• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010      INRIA Saclay
3  *
4  * Use of this software is governed by the MIT license
5  *
6  * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7  * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8  * 91893 Orsay, France
9  */
10 
11 #include <isl_map_private.h>
12 #include <isl/set.h>
13 #include <isl_space_private.h>
14 #include <isl_seq.h>
15 #include <isl_aff_private.h>
16 #include <isl_mat_private.h>
17 #include <isl_factorization.h>
18 
19 /*
20  * Let C be a cone and define
21  *
22  *	C' := { y | forall x in C : y x >= 0 }
23  *
24  * C' contains the coefficients of all linear constraints
25  * that are valid for C.
26  * Furthermore, C'' = C.
27  *
28  * If C is defined as { x | A x >= 0 }
29  * then any element in C' must be a non-negative combination
30  * of the rows of A, i.e., y = t A with t >= 0.  That is,
31  *
32  *	C' = { y | exists t >= 0 : y = t A }
33  *
34  * If any of the rows in A actually represents an equality, then
35  * also negative combinations of this row are allowed and so the
36  * non-negativity constraint on the corresponding element of t
37  * can be dropped.
38  *
39  * A polyhedron P = { x | b + A x >= 0 } can be represented
40  * in homogeneous coordinates by the cone
41  * C = { [z,x] | b z + A x >= and z >= 0 }
42  * The valid linear constraints on C correspond to the valid affine
43  * constraints on P.
44  * This is essentially Farkas' lemma.
45  *
46  * Since
47  *				  [ 1 0 ]
48  *		[ w y ] = [t_0 t] [ b A ]
49  *
50  * we have
51  *
52  *	C' = { w, y | exists t_0, t >= 0 : y = t A and w = t_0 + t b }
53  * or
54  *
55  *	C' = { w, y | exists t >= 0 : y = t A and w - t b >= 0 }
56  *
57  * In practice, we introduce an extra variable (w), shifting all
58  * other variables to the right, and an extra inequality
59  * (w - t b >= 0) corresponding to the positivity constraint on
60  * the homogeneous coordinate.
61  *
62  * When going back from coefficients to solutions, we immediately
63  * plug in 1 for z, which corresponds to shifting all variables
64  * to the left, with the leftmost ending up in the constant position.
65  */
66 
67 /* Add the given prefix to all named isl_dim_set dimensions in "space".
68  */
isl_space_prefix(__isl_take isl_space * space,const char * prefix)69 static __isl_give isl_space *isl_space_prefix(__isl_take isl_space *space,
70 	const char *prefix)
71 {
72 	int i;
73 	isl_ctx *ctx;
74 	isl_size nvar;
75 	size_t prefix_len = strlen(prefix);
76 
77 	if (!space)
78 		return NULL;
79 
80 	ctx = isl_space_get_ctx(space);
81 	nvar = isl_space_dim(space, isl_dim_set);
82 	if (nvar < 0)
83 		return isl_space_free(space);
84 
85 	for (i = 0; i < nvar; ++i) {
86 		const char *name;
87 		char *prefix_name;
88 
89 		name = isl_space_get_dim_name(space, isl_dim_set, i);
90 		if (!name)
91 			continue;
92 
93 		prefix_name = isl_alloc_array(ctx, char,
94 					      prefix_len + strlen(name) + 1);
95 		if (!prefix_name)
96 			goto error;
97 		memcpy(prefix_name, prefix, prefix_len);
98 		strcpy(prefix_name + prefix_len, name);
99 
100 		space = isl_space_set_dim_name(space,
101 						isl_dim_set, i, prefix_name);
102 		free(prefix_name);
103 	}
104 
105 	return space;
106 error:
107 	isl_space_free(space);
108 	return NULL;
109 }
110 
111 /* Given a dimension specification of the solutions space, construct
112  * a dimension specification for the space of coefficients.
113  *
114  * In particular transform
115  *
116  *	[params] -> { S }
117  *
118  * to
119  *
120  *	{ coefficients[[cst, params] -> S] }
121  *
122  * and prefix each dimension name with "c_".
123  */
isl_space_coefficients(__isl_take isl_space * space)124 static __isl_give isl_space *isl_space_coefficients(__isl_take isl_space *space)
125 {
126 	isl_space *space_param;
127 	isl_size nvar;
128 	isl_size nparam;
129 
130 	nvar = isl_space_dim(space, isl_dim_set);
131 	nparam = isl_space_dim(space, isl_dim_param);
132 	if (nvar < 0 || nparam < 0)
133 		return isl_space_free(space);
134 	space_param = isl_space_copy(space);
135 	space_param = isl_space_drop_dims(space_param, isl_dim_set, 0, nvar);
136 	space_param = isl_space_move_dims(space_param, isl_dim_set, 0,
137 				 isl_dim_param, 0, nparam);
138 	space_param = isl_space_prefix(space_param, "c_");
139 	space_param = isl_space_insert_dims(space_param, isl_dim_set, 0, 1);
140 	space_param = isl_space_set_dim_name(space_param,
141 				isl_dim_set, 0, "c_cst");
142 	space = isl_space_drop_dims(space, isl_dim_param, 0, nparam);
143 	space = isl_space_prefix(space, "c_");
144 	space = isl_space_join(isl_space_from_domain(space_param),
145 			   isl_space_from_range(space));
146 	space = isl_space_wrap(space);
147 	space = isl_space_set_tuple_name(space, isl_dim_set, "coefficients");
148 
149 	return space;
150 }
151 
152 /* Drop the given prefix from all named dimensions of type "type" in "space".
153  */
isl_space_unprefix(__isl_take isl_space * space,enum isl_dim_type type,const char * prefix)154 static __isl_give isl_space *isl_space_unprefix(__isl_take isl_space *space,
155 	enum isl_dim_type type, const char *prefix)
156 {
157 	int i;
158 	isl_size n;
159 	size_t prefix_len = strlen(prefix);
160 
161 	n = isl_space_dim(space, type);
162 	if (n < 0)
163 		return isl_space_free(space);
164 
165 	for (i = 0; i < n; ++i) {
166 		const char *name;
167 
168 		name = isl_space_get_dim_name(space, type, i);
169 		if (!name)
170 			continue;
171 		if (strncmp(name, prefix, prefix_len))
172 			continue;
173 
174 		space = isl_space_set_dim_name(space,
175 						type, i, name + prefix_len);
176 	}
177 
178 	return space;
179 }
180 
181 /* Given a dimension specification of the space of coefficients, construct
182  * a dimension specification for the space of solutions.
183  *
184  * In particular transform
185  *
186  *	{ coefficients[[cst, params] -> S] }
187  *
188  * to
189  *
190  *	[params] -> { S }
191  *
192  * and drop the "c_" prefix from the dimension names.
193  */
isl_space_solutions(__isl_take isl_space * space)194 static __isl_give isl_space *isl_space_solutions(__isl_take isl_space *space)
195 {
196 	isl_size nparam;
197 
198 	space = isl_space_unwrap(space);
199 	space = isl_space_drop_dims(space, isl_dim_in, 0, 1);
200 	space = isl_space_unprefix(space, isl_dim_in, "c_");
201 	space = isl_space_unprefix(space, isl_dim_out, "c_");
202 	nparam = isl_space_dim(space, isl_dim_in);
203 	if (nparam < 0)
204 		return isl_space_free(space);
205 	space = isl_space_move_dims(space,
206 				    isl_dim_param, 0, isl_dim_in, 0, nparam);
207 	space = isl_space_range(space);
208 
209 	return space;
210 }
211 
212 /* Return the rational universe basic set in the given space.
213  */
rational_universe(__isl_take isl_space * space)214 static __isl_give isl_basic_set *rational_universe(__isl_take isl_space *space)
215 {
216 	isl_basic_set *bset;
217 
218 	bset = isl_basic_set_universe(space);
219 	bset = isl_basic_set_set_rational(bset);
220 
221 	return bset;
222 }
223 
224 /* Compute the dual of "bset" by applying Farkas' lemma.
225  * As explained above, we add an extra dimension to represent
226  * the coefficient of the constant term when going from solutions
227  * to coefficients (shift == 1) and we drop the extra dimension when going
228  * in the opposite direction (shift == -1).
229  * The dual can be created in an arbitrary space.
230  * The caller is responsible for putting the result in the appropriate space.
231  *
232  * If "bset" is (obviously) empty, then the way this emptiness
233  * is represented by the constraints does not allow for the application
234  * of the standard farkas algorithm.  We therefore handle this case
235  * specifically and return the universe basic set.
236  */
farkas(__isl_take isl_basic_set * bset,int shift)237 static __isl_give isl_basic_set *farkas(__isl_take isl_basic_set *bset,
238 	int shift)
239 {
240 	int i, j, k;
241 	isl_ctx *ctx;
242 	isl_space *space;
243 	isl_basic_set *dual = NULL;
244 	isl_size total;
245 
246 	total = isl_basic_set_dim(bset, isl_dim_all);
247 	if (total < 0)
248 		return isl_basic_set_free(bset);
249 
250 	ctx = isl_basic_set_get_ctx(bset);
251 	space = isl_space_set_alloc(ctx, 0, total + shift);
252 	if (isl_basic_set_plain_is_empty(bset)) {
253 		isl_basic_set_free(bset);
254 		return rational_universe(space);
255 	}
256 
257 	dual = isl_basic_set_alloc_space(space, bset->n_eq + bset->n_ineq,
258 					total, bset->n_ineq + (shift > 0));
259 	dual = isl_basic_set_set_rational(dual);
260 
261 	for (i = 0; i < bset->n_eq + bset->n_ineq; ++i) {
262 		k = isl_basic_set_alloc_div(dual);
263 		if (k < 0)
264 			goto error;
265 		isl_int_set_si(dual->div[k][0], 0);
266 	}
267 
268 	for (i = 0; i < total; ++i) {
269 		k = isl_basic_set_alloc_equality(dual);
270 		if (k < 0)
271 			goto error;
272 		isl_seq_clr(dual->eq[k], 1 + shift + total);
273 		isl_int_set_si(dual->eq[k][1 + shift + i], -1);
274 		for (j = 0; j < bset->n_eq; ++j)
275 			isl_int_set(dual->eq[k][1 + shift + total + j],
276 				    bset->eq[j][1 + i]);
277 		for (j = 0; j < bset->n_ineq; ++j)
278 			isl_int_set(dual->eq[k][1 + shift + total + bset->n_eq + j],
279 				    bset->ineq[j][1 + i]);
280 	}
281 
282 	for (i = 0; i < bset->n_ineq; ++i) {
283 		k = isl_basic_set_alloc_inequality(dual);
284 		if (k < 0)
285 			goto error;
286 		isl_seq_clr(dual->ineq[k],
287 			    1 + shift + total + bset->n_eq + bset->n_ineq);
288 		isl_int_set_si(dual->ineq[k][1 + shift + total + bset->n_eq + i], 1);
289 	}
290 
291 	if (shift > 0) {
292 		k = isl_basic_set_alloc_inequality(dual);
293 		if (k < 0)
294 			goto error;
295 		isl_seq_clr(dual->ineq[k], 2 + total);
296 		isl_int_set_si(dual->ineq[k][1], 1);
297 		for (j = 0; j < bset->n_eq; ++j)
298 			isl_int_neg(dual->ineq[k][2 + total + j],
299 				    bset->eq[j][0]);
300 		for (j = 0; j < bset->n_ineq; ++j)
301 			isl_int_neg(dual->ineq[k][2 + total + bset->n_eq + j],
302 				    bset->ineq[j][0]);
303 	}
304 
305 	dual = isl_basic_set_remove_divs(dual);
306 	dual = isl_basic_set_simplify(dual);
307 	dual = isl_basic_set_finalize(dual);
308 
309 	isl_basic_set_free(bset);
310 	return dual;
311 error:
312 	isl_basic_set_free(bset);
313 	isl_basic_set_free(dual);
314 	return NULL;
315 }
316 
317 /* Construct a basic set containing the tuples of coefficients of all
318  * valid affine constraints on the given basic set, ignoring
319  * the space of input and output and without any further decomposition.
320  */
isl_basic_set_coefficients_base(__isl_take isl_basic_set * bset)321 static __isl_give isl_basic_set *isl_basic_set_coefficients_base(
322 	__isl_take isl_basic_set *bset)
323 {
324 	return farkas(bset, 1);
325 }
326 
327 /* Return the inverse mapping of "morph".
328  */
peek_inv(__isl_keep isl_morph * morph)329 static __isl_give isl_mat *peek_inv(__isl_keep isl_morph *morph)
330 {
331 	return morph ? morph->inv : NULL;
332 }
333 
334 /* Return a copy of the inverse mapping of "morph".
335  */
get_inv(__isl_keep isl_morph * morph)336 static __isl_give isl_mat *get_inv(__isl_keep isl_morph *morph)
337 {
338 	return isl_mat_copy(peek_inv(morph));
339 }
340 
341 /* Information about a single factor within isl_basic_set_coefficients_product.
342  *
343  * "start" is the position of the first coefficient (beyond
344  * the one corresponding to the constant term) in this factor.
345  * "dim" is the number of coefficients (other than
346  * the one corresponding to the constant term) in this factor.
347  * "n_line" is the number of lines in "coeff".
348  * "n_ray" is the number of rays (other than lines) in "coeff".
349  * "n_vertex" is the number of vertices in "coeff".
350  *
351  * While iterating over the vertices,
352  * "pos" represents the inequality constraint corresponding
353  * to the current vertex.
354  */
355 struct isl_coefficients_factor_data {
356 	isl_basic_set *coeff;
357 	int start;
358 	int dim;
359 	int n_line;
360 	int n_ray;
361 	int n_vertex;
362 	int pos;
363 };
364 
365 /* Internal data structure for isl_basic_set_coefficients_product.
366  * "n" is the number of factors in the factorization.
367  * "pos" is the next factor that will be considered.
368  * "start_next" is the position of the first coefficient (beyond
369  * the one corresponding to the constant term) in the next factor.
370  * "factors" contains information about the individual "n" factors.
371  */
372 struct isl_coefficients_product_data {
373 	int n;
374 	int pos;
375 	int start_next;
376 	struct isl_coefficients_factor_data *factors;
377 };
378 
379 /* Initialize the internal data structure for
380  * isl_basic_set_coefficients_product.
381  */
isl_coefficients_product_data_init(isl_ctx * ctx,struct isl_coefficients_product_data * data,int n)382 static isl_stat isl_coefficients_product_data_init(isl_ctx *ctx,
383 	struct isl_coefficients_product_data *data, int n)
384 {
385 	data->n = n;
386 	data->pos = 0;
387 	data->start_next = 0;
388 	data->factors = isl_calloc_array(ctx,
389 					struct isl_coefficients_factor_data, n);
390 	if (!data->factors)
391 		return isl_stat_error;
392 	return isl_stat_ok;
393 }
394 
395 /* Free all memory allocated in "data".
396  */
isl_coefficients_product_data_clear(struct isl_coefficients_product_data * data)397 static void isl_coefficients_product_data_clear(
398 	struct isl_coefficients_product_data *data)
399 {
400 	int i;
401 
402 	if (data->factors) {
403 		for (i = 0; i < data->n; ++i) {
404 			isl_basic_set_free(data->factors[i].coeff);
405 		}
406 	}
407 	free(data->factors);
408 }
409 
410 /* Does inequality "ineq" in the (dual) basic set "bset" represent a ray?
411  * In particular, does it have a zero denominator
412  * (i.e., a zero coefficient for the constant term)?
413  */
is_ray(__isl_keep isl_basic_set * bset,int ineq)414 static int is_ray(__isl_keep isl_basic_set *bset, int ineq)
415 {
416 	return isl_int_is_zero(bset->ineq[ineq][1]);
417 }
418 
419 /* isl_factorizer_every_factor_basic_set callback that
420  * constructs a basic set containing the tuples of coefficients of all
421  * valid affine constraints on the factor "bset" and
422  * extracts further information that will be used
423  * when combining the results over the different factors.
424  */
isl_basic_set_coefficients_factor(__isl_keep isl_basic_set * bset,void * user)425 static isl_bool isl_basic_set_coefficients_factor(
426 	__isl_keep isl_basic_set *bset, void *user)
427 {
428 	struct isl_coefficients_product_data *data = user;
429 	isl_basic_set *coeff;
430 	isl_size n_eq, n_ineq, dim;
431 	int i, n_ray, n_vertex;
432 
433 	coeff = isl_basic_set_coefficients_base(isl_basic_set_copy(bset));
434 	data->factors[data->pos].coeff = coeff;
435 	if (!coeff)
436 		return isl_bool_error;
437 
438 	dim = isl_basic_set_dim(bset, isl_dim_set);
439 	n_eq = isl_basic_set_n_equality(coeff);
440 	n_ineq = isl_basic_set_n_inequality(coeff);
441 	if (dim < 0 || n_eq < 0 || n_ineq < 0)
442 		return isl_bool_error;
443 	n_ray = n_vertex = 0;
444 	for (i = 0; i < n_ineq; ++i) {
445 		if (is_ray(coeff, i))
446 			n_ray++;
447 		else
448 			n_vertex++;
449 	}
450 	data->factors[data->pos].start = data->start_next;
451 	data->factors[data->pos].dim = dim;
452 	data->factors[data->pos].n_line = n_eq;
453 	data->factors[data->pos].n_ray = n_ray;
454 	data->factors[data->pos].n_vertex = n_vertex;
455 	data->pos++;
456 	data->start_next += dim;
457 
458 	return isl_bool_true;
459 }
460 
461 /* Clear an entry in the product, given that there is a "total" number
462  * of coefficients (other than that of the constant term).
463  */
clear_entry(isl_int * entry,int total)464 static void clear_entry(isl_int *entry, int total)
465 {
466 	isl_seq_clr(entry, 1 + 1 + total);
467 }
468 
469 /* Set the part of the entry corresponding to factor "data",
470  * from the factor coefficients in "src".
471  */
set_factor(isl_int * entry,isl_int * src,struct isl_coefficients_factor_data * data)472 static void set_factor(isl_int *entry, isl_int *src,
473 	struct isl_coefficients_factor_data *data)
474 {
475 	isl_seq_cpy(entry + 1 + 1 + data->start, src + 1 + 1, data->dim);
476 }
477 
478 /* Set the part of the entry corresponding to factor "data",
479  * from the factor coefficients in "src" multiplied by "f".
480  */
scale_factor(isl_int * entry,isl_int * src,isl_int f,struct isl_coefficients_factor_data * data)481 static void scale_factor(isl_int *entry, isl_int *src, isl_int f,
482 	struct isl_coefficients_factor_data *data)
483 {
484 	isl_seq_scale(entry + 1 + 1 + data->start, src + 1 + 1, f, data->dim);
485 }
486 
487 /* Add all lines from the given factor to "bset",
488  * given that there is a "total" number of coefficients
489  * (other than that of the constant term).
490  */
add_lines(__isl_take isl_basic_set * bset,struct isl_coefficients_factor_data * factor,int total)491 static __isl_give isl_basic_set *add_lines(__isl_take isl_basic_set *bset,
492 	struct isl_coefficients_factor_data *factor, int total)
493 {
494 	int i;
495 
496 	for (i = 0; i < factor->n_line; ++i) {
497 		int k;
498 
499 		k = isl_basic_set_alloc_equality(bset);
500 		if (k < 0)
501 			return isl_basic_set_free(bset);
502 		clear_entry(bset->eq[k], total);
503 		set_factor(bset->eq[k], factor->coeff->eq[i], factor);
504 	}
505 
506 	return bset;
507 }
508 
509 /* Add all rays (other than lines) from the given factor to "bset",
510  * given that there is a "total" number of coefficients
511  * (other than that of the constant term).
512  */
add_rays(__isl_take isl_basic_set * bset,struct isl_coefficients_factor_data * data,int total)513 static __isl_give isl_basic_set *add_rays(__isl_take isl_basic_set *bset,
514 	struct isl_coefficients_factor_data *data, int total)
515 {
516 	int i;
517 	int n_ineq = data->n_ray + data->n_vertex;
518 
519 	for (i = 0; i < n_ineq; ++i) {
520 		int k;
521 
522 		if (!is_ray(data->coeff, i))
523 			continue;
524 
525 		k = isl_basic_set_alloc_inequality(bset);
526 		if (k < 0)
527 			return isl_basic_set_free(bset);
528 		clear_entry(bset->ineq[k], total);
529 		set_factor(bset->ineq[k], data->coeff->ineq[i], data);
530 	}
531 
532 	return bset;
533 }
534 
535 /* Move to the first vertex of the given factor starting
536  * at inequality constraint "start", setting factor->pos and
537  * returning 1 if a vertex is found.
538  */
factor_first_vertex(struct isl_coefficients_factor_data * factor,int start)539 static int factor_first_vertex(struct isl_coefficients_factor_data *factor,
540 	int start)
541 {
542 	int j;
543 	int n = factor->n_ray + factor->n_vertex;
544 
545 	for (j = start; j < n; ++j) {
546 		if (is_ray(factor->coeff, j))
547 			continue;
548 		factor->pos = j;
549 		return 1;
550 	}
551 
552 	return 0;
553 }
554 
555 /* Move to the first constraint in each factor starting at "first"
556  * that represents a vertex.
557  * In particular, skip the initial constraints that correspond to rays.
558  */
first_vertex(struct isl_coefficients_product_data * data,int first)559 static void first_vertex(struct isl_coefficients_product_data *data, int first)
560 {
561 	int i;
562 
563 	for (i = first; i < data->n; ++i)
564 		factor_first_vertex(&data->factors[i], 0);
565 }
566 
567 /* Move to the next vertex in the product.
568  * In particular, move to the next vertex of the last factor.
569  * If all vertices of this last factor have already been considered,
570  * then move to the next vertex of the previous factor(s)
571  * until a factor is found that still has a next vertex.
572  * Once such a next vertex has been found, the subsequent
573  * factors are reset to the first vertex.
574  * Return 1 if any next vertex was found.
575  */
next_vertex(struct isl_coefficients_product_data * data)576 static int next_vertex(struct isl_coefficients_product_data *data)
577 {
578 	int i;
579 
580 	for (i = data->n - 1; i >= 0; --i) {
581 		struct isl_coefficients_factor_data *factor = &data->factors[i];
582 
583 		if (!factor_first_vertex(factor, factor->pos + 1))
584 			continue;
585 		first_vertex(data, i + 1);
586 		return 1;
587 	}
588 
589 	return 0;
590 }
591 
592 /* Add a vertex to the product "bset" combining the currently selected
593  * vertices of the factors.
594  *
595  * In the dual representation, the constant term is always zero.
596  * The vertex itself is the sum of the contributions of the factors
597  * with a shared denominator in position 1.
598  *
599  * First compute the shared denominator (lcm) and
600  * then scale the numerators to this shared denominator.
601  */
add_vertex(__isl_take isl_basic_set * bset,struct isl_coefficients_product_data * data)602 static __isl_give isl_basic_set *add_vertex(__isl_take isl_basic_set *bset,
603 	struct isl_coefficients_product_data *data)
604 {
605 	int i;
606 	int k;
607 	isl_int lcm, f;
608 
609 	k = isl_basic_set_alloc_inequality(bset);
610 	if (k < 0)
611 		return isl_basic_set_free(bset);
612 
613 	isl_int_init(lcm);
614 	isl_int_init(f);
615 	isl_int_set_si(lcm, 1);
616 	for (i = 0; i < data->n; ++i) {
617 		struct isl_coefficients_factor_data *factor = &data->factors[i];
618 		isl_basic_set *coeff = factor->coeff;
619 		int pos = factor->pos;
620 		isl_int_lcm(lcm, lcm, coeff->ineq[pos][1]);
621 	}
622 	isl_int_set_si(bset->ineq[k][0], 0);
623 	isl_int_set(bset->ineq[k][1], lcm);
624 
625 	for (i = 0; i < data->n; ++i) {
626 		struct isl_coefficients_factor_data *factor = &data->factors[i];
627 		isl_basic_set *coeff = factor->coeff;
628 		int pos = factor->pos;
629 		isl_int_divexact(f, lcm, coeff->ineq[pos][1]);
630 		scale_factor(bset->ineq[k], coeff->ineq[pos], f, factor);
631 	}
632 
633 	isl_int_clear(f);
634 	isl_int_clear(lcm);
635 
636 	return bset;
637 }
638 
639 /* Combine the duals of the factors in the factorization of a basic set
640  * to form the dual of the entire basic set.
641  * The dual share the coefficient of the constant term.
642  * All other coefficients are specific to a factor.
643  * Any constraint not involving the coefficient of the constant term
644  * can therefor simply be copied into the appropriate position.
645  * This includes all equality constraints since the coefficient
646  * of the constant term can always be increased and therefore
647  * never appears in an equality constraint.
648  * The inequality constraints involving the coefficient of
649  * the constant term need to be combined across factors.
650  * In particular, if this coefficient needs to be greater than or equal
651  * to some linear combination of the other coefficients in each factor,
652  * then it needs to be greater than or equal to the sum of
653  * these linear combinations across the factors.
654  *
655  * Alternatively, the constraints of the dual can be seen
656  * as the vertices, rays and lines of the original basic set.
657  * Clearly, rays and lines can simply be copied,
658  * while vertices needs to be combined across factors.
659  * This means that the number of rays and lines in the product
660  * is equal to the sum of the numbers in the factors,
661  * while the number of vertices is the product
662  * of the number of vertices in the factors.  Note that each
663  * factor has at least one vertex.
664  * The only exception is when the factor is the dual of an obviously empty set,
665  * in which case a universe dual is created.
666  * In this case, return a universe dual for the product as well.
667  *
668  * While constructing the vertices, look for the first combination
669  * of inequality constraints that represent a vertex,
670  * construct the corresponding vertex and then move on
671  * to the next combination of inequality constraints until
672  * all combinations have been considered.
673  */
construct_product(isl_ctx * ctx,struct isl_coefficients_product_data * data)674 static __isl_give isl_basic_set *construct_product(isl_ctx *ctx,
675 	struct isl_coefficients_product_data *data)
676 {
677 	int i;
678 	int n_line, n_ray, n_vertex;
679 	int total;
680 	isl_space *space;
681 	isl_basic_set *product;
682 
683 	if (!data->factors)
684 		return NULL;
685 
686 	total = data->start_next;
687 
688 	n_line = 0;
689 	n_ray = 0;
690 	n_vertex = 1;
691 	for (i = 0; i < data->n; ++i) {
692 		n_line += data->factors[i].n_line;
693 		n_ray += data->factors[i].n_ray;
694 		n_vertex *= data->factors[i].n_vertex;
695 	}
696 
697 	space = isl_space_set_alloc(ctx, 0, 1 + total);
698 	if (n_vertex == 0)
699 		return rational_universe(space);
700 	product = isl_basic_set_alloc_space(space, 0, n_line, n_ray + n_vertex);
701 	product = isl_basic_set_set_rational(product);
702 
703 	for (i = 0; i < data->n; ++i)
704 		product = add_lines(product, &data->factors[i], total);
705 	for (i = 0; i < data->n; ++i)
706 		product = add_rays(product, &data->factors[i], total);
707 
708 	first_vertex(data, 0);
709 	do {
710 		product = add_vertex(product, data);
711 	} while (next_vertex(data));
712 
713 	return product;
714 }
715 
716 /* Given a factorization "f" of a basic set,
717  * construct a basic set containing the tuples of coefficients of all
718  * valid affine constraints on the product of the factors, ignoring
719  * the space of input and output.
720  * Note that this product may not be equal to the original basic set,
721  * if a non-trivial transformation is involved.
722  * This is handled by the caller.
723  *
724  * Compute the tuples of coefficients for each factor separately and
725  * then combine the results.
726  */
isl_basic_set_coefficients_product(__isl_take isl_factorizer * f)727 static __isl_give isl_basic_set *isl_basic_set_coefficients_product(
728 	__isl_take isl_factorizer *f)
729 {
730 	struct isl_coefficients_product_data data;
731 	isl_ctx *ctx;
732 	isl_basic_set *coeff;
733 	isl_bool every;
734 
735 	ctx = isl_factorizer_get_ctx(f);
736 	if (isl_coefficients_product_data_init(ctx, &data, f->n_group) < 0)
737 		f = isl_factorizer_free(f);
738 	every = isl_factorizer_every_factor_basic_set(f,
739 			&isl_basic_set_coefficients_factor, &data);
740 	isl_factorizer_free(f);
741 	if (every >= 0)
742 		coeff = construct_product(ctx, &data);
743 	else
744 		coeff = NULL;
745 	isl_coefficients_product_data_clear(&data);
746 
747 	return coeff;
748 }
749 
750 /* Given a factorization "f" of a basic set,
751  * construct a basic set containing the tuples of coefficients of all
752  * valid affine constraints on the basic set, ignoring
753  * the space of input and output.
754  *
755  * The factorization may involve a linear transformation of the basic set.
756  * In particular, the transformed basic set is formulated
757  * in terms of x' = U x, i.e., x = V x', with V = U^{-1}.
758  * The dual is then computed in terms of y' with y'^t [z; x'] >= 0.
759  * Plugging in y' = [1 0; 0 V^t] y yields
760  * y^t [1 0; 0 V] [z; x'] >= 0, i.e., y^t [z; x] >= 0, which is
761  * the desired set of coefficients y.
762  * Note that this transformation to y' only needs to be applied
763  * if U is not the identity matrix.
764  */
isl_basic_set_coefficients_morphed_product(__isl_take isl_factorizer * f)765 static __isl_give isl_basic_set *isl_basic_set_coefficients_morphed_product(
766 	__isl_take isl_factorizer *f)
767 {
768 	isl_bool is_identity;
769 	isl_space *space;
770 	isl_mat *inv;
771 	isl_multi_aff *ma;
772 	isl_basic_set *coeff;
773 
774 	if (!f)
775 		goto error;
776 	is_identity = isl_mat_is_scaled_identity(peek_inv(f->morph));
777 	if (is_identity < 0)
778 		goto error;
779 	if (is_identity)
780 		return isl_basic_set_coefficients_product(f);
781 
782 	inv = get_inv(f->morph);
783 	inv = isl_mat_transpose(inv);
784 	inv = isl_mat_lin_to_aff(inv);
785 
786 	coeff = isl_basic_set_coefficients_product(f);
787 	space = isl_space_map_from_set(isl_basic_set_get_space(coeff));
788 	ma = isl_multi_aff_from_aff_mat(space, inv);
789 	coeff = isl_basic_set_preimage_multi_aff(coeff, ma);
790 
791 	return coeff;
792 error:
793 	isl_factorizer_free(f);
794 	return NULL;
795 }
796 
797 /* Construct a basic set containing the tuples of coefficients of all
798  * valid affine constraints on the given basic set, ignoring
799  * the space of input and output.
800  *
801  * The caller has already checked that "bset" does not involve
802  * any local variables.  It may have parameters, though.
803  * Treat them as regular variables internally.
804  * This is especially important for the factorization,
805  * since the (original) parameters should be taken into account
806  * explicitly in this factorization.
807  *
808  * Check if the basic set can be factorized.
809  * If so, compute constraints on the coefficients of the factors
810  * separately and combine the results.
811  * Otherwise, compute the results for the input basic set as a whole.
812  */
basic_set_coefficients(__isl_take isl_basic_set * bset)813 static __isl_give isl_basic_set *basic_set_coefficients(
814 	__isl_take isl_basic_set *bset)
815 {
816 	isl_factorizer *f;
817 	isl_size nparam;
818 
819 	nparam = isl_basic_set_dim(bset, isl_dim_param);
820 	if (nparam < 0)
821 		return isl_basic_set_free(bset);
822 	bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
823 					    isl_dim_param, 0, nparam);
824 
825 	f = isl_basic_set_factorizer(bset);
826 	if (!f)
827 		return isl_basic_set_free(bset);
828 	if (f->n_group > 0) {
829 		isl_basic_set_free(bset);
830 		return isl_basic_set_coefficients_morphed_product(f);
831 	}
832 	isl_factorizer_free(f);
833 	return isl_basic_set_coefficients_base(bset);
834 }
835 
836 /* Construct a basic set containing the tuples of coefficients of all
837  * valid affine constraints on the given basic set.
838  */
isl_basic_set_coefficients(__isl_take isl_basic_set * bset)839 __isl_give isl_basic_set *isl_basic_set_coefficients(
840 	__isl_take isl_basic_set *bset)
841 {
842 	isl_space *space;
843 
844 	if (!bset)
845 		return NULL;
846 	if (bset->n_div)
847 		isl_die(bset->ctx, isl_error_invalid,
848 			"input set not allowed to have local variables",
849 			goto error);
850 
851 	space = isl_basic_set_get_space(bset);
852 	space = isl_space_coefficients(space);
853 
854 	bset = basic_set_coefficients(bset);
855 	bset = isl_basic_set_reset_space(bset, space);
856 	return bset;
857 error:
858 	isl_basic_set_free(bset);
859 	return NULL;
860 }
861 
862 /* Construct a basic set containing the elements that satisfy all
863  * affine constraints whose coefficient tuples are
864  * contained in the given basic set.
865  */
isl_basic_set_solutions(__isl_take isl_basic_set * bset)866 __isl_give isl_basic_set *isl_basic_set_solutions(
867 	__isl_take isl_basic_set *bset)
868 {
869 	isl_space *space;
870 
871 	if (!bset)
872 		return NULL;
873 	if (bset->n_div)
874 		isl_die(bset->ctx, isl_error_invalid,
875 			"input set not allowed to have local variables",
876 			goto error);
877 
878 	space = isl_basic_set_get_space(bset);
879 	space = isl_space_solutions(space);
880 
881 	bset = farkas(bset, -1);
882 	bset = isl_basic_set_reset_space(bset, space);
883 	return bset;
884 error:
885 	isl_basic_set_free(bset);
886 	return NULL;
887 }
888 
889 /* Construct a basic set containing the tuples of coefficients of all
890  * valid affine constraints on the given set.
891  */
isl_set_coefficients(__isl_take isl_set * set)892 __isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set)
893 {
894 	int i;
895 	isl_basic_set *coeff;
896 
897 	if (!set)
898 		return NULL;
899 	if (set->n == 0) {
900 		isl_space *space = isl_set_get_space(set);
901 		space = isl_space_coefficients(space);
902 		isl_set_free(set);
903 		return rational_universe(space);
904 	}
905 
906 	coeff = isl_basic_set_coefficients(isl_basic_set_copy(set->p[0]));
907 
908 	for (i = 1; i < set->n; ++i) {
909 		isl_basic_set *bset, *coeff_i;
910 		bset = isl_basic_set_copy(set->p[i]);
911 		coeff_i = isl_basic_set_coefficients(bset);
912 		coeff = isl_basic_set_intersect(coeff, coeff_i);
913 	}
914 
915 	isl_set_free(set);
916 	return coeff;
917 }
918 
919 /* Wrapper around isl_basic_set_coefficients for use
920  * as a isl_basic_set_list_map callback.
921  */
coefficients_wrap(__isl_take isl_basic_set * bset,void * user)922 static __isl_give isl_basic_set *coefficients_wrap(
923 	__isl_take isl_basic_set *bset, void *user)
924 {
925 	return isl_basic_set_coefficients(bset);
926 }
927 
928 /* Replace the elements of "list" by the result of applying
929  * isl_basic_set_coefficients to them.
930  */
isl_basic_set_list_coefficients(__isl_take isl_basic_set_list * list)931 __isl_give isl_basic_set_list *isl_basic_set_list_coefficients(
932 	__isl_take isl_basic_set_list *list)
933 {
934 	return isl_basic_set_list_map(list, &coefficients_wrap, NULL);
935 }
936 
937 /* Construct a basic set containing the elements that satisfy all
938  * affine constraints whose coefficient tuples are
939  * contained in the given set.
940  */
isl_set_solutions(__isl_take isl_set * set)941 __isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set)
942 {
943 	int i;
944 	isl_basic_set *sol;
945 
946 	if (!set)
947 		return NULL;
948 	if (set->n == 0) {
949 		isl_space *space = isl_set_get_space(set);
950 		space = isl_space_solutions(space);
951 		isl_set_free(set);
952 		return rational_universe(space);
953 	}
954 
955 	sol = isl_basic_set_solutions(isl_basic_set_copy(set->p[0]));
956 
957 	for (i = 1; i < set->n; ++i) {
958 		isl_basic_set *bset, *sol_i;
959 		bset = isl_basic_set_copy(set->p[i]);
960 		sol_i = isl_basic_set_solutions(bset);
961 		sol = isl_basic_set_intersect(sol, sol_i);
962 	}
963 
964 	isl_set_free(set);
965 	return sol;
966 }
967