287 if (i >= bmap->n_eq)
5288 return isl_basic_map_drop_redundant_divs_ineq(bmap);
5289
5290 ctx = isl_basic_map_get_ctx(bmap);
5291 T = isl_mat_alloc(ctx, n_div - l, n_div - l);
5292 if (!T)
5293 return isl_basic_map_free(bmap);
5294 isl_seq_cpy(T->row[0], bmap->eq[i] + o_div + l, n_div - l);
5295 T = isl_mat_normalize_row(T, 0);
5296 T = isl_mat_unimodular_complete(T, 1);
5297 T = isl_mat_right_inverse(T);
5298
5299 for (i = l; i < n_div; ++i)
5300 bmap = isl_basic_map_mark_div_unknown(bmap, i);
5301 bmap = isl_basic_map_preimage_vars(bmap, o_div - 1 + l, T);
5302 bmap = isl_basic_map_simplify(bmap);
5303
5304 return isl_basic_map_drop_redundant_divs(bmap);
5305 }
5306
5307 /* Does "bmap" satisfy any equality that involves more than 2 variables
5308 * and/or has coefficients different from -1 and 1?
5309 */
has_multiple_var_equality(__isl_keep isl_basic_map * bmap)5310 static isl_bool has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
5311 {
5312 int i;
5313 isl_size total;
5314
5315 total = isl_basic_map_dim(bmap, isl_dim_all);
5316 if (total < 0)
5317 return isl_bool_error;
5318
5319 for (i = 0; i < bmap->n_eq; ++i) {
5320 int j, k;
5321
5322 j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
5323 if (j < 0)
5324 continue;
5325 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5326 !isl_int_is_negone(bmap->eq[i][1 + j]))
5327 return isl_bool_true;
5328
5329 j += 1;
5330 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5331 if (k < 0)
5332 continue;
5333 j += k;
5334 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5335 !isl_int_is_negone(bmap->eq[i][1 + j]))
5336 return isl_bool_true;
5337
5338 j += 1;
5339 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5340 if (k >= 0)
5341 return isl_bool_true;
5342 }
5343
5344 return isl_bool_false;
5345 }
5346
5347 /* Remove any common factor g from the constraint coefficients in "v".
5348 * The constant term is stored in the first position and is replaced
5349 * by floor(c/g). If any common factor is removed and if this results
5350 * in a tightening of the constraint, then set *tightened.
5351 */
normalize_constraint(__isl_take isl_vec * v,int * tightened)5352 static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
5353 int *tightened)
5354 {
5355 isl_ctx *ctx;
5356
5357 if (!v)
5358 return NULL;
5359 ctx = isl_vec_get_ctx(v);
5360 isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
5361 if (isl_int_is_zero(ctx->normalize_gcd))
5362 return v;
5363 if (isl_int_is_one(ctx->normalize_gcd))
5364 return v;
5365 v = isl_vec_cow(v);
5366 if (!v)
5367 return NULL;
5368 if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
5369 *tightened = 1;
5370 isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
5371 isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
5372 v->size - 1);
5373 return v;
5374 }
5375
5376 /* If "bmap" is an integer set that satisfies any equality involving
5377 * more than 2 variables and/or has coefficients different from -1 and 1,
5378 * then use variable compression to reduce the coefficients by removing
5379 * any (hidden) common factor.
5380 * In particular, apply the variable compression to each constraint,
5381 * factor out any common factor in the non-constant coefficients and
5382 * then apply the inverse of the compression.
5383 * At the end, we mark the basic map as having reduced constants.
5384 * If this flag is still set on the next invocation of this function,
5385 * then we skip the computation.
5386 *
5387 * Removing a common factor may result in a tightening of some of
5388 * the constraints. If this happens, then we may end up with two
5389 * opposite inequalities that can be replaced by an equality.
5390 * We therefore call isl_basic_map_detect_inequality_pairs,
5391 * which checks for such pairs of inequalities as well as eliminate_divs_eq
5392 * and isl_basic_map_gauss if such a pair was found.
5393 *
5394 * Tightening may also result in some other constraints becoming
5395 * (rationally) redundant with respect to the tightened constraint
5396 * (in combination with other constraints). The basic map may
5397 * therefore no longer be assumed to have no redundant constraints.
5398 *
5399 * Note that this function may leave the result in an inconsistent state.
5400 * In particular, the constraints may not be gaussed.
5401 * Unfortunately, isl_map_coalesce actually depends on this inconsistent state
5402 * for some of the test cases to pass successfully.
5403 * Any potential modification of the representation is therefore only
5404 * performed on a single copy of the basic map.
5405 */
isl_basic_map_reduce_coefficients(__isl_take isl_basic_map * bmap)5406 __isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
5407 __isl_take isl_basic_map *bmap)
5408 {
5409 isl_size total;
5410 isl_bool multi;
5411 isl_ctx *ctx;
5412 isl_vec *v;
5413 isl_mat *eq, *T, *T2;
5414 int i;
5415 int tightened;
5416
5417 if (!bmap)
5418 return NULL;
5419 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
5420 return bmap;
5421 if (isl_basic_map_is_rational(bmap))
5422 return bmap;
5423 if (bmap->n_eq == 0)
5424 return bmap;
5425 multi = has_multiple_var_equality(bmap);
5426 if (multi < 0)
5427 return isl_basic_map_free(bmap);
5428 if (!multi)
5429 return bmap;
5430
5431 total = isl_basic_map_dim(bmap, isl_dim_all);
5432 if (total < 0)
5433 return isl_basic_map_free(bmap);
5434 ctx = isl_basic_map_get_ctx(bmap);
5435 v = isl_vec_alloc(ctx, 1 + total);
5436 if (!v)
5437 return isl_basic_map_free(bmap);
5438
5439 eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
5440 T = isl_mat_variable_compression(eq, &T2);
5441 if (!T || !T2)
5442 goto error;
5443 if (T->n_col == 0) {
5444 isl_mat_free(T);
5445 isl_mat_free(T2);
5446 isl_vec_free(v);
5447 return isl_basic_map_set_to_empty(bmap);
5448 }
5449
5450 bmap = isl_basic_map_cow(bmap);
5451 if (!bmap)
5452 goto error;
5453
5454 tightened = 0;
5455 for (i = 0; i < bmap->n_ineq; ++i) {
5456 isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
5457 v = isl_vec_mat_product(v, isl_mat_copy(T));
5458 v = normalize_constraint(v, &tightened);
5459 v = isl_vec_mat_product(v, isl_mat_copy(T2));
5460 if (!v)
5461 goto error;
5462 isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
5463 }
5464
5465 isl_mat_free(T);
5466 isl_mat_free(T2);
5467 isl_vec_free(v);
5468
5469 ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
5470
5471 if (tightened) {
5472 int progress = 0;
5473
5474 ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
5475 bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
5476 if (progress) {
5477 bmap = eliminate_divs_eq(bmap, &progress);
5478 bmap = isl_basic_map_gauss(bmap, NULL);
5479 }
5480 }
5481
5482 return bmap;
5483 error:
5484 isl_mat_free(T);
5485 isl_mat_free(T2);
5486 isl_vec_free(v);
5487 return isl_basic_map_free(bmap);
5488 }
5489
5490 /* Shift the integer division at position "div" of "bmap"
5491 * by "shift" times the variable at position "pos".
5492 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5493 * corresponds to the constant term.
5494 *
5495 * That is, if the integer division has the form
5496 *
5497 * floor(f(x)/d)
5498 *
5499 * then replace it by
5500 *
5501 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5502 */
isl_basic_map_shift_div(__isl_take isl_basic_map * bmap,int div,int pos,isl_int shift)5503 __isl_give isl_basic_map *isl_basic_map_shift_div(
5504 __isl_take isl_basic_map *bmap, int div, int pos, isl_int shift)
5505 {
5506 int i;
5507 isl_size total, n_div;
5508
5509 if (isl_int_is_zero(shift))
5510 return bmap;
5511 total = isl_basic_map_dim(bmap, isl_dim_all);
5512 n_div = isl_basic_map_dim(bmap, isl_dim_div);
5513 total -= n_div;
5514 if (total < 0 || n_div < 0)
5515 return isl_basic_map_free(bmap);
5516
5517 isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]);
5518
5519 for (i = 0; i < bmap->n_eq; ++i) {
5520 if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
5521 continue;
5522 isl_int_submul(bmap->eq[i][pos],
5523 shift, bmap->eq[i][1 + total + div]);
5524 }
5525 for (i = 0; i < bmap->n_ineq; ++i) {
5526 if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
5527 continue;
5528 isl_int_submul(bmap->ineq[i][pos],
5529 shift, bmap->ineq[i][1 + total + div]);
5530 }
5531 for (i = 0; i < bmap->n_div; ++i) {
5532 if (isl_int_is_zero(bmap->div[i][0]))
5533 continue;
5534 if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
5535 continue;
5536 isl_int_submul(bmap->div[i][1 + pos],
5537 shift, bmap->div[i][1 + 1 + total + div]);
5538 }
5539
5540 return bmap;
5541 }
5542